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High-Performance Accelerators on Rad-Hard FPGAs 
 

L. Sterpone, Senior Member, IEEE, S. Azimi, Member, IEEE, and C. De Sio, Member, IEEE 

Abstract—Convolutional Neural Networks (CNNs) are quickly 

becoming one of the most common applications running on 

hardware accelerators. Considering Field Programmable Gate 

Arrays (FPGAs), due to their high flexibility and computational 

performance, they are suitable for fast classification tasks and 

therefore, pave the way for new machine learning inference 

approaches. In this work, we first designed a fully interconnected 

CNN architecture implementable on a single FPGA. Secondly, we 

developed a  new Neural Node-oriented placement algorithm to 

enable resilient CNN accelerators on space-grade FPGAs. The 

proposed solution reduces the single event transient error 

sensitivity of CNN single neuron cores while achieving high 

performance and effective overall convolutional architecture fault 

tolerance. The developed approach has been applied and 

integrated into a state-of-the-art Radiation Tolerant FPGAs 

(RTG4) implementation flow. The experimental evaluation has 

been performed on a Microchip test board through benchmark 

application performance evaluation and transient error analysis. 

Experimental results demonstrate an improvement of 27.2% of 

the maximal working frequency and a reduction of the transient 

error sensitivity of about three times with respect to the previous 

mitigation approaches. 

 
Index Terms—CNN, Fault Tolerance, FPGA, Place and Route 

Algorithm, Radiation Hardened Technology 

I. INTRODUCTION 

HE progressive advent of vision-oriented elaboration 

algorithms adopting deep learning techniques increases 

the usage of hardware devices capable of supporting 

Convolutional Neural Networks (CNNs) computation. On the 

one hand, Graphic Processing Units (GPUs) are one of the most 

popular architectures to accelerate CNN computations thanks to 

their parallel arrays of streaming multiprocessors allowing a 

straightforward elaboration of high-level parallel software 

algorithms [1]. On the other hand, the high performance of 

recent FPGAs as well as their capability to be reprogrammed 

easily lead them to be an appealing solution for high-

performance demanding algorithms with limited power 

consumption and high efficiency [2]. Furthermore, by the 

advancement of high-level synthesis tools and therefore 

speeding up the designers’ productivity [3], the implementation 

of FPGA-based CNN core accelerators and the implementation 

of GPU-like architectures on FPGA becomes feasible [4][5].  

 
 

In general, CNN operations require massive parallel 

computation. When the main computational core is 

implemented on hardware architecture, it is characterized by the 

convolutional product that requires several Multiply and 

Accumulate (MAC) cores as convolutional computation grows 

exponentially [6].  

Hardware-implemented CNNs are adopted in many 

applications ranging from automotive to biomedical fields. 

Besides, nowadays an evident interest is manifested in 

aerospace applications which do not only require high-

performance and low-power devices but also a high level of 

resiliency, especially with respect to radiation-induced effects 

that induce permanent and transient errors within integrated 

circuits [7][8][9][10]. 

Today, various companies manufacture radiation-tolerant 

FPGAs such as the Rad-Tolerant Kintex Ultrascale FPGAs at 

20 nm from Xilinx [10] and the Rad-Tolerant G4 FPGAs at 65 

nm from Microchip [11]. These devices guarantee high 

resiliency with respect to radiation effects, however, the circuits 

implemented on these devices may undergo design constraints 

related to modular redundancy and signal filtering that may 

limit the overall circuit performances [12]. Moreover, despite 

the reconfigurable capability as well as the radiation tolerant 

feature of rad-hard FPGAs, they have a drastic limit in the 

available hardware resources considering the acceleration goal. 

In this work, we propose a CNN architecture implementable on 

a rad-hard FPGA with limited resources. The proposed 

architecture not only improves the performance with respect to 

the original implementation but also reduces the single event 

transient error sensitivity thanks to the developed physical 

placement algorithm.  

A. The main contributions 

The present work has two main contributions. The first one is 

the design of a CNN architecture fully implementable on a 

single space-oriented FPGA device with optimized external 

memory access dedicated to the neural network weights able to 

reduce the data transfer overhead during the inference 

execution. This result has been achieved thanks to the 

application of selective quantization and pruning of the neural 

network architecture to meet the rad-hard FPGA resource 

constraints.  The second one is the development of a placement 

technique that can be integrated into commercially available 

FPGA development tools, capable of physically mapping CNN 

architecture on rad-hard devices while optimizing the 

computing performances and reducing the transient error 

T 

Submitted on July, 21st, 2023. Revised on October, 19th, 2023. 

This work was supported in part by the European Space Agency under Grant 
4000105142. L. Sterpone, S. Azimi and C. De Sio are with the Dipartimento 

di Automatica e Informatica (DAUIN), Politecnico di Torino, Torino, Italy. 

For any information, please refer to: luca.sterpone@polito.it. 

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2 
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

 

sensitivity.  

