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A B S T R A C T

This work focuses on thermo-elastic analysis of Variable Angle Tow (VAT) composite plates. Emphasis is given
to the through-the-thickness 3D stress component distributions as a consequence of constant temperature
profiles. High-order structural models are used, in order to take into account the volumetric and the
distortion contributions. The last contribute arise from boundary conditions or asymmetric staking sequences.
Governing equations of the uncoupled thermo-elastic problem are derived in the domain of the Carrera Unified
Formulation (CUF), which in turn is coupled with a classical finite element method to obtain opportune
numerical solutions. The advantage of using CUF lies in the fact that different theories of structures can be
implemented automatically and a critical study on the use of standard to high-order plate finite elements can
be performed with ease. In this manner we classify models based on their efficiency and depending on the
degree of accuracy needed, both in terms of displacements and stresses. Different numerical problems are
considered and it is demonstrated that layerwise approximations are needed whenever shear stresses trends
are of interest. Boundary Conditions influence more the choice of the adequate expansion theory otherwise.
1. Introduction

The thermal response of a structure holds significant importance
across various aerospace applications, particularly when employing
composite materials. The present work describes the thermal stresses
arising along Variable Angle Tow (VAT) composite plates. High-order
structural models are used to describe various plate configurations
subjected to a constant thermal profile.

Composite materials are central to the aerospace, mechanical, civil,
and automotive industries. Their high strength-to-weight ratio and
stiffness properties make them appealing. They offer a wide range
of thermal applications, which can be customized by selecting the
appropriate material for the matrix. This flexibility, combined with
the possibility of negative thermal expansion coefficients, favors the
choice of composite materials for numerous applications. Design and
production flexibility are other factors that have contributed to the
high popularity of composite materials. In fact, they have the capability
to be tailored in the various deposition directions [1]. New advanced
composite materials have been developed in recent years, increasing
their tailoring flexibility. It is now possible to exploit new deposition
technology such as the Automated Fibre Placement (AFP) technique [2]
and the Continuous Tow Shearing (CTS) process [3]. Variable Angle
Tow (VAT) composites have gained considerable attention due to their
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unique fiber deposition capabilities. By allowing fibers to follow curvi-
linear paths, VAT plates offer increased degrees of freedom and the
potential for enhanced structural performance.

Hyer and Charette [4] first proposed the idea of fibers with curved
trajectories in the early 1990s, which was limited until then by tech-
nological and manufacturing constraints. In the year that followed,
VAT plates and shells were studied extensively. For instance, Demasi
et al. [5] investigated the stress distribution of VAT plates employing
Equivalent Single Layer (ESL) and Layer Wise (LW) theories, and
Patni et al. [6] provide accurate VATs 3D stress fields description.
VATs were frequently studied to adapt the fiber deposition to the
structure behavior. Using VAT reinforcement around the hole, Zhu
et al. [7] investigated the increase in the ultimate strength of the
open-hole specimen. The optimization of the fiber deposition path to
increase the critical buckling load has also been studied with different
methods [8–10]. Curved fiber deposition increases production complex-
ity and, consequently, the eventuality of unexpected phenomena or
manufacturing errors such as misalignments. Groh et al. [11] provide
non-intuitive localized stress fields in tow-steered laminates far from
any boundaries. Pagani et al. [12,13] and Sanchez-Majano et al. [14]
studied the effect of manufacturing defects on the in-plane normal
stresses, failure, and buckling. The advantages of using VAT composites
263-8223/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
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under a mechanical load are clearly established in numerous works
emphasizing the influence of curved deposition on stiffness improve-
ment [15,16]. Additionally, the influence of external fields has been
investigated for VAT composite structures since they can cause abrupt
failures or unexpected changes in shape. As a consequence, the buckling
critical load due to constant thermal profile is investigated by Duran
et al. [17] and Vescovini et al. [18] for VAT symmetrically balanced
laminates.

Structures are subjected to different external environments, which
act as additional loads. Usually, the thermal environment is particularly
critical and intense in the case of spacecraft and high-speed aircraft.
This thermal load can be due to various factors, such as solar radiation
and drag or, in the case of composite materials, the manufacturing
process.

Different methods have been developed to describe the thermal
influence on structures and materials. In [19], beams, plates, and
shells-based solutions are developed through the theory of elastic-
ity for thermal bending, determining the applicability of the various
laminate models, three-dimensional (3D) exact solutions are also re-
ported in [20]. Other studies investigated the influence of thermal
loads on the variation of natural frequencies and critical buckling
load [21,22]. Moreover, a review of the thermal buckling for plates
and shells is reported in [23], where the rule of the thermal proper-
ties is discussed. Additionally, Kant and Khare [24] describe studies
involving thermo-elastic behavior using classical or first-order theories.
However, the traditional plate theories are often insufficient when
considering thermal loads. On the other hand, although accurate, using
three-dimensional (3D) elements results in a higher computational cost.

Many works on improved plate and shell models are addressed in
the literature for thermo-elasticity problems. However, most papers do
not consider refined approximation of the out-of-plane displacements.
Volumetric deformations are important in the case of thermal load,
and out-of-plane normal stress must be considered. Recent studies have
focused on developing higher-order 2D models, which provide a more
accurate representation of the thermal response. Precise models for
describing normal and shear stresses are developed through the post-
processing technique in [25]. Several higher-order two-dimensional
(2D) models have been developed recently. Among these models, the
thermal problem is investigated by Whu and Chen [26] through the
higher-order model and by Han et al. [27] using the enhanced first-
order shear deformation theory. Carrera [28] investigated the im-
pact of the through-the-thickness temperature profile on the thermo-
mechanical behavior of multilayered anisotropic thick and thin plates.
The trend of thermal stresses has also been studied over the years for
plates made of isotropic material [29] and straight-fiber laminate [30].
The influence of the thermal profile is also established in [31], where
thermal and mechanical boundary conditions, body forces, and heat
sources are considered in the most general forms. Furthermore, in [32],
the thermo-elastic static analysis of multilayered shell structure is
performed within the Carrera Unified Formulation framework using
Equivalent Single Layer (ESL) models, Layer Wise (LW) models, and
variable-kinematic models. The use of laminated materials in the field
of structure analysis introduces new numerical challenges. The classical
theories developed for the one-layered structures need to be revised
to describe the discontinuity of mechanical and physical properties
along the thickness due to the multi-layers [33]. As a result, many
theories have been developed to explain how displacements, strains,
and stresses behave along thickness. The ESL, LW [34], and Zig-Zag
(ZZ) [35] hypotheses are among those that have received the most
attention. Different works have been published during the years to
evaluate the better model for each case of study [5,9,18,25,30,36,37].

In this work, the CUF is employed to explore complete and high-
order structural models to opportunely describe the intricate nature of
the thermo-elastic coupling in laminated structures. Particular empha-
sis is given to VAT structures whose anisotropy further enhance the
2

coupling between the in-plane and out-of-plane mechanics. The CUF
is exploited within the finite element method, which makes it possible
to describe displacement fields with significantly lower computational
costs than 3D modeling. The main advantages of employing CUF are
linked to the accurate and formally invariant implementation of the
multifield unknowns and the different high-order kinematic theories.

