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A B S T R A C T   

When investigating the wide literature dealing with the assessment of the critical time scale for basin hydro-
logical response, several aspects still to be clarified can be acknowledged. Despite the high sensitivity of design 
flood peaks to the estimated time parameter value, there is still no agreement on the conceptual and operational 
definitions of the basin response time, resulting in several different approaches and formulations available. 

In our work, we suggest a conceptual approach to either reject or recommend formulas of the characteristic 
basin response time for ungauged basins, with the aim of devising some practical steps in the choice of a robust 
formulation to be used in hydrological modelling and flood hydrograph design. To this end, 29 empirical and 
semi-empirical formulas, all containing a basin length and slope, have been carefully selected and their structure 
compared in dimensional terms, using a simple hydraulic reasoning (e.g., the Chezy formula) as indicator of 
hydraulic consistency. 13 hydraulically consistent formulas have been identified. 

Starting from wave celerities and using the river network morphology of 135 watersheds in north-western 
Italy, we have then investigated and compared the variability of the average flow velocities estimated using 
all formulas whose input data are available within the study area. By comparing the magnitude and basin scale 
dependence of the inferred velocities with the values observed in the literature, which generally increase with 
basin size, some formulas are considered not reasonable, while 5 of them are identified as more robust, i.e. 
consistent with the observations. These are the formulas of Chow (1962), NERC (1975), SCS (1954), McEnroe 
and Zhao (1999) and Watt and Chow (1985). 

Our findings lead to identify analytically the relationships between the exponents of each formula and those of 
the scaling law linking the length and slope of the basin. These relationships, driving the increase or decrease in 
the velocity values with basin size, allow us to identify the range of length and slope exponents in the charac-
teristic time formulas for which velocity increases with basin area, as literature suggests. Based on the same 
relationships, one of the 5 formulas above can be adopted in practical applications and a guideline for calibrating 
new formulations can be followed.   

1. Introduction 

Design flood peaks for a given return period need to be estimated for 
hydraulic design purposes (e.g. Brunner et al., 2016). 

Observed streamflow data may in some cases be inadequate to 
directly estimate design floods or even lacking in ungauged basins. In 
the last decades, runoff prediction in ungauged basins (PUB) has 
received great attention from hydrologists (Blöschl et al., 2013; Mon-
tanari et al., 2013) and several methods for predicting basin response are 
currently available. They include regionalization techniques, empirical 

approaches and hydrological models (see e.g. Hrachowitz et al. (2013) 
for a review). Traditionally, where no in-situ runoff data exist, the in-
direct estimation through the rainfall-runoff transformation has been 
used (Singh et al., 2014). A broad class of rainfall-runoff models is based 
on the concept of basin response function (Sherman, 1932), which can 
be adopted to obtain discharges at the basin outlet produced by any 
given excess design rainfall through convolution. One of the key pa-
rameters that may be needed to specify the response function is the 
characteristic time of the basin hydrological response. 

It is well known that the estimation of this characteristic flood 
response time is a difficult task, to which design flood estimates are 

* Corresponding author at: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, 
Italy. 

E-mail address: giulia.evangelista@polito.it (G. Evangelista).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2023.130409 
Received 23 July 2023; Received in revised form 18 September 2023; Accepted 15 October 2023   



Journal of Hydrology 627 (2023) 130409

2

however highly sensitive. Already Bondelid et al. (1982) showed that 
about 75 % of the total error in estimating flood peaks could be attrib-
uted to errors in response time estimation. In Gericke (2018) it emerges 
how under or overestimating the response time can have a considerable 
impact on the design flood and thus on the design of hydraulic 
infrastructures. 

A wide literature dealing with the identification of the time param-
eter of the basin hydrological response during flood conditions exists 
worldwide for both gauged (Bell and Om Kar,1969; Gericke and 
Smithers, 2014) and ungauged (Michailidi et al., 2018; Nagy et al., 
2021) watersheds. In this regard, it can be useful to refer to the theories 
underlying the evaluation of the basin IUH through geomorphology (the 
GIUH theory, Rodriguez-Iturbe and Valdes (1979) or Gupta et al. 
(1980)) and some further efforts to parametrize the IUH (Rosso, 1984). 
In all these cases, the time-scale parameter estimation issue has 
remained largely unsolved. Correspondingly, to date one may admit that 
there is no general agreement on which parameter is best suited to 
summarize the hydrological flood response of a watershed and thus to 
allow the synthesis of a design flood hydrograph. The same divergency is 
experienced when dealing with the different conceptual approaches and 
operational computation methods that have been proposed over the 
years to estimate the same time parameter (e.g. McCuen, 2009). 

In some uncommon cases, direct estimation of travel times along the 
river network was undertaken, e.g. tracer measurements. In a study 

performed in Australia, Pilgrim (1977) adopted the tracer’s travel time 
during flood runoff, i.e. the time from the injection of the tracer to the 
center of mass of the tracer’s activity curve, as a measure for the basin 
response time. Later on Azizian (2019), although not under flood con-
ditions, estimated travel times in seven small sub-basins of the Meime 
watershed (Iran) using a salt tracer, measuring the delay between the 
entry of salt in the upstream river reach and the time of the peak elec-
trical conductivity in the downstream one. 

Most commonly, when observations are available, direct assessments 
are made by using observed rainfall and runoff time features (e.g. Chow 
et al., 1988). The peak time of direct runoff, the times of centers of mass 
of net rainfall and direct runoff, the peak time of net rainfall and the time 
of the end of net rainfall are commonly adopted as time indicators. Time 
distances between pairs of them have been used to compute, in practice, 
the most frequently adopted travel time parameters: the lag time, the 
time of concentration and the time to peak (the reader can refer to 
McCuen (2009) for a detailed description of these parameters). It must 
be specified that the time to equilibrium, i.e. the time from the start of a 
constant rainfall to the time when inflow equals outflow, is not dealt 
with in this paper, because it is often assumed to be equal to the time of 
concentration (McCuen, 2009). While we are aware of the arguments 
raised by Beven (2020) about the difference between these two pa-
rameters, they are not addressed here as it goes beyond the scope of this 
work. 

Nomenclature 

A Catchment area. 
Aimp Fraction of impervious area. 
c Celerity. 
C Chezy coefficient. 
clc1 Corine land cover classification 1. Percentage, on the basin 

area, of continuous and discontinuous urbanized areas 
(Corine classes 111, 112). Corine classes are available at 
https://land.copernicus.eu/. 

clc4 Corine land cover classification 4. Percentage, on the basin 
area, of non-vegetated areas (Corine classes 331, 333, 332, 
334), mining areas, landfills, and construction sites (Corine 
classes 131, 133), industrial and commercial areas, 
communication networks (Corine classes 121, 122, 123, 
124). Corine classes are available at https://land.coper 
nicus.eu/. 

CN SCS Curve Number. 
CNS Soil storage coefficient of the SCS-CN method. 
Ef Channelization factor in Espey et al. (1966) formula. 
Hmax Basin maximum elevation. 
Hmin Basin minimum elevation. 
Hmax,LDP Basin elevation at the ending point of the longest drainage 

path (on the drainage divide). 
Hmin,LDP Basin elevation at the starting point of the longest drainage 

path (on the outlet). 
i Net rainfall intensity. 
i2 Two-years return period rainfall intensity. 
Lc Length of the main channel (distance from the outlet to the 

end point of the visible stream). 
Lca Length of the main channel up to the point on the stream 

closest to the centroid of the basin. 
LLDP Length of the longest drainage path (distance from the 

outlet to the drainage divide). 
n Roughness coefficient. 
qwm Weighted mean discharge in Askew (1970) formula, 

defined as “the mean rate of total discharge over the time of 
occurrence of direct runoff, weighted in proportion to the direct 

runoff discharged at that rate”. 
R Hydraulic radius. 
RD Road density, computed as the total length of roads and 

streets in the watershed, divided by the drainage area. 
Re Basin elongation ratio (ratio of the diameter of a circle of 

the same area as the basin to the longest drainage path 
length). 

Rs Basin shape factor (ratio of the watershed area to the main 
channel length squared). 

Sb Average basin slope, computed by averaging the slope map 
obtained from a digital elevation model (if not otherwise 
specified). 

Sc Average slope of the main channel (details are provided in 
the Supplementary Material, section S.1). 

Sdiff ,LDP Ratio of the fall in elevation of the longest drainage path 
between the divide and the gauging station to the length of 
the longest drainage path. 

SLDP Average slope of the longest drainage path (details are 
provided in the Supplementary Material, section S.1). 

Sc,w− L Weighted average slope of the main channel, computed as 
suggested by Laurenson (1962). 

Sc,w− T&S Weighted average slope of the main channel, computed as 
suggested by Taylor and Schwarz (1952). 

S10− 85,LDP Average slope of the drainage path computed as the 
elevation between two points on the channel (extended to 
the drainage divide), located 10 and 85 % of the channel 
length from the outlet, divided by the length of the channel 
between the two points (Benson, 1959). 

tL Lag time – Computed as the time difference between the 
centroids of net rainfall and hydrograph. 

tp Lag time – Computed as the time difference between the 
centroid of net rainfall and the hydrograph peak. 

tpeak Time to peak. 
tc Time of concentration. Estimation procedures for each 

formula are given in Table A.2 of Appendix A. 
W Storage factor in Kennedy and Watt (1967) formula. 
δ Channel shape factor. 
a, a1, d, k1,k2, k3,m1, γ, γ1 Constants.  
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Likewise, this paper will not discuss the above mentioned different 
operational methods to calculate these time parameters. However, it is 
worth saying that at least six different working definitions for the time of 
concentration and seven for the lag time have been proposed in the 
literature (see e.g. McCuen, 2009; Espey et al., 1966). Moreover, some of 
them overlap, contributing to confusion in design practice for hydro-
logical applications. 