At first, the placement algorithm extracts the structural 

information of the designed CNN architecture and identifies the 

hardware-oriented data quantization resource involved in the 

CNN architecture. Secondly, the algorithm generates FPGA 

resource constraints that aim to reduce the timing delay of each 

single neuron node. This is achieved considering the circuit's 

critical path and the memory efficiency of the convolutional 

layer while introducing mitigation constraints to improve the 

robustness of the CNN versus radiation-induced errors. The 

proposed approach is the first placement algorithm specifically 

targeting CNN design on Radiation Tolerant FPGAs. The 

design obtained using the developed placement algorithm 

shows higher performance and better resiliency compared with 

previous works. 

This placement algorithm focuses on mapping the CNN 

circuit and improving the performances thanks to a selective 

placement of MAC and DSP resources of the convolutional 

neural network core. As a hardware benchmark, we selected the 

ZFNet CNN [13] adopting a 16-bit parallelism data size, five 

convolutional layers, and 3 fully connected layers. 

We implemented the ZFNet CNN design on the Rad-Hard 

RTG4G150 device embedded in the RTG4 development kit 

manufactured by Microchip. We evaluate the performance of 

the implemented CNN considering the maximal working 

frequency under different conditions and the resiliency versus 

transient error and Total Ionizing Dose (TID) timing 

degradation. Please note that the maximal working frequency is 

measured during the execution of the implemented CNN on 

RTG4 devices while the transient error and TID analysis are 

performed using Single Event Transient analysis and timing 

simulation with radiation dose accumulation. 

Experimental results demonstrated that our approach is 

capable of achieving an improvement of the working frequency 

by 27.2% with respect to the original implementation of the 

ZFNet as well as improving the robustness against transient 

error more than three times compared to the traditional transient 

error electrical filtering approach. Besides, the obtained 

solution does not introduce any timing penalties when TID 

effects are considered.   

The paper is organized as follows. Section II describes the CNN 

architecture adopted in this work. Section III presents the 

developed implementation workflow and the integration with 

rad-hard mapping tools. Section IV describes the developed 

placement algorithm. Experimental results and analysis are 

presented in Section V. Section VI reviews previous works. 

Finally, Section VII drafts the conclusions and future works. 

II. CNN ARCHITECTURES ON RAD-HARD FPGAS 

The implementation of Neural Network (NN) architectures 

on FPGA hardware is facing two challenges. The former is the 

fitting of the neural network elements into a single rad-hard 

FPGA chip; the latter is the capability of the applied radiation 

tolerant technique to improve the resiliency while avoiding a 

drastic degradation of the system performance. Firstly, we 

developed a CNN design that is fittable in a rad-hard FPGA. 

Secondly, we developed a new placement technique that can be 

integrated into commercially available FPGA development 

tools with a focus on improving the resiliency of the design 

against transient errors while improving the design 

performance.  

A. 65-nm Rad-Hard FPGA Technology Model  

The Flash-based FPGA device adopted for the proposed 

work consists of a logic element array of 4-inputs Look-Up 

Tables (LUT-4) and a Flip-Flop that can be used independently 

from the LUT-4. The layout of the LUT-4 is based on 4 input 

pads driving 4 tri-state buffers and connected to a two-input 

Multiplexers (MUX2) cascade architecture configured by 16 

configuration memory cells. The output of the MUX2 cascade 

architecture drives a buffer that provides the output signal on 

the output pad through a Programmable Filtering module, as 

represented in Figure 1. The Flip-Flop could be configured as a 

D-type Flip-Flop (DFF) or as a latch since it has a single data 

input and an optional enable and two load inputs: synchronous 

and asynchronous load with clear and pre-set configurations.  

 
Fig. 1. The LUT-4 architecture configuration of the RTG4 Rad-Hard 

FPGA. The programmable filter can be tuned with respect to the Single 

Event Transient pulse width to be masked.  

The LUT-4 and the DFF resources have the same supply 

voltage for the adopted 65nm technology is 1.14 V. The LUT-

4 is configured using a Flash-based configuration memory cell. 

The LUT delay has been measured from the input buffer to the 

output with a worst-case propagation of 119 ps. The 

propagation time will be considered during the execution of the 

timing-driven placement routine described in Section V. 

The routing architecture consists of a channel-based routing 

structure organized in clusters. A cluster consists of a set of 

routing segments connecting the same type of resources. The 

device has three different types of routing clusters: intra-logic, 

interface, and I/O. The intra-logic cluster contains the routing 

MUXes of each FPGA logic element. The interface cluster is a 

combination of 12 interface logic segments. At the external part 

of the LUT-4 logic element, the fabric routing structure consists 

of two parts: inter-cluster routing and intra-cluster routing. The 

intra-cluster routing provides routing connections between a 

subset of LUT-4, while inter-cluster routing provides longer 

interconnections between clusters. The inter-cluster routing 

connects all the clusters and they never drive the input of the 

functional modules such as a LUT-4 or a DFF. Furthermore, the 
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routing architecture provides a further short routing segment 

between adjacent clusters on the same row in order to provide 

a fast interconnection, typically used for extra carry chains or 

specific propagation signals. These paths offer a better 

propagation performance to the driven signals 

B. CNN-mapping on Rad-Hard FPGA   

The mapping and implementation of a neuron on FPGAs 

require an accurate understanding of the clock timing and the 

parallel operation of the FPGA in order to achieve full 

optimization of the hardware. The important parameters that 

characterize the implementation of a neuron on FPGAs are 

related to the data movement, its implication on caching, 

memory requirements, and computational algorithms.  