This work provides an accurate description of thermal stress trends
that develop along the thickness of VAT composite plates with a focus
on the influence of the accuracy of the adopted expansion theory.
To the best of the authors knowledge, no results of thermal stresses
inherent to VAT plates are available to date. The behavior of VAT com-
posites may differ from that of conventional materials, as these have a
greater anisotropy due to the curvature of the fiber. Nevertheless, this
anisotropy is particularly important in the thermal properties, which
may differ from that of straight-fiber material. As a consequence, we
found that VAT behave quite differently in a thermal environment if
compared to classical composites. This generally justifies the need for
additional studies on VAT laminates by higher order theories.

The manuscript is organized in the following sections: Section 2
reports the VAT numerical description employed in the present work,
specifying the rotation approach necessary for variable orientation
description. Section 3 is focused on the mathematical characterization
of the thermo-mechanical problem through the CUF. In Section 4, some
numerical results are reported for different cases of interest. Last, some
overall considerations are presented in Discussion 5 and Conclusions 6.

2. Variable Angle Tow (VAT) notation and geometrical description

In the present study, VAT plates are analyzed utilizing plate ele-
ments. VATs refer to advanced composite materials incorporating fibers
following a curvilinear path to enhance efficiency. This curvilinear path
enables the adjustment of composite properties, such as stiffness and
strength, to meet specific requirements based on the lamination and
boundary conditions. Therefore, employing a curvilinear path makes
it possible to act on more degrees of freedom and align the fiber
orientation to specific local requirements. Additionally, a curvilinear
path results in varying fiber orientation angles between different points,
leading to distinct local material properties. Usually, the deposition
of the curved fibers employing the presented techniques results in
manufacturing defects such as gap areas or thickness variations [38].
Although they are not considered in the present research, defects
may affect the mechanical performance of VAT structures and optimal
design [12–14]. When a linear fiber angle variation over the lamina
is considered, the orientation of the fibers can be described by Eq. (1)
through the notation provided by Guardal et al. in [39]:

𝜃(𝑥′) = 𝛷 + 𝑇0 +
𝑇1 − 𝑇0

𝑑
|𝑥′| (1)

where 𝛷 indicates the rotation of the local reference system with
espect to a specific reference direction. 𝑥′ is the coordinate of the new
otate system, and 𝑇0 and 𝑇1 are two different reference angles with a
haracteristic distance named with 𝑑 which is equal to 𝑎∕2 when 𝛷 is
◦ and 𝑏∕2 when 𝛷 is 90◦.

Fig. 1(a) shows the fiber deposition representation, including all
he relevant reference parameters. The new reference system is rotated
ith respect to the global one of the angle 𝛷. The fiber orientation
ngle is determined using the following relation 𝑥′ = 𝑥 cos(𝛷)+𝑦 sin(𝛷).
or the sake of clearance, an example of the deposition path is reported
n Fig. 1(b) where the lamination is [0 < 90,−45 >] with 𝛷 = 0◦,
𝑇0 = 90◦, 𝑇1 = −45◦. Considering these parameters, the coordinate 𝑥′

became 𝑥′ = 𝑥 and the distance 𝑑 is equal to the edge 𝑎∕2. Substituting
the numerical value in Eq. (1) the orientation of the fiber is 𝜃(𝑥′) =
𝜃(𝑥) = 0 + 90 + (−45−90)

𝑎∕2 |𝑥| = 90 − 135
𝑎∕2 |𝑥|. The presence of VATs

implies that the rotation of the lamina is not allowed with a single
rotation matrix, as in a straight configuration. Thus, a different rotation
strategy must be employed, depending on the local fiber orientation.
The methodology employed in the present investigation evaluates the
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Fig. 1. Variable Angle Tow (VAT) representation.
material coefficients of the VAT structure at specific Gauss points [40].
This Gauss evaluation approach differs from the orientation definition
employed in the commercial codes, which treat the lamination angle
as constant across the entire element. As a result, the study of VAT
structures is more precise and practical in the present work. This
increase in accuracy is due to the evaluation in the Gauss point since the
varying stiffness coefficients of the material are considered in multiple
places for the same FE.

3. Thermo-mechanical decoupled model for VAT plates

3.1. Preliminary concepts

The present work investigates a steady-state thermo-mechanical
problem using a decoupled approach. Primary variables are displace-
ments which are reported in the vector below:

𝒖𝑇 (𝑥, 𝑦, 𝑧) =
(

𝑢𝑥 𝑢𝑦 𝑢𝑧
)

(2)

where the apex 𝑇 means transposition. The expressions of strains and
stresses vector are defined respectively in Eqs. (3) and (4) in a global
Cartesian reference system.

𝜺𝑇 =
(

𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑥𝑦
)

(3)

𝝈𝑇 =
(

𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑥𝑦
)

(4)

The geometrical relations reported in Eq. (5) define the linear relation
between the displacements 𝒖 and strains 𝜺:

𝜺 = 𝒃𝒖 (5)

where 𝒃 is a 6 × 3 linear differential operator whose explicit form is
reported in Appendix A. Further details about the geometrical relations
and their operator are available in [41]. The stress vector 𝝈 is defined
by the Hooke law through the material constitutive matrix �̃�(𝑥, 𝑦).

𝝈 = �̃�(𝑥, 𝑦)𝜺 (6)

Where �̃� is defined in the Cartesian global reference system through
the Eq. (7) acting on the matrix of the material properties 𝑪 which is
in the material reference system and whose form is reported in Eq. (9).

�̃�(𝑥, 𝑦) = 𝑻 (𝑥, 𝑦)𝑪𝑻 𝑇 (𝑥, 𝑦) (7)

The rotation matrix 𝑻 is the local rotation matrix describing the rela-
tion between material reference system and element reference system.
This matrix is a function of the lamination angle and it is equivalent
3

between VAT and classical straight-fiber composites reported in [42].
Nevertheless, as 𝜃 varies point-wise within the single ply in the case
of VAT, is becomes clear that 𝑻 (𝑥, 𝑦). When simulating VAT struc-
tures by commercial FE software, it is straightforward to consider the
lamination constant within the element, which eventually assumes a
linear distribution of the problem unknowns within the computational
domain. This approach definitely affects the numerical effectiveness of
the mathematical model, whose convergence is no more a function of
the mere element size and polynomial order, but also will be affected
by the steering gradient within the element. This is not the case in the
model proposed in this work, where the lamination angle is evaluated
at each Gauss point within the single high order finite element [40].
This ensures a more precise and practical description with multiple
evaluations of the local properties of each finite element. In contrast,
traditional approaches employ a constant rotation for each finite ele-
ment which requires a more refined mesh to adequately capture the
orientation description.

It is worthwhile to decompose strain and stress into the sum of
mechanical and thermal components to describe the decoupled thermo-
mechanical problem. These two components are distinguished by differ-
ent subscripts, where subscript 𝑚 represents the mechanical component,
and the subscript 𝜗 corresponds to the thermal component.

𝜎 = �̃�𝜺 = �̃�
(

𝜺𝑚 + 𝜺𝜗
)

= �̃�𝜺𝑚 − �̃�𝜃 = 𝝈𝑚 + 𝝈𝜗 (8)

In the given equations, 𝜃 indicates applied over-temperature, while 𝜶
represents the thermal expansion coefficient. The stresses-temperature
coefficient defined in the global reference system is denoted by �̃�, which
couples the two fields. To obtain �̃� the rotation matrix is applied as
shown in Eq. (11) to 𝝀 = 𝑪 ⋅𝜶 which is defined in the material system.