When attributing any meaning to the characteristic time being 
considered, one must bear in mind that, as written by Leopold (1991), 
response time “is a fingerprint of the drainage basin, reflecting the 
storage and velocity of water in its travel over the basin and down 
channel”. However, it is not the water flow velocity, which is referred to 
by tracer measurements, but rather the flood wave celerity, which is more 
commonly referred to by hydrograph analysis methods, which should be 
considered when addressing the response time estimation. As Beven 
(2020) wrote, “if we are interested in hydrograph responses, it should be 
clear that we should be not so much concerned with the time of travel of an 
input water particle from the farthest reaches of the catchment to the outlet as 
with the time it takes for the effect of that input to have an effect on the 
output”. Although this aspect is receiving increased attention in recent 
years (e.g. McDonnell and Beven, 2014; Beven, 2020; Shook et al., 
2023), it is not mentioned at all in past works. 

All the above cited direct methods typically provide a wide range of 
time values for the same basin and many studies have indeed indicated 
that the response time should vary with the flow rate, rainfall intensity, 
antecedent soil moisture condition and associated factors. For this 
reason, citing Efstratiadis et al., (2014), “finding the basin constant” 
response time “is an enigma”. 

Some simplifying assumptions are needed to overcome complexities, 
both because a single time parameter is frequently required for design 
purposes and because less information is available in ungauged basins, 
to which this work is targeted. These simplification are applied by 
neglecting the less influencing and more difficult to calculate parameters 
controlling the various phenomena that compose basin response. 

This pragmatic attempt towards simplification is shaped by the use of 
existing formulas, suggested for design purposes in ungauged basins. 
This is what motivated, from the professional practice perspective, the 
development of the present study since hydrologists, when facing the 
estimation of flood peaks in ungauged sites, do not have much guidance 
in choosing the most suitable response time formulation for their 
purposes. 

Empirical formulas are generally the product of regression analyses 
between the observed watershed response times and morphological, 
land use or event parameters, indirectly taking into account physical 
processes occurring in the watershed. On the other hand, also theoret-
ically based equations exist. They generally account for theoretical 
principles in an explicit form, but typically involve a larger number of 
input parameters. 

A huge number of formulas is available in the literature: the works by 
Carter (1961), Chow (1962), Kirpich (1940), McCuen et al. (1984), and 
SCS (1954) are among the most cited. Some of these formulas, more than 
others, have become popular over the years. However, this popularity 
does not always correspond to estimates whose uncertainty is clearly 
understood. At the same time, because multiple definitions with 
different assumptions have been coined over the years, formulas have 
been often misused. It must also be acknowledged that formulas to 
compute the same time parameter can provide very different estimates. 
Grimaldi et al. (2012), for instance, showed that time estimates can vary 
by up to a factor of 5. Hence the choice of one formula over a different 
one can become crucial for the final design flood estimates. 

This work is an attempt to overcome the fragmentation problem 
outlined above and to select a limited pool of formulas providing hy-
draulically consistent and robust results to be used in the prediction step 
of the hydrological modelling. 

Part of this work will focus on drawing some order among 29 
empirical and analytical formulas carefully selected from the literature. 

To this end, we did not use review papers already available in the 
literature, but the original papers where formulas are published have 
been referred to. We also clearly report the suggested range of appli-
cation, the units of measurement of the input variables and, in some 
cases, the actual meaning of the time parameter being estimated. The 
main novelty of this work, however, is the comparative assessment of 
formulas, after their classification on the basis of a simple hydraulic 
reasoning, through application in 135 basins in North-Western Italy, 
considering the inferred spatio-temporal average velocities at basin 
scale that each formula produces. The term “inferred” is used to indicate 
that average velocities are derived from flood wave celerities associated 
to the formulas. 

The average velocity is used here as a more meaningful parameter for 
comparisons than travel time. Travel times cannot easily be compared 
with reference values because their scaling with lengths and basin areas 
is quite undefined. In other words, it is difficult to identify the “object” 
for which we measure travel time and its “true” value cannot be directly 
measured or determined (Sharifi and Hosseini, 2011). This uncertainty 
can be partially solved when relying on the inferred velocity estimates 
that each formula provides. 

One might question the need to compare the characteristic times 
provided by formulas with observed ones. However, this comparison 
may lack robustness if considering the high subjectivity that the above- 
described estimation methods from rainfall and runoff data are affected 
by. Furthermore, there are already plenty of review papers where this 
approach is adopted with the aim, on the one hand, to quantify the 
variability (and uncertainty) of response times provided by each formula 
for a given basin (e.g. Azizian, 2018) and, on the other hand, to verify 
their accuracy in reproducing “observed” times (e.g. Ravazzani et al., 
2019). 

From a scientific standpoint, more than one reason led to the 
conception of this study. Unlike previous studies, we will not judge the 
formulas according to their ability to reproduce observed travel time 
parameters. Instead, we will calculate implied velocities from wave 
celerities, and assess how velocity varies with catchment size, and 
whether this is consistent with observations. To the best of the authors’ 
knowledge, this is a new approach in the available literature. The only, 
very recent, example where velocities produced by literature formulas 
are investigated is the work of Shook et al. (2023). However, the 
approach adopted there is the one common in the literature of assessing 
the performance of each formulation in reproducing observed times and, 
in this case, stream velocities. The goal of the work is also quite far from 
ours, since in Shook et al. (2023) the authors investigate the validity of 
the common literature formulas when applied to the context of the Ca-
nadian prairies. Our goal is more generic, i.e. to investigate which of the 
formulas produces implied velocity estimates whose general behavior is 
consistent with observations. 

Finally, a further contribution of this work lies in identifying 
analytical relationships between velocities and basin morphological 
features, to be used as helpful tools when calibrating new formulas. 

The paper is organized as follows: in section 2, each formula is 
carefully documented, as well as the data used to develop it, the units 
and the range of derivation. Using hydraulic reasoning, the formulas are 
then grouped based on their mathematical structure. 

After presenting the study watersheds in section 3, formulas are 
applied on 135 basins in north-western Italy to check their behavior in 
section 4. This is done by analysing the average spatio-temporal veloc-
ities within the basins. In section 5, results are discussed, and some 
recommendations and conclusions are drawn in section 6. 

2. Formulas for the estimation of characteristic response times 

2.1. Formulas consistency and background 

As already mentioned in the Introduction, when estimating the 
hydrograph time parameters in ungauged basins the user has to choose 
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from a large set of available relationships and must face some difficulties 
in their practical use. This evidence has already been discussed in some 
papers, among which the clearest problem statement is due to Sheridan 
(1994), who wrote: “Several factors may contribute to the current confusion 
regarding the choice of appropriate procedures for estimating watershed 
hydrograph time parameters […] Some of the contributing factors are: (i) 
Differing definitions and lack of consistency in parameter definition (ii) Lack 
of consistent parameter input and units (iii) Development of empirical re-
lations within a limited physiographic region”. 

Among the issues listed by Sheridan (1994), the use of proper input 
parameters, i.e. those used when calibrating the formula, is a critical 
aspect. Let’s take the example of the basin slope. Among the 29 formulas 
reviewed in the following, the term “slope” could refer to basin or 
channel slope, and even the channel slope is defined in different ways, 
not always clearly recognizable in the literature, so that the user’s choice 
of the correct slope parameter becomes critical. Errors in selecting the 
appropriate input parameters and units are frequent and, as it will be 
shown later, may have significant impacts on the estimated response 
time. 

The 29 formulas considered in this work have been carefully selected 
from review papers (Schulz and Lopez, 1974; Singh, 1988; Sheridan, 
1994; Gericke and Smithers, 2014; Azizian, 2018; Michailidi et al., 
2018; Ravazzani et al., 2019). Rossi’s formula (Rossi, 1974) has been 
also added to the pool. The list of formulas, as well as units and the input 
parameters’ meaning, is given in Table A.1 of Appendix A. Not all the 
formulas available in the review papers accessed have been included in 
this list, because some criteria have been adopted to select any of the 29 
formulas, i.e.:  

1. The formula includes a measure of length and slope. According to our 
aim to seek parsimony, it has been assumed that an expression 
relating response time to watershed physical features should be 
relatively simple and related to parameters that must be easily 
determined, e.g. from digital elevation models.  

2. The original publication is available. It is worth clarifying that the 
above cited review papers have been only used to identify formulas, 
while the original articles have been referred to for the character-
ization of each formula;  

3. The time parameter is clearly defined, including units;  
4. The input parameters are clearly defined, including units. 

Some problems were encountered, for instance, in classifying the 
Jonhstone and Cross formula (1949), which has not been included here. 
In Johnstone and Cross (1949), the authors wrote: “We refrain from giving 
the numerical values of the experimental constants” of the formula “because 
successful use of the empirical equations depends not only upon those values 
but upon the observance of especially prescribed techniques for measuring r, 
L, S, W and R, which space limitations preclude describing here”. However, 
Johnstone and Cross (1949) is the reference commonly cited in the 
literature for this equation. The Picking formula has a similar problem, 
and its original source could not be found. Lopes da Silveira (2005) 
wrote: “With the same difficulty in knowing its origin and applicability is the 
Picking equation, whose reference consulted (Pinto et al., 1976), says 
nothing about it”. 

Table A.2 of Appendix A includes, for each formula, the application 
range and the number of basins used for its calibration. The application 
range is expressed using the same units for all formulas. In order to 
provide an estimate of the popularity of each formula, its number of 
Google Scholar citations is also provided. Where available, Table A.2 
also contains some details on the derivation of the equation, such as the 
fitting performance, which is expressed in terms of the coefficient of 
determination R2 or the regression correlation coefficient ρ. 

2.2. Mathematical classification of formulas through dimensional 
analysis 

Once the main features of formulas have been clarified in Tables A.1 
and A.2 of Appendix A, they were classified according to their mathe-
matical structure, following a simple “hydraulic reasoning”, i.e. relying 
on a few basic theoretical principles that can help to discriminate be-
tween “similar” or intrinsically different formulas. In the following 
derivations, we will use hydraulic reasoning to derive (i) time from 
length and celerity, (ii) celerity from velocity and (iii) velocity from 
hydraulics. 