 
Fig. 2. The Neuron Structure: the basic element of the ZFNet CNN 

architecture.  

A typical neuron structure within a CNN architecture is 

composed of a set of data input buffers, also known as synapses, 

each one multiplied by a specific weight. The set of obtained 

products (Pi) is added and rectified by the rectified linear unit 

(ReLU) as illustrated in Figure 2. The inputs, outputs, weights, 

and product outputs are floating-point data, however, for the 

sake of the developed implementation, we adopted fixed-point 

representation.  

In order to implement a complete CNN, several parallel 

neurons must be instantiated. All the data flow traversing the 

structure from the synapse inputs up to the post-rectified linear 

output is represented by 16 bits. The product requires higher 

resolution for the multiplication and extra range for the 

accumulation to avoid overflow conditions of any arithmetic 

process. Therefore, the neural network structure consisting of 

fully parallel neurons is not optimized for FPGA devices, since 

with a parallel structure the NN is limited in scale by the number 

of multiplier and accumulator modules available on the FPGA. 
 

 
Fig. 3. The implemented structure of the hardware synthesizable 

neural neuron. 

A feasible solution for an efficient and practical implementation 

of CNN on FPGA is based on customizing the MAC units 

depending on their architectural organization within the neural 

network and tailoring their physical implementation depending 

on the FPGA hardwired resource availability and organization. 

The scheme of the adopted implementation considered in this 

work is illustrated in Figure 3. The structure of the hardware 

synthesizable neuron consists of an input stream of 256 16-bit 

data words simultaneously read by all the neurons in the same 

layer. The layer of parallel neurons reduces the limitations on 

the input bandwidth thanks to the essential data caching. The 

data inputs are multiplied by the weights; each weight value is 

associated with a neuron depending on the number of neuron 

instances. 

 A crucial implementation detail in producing a CNN 

mapped on a single FPGA device is the minimization of the 

movement of the data input to the MACs. The developed 

implementation exploits data reuse and caching, since all 

neurons in the same layer use the same input data, considering 

that a layer of parallel neurons is able to minimize the 

bandwidth for that computational part. In detail, at the end of 

the acquisition of the convolutional network, each weight value 

is used several times for every pixel position on the output. 

Therefore, for the considered layer, the weight buffer value is 

maintained synchronized to the multiplier. This structural 

aspect is dependent on the parametric usage ratio of the weight 

buffer values. In particular, in the FPGA device used for this 

purpose, a portion of the 18Kb memory blocks are used for each 

multiplier in synchronization with the MAC modules.  

In the present work, we considered the ZFNet CNN [13], a 

convolutional network with reduced size, suitable to evaluate 

mapping and implementation tools. The architecture of ZFNet 

consists of 5 convolutional layers and 3 fully connected layers. 

TABLE I 

CHARACTERISTICS OF ZFNET RESOURCES REQUIREMENTS 

WITH 16-BIT DATA PARALLELISM 

Layer Neurons 

[#] 

Routing 

Channels [#] 

Weight 

SRAM  [Kb] 

#0 96 6 28 

#1 256 192 1,228 

#2 384 512 1,768 

#3 384 768 2,654 

#4 256 768 1,768 

#5 4,096 18,432 75,496 

#6 4,096 8,192 33,554 

#7 1,000 8,192 8,192 

 

The input data stream consists of a 224 by 224 image crop 

with 3-color map convolved with 96 filters at the first layer, 

each one with a size of 7 by 7 and adopting a horizontal and 

vertical stride of 2. The feature map is then passed through a 

rectifier linear function, max pooled with a 3x3 matrix with 

stride 2, and finally normalized across feature maps generating 

a 55 x 55 elements feature map. The intermediate layers 2 to 5 

repeat the same operation, while the final two layers are fully 

connected and elaborate the features from the top convolutional 
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layer in a vector of 9,216 dimensions. Finally, the last layer is a 

soft-max function with i-way, with i being the number of 

classes. The characteristics of the ZFNet are shown in Table I; 

where, for each layer, we reported the number of neuron cores, 

the number of routing channels of the 16-bit data bus between 

the neurons, and the total amount of SRAM memory Kb 

demanded to store the CNN weights.  

We performed the implementation of ZFNet on the 

RT4G150 Radiation Hardened Flash-based FPGA embedded in 

the RTG4 development kit. The RTG4 is the first FPGA fabric 

for high-performance applications, resilient to radiation-

induced effects in several space environments ranging from 

Low Earth Orbit to deep space with high Total Ionizing Dose 

(TID) robustness and Single Event Transient (SET) filtering 

feature. However, we needed to face two design challenges 

before having a ZFNet working on our platform.  