The constitutive matrix 𝑪 is presented in Eq. (9), where the material
is considered orthotropic, homogeneous, and operating in the linear
elastic range, Eq. (10) reports the stresses-temperature coefficient 𝝀.

𝑪 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶11 𝐶12 𝐶13 0 0 0
𝐶21 𝐶22 𝐶23 0 0 0
𝐶31 𝐶32 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(9)

𝝀𝑇 = {𝜆1 𝜆2 𝜆3 0 0 0} (10)

�̃� = 𝝀𝑻 𝑇 (11)
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3.2. Unified theory of plate structures

When compared to the conventional model, such as Classical Lam-
ination Theory (CLT) or First-order Shear Deformation Theory (FSDT),
Higher-Order Theories (HOTs) models offer increased accuracy in solu-
tions. The Carrera Unified Formulation (CUF) is an efficient framework
that describes all the kinematic models from classical to high-order the-
ories. The present study employs the CUF to implement the high-order
theories, enabling the description of models using different expansion
orders. The approach is based on a condensed notation that expresses
the displacement fields in terms of base functions with arbitrary forms
and orders. This condensed notation can represent all kinematic theo-
ries and allows the definition of the Fundamental Nuclei (FNs) of the
problem.

Furthermore, the CUF formulation enables the automatic imple-
mentation of a multi-field load with minimal changes to the pure
mechanical field. This implementation enables accurate 2D multi-field
description, taking advantage of unlimited unknowns per node. Further
details about the CUF framework and its implementation can be found
in Ref. [43].

Using the CUF, the 3D displacement field 𝒖(𝑥, 𝑦, 𝑧) can be repre-
sented by adopting a refined two-dimensional kinematic model. This
model incorporates the contribution of 𝐹𝜏 (𝑧) and 𝒖𝜏 (𝑥, 𝑦). Here, 𝐹𝜏 (𝑧)
represents arbitrary expansion functions that describe the displacement
behavior along the thickness, and 𝒖𝜏 (𝑥, 𝑦) denotes the generalized
displacement, which represents the solution in the plane of the plate:

𝒖(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑧)𝒖𝜏 (𝑥, 𝑦) 𝜏 = 1, 2,… , 𝑁 (12)

where 𝜏 ranges from 1 to 𝑁 , representing the number of expansion
terms, and the double indices indicate a summation.

In order to approximate the unknowns vector, the problem is solved
using the Finite Element Method (FEM) as shown in Eq. (13). This
method involves introducing shape functions 𝑁𝑖 and the nodal un-
knowns 𝒒𝑖:

𝒖(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑧)𝑁𝑖(𝑥, 𝑦)𝒒𝜏𝑖 (13)

where 𝑖 denotes the number of nodes of the plate element. By combin-
ing these approximations, the CUF-FEM approach allows for an efficient
and accurate solution to the problem at hand.

Due to their ‘‘transversely anisotropy’’, employing a two-
dimensional model, new challenges arise in describing material prop-
erties along the thickness of multilayered structures. In laminated
structures, different layers lead to transverse discontinuous mechanical
properties, and the interfaces between layers result in abrupt changes
and varying slopes in displacement profiles. As a result, the in-plane
stress components may be discontinuous at the interface, while the
transverse stresses must remain continuous at each interface. These
requirements are referred to as Interlaminar Continuity (IC) [43]. Sim-
ply improving the polynomial order of expansion may not guarantee
compliance with continuity conditions and the correct representation of
the change in the slope of displacements in the case of high transverse
anisotropy. Consequently, various approaches have been developed to
describe the laminate material properties, with the most common ones
being the Equivalent Single Layer theory (ESL) and Layer Wise theory
(LW).

In the ESL approach, the stiffness matrix of the entire plate is
obtained by homogenizing the constitutive properties of the individual
layer. The behavior of the multilayer is then analyzed as that of a
single-layer plate, characterized by the same variables assumed for the
entire cross-section. Material properties are defined by direct addiction
of the properties from every single layer creating a new homogeneous
material. The ESL approach is ‘‘kinematically homogeneous’’ and is not
sensitive to the individual layers. However, it can describe transverse
4

shear and normal strains.
On the other hand, the LW approach imposes continuity at every
interface with the description of each layer by its unique set of vari-
ables expanded on the thickness direction. Fig. 2 shows a graphical
representation of the ESL and LW FNs.

Several functions can be used as 𝐹𝜏 describing the in-thickness
expansion. In this study, it is presented an investigation of the use
of Lagrange Expansion (LE) with the LW approach and Taylor Expan-
sion (TE) adopting ESL theory. TE models are based on polynomial
expansion functions that describe the displacement along the thickness,
allowing for arbitrary increases in order. The linked displacement
remains continuous through the layers and is defined by the nodes
placed on a reference surface. On the contrary, LE models are based
on Lagrange polynomials, where the unknowns of the problem are the
pure displacement components, and the nodes can be defined along the
thickness. Different orders of LE can be used, and each order allows for
the imposition of Boundary Conditions (BCs) at each interface of the
multilayer. Further details about the LE and TE expansion models and
functions can be found in [41,44] respectively.

3.3. Thermo-mechanical problem

The variational principles allow us to write the governing equation
and the relative BCs of the problem. In the present work, the Principle
of Virtual Displacements (PVD) is employed to obtain the description
of the multifield problem. Given a set of admissible configurations, the
balanced configuration is only achieved when the equality of internal
and external virtual work is satisfied, as reported in Eq. (14):

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡 (14)

where the symbol 𝛿 denotes the virtual variation, 𝐿𝑖𝑛𝑡 stands for the
strain energy, and 𝐿𝑒𝑥𝑡 is the work of the external loads. When a
decoupled approach is adopted, the temperature is imposed at each
interface as a known value since it is not an unknown of the problem.
The derivation of the internal work is reported in Eq. (15):

𝛿𝐿𝑖𝑛𝑡 = ∫𝑉
𝛿𝜺𝑇𝑚𝝈𝑑𝑉 = ∫𝑉

𝛿𝜺𝑇𝑚
(

𝝈𝑚 + 𝝈𝜗
)

𝑑𝑉 = ∫𝑉
𝛿𝜺𝑇𝑚

(

�̃�𝜺𝑚 − 𝜃�̃�
)

𝑑𝑉

= ∫𝑉
𝛿𝜺𝑇𝑚�̃�𝜺𝑚𝑑𝑉 − ∫𝑉

𝛿𝜺𝑇𝑚𝜃�̃�𝑑𝑉 (15)

where 𝑉 is the plate volume. Introducing CUF and FEM as explained in
Eqs. (12) and (13), the first term of the Eq. (15) can be explained as:

∫𝑉
𝛿𝜺𝑇𝑚�̃�𝜺𝑚𝑑𝑉 = ∫𝑉

(𝒃𝛿𝒖)𝑇 �̃� (𝒃𝒖) 𝑑𝑉

= ∫𝛺 ∫ℎ

(

𝒃𝐹𝑠(𝑧)𝛿𝒖𝑗 (𝑥, 𝑦)
)𝑇 �̃�𝒃𝐹𝜏 (𝑧)𝒖𝑖(𝑥, 𝑦)𝑑𝛺𝑑𝑧

= ∫𝛺 ∫ℎ

(

𝒃𝐹𝑠(𝑧)𝑁𝑗 (𝑥, 𝑦)𝛿𝒒𝑠𝑗
)𝑇 �̃�𝒃𝐹𝜏 (𝑧)𝑁𝑖(𝑥, 𝑦)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑩𝜏𝑖

𝒒𝜏𝑖𝑑𝛺𝑑𝑧

= ∫𝛺 ∫ℎ
𝛿𝒒𝑇𝑠𝑗𝑩

𝑇
𝑠𝑗 �̃�𝑩𝜏𝑖𝒒𝜏𝑖𝑑𝛺𝑑𝑧 = 𝛿𝒒𝑇𝑠𝑗

(

∫𝛺 ∫ℎ
𝑩𝑇

𝑠𝑗 �̃�𝑩𝜏𝑖𝑑𝛺𝑑𝑧
)

𝒒𝜏𝑖 (16)

here the volume 𝑉 is divided into two parts, 𝛺 which denotes the
late surface and ℎ that is the plate thickness. Including CUF and FEM
n the PVD, the differential operator 𝒃 is applied both to the shape
unctions and the thickness expansion functions and, as a result, the
atrix 𝑩 can be defined. Using a similar procedure, the second term of
q. (15) is obtained and reported in Eq. (17).

𝑉
𝛿𝜺𝑇𝑚𝜃�̃�𝑑𝑉 = ∫𝛺 ∫ℎ

(𝒃𝛿𝒖)𝑇 �̃�𝜃𝑑𝛺𝑑𝑧

∫𝛺 ∫ℎ

(

𝒃𝐹𝑠(𝑧)𝑁𝑗 (𝑥, 𝑦)𝛿𝒒𝑠𝑗
)𝑇 �̃�𝜃𝑑𝛺𝑑𝑧 = ∫𝛺 ∫ℎ

𝛿𝒒𝑇𝑠𝑗𝑩
𝑇
𝑠𝑗 �̃�𝜃𝑑𝛺𝑑𝑧 (17)

hen only a thermal profile is applied as external load, the virtual
xternal work consists of what has obtained in Eq. (17), and the PVD
an be represented as in Eq. (18).

𝒒𝑇𝑠𝑗

(

∫𝛺 ∫ℎ
𝑩𝑇

𝑠𝑗 �̃�𝑩𝜏𝑖𝑑𝛺𝑑𝑧
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒒𝜏𝑖 − 𝛿𝒒𝑇𝑠𝑗∫𝛺 ∫ℎ
𝑩𝑇

𝑠𝑗 �̃�𝜃𝑑𝛺𝑑𝑧
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 0 (18)
𝑲𝜏𝑠𝑖𝑗 𝜣𝑠𝑗
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Fig. 2. Graphical representation of the Fundamental Nuclei (FNs) of the stiffness matrix for Equivalent Single Layer (ESL) and Layer Wise (LW) theories.
Through internal work, it is possible to define the fundamental nucleus
of the stiffness matrix for the problem. In the decoupled approach,
this nucleus is a 3 × 3 matrix, and its explicit terms are provided
in Appendix B. Additionally, it is also possible to define the vector
𝛩, which is a 3 × 1 matrix, representing the fundamental nucleus
of the thermal load matrix. Its form is determined by the thermal
profile, which is constant along the thickness in this analysis. Detailed
procedures for obtaining the matrix 𝛩 are described in [30]. The
governing equations shown in Eq. (19) are written using the compact
notation of the fundamental nucleus. By employing the CUF building
loops, these global governing equations can be automatically defined
independently of the selected expansion theory.

𝛿𝒒𝑠𝑗 ∶ 𝑲𝜏𝑠𝑖𝑗𝒒𝜏𝑖 = 𝜣𝑠𝑗 (19)

Where 𝑲𝜏𝑠𝑖𝑗 represents the Fundamental Nucleus (FN) of the stiffness
matrix, the complete matrix can be assembled using four building loops:
two loops are applied on the nodes governed by the indexes 𝜏 and 𝑠,
and the other two loops are applied on the element, ruled by 𝑖 and
𝑗. The FNs are invariant to the number of nodes and to the selected
shape functions. This advantage allows an efficient implementation in
a code [43].

4. Numerical results

Some thermo-mechanical analyses are carried out and reported
in the following sections using the decoupled governing equations
obtained within the CUF framework through the PVD. Furthermore,
the best expansion theory order is investigated for every BCs and
lamination case.

Each analysis is focused on the same geometry, which has equal
edges that are 50 mm long and a thickness of 1 mm, as reported in
Fig. 3. A constant one-degree over-temperature 𝜃 is applied across the
entire plate and is regarded as an external thermal load in each analysis.

In Section 4.1, a reference analysis with a straight fiber configura-
tion is presented and compared with ABAQUS 3D elements. After the
assessment, two lamination cases are analyzed, considering both sym-
metric and not-symmetric stacking sequences. Notably, the asymmetric
configuration produces geometrical coupling phenomena that result in
out-of-plane shear stresses, which are absent in symmetric cases. In the
end, in Section 5, a comparison concerning the LE and TE models is
reported.

Table 1 lists Carbon Fiber Composite (CFC) and Glass Fiber Re-
inforced Polymer (GFRP) properties which are considered in the fol-
lowing studies. For each analysis, the results are taken in Point S
(12.5,12.5) [mm] with the reference system located in the center of
the plate. The plate analyzed in the present work presents different con-
straints, materials, and laminations which are reported in the following
list:
5

Fig. 3. Plate [mm].

• In Section 4.1, the analyzed plate is Carbon Fiber Composite
(CFC) straight fiber plate with [0∕60]𝑠 lamination and clamped
edges, which are compared to ABAQUS results.

• In Section 4.2 the analyzed plate is Carbon Fiber Composite (CFC)
symmetric VAT plate with [0 < 90, 60 >, 0 < 45, 0 >]𝑠 lamination.
Fully clamped and simply supported edges are considered.

• In Section 4.3 the analyzed plate is Glass Fiber Reinforced Poly-
mer (GFRP) asymmetric VAT plate with [2(0 < 90, 60 >), 2(0 <
45, 0 >)] lamination. Fully clamped and simply supported edges
are considered.

4.1. Assessment

In this section an analysis on classical straight fiber laminate is
presented. The square plate is analyzed and the results are reported
to evaluate the accuracy of the present model and of the applied
plate theories. Moreover, the results are compared to those obtained
using ABAQUS. The plate presents four layers with the same thickness,
composed of CFC, whose properties are reported in Tables 1 and 2. The
lamination is [0∕60]𝑠 and is reported in Fig. 4, geometry and thermal
load are represented in Fig. 3. All the plate edges are clamped. A
convergence analysis varying the number of bi-quadratic nine nodes Q9
plate elements is reported in Table 3 and depicted in Fig. 5. While the
impact of the theory order on the plate analysis using different orders
of TE and LE models in-thickness expansion is investigated in Table 4
and reported in Fig. 6.

ABAQUS reference results are obtained using 3D linear elements.
The results are taken in Point S (12.5,12.5) [mm] with the reference
system located in the center of the plate.