Based on Table A.1, we can assume that response time can be 
described as a function of the ratio between a characteristic length L and 
a characteristic slope S of the basin, raised to a given power, according 
to: 

t = γ
Lα

Sβ (1) 

where α, β and γ may vary for different basins and are typically 
determined empirically. This coupling of variables is common to most of 
the characteristic time formulations of any type found in the literature 
(and thus included in this work). In other literature formulas, length can 
be replaced by basin area (e.g. Dooge, 1973) or slope by difference be-
tween the maximum elevation of the whole catchment and the outlet 
section (e.g. California Highways and Public Works, 1955). Other rather 
common formulas, on the other hand, include only one parameter, 
which may be the basin area (e.g. Pilgrim and McDermott, 1982; Flavell, 
1983) or the main channel length (e.g. Haktanir and Sezen, 1990). 

As already mentioned, we are interested in estimating inferred ve-
locities from each formula and checking their reasonableness, i.e. 
checking whether they are consistent with observations. According to 
what discussed in the Introduction, the basin response time can be 
expressed as: 

t =
L
c

(2) 

where c is the wave celerity, i.e. the speed at which perturbations to 
the flow propagate through the system. In order to compare the velocity 
values resulting from the application of each formula and the observed 
ones, moving from celerities to velocities is required. Following the 
derivation from the kinematic wave theory and the simplifications 
adopted by Lighthill and Whitham (1955), celerity c is linearly related to 
flow velocity v :

c = k1v (3) 

where the k1 value can be estimated using either the Manning 
(Manning, 1889) or Chezy (Chezy, 1775) resistance equations. For wide 
rectangular, triangular or parabolic channels, the k1 values will be, 
respectively, 1.67, 1.33, and 1.44 using the Manning equation, and, 
respectively, 1.50, 1.25, and 1.33 using the Chezy equation (Sri-
wongsitanon et al., 1998). Adopting the simplest possible configuration, 
the hypothesis of the validity of Chezy’s law in a wide rectangular 
channel, k1=1.5 is assumed in this work. 

According to Chezy (Chezy, 1775) and under the assumption of 
uniform flow, the average streamflow velocity v can be expressed as: 

v = C
̅̅̅̅̅̅
RS

√
(4) 

where C is the Chezy coefficient, R is the hydraulic radius and S is the 
drainage path slope. Taking C and R as constants, v can be considered to 
be roughly proportional to the square root of the drainage path slope: 

v = k2
̅̅̅
S

√
(5) 

By coupling Eqs. (2), (3) and (5), it then follows: 

t =
1

1.5k2

L
̅̅̅
S

√ =
γ

1.5
L
̅̅̅
S

√ (6) 

G. Evangelista et al.                                                                                                                                                                                                                            



Journal of Hydrology 627 (2023) 130409

5

The α and β exponents of Eq. (1) are therefore 1 and 0.5, respectively, 
if we assume the Chezy velocity formula with constant hydraulic radius 
and roughness. In other words, Eq. (6) is a specific case of the more 
general Eq. (1). 

The average velocity v can be also expressed using other hydraulic 
formulas, e.g. the Gauckler-Manning’s formulation (Manning, 1889), 
which provides: 

v =
1
n

̅̅̅̅̅
R23

√ ̅̅̅
S

√
(7) 

where n is the Gauckler-Manning coefficient. By adopting the same 
assumptions and substitutions as above, similarly the exponents of L and 
S are 1 and 0.5. 

As an alternative to empirical formulas like the one in Eq. (1), the 
kinematic wave model can be adopted to provide an estimate of 
response time. The model can be generalized as follows (McCuen and 
Spiess, 1995): 

t =
γ1

i(t)ν(
nL
̅̅̅
S

√ )
μ (8) 

where i(t) is the net rainfall rainfall intensity with duration equal to 
the time of concentration, while μ, ν and γ1 are coefficients. γ1 depends 
on the units system used, while μ and ν depends on the assumptions 
being made. Assuming the Manning’s equation leads toμ = 0.6 andν =
0.4 (e.g. Woolhiser and Liggett, 1967). The Soil Conservation Service 
(Welle and Woodward, 1986) proposes a simplified solution that does 
not require an iterative procedure for i(t), replacing the rainfall intensity 
with duration equal to the time of concentration with the 2-year, 24-hr 
rainfall. In this case the coefficients values areμ = 0.8 andν = 0.5. 

Regardless of the specific values assigned to the coefficients, the 
structure of Eq. (8) again indicates that the ratio between the length and 
slope exponents is 2:1. 

Hydraulic formulas thus suggest that response time can be expressed 
as a function of the basin factor L/S0.5. In other words, the β exponent in 

Eq. (1) is equal to α
2 under specific assumptions. Formulas in which this 

ratio is satisfied will henceforth be referred to as ’hydraulically consis-
tent’. This arrangement occurs frequently among empirical formulas (e. 
g. Kirpich, 1940; Carter, 1961; Chow, 1962; McEnroe and Zhao, 1999; 
NERC, 1975; Pezzoli, 1970; Rossi, 1974) as depicted in Fig. 1, where 
each circle represents a formula. The closer the circle is to the line, the 
closer is the formula to the theoretical ratio discussed above. 

A total of 13 hydraulically consistent formulas were identified, i.e. 
those of Carter (ID = 5), Chow (ID = 6), Kennedy and Watt (ID = 9), 
Kirpich (ID = 10), McEnroe and Zhao (IDs = 13, 14, 15), NERC (ID =
16), Overton and Meadows (ID = 17), Pezzoli (ID = 19), Putnam (ID =
20), Rossi (ID = 21) and Watt and Chow (ID = 28). 

It should be noted that the Linsley et al. (ID = 11), Schulz (ID = 23) 
and Sheridan (ID = 25) formulas are not considered to be hydraulically 
consistent, as their numerator is the product of two length parameters, i. 
e. (Lca• Lc) or (Lca• LLDP), thus the ratio between the α and β exponents is 
not 2:1, but 4:1. 

3. Data and features of application of formulas 

3.1. Study area and available data 

For the purposes of this paper, an extended synthetic sample of 
typical watersheds could have been produced, allowing to perform a 
sensitivity analysis of the formulas from a theoretical point of view. 
However, referring to real watersheds, and therefore to actual combi-
nations of basin features (particularly of length and slope) is certainly 
important when providing practical directions on the use of available 
formulas. 

To this end, a real study area included in a region of about 25000 km2 

has been considered. The study area consists in 135 basins in north- 
western Italy, as shown in Fig. 2. Their areas range from 3.5 to 8020 
km2, except of three Po River sub-basins, which have an area larger than 
10000 km2 (red outlets in Fig. 2a). Empirical cumulative distributions of 

Fig. 1. Plotting of formulas on the plane of Length-Slope exponents. Numbers refer to the formula IDs given in Table A1.1. The dashed line has a slope of 2:1 between 
the exponents α and β. 
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basin areas and mean elevations are provided in Fig. 2b and 2c, 
respectively. Mostly small and medium–high elevation watersheds are 
considered in this study, as about 75 % of them have a mean elevation 
higher than 1000 m a.s.l. 

In order to investigate how formulas perform when applied to a large 
set of basins with different characteristics, morphological and land use 
features were computed. A summary of the available data for each basin 

is provided in Table 1. While the meaning of the length parameters 
considered in this work is clearly defined, different definitions exist for 
the basin’s representative slope. A detailed description on how each 
parameter have been computed can be found in the Supplementary 
Material (section S.1). 

With the aim of providing generality to the results presented in this 
work, section S.1 of the Supplementary Material also provides an 

Fig. 2. (a) Location and Digital Elevation Model of the study area. Red outlets refer to Po river sub-basins with an area larger than 10000 km2. Moving upstream: Po 
at Isola Sant’Antonio (A = 25597 km2), Po at Valenza (A = 17226 km2), Po at Casale Monferrato (A = 13689 km2). (b) and (c) Empirical cumulative distribution 
functions (ECDF) for basin areas (panel b) and mean elevations (panel c) for the 135 basins. The ECDF is defined as i

N fori = 1,…, N where i is the ordered variable for 
each watershed. Red dots in panels b and c refer again to the three Po river sub-basins. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Table 1 
Available data. Units, quantiles and range of variability for each feature are provided. For symbols, the reader can refer to the Nomenclature.  

Parameter sub-category Parameter u.d.m. Quantile 25 % Quantile 50 % Quantile 75 % Range of variability 

Altimetrical and geometrical A km2 64 159 662 3–25597 
Hmax m a.s.l. 2633 3222 3756 418–4792 
Hmin m a.s.l. 230 625 1265 27–2697 
Hmax,LDP m a.s.l. 2512 3006 3207 336–4284 
Hmin,LDP m a.s.l. 243 637 1307 68–2697 
Lca km 5.6 10.8 30.5 0.3–158.8 
Sb % 21 25.8 28.8 4–35.2  
Lc km 12.3 25.2 69.3 2.3–309.6 

Streamflow network LLDP km 14.4 27.4 71.4 3.1–311.7 
Sc m/m 0.027 0.063 0.104 0.011–0.248 
SLDP m/m 0.044 0.073 0.101 0.02–0.169 
Sdiff ,LDP m/m 0.028 0.071 0.121 0.007–0.248 
S10− 85,LDP m/m 0.012 0.044 0.107 0.002–0.291 

Watershed shape features Re – 0.47 0.59 0.71 0.26–4.74 
Soil and Land use CN – 57.3 62.2 65.6 40.5–74.6 

clc1 % 0 0.7 2.5 0–12.1 
clc4 % 0 0 0 0–0.1  
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assessment on how other geographical areas can be well represented by 
the topography of north-western Italy. 

With the available data, 17 formulas could be applied, as will be 
specified in the following, and three different definitions for the length 
parameter (Lc, LLDP and Lca) and five for the slope parameter 
(Sc, SLDP, S10− 85,LDP, Sdiff ,LDP and Sb) have been used. In the Supplemen-
tary Material (section S.2) scatter plots between each of the length and 
slope parameters considered in this work are shown (Figures from S2.1 
to S2.11), as well as the power law equations that best approximate their 
relationships. Scatter plots also show relationships between length and 
slope parameters and the basin areas (Figures from S2.12 to S2.18). The 
Lca length parameter, which only appears as products such as (Lc • Lca)

or (LLDP • Lca) (formulas with IDs = 11, 23, 25), is not investigated in this 
work. 