The former involves memory optimization. In fact, the total 

weight memory size for the convolutional network layers is 

7.5MB, while the total weight memory size for the fully 

connected layers is 116 MB. Storing all the weights on the 

FPGA fabric large SRAM is not feasible. Therefore, we used 

the DDR3 memory available on the FPGA development kit for 

storing all the weights, while the on-chip memory is used as a 

cache memory for the weights temporarily involved in the 

computation.  

The second challenge has been the design of the 

convolutional layer with particular emphasis on the neural 

structure and its connection to the neuron within the same layer. 

Considering the architecture of ZFNet for the first five layers, 

the access to the data inputs is very homogeneous since the data 

for a given computed frame is stored in a contiguous buffer that 

can be read from the external DDR3 memory module. This 

configuration produces a data stream that can be buffered on the 

fabric's large SRAM memory with a size equivalent to the mask 

used for the convolutional product. This results in a memory 

page associated with each convolutional layer with a tunable 

size with respect to the computational mask of each 

convolutional filter. The memory is sufficiently deep to store 

the weights of the larger layer; however, this may result in a 

minimal overhead on extra memory resources when the 

computation is performed for the smaller layers. 

We implemented on the Radiation Tolerant FPGA the first 

five convolutional layers of the ZFNet interfaced with a 

buffering controller which transfers the weights from the 

external DDR3 memory located on the bank0 to the internal 

fabric large SRAM memory and two DMA channels connected 

to the ZFNet input stream and to the output map generated by 

the last convolutional layer, linking the DDR3 bank 9 for 

transmitting and receiving the I/O data. 

The implementation resource details of the original ZFNet 

infrastructure are reported in Table II. We provide the number 

of 4-input LUT, DFF, Math 18x18 DSP core, and block RAM 

of 18Kb. The results show that for the first five layers, we use 

192 shared multiplication units, 384 accumulators, and 2.8Mb 

of fabric large SRAM on 155 blocks for storing the internal 

ZFNet weights. The number of resources used for the buffering 

and DMA interfaces is around 4% for the 4-LUT and 6% for 

the DFFs. The architecture does not use any fabric micro-

SRAM embedded in the RT4G device. 

TABLE II 

RESOURCE IMPLEMENTATION FOR THE ORIGINAL ZFNET 

INFRASTRUCTURE 

Resource Available 
Utilization 

[#] [%] 

4LUT 151,824 130,560 85.9 

DFF 151,824 137,472 90.1 

Math 18x18 462 192 41.6 

LSRAM 18K 209 155 74.2 

C. CNN quantization and pruning  

The implementation requirements of ZFnet include a 

significant amount of storage, external memory bandwidth, and 

FPGA external computational resources. As demonstrated in 

the previous subsection, a large amount of memory storage is 

not supported by the RTG4 and hence the weights have to be 

stored on external memory and transferred to the FPGA during 

computation. This problem is exacerbated by the increasing 

number of layers since it is expected that future CNN models 

will get more complex and with a larger number of layers. In 

addition, different layers in CNNs have different characteristics 

resulting in different parallelism and memory access 

requirements.  

In order to achieve a CNN implementation on a unique 

FPGA device, we applied a pruning method to the original 

ZFNet implementation. Pruning is an approach for removing 

nodes from the neural network architecture without incurring 

drastic accuracy loss. It could be done either by removing 

weights, neurons, or even entire channels of the neural network. 

We applied the following pruning approaches to the ZFNet 

original architecture: 

1. Unstructured pruning of random weights: pruning of the 

largest memory fully connected layers and convolutional 

layers 

2. Unstructured pruning of the smallest weights: removal of 

neurons with weight values below a given threshold (Ksmall). 

3. Structured pruning: specific removal of neurons belonging 

to the largest layers (#5, #6, and #7) with a maximal weight 

SRAM per layer of 5Mb. 

TABLE III 

ZFNET PRUNING TEST ACCURACY COMPARISON 

ZFNet method 
Pruned 

Parameters [%] 

Test 

Accuracy[%] 

Original n.a. 99.26 

Random Weights 39.19 88.87 

Smallest Weights 38.26 74.85 

Structured  76.17 90.24 

 

The architecture of ZFNet has been evaluated using 8,000 

patches of 224 x 224 extracted from the European Space 

Agency (ESA) dataset of 26 unprocessed and raw images taken 

by the onboard camera of the OPS-SAT [20]. 

Table III reports the comparison of the different ZFNet 

architecture methods with the percentage of pruned parameters 

and the measured test accuracy. According to our analysis, both 
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the unstructured pruning based on random and smallest weights 

have worse performance than structured pruning, while having 

a similar percentage in terms of pruned parameters. On the 

contrary, the structured ZFNet version removes a consistent 

percentage of weights exclusively on larger layers, while 

outperforming the test accuracy of the random and smallest 

weights methods. It is interesting to notice that, in case would 

be necessary a further reduction of area, it would be possible to 

adopt approximation techniques in order to minimize the 

storage and memory bandwidth.  