According to the results reported in Table 3 and Fig. 5, the 22 × 22
Q9 is selected to ensure a satisfactory convergence trend while mini-
mizing the computational cost.

Figs. 5 and 6 report the calculated in-plane stress trends and the
displacement. The first and the last layers of the plate present 0◦

lamination angle, which causes no in-plane stress because the term
𝜆12 is null. On the other hand, the central layers present in-plane
shear stress due to the 60◦ lamina orientation. Furthermore, due to the
symmetry of the staking sequence, there is no coupling between in and
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Table 1
Material mechanical coefficients.

Material 𝐸11 𝐸22 = 𝐸33 𝜈12 = 𝜈13 𝜈23 𝐺12 = 𝐺13 𝐺23

Carbon Fiber Composite (CFC) 144.8 GPa 9.65 GPa 0.3 0.3 4.14 GPa 3.45 GPa
Glass Fiber Reinforced Polymer (GFRP) 48.9 GPa 5.5 GPa 0.33 0.33 2.5 GPa 2 GPa
Table 2
Material thermal coefficients.

Material 𝛼1 𝛼2 = 𝛼3
Carbon Fiber Composite (CFC) −0.26279 × 10−6 𝐶−1 30.535 × 10−6 𝐶−1

Glass Fiber Reinforced Polymer (GFRP) 3.9 × 10−6 𝐶−1 49.7 × 10−6 𝐶−1

Fig. 4. Assessment stacking sequence [0∕60∕60∕0].

Table 3
Convergence study changing the number of Q9 elements with expansion theory 4LE3.
ABAQUS 3D analyses is reported as a reference. [0∕60∕60∕0] CFC plate with 𝜃 = 1◦

and clamped edges. Results are taken at Point S. The stresses are evaluated at 𝑧 = 0,
displacement at 𝑧 = ±ℎ∕2.

Mesh size 𝑢𝑧 × 104 [mm] 𝜎𝑥𝑥 [kPa] 𝜎𝑦𝑦 [kPa] 𝜎𝑥𝑦 [kPa] DOFs

ABAQUS 3D reference

Mesh A ±0.1994 −236.68 −117.63 103.81 25 215
Mesh B ±0.1993 −235.82 −115.45 104.65 77 760
Mesh C ±0.1992 −235.23 −113.96 105.26 606 015

Present method 4LE3

11 × 11 ±0.2007 −236.86 −118.36 103.40 20 631
22 × 22 ±0.1993 −235.77 −115.32 104.70 78 975
30 × 30 ±0.1993 −235.50 −114.64 104.98 145 119
38 × 38 ±0.1993 −235.36 −114.28 105.12 231 231

Table 4
Investigation of the expansion theory influences with 22 × 22 Q9 in-plane
mesh.[0∕60∕60∕0] CFC plate with 𝜃 = 1◦ and clamped edges. Results are taken at point
S with 𝑧 = ±ℎ∕2 for the displacement and 𝑧 = 0 for the stresses.

Model 𝑢𝑧 × 104 [mm] 𝜎𝑥𝑥 [kPa] 𝜎𝑦𝑦 [kPa] 𝜎𝑥𝑦 [kPa] DOFs

ABAQUS 3D reference

Mesh C ±0.1992 −235.23 −113.96 105.26 606 015

Present method 22 × 22 Q9

TE1 ±0.1993 −235.81 −115.44 104.65 12 150
TE2 ±0.1993 −235.77 −115.34 104.69 18 225
TE3 ±0.1993 −235.78 −115.35 104.69 24 300
4LE2 ±0.1993 −235.77 −115.32 104.70 54 675
4LE3 ±0.1993 −235.77 −115.32 104.70 78 975

out-of-plane behavior. The plate does not bend, implying out-of-plane
shear stresses are not generated and not reported for the present case.

Due to the uniform thermal profile, the stress results remain con-
stant across all individual layers. The thermal load is considered the
same in every layer and along the whole layer, and the stresses are
influenced by the material property, which is constant for each layer.
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As clear from the graphs, the ABAQUS model results perfectly
overlap the present method stresses trend. Therefore, in the case of
commercial codes, 3D elements are necessary to obtain the proper
description of the thermal problem along the thickness. Based on the
presented findings, it is evident that TE is appropriate for the current
case. In the case of ABAQUS analysis, the use of 3D elements implies
an increase in the DOFs of the problem. Given the simplicity of the
proposed problem, in the present method analysis, the linear Taylor
expansion results are accurate and present a lower computational cost
with 12 150 DOFs compared to 77 760 DOFs required in the ABAQUS
analysis.

4.2. Carbon Fiber Composite symmetric VAT plate

A VAT laminated panel composed of CFC is analyzed in the present
section, and the results are reported in Table 5. The lamination is
symmetric, and the stacking sequence is [0 < 90, 60 >, 0 < 45, 0 >]𝑠.
Geometry and material are reported in Fig. 3 and Tables 1 and 2
respectively. Fig. 7 depicts the staking sequence of the plate.

The external thermal load is not changed to the assessment and is
equal to 𝜃 = 1◦. The plate constraints are varied studying configuration
with all edges clamped (CCCC), which results are represented in Fig. 8
and with simply supported (SSSS) edges in Fig. 9. Some numerical
results are collected in Table 5, and only results for TE1 and LE3 are
reported for the clamped plate. As can be seen from the closeness of the
reported stress values, the other expansion theories may not show sig-
nificant variations in stress magnitude. Furthermore, Table 5 and Fig. 8
also compare the present results and the one obtained for a clamped
plate on ABAQUS. It is clear that the results are very close and present
the same trend with a minimum difference due to the difference in
the orientation evaluation. Furthermore, the ABAQUS model is created
using one C3D8R element for each layer of the laminate with some
losses in the accuracy of the numerical model.

In Figs. 8 and 9 only 𝜎𝑦𝑦 and 𝜎𝑥𝑦 are represented for the differ-
ent constraint conditions. Although other in-plane stresses exist for
the present configuration, they have not been reported, as applying
different theories did not consistently affect the stress trend. The sym-
metric plates do not bend, and out-of-plane stresses have not risen.
The absence of bending is due to the selected thermal load and to
the symmetry of the stacking sequence. In Fig. 9, the stress rising
along the SSSS plates is carried over. The influence of the thickness
expansion in the in-plane stresses is more evident for SSSS plate than
for CCCC, and this is due to the freedom given by the simply supported
configuration. Therefore, the difference in the constraint does not affect
much the entity of the developed stresses that are about the same
order of magnitude for the two cases. Some considerations about the
best-adopted expansion theories for the present case are reported in
Section 5. Still, it is clear from the reported trends that LE models are
more accurate in the case of SSSS BCs.