It is worth stressing that choosing the correct input parameters is an 
essential step for an accurate use of formulas. A sensitivity analysis of 
the response time estimates to the input parameters, in particular the 
slope parameter, is given in Appendix B. It is worth noting that this issue 
relates more to the accurate application of the formulas, i.e. the way the 
formulas were designed, and does not compromise the robustness of the 
method proposed here as a tool for appraising formulas reliability. 

3.2. Rationale for the application of formulas 

In order to identify which formulas are more robust, the average 
streamflow velocities provided by each of them have been computed 
over the above mentioned 135 basins in north-western Italy. According 
to Eqs. (2) and (3), velocity was computed as follows: 

v =
L

1.5t
(9) 

where t is obtained from the formulas. 
In section 2.2, 13 hydraulically consistent formulas were identified. At 

this stage, however, we computed velocities using all formulas for which 
the input parameters are available. Specifically, the following categories 
of formulas were not applied:  

i) formulas containing the hydraulically weighted average slopes 
Sc,w− L and Sc,w− T&S, computed according to Laurenson (1962) and 
Taylor and Schwarz (1952), respectively.  

ii) formulas containing rainfall intensity with duration equal to the 
time of concentration, and thus requiring iterative procedures;  

iii) formulas containing parameters of complex determination, such 
as soil features or Manning roughness coefficient. 

Summarizing, the formulas explicitly considered hereinafter are 
those of Chow (ID = 6), Kirpich (ID = 10), McEnroe and Zhao (1999) (ID 
= 13), McEnroe and Zhao (2001) (ID = 14), NERC (ID = 16), Pezzoli (ID 
= 19), Putnam (ID = 20) and Watt and Chow (ID = 28) within the hy-
draulically consistent group, and those of Bocchiola et al. (ID = 3), 
Bransby-Williams (ID = 4), Linsley et al. (ID = 11), Schulz (ID = 23), SCS 
(ID = 24), Sheridan (ID = 25), Temez (ID = 26) USGS (ID = 27), and 
Williams (ID = 29) among the non hydraulically consistent formulas. They 
are 17 formulas, though not all hydraulically consistent. 

In particular, we will investigate:  

a. the variability of the orders of magnitude of velocity values provided 
by each formula;  

b. the pattern of velocities as a function of morphological features, i.e. 
the basin area and the basin factor L/S0.5.

4. Assessment of inferred velocities 

4.1. Standardization of time parameters for estimating velocities 

When translating the time parameter estimation results to average 
streamflow velocities, according to Eq. (9), it must be borne in mind that 
not all formulas provide the same time parameter. A harmonising 
operation is therefore needed in order to allow the estimates to be 
compared. The average velocity is calculated here as the ratio between 
the length of the longest drainage path and, consistently, the time of 
concentration. It is well-known that, for a given basin, the time of 
concentration tc is usually greater than the lag time tlag, where tlag can 
refer to both tL and tp. The relationship between these characteristic 
times is supported by a wide literature and the estimation of tc, more 
complex, commonly relies on the estimation of tlag (Gericke and 
Smithers, 2014). Overton and Meadows (1976) analytically found: 

tc = 1.6tp (10) 

while the Soil Conservation Service (SCS, 1975)) showed that: 

Fig. 3. Velocity estimates as a function of Lc/Sc
0.5. IDs refer to those shown in Table A.1 of Appendix A. Formulas providing similar behaviors are grouped with 

similar colors. 

G. Evangelista et al.                                                                                                                                                                                                                            



Journal of Hydrology 627 (2023) 130409

8

tc = 1.67tp (11) 

and 

tc = 1.417tL (12) 

Eq.(11), also recommended by the Natural Resources Conservation 
System (NRCS, 2010), has been widely accepted in engineering practice 
for several decades. On the other hand, McCuen et al. (1984), with the 
aim of verifying Eq. (12), found: 

tc = 1.35tL (13) 

In this work, a conversion factor of 1.67 is adopted for tp and 1.42 for 
tL. As for the time to peak tpeak, according to Ramser (1927), it is dealt 
with in this context as tc and no conversion factor is adopted for this 
parameter. 

4.2. Magnitude and variability of velocities according to morphological 
features 

Based on the previous section, the equation adopted operationally to 
calculate v is as follows: 

v =
LLDP

1.5k3t
(14) 

beingk3 = 1.67 if t = tp, k3=1.42 if t = tL, k3=1 if t = tc or t = tpeak. 
Only for Pezzoli’s formula (ID = 19), which is not calibrated on rainfall 
and runoff data but analytically derived as the ratio between LLDP and 
the Chezy’s formula for average velocity, the conversion factor of 1.5 
between velocity and celerity is not applied. 

Velocity estimates for all 135 study watersheds as a function of the 
basin factor Lc/S0.5

c are shown in Fig. 3, where panel (a) refers to the 
hydraulically consistent formulas, while panel (b) to all others. 

Each colour of Fig. 3 refers to a formula, while each dot to a 
watershed and a linear regression line is plotted for each of the formulas. 
This type of representation was chosen in order to highlight more clearly 

the variations between different formulas. It can be easily recognized 
how velocities from different formulas have different behaviors as the 
basin factor Lc/S0.5

c varies. The slope values of the trend lines in Fig. 3 are 
given in Table 2. Moreover, a large variability of typical values of ve-
locity occurs between formulas, with values ranging from 0.1 to almost 
6 m/s. 

The assessment of how velocities change as the basin factor varies 
might appear as an end in itself and one may ask what is the meaning of 
L/S0.5 and how it relates to basin features. The basin factor L/S0.5 can be 
considered as a proxy for the basin area whatever specific parameters 
are used for L and S, as strong positive relationships can be observed (see 
Figures from S4.1 to S4.10 in the section S.4 of the Supplementary 
Material). A power law of the type: 

A = m1(
L
̅̅̅
S

√ )
m2 (15) 

can be written, where m1 and m2 are site-specific coefficients, which 
values depends on the particular length-slope pair considered. In 
Table 3, the m1 and m2 values for each pair L-S considered here are 
provided. For basins in north-western Italy the m2 values range from 1 to 
1.6. As a further example, Table 4 shows the m1 and m2 coefficients 
obtained when fitting the relationship in Eq. (15) to the data used to 
calibrate some of the formulas, i.e. those of NERC (ID = 16), Putnam (ID 
= 20), Temez (ID = 26) and USGS (ID = 27). Despite the different 
geographical regions from which data are collected, the m2 factor varies 
again between 1 and 1.6. 

This evidence allows us to consider, henceforth, the basin factor L/
S0.5 as conceptually equivalent to the basin area. This finding will 
become relevant in the following sections. 

4.3. Consistency of velocities with observations 

The first question we want to address is how reasonable, i.e. 
consistent with observations, the velocity estimates obtained are. 
Studies providing maximum velocity measurements or cross sectional 
mean velocities exist in the literature, where different measurement 
methods are used for different case studies (e.g. Chiu and Said, 1994; 
Xia, 1997; Jia et al., 2016; Bahmanpouri et al., 2022). In Leopold (1953), 
the author refers to an unpublished work by the U.S. Geological Survey, 
where 2950 maximum point velocity measurements for different rivers 
are given. Their median value is 4.11 ft/s (1.25 m/s), the mean one 4.84 
ft/s (1.47 m/s) and less than one percent of them exceed 13 ft/s. (3.96 
m/s). Leopold also adds that “the largest value of maximum point velocity 
in a natural river channel ever measured by stream-gaging personnel of the U. 
S. Geological Survey was about 22 ft/s”, i.e. 6.7 m/s. However, there are 
no guidelines as to what a reasonable range of basin scale velocity values 
is. 

Based on Leopold (1953) and the hydraulic geometry studies led by 
Leopold and Maddock (1953) and considering flood flows, a consistent 
range of average velocity values can be supposed to be between 0.5 and 
3 m/s. As shown in Fig. 3, all estimates fall within these boundaries, 
except for formulas with IDs = 11, 23 and 29 (see Fig. 3b) which, for 
larger basins, can provide velocities of up to 6 m/s. 

The second and even more relevant aspect is to check which velocity 
behavior (i.e. increasing, decreasing or even constant) as a function of 
the basin factor, and thus the catchment size, would be the most 
appropriate. To this purpose, one can refer again to Leopold and Mad-
dock (1953), where it is very clearly stated: “Most geomorphologists are 

Table 2 
Slopes of the regression lines identified in Fig. 3. Hydraulically consistent for-
mulas are highlighted in bold text. Velocities provided by formulas with IDs =
13, 25 and 28, whose regression lines have a slope of the order of 10-5 (regardless 
of the sign), can be considered to be constant with the basin factor.  

Formula ID Ratio α/β Slope of the regression line 
( m
s⋅km

)

3 4 1.95E-04 
4 5 1.38E-04 
6 2 5.22E-04 
10 2 ¡4.54E-04 
11 4 1.30E-03 
13 2 ¡6.44E-05 ~ 0 
14 2 ¡3.41E-04 
16 2 4.76E-04 
19 2 ¡4.87E-04 
20 2 1.01E-03 
23 4 1.57E-03 
24 1.6 2.30E-04 
25 4 2.74E-05 ~ 0 
26 4 2.10E-04 
27 4.8 − 1.17E-04 
28 2 ¡7.62E-05 ~ 0 
29 2.5 8.23E-04  

Table 3 
m1 and m2 values controlling the relationship between basin area and basin factor, depending on the L-S pair used. Units are km2 for A and km for L/S0.5.   