We applied the pruning selection to the ZFNet hardware 

architectural model. Thanks to the structured pruning, we 

obtained a substantial reduction of the neuron nodes belonging 

to the large layers as illustrated in Table IV which accounts for 

74.87% of the total neuron nodes and 76.06% of the total 

routing channels. Thanks to the structured pruning, we achieved 

two fundamental goals. The former consists of reducing the 

requested combinational and sequential resources for 

implementing simultaneously all the ZFNet layers on a single 

FPGA; the latter consists of reducing the maximal requested 

SRAM for the weight storage to less than 5.2Mb (e.g., the 

maximal on-chip SRAM size for the RTG4 device considered), 

thus nullifying the data transfer overhead of the fully connected 

layer with an external memory bank. Thanks to this solution, 

we estimated a saving of around 9% of the overall 

computational load, this is due to the memory accesses 

performed by the fully connected layers during inference 

computation.  

TABLE IV 

ZFNET LARGE LAYERS PRUNING CHARACTERISTICS 

Layer Neurons 

[#] 

Routing 

Channels [#] 

Weight 

SRAM  [Kb] 

#5 512 2,526 4,804 

#6 512 2,048 4,096 

#7 256 2,048 2,048 

 

 
Fig. 4. The on-chip implementation architecture of ZFNet on the 

RTG4 development kit. 

Finally, we implemented all the ZFNet layers on the 

Radiation Tolerant RTG4 FPGA while maintaining an external 

RAM memory for storing the I/O data stream and storing all the 

layer weights. The convolutional layers of the ZFNet are 

interfaced with a synchronized buffer controller which transfers 

the weights from the external DDR3 memory located on the 

Bank-0 to the FPGA internal fabric large SRAM memory. Two 

DMA channels are connected to the ZFNet input and output 

stream, linking the DDR3 Bank-9 for transmitting and receiving 

the I/O data.   

The scheme is illustrated in Figure 4, while the resource 

details are depicted in Table V, where we report the number of 

4-input LUTs, DFF, Math 18x18 DSP core, and block RAM of 

18Kb. As it is possible to notice, even if we are now mapping 

all the nine layers, the 4-LUT and DFF number is reduced by 

around 7%, on average, versus the original 5 layers ZFNet. This 

is due to the selective pruning that is also reducing the number 

of requested routing channels, therefore a reduction of the 

number of hardware neurons on the larger layers is impacting 

also the circuit resources of the first layer routing channels 

(essentially the connections between the layer 4th and the 5th). 

On the contrary, the number of Math DSP cores and LSRAM 

drastically increased. A total of 382 DSPs are now used for 

shared multiplication units, while 428 accumulators are 

implemented with standard programmable logic. The fabric’s 

large FPGA is used for 202 blocks for storing the maximal peak 

of around 4.8Mb due to the 5th layer. Similarly to the original 

implementation, the number of resources used for the buffering 

and the DMA interfaces is around 5% of the total resources. The 

architecture does not use any fabric micro-SRAM embedded in 

the RT4G device. 

TABLE V 

RESOURCE IMPLEMENTATION FOR THE ON-CHIP ZFNET  

Resource Available 
Utilization 

[#] [%] 

4LUT 151,824 120,904 85.9 

DFF 151,824 123,084 81.1 

Math 18x18 462 382 82.7 

LSRAM 18K 209 202 96.7 

 

The overall ZFNet implementation contains tensor types 

defined for the different fixed point precision data types used in 

the network layer. The input data, weights, bias, products, 

accumulators values, and rectified linear output registers are all 

represented by the same size of 16-bit type. This type of 

implementation may result in some performance degradation, 

in the case of data input of a different data parallelism (e.g., 8-

bit image data or unsigned values). In general, using a single 

arithmetic type may result in a loss of performance and higher 

energy consumption.  

In order to guarantee higher flexibility and further 

compatibility of the developed ZFNet with other FPGA 

platforms, we modified the ZFNet model with parametric and 

reconfigurable parallelism on the input image data size and 

weights. The former parameter affects the memory bandwidth 

and on-FPGA data memory cache, in particular, a lower bit size 

will result in a deduction of the memory bandwidth 

requirement, while the latter affects the weight memory cache, 

a lower number allows more neuron computation to be mapped 

in parallel on the FPGA architecture. 

Furthermore, we modified the ZFNet hardware description 

model adding the possibility to configure the convolutional 

structure, in particular, to guarantee the implementation of fully 
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interconnected layers with a parametric number of neurons. In 

detail, we adopted a MAC-based unit shared between several 

neurons that allow us to implement the network even in the case 

of drastically limited resources. The number of neurons sharing 

the same MAC unit affects the real parallel computation since 

a higher number of parallel neurons increases the overall 

network throughput.  