4.3. Glass fiber reinforced asymmetric VAT plate

The present section analyzes the same plate geometry represented
in Fig. 3 composed of GFRP layers. The lamination is [2(0 < 90, 60 >
), 2(0 < 45, 0 >)], which is reported in Fig. 10. Clamped (CCCC) and
simply supported (SSSS) configurations are analyzed. The expansion
theory order influence is investigated and reported in Figs. 12 and 13.
The results are also listed in Tables 6 and 7. Displacement in thickness
direction for SSSS and CCCC configurations is reported in Fig. 11.
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Fig. 5. Convergence study changing the number of Q9 elements with expansion theory 4LE3. ABAQUS 3D analyses is reported as a reference. [0∕60∕60∕0] CFC plate with 𝜃 = 1◦

and camped. Results are taken at Point S . (a) 𝜎𝑥𝑥, (b) 𝑢𝑧.
Fig. 6. Investigation of the expansion theory influence with 22 × 22 Q9 in-plane mesh. ABAQUS 3D analyses is reported as a reference. [0∕60∕60∕0] CFC plate with 𝜃 = 1◦ and
clamped edges. Results are taken at point S. (a) 𝜎𝑦𝑦, (b)𝜎𝑥𝑦.
Table 5
Investigation of the expansion theory influences with 22 × 22 Q9 in-plane mesh, 𝜃 = 1◦. Results are taken at point S. [0 < 90, 60 >, 0 < 45, 0 >]𝑠
VAT plate composed of CFC. ABQ analysis with number of elements 62 500 C3D8R.

Theory 𝑢𝑧 × 104 [mm] 𝜎𝑥𝑥 [kPa] 𝜎𝑦𝑦 [kPa] 𝜎𝑥𝑦 [kPa] DOF

𝑧 = ±ℎ∕2 𝑧 = ±ℎ∕2 𝑧 = 0 𝑧 = ±ℎ∕2 𝑧 = 0 𝑧 = ±ℎ∕2 𝑧 = 0

CCCC
ABQ C3D8R ±0.1992 −279.89 −118.26 −51.70 −264.08 59.66 80.92 238 140
TE1 ±0.1993 −279.95 −93.76 −68.15 −261.10 60.97 83.90 12 150
4LE3 ±0.1993 −279.93 −93.70 −68.01 −261.08 61.00 83.92 78 975

SSSS

TE1 ±0.1992 −279.34 −90.96 −64.23 −260.29 61.81 84.83 12 150
TE2 ±0.1994 −280.96 −96.53 −78.38 −262.34 58.46 82.85 18 225
TE3 ±0.1994 −280.98 −96.63 −78.59 −262.38 58.41 82.82 24 300
4LE2 ±0.2001 −285.21 −112.69 −111.58 −267.81 50.86 77.40 54 675
4LE3 ±0.2002 −285.32 −113.59 −111.79 −267.99 50.84 77.09 78 975
All the in-plane and out-of-the-plane stresses are reported here. Due
o the non-symmetric configuration of the stacking sequence, the plate
ends, and the out-of-plane shear stresses arise along the thickness in
oth, simply supported and clamped configurations. Fig. 11 reports the
7

phenomenology of the deflection in the ‘z’ direction, which is the most
explicit representation of the difference due to the two BCs, as can
also be seen in Table 6. In fact, for CCCC, the plate is constrained to
not rotate near the boundary. For SSSS, there are four bending humps
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Table 6
Investigation of the expansion theory influences with 22 × 22 Q9 in-plane mesh, 𝜃 = 1◦. Results are taken at point S. [2(0 < 90, 60 >), 2(0 < 45, 0 >)]
VAT GFRP plate.

Theory 𝑢𝑧 × 104 [mm] 𝜎𝑥𝑥 [kPa] 𝜎𝑦𝑦 [kPa] 𝜎𝑥𝑦 [kPa]

𝑧 = −ℎ∕2 𝑧 = ℎ∕2 𝑧 = −ℎ∕2 𝑧 = ℎ∕2 𝑧 = −ℎ∕2 𝑧 = ℎ∕2 𝑧 = −ℎ∕2 𝑧 = ℎ∕2

CCCC TE1 −0.5190 0.1683 −284.19 −293.60 −286.58 −285.97 −1.109 −2.955
4LE3 −0.5309 0.1563 −284.22 −293.43 −286.36 −285.88 −1.061 −2.914

SSSS

TE1 −0.2898 0.3974 −285.01 −291.09 −285.49 −285.21 −0.298 −2.452
TE2 −0.2503 0.4376 −286.07 −294.58 −291.01 −286.14 −1.453 −3.635
TE3 −0.2481 0.4399 −286.15 −294.85 −291.49 −286.23 −1.547 −3.722
4LE2 −0.3329 0.3579 −289.60 −309.24 −309.41 −290.97 −5.209 −8.154
4LE3 −0.3356 0.3553 −289.68 −309.58 −309.80 −291.09 −5.278 −8.250
Fig. 7. VAT symmetric stacking sequence [0 < 90, 60 >, 0 < 45, 0 >]𝑠.

Table 7
Investigation of the expansion theory influences with 22 × 22 Q9 in-plane mesh, 𝜃 = 1◦.
Results are taken at point S. [2(0 < 90, 60 >), 2(0 < 45, 0 >)] VAT GFRP plate. Out of
plane stresses.

Theory 𝜎𝑥𝑧 [Pa] 𝜎𝑦𝑧 [Pa]

𝑧 = −ℎ∕3 𝑧 = ℎ∕6 𝑧 = −ℎ∕3 𝑧 = ℎ∕6

CCCC

TE1 −12.25 14.80 −250.67 −301.57
TE2 −22.18 14.67 −283.37 279.92
TE3 −13.63 10.83 −228.77 −406.15
4LE2 −7.56 31.24 −201.95 −344.69
4LE3 −6.88 35.45 −202.06 −343.50

SSSS

TE1 −108.91 −75.04 −101.59 −129.64
TE2 −57.35 −84.01 −67.60 −125.26
TE3 −49.15 −108.22 −36.20 −184.27
4LE2 −12.11 −60.13 10.64 −108.63
4LE3 −10.03 −59.42 14.02 −106.66

following the VAT lamination angle, and the plate is freer to deflect
following the local fiber orientation. The displacement is represented
in Fig. 11 from the top of the plate.

As evidenced by the results reported in Table 6, changing the
expansion theory has only a minor impact on the in-plane stresses
of CCCC BCs, which are more limited due to the constraints. On the
other hand, SSSS plate presents fewer constraints at the boundary, and
the influence of the expansion theory is more evident, as can be seen
in Fig. 13. Nevertheless, 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are comparable for the two BCs
configurations in terms of trend and value.

Changing the adopted expansion thickness, the out-of-plane shear
stresses reported in Figs. 12 and 13 show differences in trends and
magnitude due to the bending. As expected, 𝜎𝑥𝑧 and 𝜎𝑦𝑧 appear to
be continuous along the thickness using LE models, and an abrupt
change in trend clearly represents the interface between the different
orientations. Instead, TE models represent the interface between the
two different orientations with a stress discontinuity.

The selected expansion theory strongly influences 𝜎𝑥𝑧 and 𝜎𝑦𝑧 in
both constraint cases. In particular, the LW model employed in the
LE theory only fulfills the boundary conditions. In the case of the TE
model, even by increasing the degree of expansion, it is impossible to
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fulfill the 𝜎 zero conditions in 𝑧 = ±ℎ∕2 and the necessary continuity of
the out-of-plane stress. In both cases, the 𝜎𝑧𝑧 stress is not represented
because mechanical and thermal stresses offset each other, and the
resultant 𝜎𝑧𝑧 is zero. Fig. 13 clearly depicts the difference between the
results obtained using different expansion theories, which also affects
the trends of in-plane stress. The less accurate theories underestimate
the in-plane stress, but the trend is respected in each analysis.