Lc
̅̅̅̅̅
Sc

√
Lc
̅̅̅̅̅̅̅̅̅
SLDP

√
LLDP
̅̅̅̅̅̅̅̅̅
SLDP

√
LLDP
̅̅̅̅̅
Sc

√
Lc

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S10− 85,LDP

√
LLDP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S10− 85,LDP

√
Lc

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sdiff ,LDP

√
LLDP
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sdiff,LDP

√
Lc
̅̅̅̅̅
Sb

√
LLDP
̅̅̅̅̅
Sb

√

m1  0.751  0.488  0.266  0.446 1.44  0.968  1.07  0.67  0.63  0.334 
m2  1.18  1.3  1.39  1.26 1  1.05  1.11  1.18  1.43  1.54  
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under the impression that the velocity of a stream is greater in the headwaters 
than in the lower reaches. The appearance of mountain stream, of course, 
gives the impression of greater kineticity than that observed in a large river 
downstream. The impression of greater velocity upstream stems in part from a 
consideration of river slopes which obviously are steeper in the upper than in 
the lower reaches. It will be recalled, however, that velocity depends on depth 
as well as on slope, as shown in the Manning equation. The fact that velocity 
increases downstream with mean annual discharge in the rivers studied in-
dicates that the increase in depth overcompensates for the decreasing river 
slope. The magnitude of this rate of change becomes clear by comparison of 

the exponents of depth and slope. In the Manning equation the velocity de-
pends on depth to the power 2/3 and on slope to the power 1/2”. As Pilgrim 
(1977) also confirmed later, average velocities are found to increase 
slightly downstream, as the effects of the decrease in slope downstream 
are generally offset by adjustments in depth and hydraulic roughness. 
Similar results arise from Jowett (1998), where reach average velocities 
are calculated by hydraulic simulation on real cross-sections from 71 
rivers in New Zealand. It is worth mentioning that the work of Shook 
et al. (2023) also reports increasing average velocities with watershed 
size, even though with a rather low correlation, probably due to the 
highly unusual landscape of the Canadian prairies. 

Therefore, velocity can also be expressed as: 

v = a1Aa2 (16) 

where a2 values can be ≥ 0. 
Fig. 4 shows the velocity values reported from Leopold and Maddock 

(1953) (green dots) and Jowett (1998) (purple dots) as a function of 
basin areas. The basin areas considered by Jowett, where available, have 
been retrieved from the work of Biggs et al. (1990). Fig. 4 also shows, for 
the two data sets, the fitted relationships as in Eq. (16). The exponent for 
growth rate of velocities with area is in both cases close to 0.1. As this 
result does not seem to depend on the specific study area, i.e. the works 
of Leopold and Maddock (1953) and Jowett (1998) cover completely 
different geographical areas, this value can be adopted as a reference. 
This allows us also to check whether the velocity estimates provided by 
each formula increases at a rate consistent with observations. To this 
end, a1 and a2 values for formulas providing increasing velocities are 
given in Table 5. a2 values of 0.1 ± 0.025 are considered to be consistent 
with observations and are marked in bold in Table 5. 

We note that there is a conceptual difference between the observed 
mean velocities at a cross-section, and the basin-scale velocity inferred 
using Eq (9). However, if one assumes downstream hydraulic geometry 
follows the power law behaviour of Leopold and Maddock (1953), then 
the two velocities are expected to be extremely similar. Therefore, we 
consider it is reasonable to use these observed velocities as a reference 
for basin-scale velocities. 

It must be noted from Fig. 4 that the basins analyzed by Leopold and 
Maddock (1953) have a minimum size of about 30 km2, as well as the 
New Zealand basins considered by Jowett (1998), which, except for a 
single watershed of about 4 km2, are all bigger than 40 km2. No indi-
cation is then given on the assumptions to be made for smaller basins. To 
the authors’ knowledge, one of the few papers reporting measured ve-
locities for small basins is that of Azizian (Azizian, 2019), where 
streamflow velocities are measured using tracers for basins of less than 
20 km2. However, this work is carried out on only 7 sub-basins. 

Small basins are typically characterized by steep slopes, which would 
result in high average streamflow velocities. On the other hand, their 
hydrological response can be considered primarily governed by hillslope 
flow (Robinson et al., 1995; Hallema et al., 2016; Asano and Uchida, 
2018), rather than channel flow, leading to a reduced average travel 
velocity. Velocities produced over small basins (i.e. over basin areas 
smaller than 30 km2, for which no observations are available) must 
therefore be handled with greater caution. For the sake of safety, it is 
reasonable to assume that velocities might be nearly constant for small 
basins and, for this reason, formulas with IDs = 13, 25 and 28 (see 
Table 2) are not to be excluded a priori and their application can be 

Table 4 
m1 and m2 values from other sites. Units are km2 for A and km for L/S0.5.  

Formula ID 16 20 26 27 

Location  UK  North Carolina (US)  California and Arizona (US)  Illinois (US) 
Parameter  Lc

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S10− 85,LDP

√
LLDP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S10− 85,LDP

√
Lc
̅̅̅̅̅
Sc

√
LLDP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S10− 85,LDP

√

m1  1.672  5.805  2.662  0.641 
m2  1.05  1.53  1.13  1.25  

Fig. 4. “Observed” streamflow velocities in river basins in the US (Leopold and 
Maddock) and in New Zealand (Jowett). 

Table 5 
Parameters of the power law in Eq. (16) governing the relationship between 
velocity and basin area. Only formulas with a strictly increasing pattern in Fig. 3 
are considered (i.e. formulas with IDs = 13, 25 and 28, which produce an almost 
constant velocity with the basin factor, are not included here). Units are km2 for 
A and m/s for v. Cases where the exponent of the velocity growth rate is 
consistent with observations are highlighted in bold.  

Formula ID a1 a2 

3  0.766  0.049 
4  0.57  0.055 
6  0.962  0.095 
11  0.718  0.156 
16  0.496  0.124 
20  0.025  0.504 
23  0.148  0.342 
24  0.49  0.086 
26  1.24  0.035 
29  1.08  0.116  
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relied on for low basin factor values. 

5. Theoretical bases to validate the inferred velocities and 
advices on calibrating new formulas 

The aim of this section is to provide explanation to the different 
behavior of the formulas when applied to the sample of basins consid-
ered in this work. The increasing or decreasing velocities observed in 
Fig. 3 may reflect the existence of an underlying relationship between 
the scaling law linking length to slope and the formula used for the 
characteristic response time, i.e. the values of the α and β exponents in 
Eq. (1). 

The expected relationship existing between length and slope is well 
established (Hack, 1957; Leopold, 1991). Typically, they are inversely 
proportional, and the following relationship can be written: 

L = aSb (17) 

where b is smaller than 0. 
How length scales with slope for the basins investigated, i.e. the 

specific a and b values of Eq. (17), depend on which specific pair of 
length and slope is considered. Scatter plots for different combinations 
of length and slope parameters are shown in the section S.5 of the 
Supplementary Material (from Figures S5.1 to S5.10), while b values are 
given in Table 6. The value of b is affected by the choice of slope 
formulation, but not so much by the choice of length. 

The length-slope scaling law expressed by Eq. (17) plays an impor-
tant role also when considering whether the use of a formula in a certain 
geographical area is recommendable or not. In this regard, a separate 
discussion should be undertaken for the highly-cited Kirpich formula 
(ID = 10), which was calibrated on very different basins from the ones 
considered in this work (see Table A.2 of Appendix A). An in-depth 
discussion is provided in Appendix C, which suggests that the 

Kirpich’s formula is unsuitable for application in the north-western 
Italy. 

In the following sections, the relationships linking average velocities 
to the basin factor L/S0.5 are derived analytically. The cases of hydrau-
lically consistent or non consistent formulas are distinguished. 

The implication of the results presented below is that a restricted 
range of α − β combinations for which v is an increasing function of area 
exists, depending on the value of the coefficient b, i.e. on the morpho-
logical properties of the watersheds investigated. 

5.1. Hydraulically consistent formulas 

In order to identify analytical relationships that justify the differing 
patterns in Fig. 3, our goal is to express v as a function of L

s1/2. By dividing 

Table 6 
Empirical b values for different length-slope pairs. Unit for L is km, while S is 
dimensionless.   

Sc SLDP S10− 85,LDP Sdif f ,LDP Sb 

Lc  − 1.2  − 1.82  − 0.78  − 1.06  − 1.45 
LLDP  − 1.1  − 1.67  − 0.72  − 0.97  − 1.34  

Table 7 
Verification of Eq. (24) for hydraulically consistent formulas that do not include any variables related to length and slope. From left to right: formula identification, input 

parameters, value of the length exponent α, threshold value 
b

b − 1/2
, slope of the regression line between predicted velocity and the basin factor, verification outcome.  

Formula ID Length parameter Slope parameter α value Threshold value for α Slope of the v-L/S0.5 line Compliance with Eq. (24) 

6 LLDP Sc 0.64  0.69 + Yes 
10 LLDP Sdiff,LDP 0.8  0.66 – Yes 
13 LLDP S10− 85,LDP 0.64  0.59 – Yes 
14 LLDP S10− 85,LDP 0.74  0.59 – Yes 
16 Lc S10− 85,LDP 0.47  0.61 + Yes 
19 LLDP Sc 1  0.69 – Yes 
20 LLDP S10− 85,LDP 0.5  0.59 + Yes 
28 LLDP Sc 0.79  0.69 – Yes  

Table 8 
Verification of Eq. (25) for non hydraulically consistent formulas. Formulas with IDs = 26 and 27 do not include any variables related to length and slope, formulas with 
IDs = 3 and 24 include the CN variable. From left to right: formula identification, input parameters, value of the length exponent α, value of the slope exponent β, 

threshold value 1 +
β
b
, slope of the regression line between predicted velocity and the basin factor, verification outcome.  

Formula ID Length parameter Slope parameter α value β value Threshold value for α Slope of the v-L/S0.5 line Compliance with Eq. (25) 

26 Lc Sc  0.76  0.19  0.84 + Yes 
27 LLDP S10− 85,LDP  0.875  0.181  0.75 – Yes 
3 Lc Sb  0.82  0.2  0.86 + Yes 
24 LLDP Sb  0.8  0.5  0.63 + No  

Table 9 
Overall behavior of the tested formulas. Chow (ID = 6) and NERC (ID = 16) 
formulas satisfy all criteria. SCS formula (ID = 24) provides robust results in 
terms of velocity estimates even though the 2:1 ratio is apparently not complied 
with. McEnroe and Zhao (1999) (ID = 13) and Watt and Chow (ID = 28) for-
mulas provide reliable results, particularly for small basins.  