III. CNN-ORIENTED IMPLEMENTATION FLOW 

Radiation Tolerant (RT) FPGAs have realized with 

radiation hardening by design (RHBD) rules; these devices are 

generally characterized by a very high resiliency against Single 

Event Latch-Up (SEL). Moreover, they are practically immune 

to Single Event Upsets (SEUs). In particular, the RT4G devices 

have logic elements with TMR flip-flops; therefore, the 

designer does not need to apply global or partial TMR 

techniques generally adopted for SRAM-based FPGAs.  

The implementation workflow for RT FPGAs provided by 

the commercial tool is based on two main objectives: limiting 

the timing degradation induced by the radiation dose 

accumulation or Total Ionizing Dose (TID) and mitigating the 

impact of Single Event Transient (SET) on the circuit behavior. 

Both TID and SET phenomena are mitigated by acting on EDA 

tool constraints. However, when these methods are applied to 

CNN, the performances are drastically limited. In this section, 

we describe a placement algorithm able to consider the 

characteristics of CNN circuitry and force logic element 

location on the FPGA architecture in order to optimize the 

circuit performance while satisfying the radiation-tolerant 

constraints regarding SET phenomena. 

A. Physical Design Constraints Instrumentation  

The CNN implementation on rad-hard FPGAs follows the 

traditional FPGA design steps such as synthesis, mapping, and 

place and route. In order to apply the developed design flow, 

we act on the physical implementation of the place and route 

step controlling the executed algorithm by the Physical Design 

Constraints (PDC). We use the Verilog description of the CNN 

as input, and we merge the netlist information into a Physical 

Design Description (PDD) file.  

The PDD contains the number of elements that belong to a 

specific function hardwired on the RT4G device that consists of 

the RT4G slice, as illustrated in Figure 5; for each of the 

functions, it provides the identifier, name, coordinates, and the 

list of input and output elements connected. The PDD file is 

used as an input for the developed placement algorithm, as well 

as the interface with the commercial toolchain used to finally 

upload the CNN on the RTG4 device. The developed placement 

algorithm will require an area constraint associated with each 

CNN neuron before it is executed. In order to properly generate 

the area constraints, it is necessary to characterize the device 

topology.  

The implementation flow is based on the computation of the 

centroid that allows defining any logic node position that 

minimizes the average distance with all the connected units 

considering the wire length and the delay. In order to identify 

the best location for the neural network resources, we identify 

two strategies for each logic node of the neural network:  

1. Centroid strategy: where the centroid is connected to the 

neural network resources that belong to a given layer. The 

computation of the centroid allows the definition of the 

LUTs and DFFs position that minimizes the average routing 

distance with the entire connected unit and therefore the 

wire length. 

2. Data-path strategy: where the centroid is computed again 

with respect to the neural network resources belonging to a 

given layer, but then places the node within the area region 

related to the specific node minimizing the wire length 

related to the data path of the considered neuron. 

Since it is not possible to elaborate the constraints 

independently from the layers and each specific neuron, an 

appropriate placement algorithm must be defined to take into 

account the two CNN implementation strategies and to 

implement the selective SET mitigation on the critical nodes. 

 
Fig. 5. A portion of the RT4G150 device: The RT4G slice. 

B. Physical Placement 

The placement workflow for CNN adopts the PDD file as an 

input description of the CNN netlist graph and it generates a 

physical constraint file (PDC) including the physical location 

of every single basic resource of the RT4G FPGA according to 

the CNN implementation flow. The flow is based on defining 

the CNN constraint regions illustrated in Figure 6.a and it is 

executed by the following three phases:  

1. It defines the maximal area associated with each layer 

region. The constraints will limit the placement algorithm to 

allocate the resources belonging to a single layer (internal to 

each neuron or for connecting them) into a region that will 

be optimized for the layer performance. 

2. The layer region is divided into neural node slices: groups 

of RT4G slices dedicated to implementing the single neuron 

computational capabilities. Each neural node slice may 

contain 2 LSRAM memory blocks and at least 1 MAC 

block. 

3. The neural node slices are organized in data path regions 

and other resources. The data-path region is an exclusive 

region since only the 4LUTs and DFF dedicated to 

implementing the data path of the neural neuron will be 

located there, while all the other resources are located 

outside of this region. This constraint will guarantee a better 

reduction of the timing delay due to the combinational logic 

resources associated with the multiplication, sum, and 

rectifier functions.  

Once the coordinates of the layers, neural node slices, and data-

path regions are fixed, the elements associated with a proper 

hierarchical region should be placed exclusively inside the 

RT4G slice

4LUTs DFFs 4LUTs 4LUTsDFFs DFFs

4LUTs DFFs 4LUTs 4LUTsDFFs DFFs
MAC MAC MAC MAC MAC MAC

4LUTs DFFs 4LUTs 4LUTsDFFs DFFs
MAC MAC MAC MAC MAC MAC

LSRAM LSRAM LSRAM LSRAM LSRAM LSRAM

LSRAM LSRAM LSRAM LSRAM LSRAM LSRAM
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region, while the remaining nodes must be placed only by 

connection with nodes of the same layer with the objective of 

not introducing any timing delay penalties. 