Fig. 14(a) reports displacement in ′𝑧′ direction for three different
evaluation points, and their coordinates are presented in Fig. 14(b).
The reported case is the SSSS GFRP plate. Due to the VAT deposition,
the lamination angle changes along the plane of the plate as explained
in Section 2, and the developed stresses and displacement will depend
on the local lamination angle.

Despite being located at the center of the plate, the O point does
not coincide with the point exhibiting the maximum displacement. It
can be seen that point P has an almost entirely upward displacement,
while in the case of point Q, the displacement is negative and directed
downwards. The P and Q points are located in the two main deflections
of the plate.

Fig. 15 depicts the shear stress 𝜎𝑦𝑧 for four points calculated on a
plate with 22 × 22 Q9 in-plane mesh and 4LE3 expansion theories.
Symmetry in the stress trend is present. Furthermore, the values and
the shapes of the stresses are influenced by the local lamination. As a
result the shear stress is different when the lamination is different. On
the other hand, the stresses are equal with opposite sign in the case of
diagonal-symmetric points.

5. Discussion

Fig. 16 shows the relative difference between varying order theories
of structures and the most accurate available LE3 model. The difference
here is calculated considering Point S, where the stresses trends are
reported in Figs. 8 and 9 for the symmetric CFC case and in Figs. 12
and 13 for the asymmetric GFRP plate. The selection of the stress to
consider as the evaluation parameter depends on the considered anal-
ysis. 𝜎𝑦𝑦 is assumed as reference parameter when the behavior of the
symmetric plate composed of CFC is taken into account (Section 4.2).
𝜎𝑦𝑧 is used for the graph in Fig. 16 for the GFRP asymmetric plate
analyzed in Section 4.3 because, due to the bending, this plate develops
shear stresses.

The percentage relative difference is calculated using the 2-norm of
the stress values taken along the thickness. In Fig. 16, it is reported in
a semi-logarithmic graph which allows some considerations about the
choice of the adopted theory. The DOFs of the model are reported on
the 𝑥-axis of the graph. For clarity, the bar below the graph in Fig. 16
depicts the corresponding adopted expansion theory. The LE3 model is
taken as a reference result and, for this reason, is not reported. Through
the evaluation of the trend, it can be noted that the BC influences most
of the reach of the correct result. Although symmetric and asymmetric
plates are compared, the curve that presents the same trend is the one
with the same BCs. Therefore, using two different stresses as parameters
do not influence the trends reported in the graph in Fig. 16. The
selected stress parameter does not determine a significant difference
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Fig. 8. Investigation of the expansion theory influences with 22 × 22 Q9 in-plane mesh, 𝜃 = 1◦. Results are taken at Point S. VAT [0 < 90, 60 >, 0 < 45, 0 >]𝑠 plate composed of
CFC with clamped (CCCC) edges. (a) 𝜎𝑦𝑦, (b) 𝜎𝑥𝑦.
Fig. 9. Investigation of the expansion theory influences with 22 × 22 Q9 in-plane mesh, 𝜃 = 1◦. Results are taken at Point S. VAT [0 < 90, 60 >, 0 < 45, 0 >]𝑠 plate composed of
CFC with simply supported (SSSS) edges. (a)𝜎𝑦𝑦, (b) 𝜎𝑥𝑦.
Fig. 10. VAT asymmetric stacking sequence [2(0 < 90, 60 >), 2(0 < 45, 0 >)].

in the choice of the adequate expansion theory. As evident, the plates
with clamped edges can be analyzed with the TE models without
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any significant error in the results of stress value. LE models better
represent the simply supported constraints, particularly for the GFRP
asymmetric plate. The presented analyses apply a constant thermal
profile as an external load. As demonstrated in [45], the external load
greatly influences the plate’s response behavior and the relative impact
of the expansion theory.

6. Conclusions

This work employed the PVD within the CUF framework to describe
the governing equation of the decoupled thermo-elastic problem for
variable angle tow composite plates. The applied constant thermal
profile made possible a simplified description of the phenomena with-
out any dependence on the thickness coordinate. Furthermore, the
unified formulation allows for a formal invariant modelization of the
thermo-mechanical problem.

As an assessment, a numerical investigation was conducted on
moderately thin plates with straight fiber deposition, comparing the
results to ABAQUS simulations. The study focuses on Variable Angle
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Fig. 11. Deflection in 𝑧 direction. [2(0 < 90, 60 >), 2(0 < 45, 0 >)] VAT plate composed of GFRP. (a) CCCC, (b) SSSS. Results reported from the top of the plate, discretization
22 × 22 Q9 4LE3 and 𝜃 = 1◦.
Tows (VAT) and examines symmetric and asymmetric plates under
simply supported and clamped boundary conditions. The aim of the
investigation is to report a representation of the along-the-thickness
thermal stresses comparing different kinematic models. The influence
of the along-the-thickness expansion theory is also investigated, and LE
and TE models are compared for the different analyzed configurations.

• Symmetric plates subjected to a constant over-temperature
throughout the thickness do not exhibit bending. As a conse-
quence, the out-of-plane shear stresses are neglectable along the
plate. On the other hand, in an asymmetric plate, the coupling
between out-of-plane and in-plane behaviors causes a rise in
out-of-plane shear stresses that are no longer neglectable.

• The results show that the LE models fulfill continuity require-
ments of the out-of-plane shear stresses at the interface and
respect the zero conditions at plate boundaries for the same stress
trends. On the other hand, the TE models do not reach zero values
for out-of-plane shear stress at the plate boundaries, and they
display a discontinuity at the layer interface.

• Due to the constant applied load, away from the boundaries 𝜎𝑧𝑧 is
null as the mechanic and thermal components offset each other.

• The boundary conditions greatly influence the selection of the
adequate expansion theory. For simply supported cases, the LE
models present better results in terms of stress value with a
satisfactory trend for every case. However, the clamped config-
uration can also be described from TE models without significant
stress-value errors.

Future analyses should address problems related to thick plates
where the shear influence increases. Asymmetric configurations with a
greater number of different layers could also be investigated. Addition-
ally, considering more complex thermal profile influences could further
enhance the understanding of the thermo-elastic behavior.
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Appendix A. Geometrical relation

The linear differential operator 𝒃 allows to describe the relation
between the displacement 𝒖 and the strain 𝜺.

𝒃 =
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Fig. 12. Investigation of the expansion theory influences with 22 × 22 Q9 in-plane mesh, 𝜃 = 1◦. Results are taken at point S. [2(0 < 90, 60 >), 2(0 < 45, 0 >)] VAT plate composed
of GFRP. CCCC constraint. (a) 𝑢𝑧, (b) 𝜎𝑥𝑦,(c) 𝜎𝑥𝑥, (d) 𝜎𝑦𝑦,(e) 𝜎𝑥𝑧,(f) 𝜎𝑦𝑧.
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Fig. 13. Investigation of the expansion theory influences with 22 × 22 Q9 in-plane mesh, 𝜃 = 1◦. Results are taken at point S. [2(0 < 90, 60 >), 2(0 < 45, 0 >)] VAT plate composed
of GFRP. SSSS constraint. (a) 𝑢𝑧, (b) 𝜎𝑥𝑦,(c) 𝜎𝑥𝑥, (d) 𝜎𝑦𝑦,(e) 𝜎𝑥𝑧,(f) 𝜎𝑦𝑧.
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Fig. 14. 𝑢𝑧, lamination [2(0 < 90, 60 >), 2(0 < 45, 0 >)] VAT GFRP SSSS plate. 22 × 22 Q9, 4LE3, 𝜃 = 1◦.
Fig. 15. 𝜎𝑦𝑧 calculated in four points in the quarters of the plate. 22 × 22 Q9, 4LE3.
𝜃 = 1◦, simply supported GFRP VAT plate [2(0 < 90, 60 >), 2(0 < 45, 0 >)].