Formula 
ID 

Consistent 
α/β ratio 

1st criterion: 
Consistent 
velocity 
values 

2nd criterion: 
Consistent 
velocity 
behavior 

3rd criterion: 
Consistent 
velocity 
growth rate 

3 No Yes Yes No 
4 No Yes Yes No 
6 Yes Yes Yes Yes 
10 Yes Yes No – 
11 No No Yes No 
13 Yes Yes Yes (constant) 
14 Yes Yes No – 
16 Yes Yes Yes Yes 
19 Yes Yes No – 
20 Yes Yes Yes No 
23 No No Yes No 
24 No Yes Yes Yes 
25 No Yes Yes (constant) 
26 No Yes Yes No 
27 No Yes No – 
28 Yes Yes Yes (constant) 
29 No No Yes Yes  
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both terms of Eq. (17) by S1/2, one obtains: 

L
S1

2
=

aSb

S1
2
= aSb− 1

2 (18) 

Eq. (18) can be then re-arranged to make L the subject. By raising Eq. 
(18) to the power of b

b− 1
2
, and dividing and multiplying the right-hand 

term by a, one finds: 

(
L
S1

2
)

b
b− 1

2 = a
b

b− 1
2
− 1

aSb (19) 

By assuming d = a
b

b− 1
2
− 1 

and recalling Eq. (17), one obtains: 

L =
1
d
(

L
S1

2
)

b
b− 1/2 (20) 

According to Eq. (1), Eq. (9) can also be written as: 

v =
L1− αsβ

1.5γ
(21) 

By substituting Eq. (20) into Eq. (21), it follows: 

v =

1
d(

L
S

1
2
)

b
b− 1/2

γ( L
S

1
2
)

α (22) 

and thus: 

Table A1 
Summary of equations used to estimate different time parameters. For symbols, 
the reader can refer to the Nomenclature.  

ID Reference Equation Units 

1 
Aron et al. (1991) tc = 0.93

Rs
5/12n3/4LLDP

7/12

δ1/2 i1/4Sc
3/8 

tc in min 
LLDP in m 
i in mm/h 
Rs, δ, Sc,n=
dimensionless 

2 
Askew (1970) tL = 0.877L0.8

LDPS− 0.33
b q− 0.23

wm tL in hours 
LLDP in km 
Sb dimensionless 
qwm in m3/s 

3 
Bocchiola et al. 
(2003) 

tL =

0.26L0.82
c S− 0.2

b (1 + CNS)
0.13 

tL in hours 
Lc in km 
Sb in % 
CNS in mm 

4 
Bransby Williams 
(1922) 

tc = 14.467LLDPS− 0.2
LDP A− 0.1 tc in minutes 

LLDP in km 
A in km2 

SLDP dimensionless 
5 

Carter (1961) tL = 3.1L0.6
LDPS− 0.3

c,w− L tL in hours 
LLDP in mi 
Sc,w− L in ft/mi 

6 
Chow (1962) tp = 0.00236L0.64

LDP S− 0.32
c tp in hours 

LLDP in ft 
Sc in % 

7 
Espey et al. (1966) tpeak = 2.65L0.12

LDP S− 0.52
c,w− L tpeak in minutes 

LLDP in ft 
Sc,w− L 

dimensionless 
8 

Espey et al. (1966) tpeak = 20.8Ef L0.29
LDP S− 0.11

c,w− LA− 0.6
imp tpeak in minutes 

Ef dimensionless 
LLDP in ft 
Sc,w− LDP 

dimensionless 
Aimp in % 

9 
Kennedy and Watt 
(1967) 

tL = 8.8L0.75
LDP S− 0.375

c W1.3 tL in hours 
LLDP in mi 
Sc in ‱ 
W dimensionless 

10 
Kirpich (1940) tc = 0.0058L0.8

LDPS− 0.4
diff,LDP tc in minutes 

LLDP in ft 
Sdiff,LDP 

dimensionless 
11 

Linsley et al. 
(1958) 

tp = a(LLDPLca)
0.38S− 0.19

c 
tp in hours 
LLDP in mi 
Lca in mi 
Sc in ft/mi 

12 
McCuen et al. 
(1984) 

tc =

0.01462L0.5552
LDP S− 0.2070

c i− 0.7164
2 

tc in hours 
LLDP in ft 
Sc in ft/mi 
i2 in in/hours 

13 
McEnroe and Zhao 
(1999) 

tp = 0.086L0.64
LDP S− 0.32

10− 85,LDP tp in hours 
LLDP in km 
S10− 85,LDP 

dimensionless 
14 

McEnroe and Zhao 
(2001) 

tp =

0.058L0.74
LDP S− 0.37

10− 85,LDPe− 3.5Aimp 

tp in hours 
LLDP in km 
S10− 85,LDP 

dimensionless 
Aimp dimensionless 

15 
McEnroe and Zhao 
(2001) 

tp = 0.106L0.63
LDP S− 0.315

10− 85,LDPe− 0.1RD tp in hours 
LLDP in km 
S10− 85,LDP 

dimensionless 
RD in km− 1 

16 
NERC (1975) tpeak = 2.8L0.47

c S− 0.235
10− 85,LDP tpeak in hours 

Lc in km 
S10− 85,LDP in m/km 

17 
Overton and 
Meadows (1976) 

tc = 0.928i− 0.4n0.6L0.6
LDPS− 0.3

LDP tc in minutes 
i in in/h 
LLDP in ft 
SLDP dimensionless 

18 
Papadakis and 
Kazan (1987) 

tc = 0.66L0.5
LDPn0.52S− 0.31

LDP i− 0.38 tc in minutes 
LLDP in ft  

Table A1 (continued ) 

ID Reference Equation Units 

SLDP dimensionless 
i in in/h 

19 
Pezzoli (1970) tc = 0.055LLDPS− 0.5

c tc in hours 
LLDP in km 
Sc dimensionless 

20 
Putnam (1972) tL = 0.49L0.5

LDPS− 0.25
10− 85,LDPA− 0.57

imp tL in hours 
LLDP in mi 
S10− 85,LDP in ft/mi 
Aimp dimensionless 

21 
Rossi (1974) tL = 0.77L0.295

c S− 0.147
c,w− T&S tL in hours 

Lc in km 
Scw− T&S 

dimensionless 
22 

Schaake et al. 
(1967) 

tL = 1.05L0.24
c S− 0.16

c A− 0.26
imp tL in minutes 

Lc in ft 
Sc in % 
Aimp dimensionless 

23 
Schulz (1969) tpeak = 1.9(LLDPLca)

0.162S− 0.081
diff,LDP 

tpeak in hours 
LLDP in km 
Lca in km 
Sdiff,LDP 

dimensionless 
24 

SCS (1954) tp =
L0.8

LDP(1 + CNS)
0.7

1900S0.5
b 

tp in hours 
LLDP in ft 
Sb in % 
CNS in in 

25 
Sheridan (1994) tpeak = 0.63(LcLca)

0.4S− 0.2
c 

tpeak in hours 
Lc in km 
Lca in km 
Sc dimensionless 

26 
Temez (1987) tL = 0.126L0.76

c S− 0.19
c tL in hours 

Lc in km 
Sc dimensionless 

27 
USGS (2000) tc = 1.54L0.875

LDP S− 0.181
10− 85,LDP tc in hours 

LLDP in mi 
S10− 85,LDP in ft/mi 

28 
Watt and Chow 
(1985) 

tp = 0.000326L0.79
LDP S− 0.395

c tp in hours 
LLDP in m 
Sc dimensionless 

29 
Williams (1968) tpeak = 0.144L0.935

LDP S− 0.369
LDP R1.486

e tpeak in hours 
LLDP in mi 
SLDP,Re 

dimensionless  
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Table A2 
Details about the calibration of each equation. For symbols, the reader can refer to the Nomenclature.  

ID N◦ of basins used 
for calibration 

Calibration range Notes Google Scholar 
Citations (as to 
2.03.2023) 

1 Analytical 
approach 

Not calibrated  • Based on the kinematic wave equation.  
• n is the Manning coefficient. 

22 

2 5 A = 0.4–90 km2LLDP = 0.7–25 
km 
Sb = 0.05–0.22  

• Calibrated from about 200 events in small basins near Sydney, Australia.  

• The average basin slope is computed using the grid-contour intersection method: Sb =
N • h

l 
where l is the total length of grid lines within the catchment, h is the contour interval and N 
is the total number of intersections 

78 

3 43 A = 42–4800 km2Lc = 9–142 
km 
Sb = 0.05–0.26  

• Calibrated from 58 events in basins all over Italy.  
• Sb is computed from a DEM with a N-E resolution of 220x230m.  
• The fitting performance is R2 = 0.89. 

8 

4 No information No information  • No information about how this formula was derived, nor on the data used.  
• The author stated “this formula gives a somewhat more rapid concentration than actually 

takes place in most instances, but such inaccuracy as there is on the right side”.  
• The slope of the drainage path is defined as the “average number of feet fall per 100 ft along 

the greatest length of the watershed”. 

65 

5 20 A = 10–1415 km2  • Data of urban basins in the US.  
• The average slope refers to the “weighted slope of an order of 3 or greater of all stream 

channels in the basin”. 

235 

6 20 A = 0.01–18.5 km2 

LLDP = 0.2–8 km 
Sc = 0.005–0.06  

• Calibrated from 53 events in basins in Illinois, Ohio, Missouri, Wisconsin, Indiana, Iowa, and 
Nebraska.  

• The slope does not refer to the weighted average slope but to the slope of the “straight line of 
best fit” in the plane elevation-distance. The author affirms that the results are almost the 
same. 

183 

7 11 LLDP = 1–8 km 
Sc,w− L = 0.008–0.15  

• Data of rural watersheds in Texas, New Mexico and Oklahoma.  
• The fitting performance is ρ = 0.972 

150 

8 22 LLDP = 0.05–17 km 
Sc,w− L = 0.006–0.1 
Aimp = 2.7–100 %  

• Data of urban watersheds in Texas, New Mexico and Oklahoma.  