Fig. 6. A top-down overview of the CNN constraint regions (a): layer, 

neural node, data path, and SET filtering DFFs area. The three-

searching path from Manhattan distance 1 to Manhattan distance 3 (b).  

 

To manage this kind of placement, a new algorithm for 

CNN core has been developed. A new set of fixed placement 

locations defines each specific neuron data path and when the 

placement algorithm is executed, it will set the position of the 

fixed logic node, and then, it will run a 2D placement algorithm 

on the remaining nodes. In this way, the wire length will be 

optimized on the current logic dedicated to each single neuron 

data path, while the links to the memory block dedicated to the 

weight are managed without a timing priority. This process is 

repeated for all the neural neurons' logic and in each step, it 

manages the reduction of the wire length and the vertical 

connection to the memory blocks storing the weights. Finally, 

the DFF registers storing the input operands for the MAC unit 

will be placed within a specific SET filtering area. The filter 

area can be expanded up to the maximal Manhattan distance of 

3 units, as illustrated in Figure 6.b. At this stage, the filtering 

activation is not performed yet. Please note that this constraint 

is one of the most complex phases in relation to the mitigation 

capabilities of the obtained CNN circuit. In particular, the 

weight data will be transferred to the input of the MAC unit 

during the execution of the CNN, and the weight values will be 

stored in DFF registers and sampled during the synchronization 

of the MAC execution phase, during this phase and depending 

on the resistive and capacitive load of the routing segment a 

transient effect may be sampled by the CNN network and 

therefore should be filtered. Therefore, once the placement is 

performed, the last phase requires the selective activation of the 

SET mitigation filter.  

IV. THE PLACEMENT ALGORITHM FOR CNN NODES 

Once the placement constraints are defined, the placement 

algorithm is executed. The solution may adopt a commercially 

available placement tool in order to define an intermediate 

solution. Otherwise, the placement algorithm should be 

instrumented to achieve better optimization for the 

convolutional nodes. In fact, placing the resources of each 

convolutional node of a specific layer, according to the routing 

delay minimization, led to fixing the 4-inputs LUTs position 

within the RT4G slice with respect to the distance with the 

MAC and the LSRAM hardwired component available. This 

means that each logic element should be optimized with respect 

to the coordinates of the neighborhood LUTs and DFFs and 

with respect to the hardwired component.  

The developed placement algorithm for convolutional 

nodes has the objective of minimizing the inter-LUTs 

connections and the connections toward the hardwired 

components. The main optimization provided by the placement 

algorithm is the reduction of the wire length within each neural 

node slice without inserting a single point of failure while the 

LUTs are placed in the neighborhood of the MAC and 

LSRAMs. The placement is executed sequentially for each 

convolutional node resource, therefore the interconnections 

between resources not belonging to the same neural node are 

not considered. 

Please consider that commercial placement algorithms do 

not achieve good results because the algorithm may locate the 

logic resources linked by a MAC or LSRAM connection in a 

distant position, thus increasing the wire length needed to 

connect, thus implicitly increasing the sensitivity of the routing 

segment to radiation-induced transient effects. For this reason, 

it is important to properly manage the logic element position 

aside from the hardwired component because they will heavily 

affect the total circuit wire length. Moreover, due to the 

topological location of the MAC and LSRAM within the RT4G 

slice, their interconnection channels, which are used towards 

the generic routing segments used for the programmable 

routing links with LUTs, are generally slow, and therefore they 

can easily create a critical path. 

 
1 : CNN_placement (ports, nodes, layer_area) 

2 :    nodes: list of logic/sequential elements 

3 :    port: module pin ports 

4 :    layer: area constraints (size and layer_edges) 

5 :    nodes = sort (nodes) 

6 :    for id in nodes do 

7 :       x,y = Centroid (id,nodes) 

8 :       adder = 1 

9 :       padding = 2 

10:       n_Man = 1 

11:       if y > layer_edge/2 then 

12:          y = layer_edge + padding 

13:       else 

14:          y = -padding 

15:       end if 

16:       Closest_pos(id,nodes) 

17:       while allocated != TRUE do 

18:          if resource_free(x,y) in position_macro then 

19:             (x,y)=locate(x,y) 

20:             if (x,y) > 0 then //centroid-shifting 

21:                centroid_shifting (n_Man = n_Man + 1) 

22:             else 

23:                centroid_shifting (n_Man = n_Man - 1) 

24:             end if 

25:          else 

26:             allocated = TRUE 

27:          end if 

28:       end while 

29:       nodes[position]=(x,y)    

30:       if nodes==combinational_side then 

31:          add2layer (x, y, datapath) //re-allocation 

32:       else 

33:          add2layer (x, y, other) 

34:       end if 

35:    end for 

36:    filtering_fill(x,y) //filtering area 

 
Alg. 1. The pseudo-code of the Placement algorithm oriented to the 

Convolutional node for radiation-hardened FPGAs. 

 

Layer region

Neural Node slices

Data-path region
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Distance 1

Manhattan 
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Maximal 
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The execution of the placement algorithm is performed after 

the generation of the area constraints described in Figure 6.a. 