Appendix B. Fundamental nucleus

The CUF mechanical fundamental nuclei are reported below, where
the material coefficients depend on the local fiber orientation and are
expressed in the local reference system.

𝐾𝜏𝑠𝑖𝑗
𝑥𝑥 = ∫𝛺

𝐶11𝑁𝑖,𝑥𝑁𝑗,𝑥𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶16𝑁𝑖,𝑥𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶16𝑁𝑖,𝑦𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧 + ∫𝛺
𝐶44𝑁𝑖𝑁𝑗𝑑𝛺

× ∫ℎ
𝐹𝜏,𝑧𝐹𝑠,𝑧𝑑𝑧 + ∫𝛺

𝐶66𝑁𝑖,𝑦𝑁𝑗,𝑦𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧 (21)

𝐾𝜏𝑠𝑖𝑗
𝑥𝑦 = ∫𝛺

𝐶12𝑁𝑖,𝑦𝑁𝑗,𝑥𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶62𝑁𝑖,𝑦𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧

+ 𝐶16𝑁𝑖,𝑥𝑁𝑗,𝑥𝑑𝛺 𝐹𝜏𝐹𝑠𝑑𝑧 + 𝐶45𝑁𝑖𝑁𝑗𝑑𝛺
13

∫𝛺 ∫ℎ ∫𝛺
Fig. 16. Investigation of the adequate expansion theory expressed by percentage
relative distance calculated to LE3 results. Semi-logarithmic representation. Results
taken at Point S, in-plane mesh 22 × 22.

× ∫ℎ
𝐹𝜏,𝑧𝐹𝑠,𝑧𝑑𝑧 + ∫𝛺

𝐶66𝑁𝑖,𝑥𝑁𝑗,𝑦𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧 (22)

𝐾𝜏𝑠𝑖𝑗
𝑥𝑧 = ∫𝛺

𝐶13𝑁𝑖𝑁𝑗,𝑥𝑑𝛺 ∫ℎ
𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶63𝑁𝑖𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶44𝑁𝑖,𝑥𝑁𝑗𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠,𝑧𝑑𝑧

+ ∫𝛺
𝐶45𝑁𝑖,𝑦𝑁𝑗𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠,𝑧𝑑𝑧 (23)

𝐾𝜏𝑠𝑖𝑗
𝑦𝑥 = ∫𝛺

𝐶21𝑁𝑖,𝑥𝑁𝑗,𝑦𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶61𝑁𝑖,𝑥𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶26𝑁𝑖,𝑦𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧 + ∫𝛺
𝐶45𝑁𝑖𝑁𝑗𝑑𝛺

× 𝐹𝜏,𝑧𝐹𝑠,𝑧𝑑𝑧 + 𝐶66𝑁𝑖,𝑦𝑁𝑗,𝑥𝑑𝛺 𝐹𝜏𝐹𝑠𝑑𝑧 (24)
∫ℎ ∫𝛺 ∫ℎ
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𝐾

𝐾

𝐾

𝐾𝜏𝑠𝑖𝑗
𝑦𝑦 = ∫𝛺

𝐶22𝑁𝑖,𝑦𝑁𝑗,𝑦𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶62𝑁𝑖,𝑦𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶26𝑁𝑖,𝑥𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧 + ∫𝛺
𝐶55𝑁𝑖𝑁𝑗𝑑𝛺

× ∫ℎ
𝐹𝜏,𝑧𝐹𝑠,𝑧𝑑𝑧 + ∫𝛺

𝐶66𝑁𝑖,𝑥𝑁𝑗,𝑥𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧 (25)

𝐾𝜏𝑠𝑖𝑗
𝑦𝑧 = ∫𝛺

𝐶23𝑁𝑖𝑁𝑗,𝑦𝑑𝛺 ∫ℎ
𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶63𝑁𝑖𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶55𝑁𝑖,𝑦𝑁𝑗𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠,𝑧𝑑𝑧

+ ∫𝛺
𝐶45𝑁𝑖,𝑥𝑁𝑗𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠,𝑧𝑑𝑧 (26)

𝜏𝑠𝑖𝑗
𝑧𝑥 = ∫𝛺

𝐶31𝑁𝑖,𝑥𝑁𝑗𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠,𝑧𝑑𝑧

+ ∫𝛺
𝐶44𝑁𝑖𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶45𝑁𝑖𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶36𝑁𝑖,𝑦𝑁𝑗𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠,𝑧𝑑𝑧 (27)

𝜏𝑠𝑖𝑗
𝑧𝑦 = ∫𝛺

𝐶32𝑁𝑖,𝑦𝑁𝑗𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠,𝑧𝑑𝑧

+ ∫𝛺
𝐶55𝑁𝑖𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶45𝑁𝑖𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝜏,𝑧𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶36𝑁𝑖,𝑥𝑁𝑗𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠,𝑧𝑑𝑧 (28)

𝜏𝑠𝑖𝑗
𝑧𝑧 = ∫𝛺

𝐶33𝑁𝑖𝑁𝑗𝑑𝛺 ∫ℎ
𝐹𝜏,𝑧𝐹𝑠,𝑧𝑑𝑧

+ ∫𝛺
𝐶44𝑁𝑖,𝑥𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧

+ ∫𝛺
𝐶45𝑁𝑖,𝑥𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝜏𝐹𝑠𝑑𝑧 + ∫𝛺
𝐶45𝑁𝑖,𝑦𝑁𝑗,𝑥𝑑𝛺

× ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧 + ∫𝛺

𝐶55𝑁𝑖,𝑦𝑁𝑗,𝑦𝑑𝛺 ∫ℎ
𝐹𝜏𝐹𝑠𝑑𝑧 (29)

Following, the explicit terms of the fundamental nucleus of the
thermal load matrix are reported for the case of constant thermal load
𝜃(𝑧) = 𝜃.

𝛩1 = 𝜃 ∫𝛺
𝜆1𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝑠𝑑𝑧 + 𝜃 ∫𝛺
𝜆12𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝑠𝑑𝑧 (30)

𝛩2 = 𝜃 ∫𝛺
𝜆2𝑁𝑗,𝑦𝑑𝛺 ∫ℎ

𝐹𝑠𝑑𝑧 + 𝜃 ∫𝛺
𝜆12𝑁𝑗,𝑥𝑑𝛺 ∫ℎ

𝐹𝑠𝑑𝑧 (31)

𝛩3 = 𝜃 ∫𝛺
𝜆3𝑁𝑗𝑑𝛺 ∫ℎ

𝐹𝑠,𝑧𝑑𝑧 (32)
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