• Ef =

⎧
⎨

⎩

0.6 for extensive channel improvement
0.8 for cleaning and enlargement of existing channel

1 for natural channel conditions   

• The fitting performance is ρ = 0.954. 

150 

9 12 A = 60–320 km2 

LLDP = 8–30 km 
Sc = 0.001–0.007 

Data of watersheds in southern Ontario. 20 

10 6 A < 0.45 km2 

LLDP = 0.1–1.2 km 
Sdiff,LDP = 0.027–0.098  

• Calibrated from 10 rainfall events in 1918 for small rural watersheds in Madison County 
(Tennessee), having well-defined drainage channels and a quite hilly topography. Silt loamy 
soil. Data from Ramser (1927).  

• tc is computed as “the time required for the water in the channel at the gaging station to rise 
from the low to the maximum stage”. 

844 

11 18 A = 6.5–1670 km2  • Data from watersheds in California.  
• 3 equations are provided: a=0.72 for foothill drainage areas, a=1.2 for mountain drainage 

areas, a=0.35 for valley drainage areas. 

3398 

12 39 A = 0.4–16 km2 

LLDP = 1–9 km 
Sc = 0.0007–0.031  

• Data from urban watersheds in the US.  
• The “observed” tc is computed using the SCS velocity method. 

219 

13 19 A = 2.15–27 km2 

LLDP = 2.3–15 kmS10− 85,LDP =

0.001–0.02  

• Calibrated from 200 events for small rural watersheds in Kansas.  
• The fitting performance is R2 = 0.91. 

19 

14 14 A = 0.7–73 km2 

LLDP = 1.5–24 kmS10− 85,LDP =

0.0025–0.016 
Aimp = 1–40 %  

• The watershed should not contain any lakes or detention sites.  
• The urban development within the watershed should be reasonably well distributed.  
• The impervious areas were computed from the coverages of building outlines, edges lines for 

roads and parking lots, and the coverages of driveway centerlines.  
• The fitting performance is R2 = 0.976. 

11 

15 14 A = 0.7–73 km2 

LLDP = 1.5–24 kmS10− 85,LDP =

0.0025–0.016 
RD = 0.8–16.5 km/km2  

• The watershed should not contain any lakes or detention sites.  
• The urban development within the watershed should be reasonably well distributed.  
• The total length of roads were computed from the CENT coverages of road centerlines.  
• The fitting performance is R2 = 0.982. 

11 

16 132 A < 500 km2 (not strictly 
followed)  

• Calibrated from nearly 1500 events for basins in UK (10 events, on average, are available for 
each basin).  

• The selected basins display some evidence of a short term response to heavy rainfall. 

218 

17 Analytical 
approach 

Not calibrated Based on Manning’s kinematic solution. 372 

18 87 A < 2 km2 (for natural 
watersheds)  

• Data of small rural basins in 22 states in the US, provided by the USDA Agricultural Research 
Service, and experimental data from the US Army Corps of Engineers (rainfall tests on 
airfield strips at Santa Monica Municipal Airport), the Colorado State University and the 
University of Illinois (rainfall tests on experimental basins).  

• The “observed” tc is computed as the time difference between the end of rainfall and the 
inflection point of the hydrograph.  

• 375 data points are used to fit the equation.  
• The fitting performance is R2 = 0.941. 

53 

19 Analytical 
approach 

Not calibrated  • Coming from the Chezy’s formula.  
• Tested on basins in the Valle d’Aosta region (Italy). 

1 

(continued on next page) 
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Table A2 (continued ) 

ID N◦ of basins used 
for calibration 

Calibration range Notes Google Scholar 
Citations (as to 
2.03.2023) 

20 118 A < 400 km2 

LLDP/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S10,85,LDP

√
= 0.1–9 

Aimp = 1 % (for undeveloped 
basins) to 100 % (for urban 
basins)  

• Data for 44 of these basins were collected in the Piedmont region of North Carolina. Data for 
the remainder of the stations were obtained from a report by Anderson (1970).  

• 6 to 20 storm events are selected for each basin. Selection criteria: 1. uniformly distributed 
rainfall intensities over the basin area 2. rainfall duration shorter than the expected lag time 
3. single-peak flood hydrograph.  

• The impervious cover is determined by visual inspection in the drainage basin. 

7 

21 7 A = 40–1650 km2 

Lc = 13–105 km 
Sc,w− T&S = 0.006–0.03  

• Data from watersheds in Basilicata (southern Italy).  
• 4 to 12 rainfall events are available for each basin. 

9 

22 19 A < 1 km2 

Lc < 2 km 
Sc = 0.008–0.06 
Aimp = 8.7–100 %  

• Data from watersheds in Baltimore (Maryland) and Newark (Delaware), USA.  
• The slope is found by dividing the difference in elevation between the upstream and 

downstream ends of the main channel by the length of the channel in hundreds of feet.  
• The fitting performance is ρ = 0.85. 

130 

23 5 A = 24–1060 km2 

LLDP = 10–80 km 
Sdiff,LDP = 0.01–0.1  

• Data from watersheds in Thailand. No citations 

24 No information A < 8 km2 

CN = 50–95 
No information about how this formula was derived. 88 

25 9 A = 2.6–335 km2 

Lc = 2.4–42 km 
Sc = 0.001–0.004  

• Calibrated from 75 events in low gradient basins in Georgia and Florida (USA).  
• The fitting performance is R2 = 0.956. 

49 

26 25 A = 6–11162 km2Lc =

4.7–240 km 
Sc = 0.006–0.2  

• Modified version of the US Corps of Engineers formula.  
• Data from watersheds in California and Arizona (US), used by the US Corps of Engineers. 

308 

27 39 A < 4 km2 

S10− 85,LDP = 0.002–0.045 
LLDP = 0.3–6 km  

• Calibrated from 121 Events in small rural watersheds in Illinois.  
• The “observed” tc is computed as the time difference between the end of rainfall and the 

inflection point of the hydrograph.  
• The fitting performance is R2 = 0.73. 

97 

28 44 A = 0.005–5840 km2LLDP =

0.1–200 km 
Sc = 0.001–0.09  

• Data from watersheds in North America.  
• Not tested for very flat basins, urban basins or those having large lakes.  
• The fitting performance is R2 = 0.96. 

74 

29 9 A = 0.7–45.5 km2LLDP =

1.5–13.5 km 
SLDP = 0.034–0.017  

• Calibrated from 73 storm events from 1940 to 1965.  
• Average annual precipitation is 840 mm and average annual runoff is 142 mm.  
• The fitting performance is ρ = 0.99. 

12  

Fig. B1. Comparison of slope values of the longest drainage path computed according to different definitions.  
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v = γ(
L
S1

2
)

b
b− 1/2− α (23) 

According to Eq. (23), the sign of v as a function of the basin factor 
depends on the following condition: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α <
b

b − 1/2
( + )

α >
b

b − 1/2
( − )

(24) 

In order to apply the criterion given in Eq. (24), the formula should 
have length and slope exponents in a 2:1 ratio, and not contain other 
parameters correlated to length and slope. Based on b values in Table 6, 
threshold values b

b− 1/2 are given in Table 7 and compared with the α value 
of each hydraulically consistent formula considered. Eq. (24) is verified in 
all the cases. 

One of the interesting implications is that the Chezy and Gauckler- 

Strickler-Manning equations, both having α = 1, which is always 
greater than the threshold values found, cannot produce formulas where 
velocity increases with basin size. Bearing in mind that velocity is esti-
mated here as the ratio between a length and a time, the condition α = 1 
means that the length parameter is missing in the definition of v(see Eq. 
(21)). We then have that the velocity is a function of the slope only, 
which is almost always decreasing with the basin area. This also con-
firms that Chezy’s ideal channel with constant slope, width and 
roughness does not exist in reality and the assumption of constant 
discharge underlying Chezy’s law contradicts what was observed in 
Leopold and Maddock (1953). 

This aspect may sound inconsistent to the reader. However, it is 
worth specifying that the 2:1 ratio between the length and slope expo-
nents is still a useful tool for classification and screening procedures such 
as those carried out in this work. Formulas in which the α and β expo-
nents are in a 2:1 ratio are easier to understand, both because the 
quantity L/S0.5 is correlated to the basin area, and because the analytical 
relationship that explains the behavior of these formulas in relation to 
basin morphology (Eq. (24)) is formally simple. 

5.2. Non hydraulically consistent formulas 

A more general analysis is possible for formulas which do not have 
2:1 exponents for length and slope. Following the same procedure as in 
the previous case (all details are given in section S.6 of the Supple-
mentary Material), one obtains: 
⎧
⎪⎪⎨

⎪⎪⎩

α < 1 +
β
b

( + )

α > 1 +
β
b

( − )

(25) 

In the special case where β = α
2, Eq. (25) simplifies to Eq. (24). As in 

the previous case, this reasoning can be applied only to formulas that do 
not contain, in addition to L and S, other correlated parameters. 

The only two non-hydraulically consistent formulas which contain no 
additional input variables are the Temez (ID = 26) and USGS (ID = 27) 
formulas, for which results are given in Table 8. The criterion provided 
in Eq. (25) is fulfilled in both cases. 

For the above-mentioned reasons, Eq. (25) cannot be applied for the 
Bocchiola et al. (ID = 3), Bransby Williams (ID = 4), Linsley (ID = 11), 
Schulz (ID = 23), SCS (ID = 24) and Sheridan (ID = 25) formulas. The 
Curve Number, which is used as an input in the Bocchiola et al. and SCS 
formulas, shows a correlation with the basin slope (see Figure S7.1 in 

Table B1 
Maximum positive and negative Δt values obtained when modifying the slope 
parameter formulation. Formulas containing the slope of the longest drainage 
path are tested. Cases where Δt values exceed ± 0.25 are highlighted in red, 
while values greater than ± 1 are shown in bold.  

Formula ID Original slope parameter Alternative slope parameter 

SLDP S10− 85 Sdiff ,LDP 

4 SLDP  +0.66 
− 0.11 

+0.38 
− 0.1 

10 Sdiff ,LDP +0.24 
− 0.47 

þ1.07 
− 0.1  

13 S10− 85,LDP +0.2 
− 0.56  

+0.08 
− 0.44 

14 S10− 85,LDP +0.23 
− 0.61  

+0.1 
− 0.49 

16 S10− 85,LDP +0.14 
− 0.45  

+0.06 
− 0.35 

19 SLDP  þ2.56 
− 0.25 

þ1.23 
− 0.24 

20 S10− 85,LDP +0.15 
− 0.47  

+0.06 
− 0.36 

23 Sdiff ,LDP +0.04 
− 0.12 

+0.16 
− 0.02  

27 S10− 85,LDP +0.11 
− 0.37  

+0.05 
− 0.28 

29 SLDP  þ1.55 
− 0.19 

+0.81 
− 0.18  

Fig. C1. Kirpich formula behavior. a) Times used to calibrate the formula, compared with those returned by the formula when applied to the basins in north-western 
Italy. b) Velocities obtained from the times used to calibrate the formula, compared with those obtained using the formula. c) Morphological characteristics of basins 
in north-western Italy, compared with those of the basins used for calibration. The red dots represent basins in the study area with anomalous behaviour, i.e. Banna at 
Santena, Borbore at San Damiano d’Asti, Bormida di Mallare at Ferrania, Bormida di Millesimo at Murialdo, Bormida di Spigno at Valla and Niguglia at Omegna. 
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section S.7 of the Supplementary Material). The main channel length Lc 
and the longest drainage path length LLDP are strongly correlated with 
the basin area (see Figures S2.12 and S2.13 of section S.2 of the Sup-
plementary Material), which is one of the inputs of the Bransby-Williams 
formula, as well as with the Lca (see Figures S7.2 and S7.3 of the section 
S.7 the Supplementary Material), included in both Schulz and Sheridan 
formula. 

As an example, Table 8 shows the results of the condition expressed 
by Eq. (25) if applied to the Bocchiola et al. (ID = 3) and SCS (ID = 24) 
formulas. It can be seen that the Bocchiola et al. formula is consistent 
with the derivations described above as it gives increasing velocities and 
the α exponent is lower than the threshold value, even if only slightly. 
The SCS formula, on the other hand, does not comply with Eq. (25). This 
may be due to the fact that although the structure of the two formulas is 
the same, the factor (1 + CNs) is raised to the power 0.13 in the first case, 
and 0.8 in the second. In the SCS formula the effect of the correlation 
between CN and Sb is therefore much more influential. 

6. Guidance towards the selection of robust formulas and 
conclusions 

The main objective of this study was to use hydraulic reasoning to 
classify the large number of formulas available for estimating flood 
response time in ungauged basins, both to provide concrete guidance to 
practitioners and to suggest a methodology to identify robust formulas 
that is based on observed velocities, rather than observed times. 
Although other review-type works are available on this topic, an 
approach based on velocities has not been explored before in the liter-
ature. To this end 29 formulas, all containing a basin length and slope 
parameter, have been selected and the behavior of some of them when 
applied to 135 basins in north-western Italy has been investigated. 

To allow the application, an in-depth assessment of the input vari-
ables to be used in each formula was first undertaken. A careful 
description of each formula is then provided, including inputs and units. 

Some indicators that help to quantify the robustness of formulas have 
been then defined. The initial step in the classification process involves 
the hydraulic-based consistency of the formula structure, according to 
hydraulic relations, such as Chezy’s, Manning’s or the kinematic wave 
model. Although this is not a strict requirement, hydraulic formulas 
imply that length and slope exponents are in a 2:1 ratio. 13 formulas, 
from the 29 collected, have been recognized to be hydraulically 
consistent. 

After this preliminary overview, criteria were examined that would 
allow the identification of robust formulas, considering the significance 
of values of the average spatio-temporal velocities that each formula 
produces, calculated from the associated flood wave celerities. The 
following research questions have been then addressed:  

i) Are the values of velocity sufficiently consistent with 
observations?  

ii) Does predicted velocity increase with basin area, as observations 
show?  

iii) Is the rate at which velocity increases with basin area consistent 
with observations? 

An overview on how formulas perform when applied to the water-
sheds investigated, according to the above criteria, is given in Table 9. 
Only two formulas satisfy all the aspects investigated in terms of flow 
velocities, while also being hydraulically consistent, i.e. Chow’s formula 
(ID = 6) and NERC’s formula (ID = 16). However, formulas that do not 
seem to comply with the 2:1 α/β ratio supported by the hydraulic 
reasoning are not to be excluded a priori. Indeed, it may happen that 
some formulas provide velocities that are fully consistent with obser-
vations, in terms of either their magnitude and their behavior with the 
basin factor (and thus with the watershed size) even though the αβ ratio is 

not fulfilled. In such cases, the non-compliance with the 2:1 ratio may 
only be apparent, as additional variables, which are correlated with 
length and slope, must be accounted for. An example is the SCS formula 
(ID = 24), which can also be considered a good formulation according to 
the criteria adopted in this work. 

Also the hydraulically consistent formulas of McEnroe and Zhao 
(1999) (ID = 13) and Watt and Chow (ID = 28) are not to be rejected, 
despite they do not provide velocities strictly increasing with basin area, 
but almost constant. As explained in section 5.1, a constant velocity as 
the area increases can be assumed for safety reasons for small basins. 

It is worth specifying that the above formulas are recommended here 
based on our considerations about predicted velocities. On the other 
hand, it is up to the reader to judge whether the number of watersheds 
used in calibrating the formula, or its range of application is reasonable 
or suitable for one’s purpose. 

With the aim of motivating the different behavior of the predicted 
velocity estimates, the relationships between velocities and the basin 
morphological scaling laws have been theoretically explored. This 
allowed us to identify the range of length and slope exponents in the 
characteristic time formulas for which velocity increases with basin 
areas, both for formulas in compliance with or not to the hydraulic 
consistency. This type of analysis allowed us to highlight that formulas 
should not be applied to basins whose length-slope scaling is different to 
the basins used for calibration. An example is that of the Kirpich formula 
(ID = 10), which seems to be unsuitable for the study area considered 
here. 

The analytical relationships derived in this work may not only be 
adopted for classifying existing formulas but can also provide guidelines 
to undertake the calibration of new formulas, making them provide 
reasonable velocity estimates. In that case, one may expect that the 
specific combinations of length and slope exponents can differ from 
those found in this work, depending on the specific region of calibration 
of the formula, but the derivations and equations shown here will have a 
general validity. 
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Appendix A. Characterization of formulas  

Appendix B. Influence of varying the input parameters on time estimates 

Since the length variables Lc and LLDP are correlated by a strong linear relationship (see Figure S2.1 in the Supplementary Material), many of the 
errors in response time estimation may be due to errors in the choice of slope parameter. In Fig. B.1 the average slope of the longest drainage path SLDP,

is compared with simplified formulations, whether Sdiff ,LDP and S10− 85,LDP computed according to Eqs. (S1-2) and (S1-3), respectively (see section S.1 of 
the Supplementary Material). It can be observed that simplified formulations tend to provide higher estimates for high slope values as they may place 
great emphasis on the steep slopes in the headwaters region, which are hydraulically quite far from the outlet. Even larger differences occur if the 
average stream path slope, however calculated, is substituted for the average basin slope (see e.g. Figure S2.8 in the Supplementary Material). 

The sensitivity of the response time to the adopted slope parameter was then investigated. As an example, this analysis is focused on those formulas 
containing the slope of the longest drainage path and for which data are available (IDs 4, 10, 13, 14, 16, 19, 20, 23, 27, 29). The formulations we refer 
to in order to quantify sensitivity are therefore SLDP, S10− 85,LDP and Sdiff ,LDP. The formula’s original slope parameter has been replaced with alterative 
slope formulations, resulting in a new estimate of t, called tmodified. Then, the variation Δt of tmodified as compared to the response time provided by the 
formula in its original equation, toriginal, was calculated, according to: 

Δt =
tmodified − toriginal

toriginal
(B.1) 

In Table B.1, the maximum positive and negative Δt values are provided for each formula. It can be observed that when moving from the SLDP 

parameter to the simplified ones, one obtains a significant overestimation of t for small slope values and a slight underestimation as the slope increases. 
On the other hand, an underestimation of the response time is generally observed for small slope values when substituting S10− 85,LDP or Sdiff ,LDP with 
SLDP. In all cases, with the exception of the Schulz formula (ID = 23), whose results are quite stable, the estimated response time for a given basin can 
vary by more than 0.25. In the case of Pezzoli’s formula (ID = 19), Δt can reach positive values of up to a factor of 2. 

In the Supplementary Material (section S3), from Figure S3.1 to Figure S3.20, Δt values are depicted as a function of SLDP for each of the formula 
considered. 

Appendix C. A singular case: The Kirpich formula 

Fig. C.1 shows some scatter plots describing how the Kirpich formula works. Even though the response times used to calibrate the formula are 
consistent with those that the formula yields for the basin sample in the study area (Fig. C.1a), when moving from time estimates to velocity estimates 
one can note something interesting (Fig. C.1b) as, for the same basin factor, the velocities resulting from the observed response time on which the 
formula is calibrated are about twice as fast as those obtained using the formula on the sample of basins analyzed. The reason for such behavior is to be 
found among the morphological features of the basins used to calibrate the formula. In Fig. C.1c the relationship between LLDP and Sdiff ,LDP, which are 
the inputs of the Kirpich formula, is given for basins in north-western Italy (grey dots). Among them, basins having an unusual behavior (red dots) can 
be recognized. The unusual feature lies in the small values of both the slope Sdiff ,LDP and the length LLDP(remember that length and slope are typically 
inversely proportional, according to Eq. (17)). Looking at Fig. C.1c, the watersheds used to calibrate the Kirpich formula (green dots) can also be 
included among those having an anomalous behavior and thus yielding much lower velocities compared to the ones the formula gives for the basin 
sample in north-western Italy. Despite its wide popularity, the Kirpich formula should be handled with caution. 

This example allows us to remark that formulas should not be applied to basins whose length-slope scaling is quite different from the basins used for 
calibration. 

Appendix D. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2023.130409. 
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