During the generation of the area constraints, the hardwired 

components have been allocated to the respective layer and 

data-path regions according to the RT4G slice availability. 

Once all the resources are allocated to the different hierarchical 

regions, the placement algorithm is executed. It generates a 

detailed placement location for each combinational logic and 

sequential resource and the hardwired macro physical mapping.  

The developed placement algorithm is based on five phases 

as described in the pseudo-code reported in Alg. 1: centroid 

computation, closest edge identification, centroid shifting, 

reallocation, and filtering fill. 

The algorithm starts by extracting the list of elements 

belonging to a given layer area and individuating the port pin 

interconnections and the area constraints in terms of size and 

edge locations. The first phase consists of computing the 

centroid for the considered set of combinational and sequential 

logic elements including the LSRAM and the MAC ones. Once 

the centroid coordinates are computed, the algorithm identifies 

the closest edge of the area constraint and updates the padding, 

accordingly, as illustrated in Figure 7. Please consider that the 

padding is used to separate the logic nodes between the 

hardwired element, and it may increase the initial size of the 

neuron area. Once the edge and the padding are calculated, the 

algorithm applies the centroid shift to the closest edge. If the 

new position is available, the resource is placed; otherwise, the 

algorithm iterates recursively to find a free location. 
 

 
Fig. 7. A view of the centroid computation (a) and the identification of 

the closest edge (b) phases of the developed placement algorithm. 
 

In detail, starting from the shifted centroid, if its position is 

not available, the resource_free function recursively checks, 

with a step initially set to n=1, if the position on its maximal 

Manhattan distance n neighborhood is available. If one of these 

four locations is available, it becomes the final position of the 

resources. Otherwise, step n is incremented by one until a free 

location is found. The maximal Manhattan distance has been 

settled to 3. The positionmacro structure is used to keep track of 

all the placement spots already used by the resource. At the end 

of this phase, the position of the node is determined, and the 

position added to the layer detailed placement in the data-path 

region if they are combinational, and vice versa in the general 

neuron slice area. Finally, once all the layer resources have been 

placed, the filtering_fill function generates a dummy area that 

would be subsequently used to allocate the logic resources to 

implement the guard gate structure for transient effect 

mitigation. Since the requirements for filtering are not 

determined yet at this stage, its position is generally allocated 

in the bottom part of the neuron slice. 
 

 
Fig. 8. A view of the placement execution performed for the Hard 

Macro MAC module (HM) surrounded by 6 combinational gates and 

1 sequential element. 

An example of the placement execution is illustrated in 

Figure 8, where it is possible to notice how the hard macro 

(HM) resources are placed within the data-path region (a), the 

combinational resources aside from the HM are located within 

the data-path region (b), while the centroid sequential element 

surrounded by four combi-national elements are placed within 

the neural node slice area (c). Finally, the insertion of the 

filtering area is added to the obtained placement solution (d). 

A. Placement setting customization    

The placement algorithm is based on a graph representation 

that models the logic and routing resources of the FPGA 

physical layer. The graph representation includes the standard 

modeling of Look-Up Tables (LUTs) and Flip-Flops (FFs); the 

model of Multiply and Accumulate (MAC) modules, and the 

Large Static RAM (LSRAM) modules. Besides, the FPGA 

architectural graph describes the routing segments used for the 

programmable interconnections within each routing box and to 

the hard-wired connection used for the long connectivity 

channel within the FPGA.  

 
Fig. 9. A portion of the FPGA programmable logic array and the 

corresponding customizable placement setting parameters: hardwired 

interconnections, combinational and sequential vertex, programmable 

wires and hard macros (a) and the relative model including parametric 

elements mapping the realistic FPGA architecture. 
 

The architectural graph resources have been balanced 

according to the effective availability on the considered FPGA 

platform, in details each resource has been parametrized with a 

weight that can be adapted to the used FPGA architecture and 

that can be settled in order to manage routing congestions, 

clock-skew and logic cone delay balancing. In particular, the 
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portion of the FPGA programmable logic consisting of at least 

four clusters of slices and connected with customized hardwired 

interconnections is illustrated in Figure 9.a. The single slice, 

illustrated in Figure 9.b, has a parametric definition of the 

number of combinational and sequential vertices, topology, and 

a number of programmable wires, and, finally, a distributed set 

of hard macro (HM) modules. 

B. Integration with radiation-induced SET filtering   

The main consequence of radiation effects on radiation-

tolerant FPGAs are Single Event Transients (SETs) effect. The 

radiation-tolerant FPGA implements a SET filtering 

architectural approach. Each Data Flip-Flop in the 

programmable logic array and at the input of the DSP 

multiplication blocks has a SET filter.  

The filter can be selectively enabled on individual Flip-

Flop, functional blocks, or the entire FPGA. The innovation of 

the proposed method is to analytically evaluate the maximal 

duration of the transient pulse at the input of each sequential 

element once the placement is performed and to selectively 

activate the SET filtering capabilities provided by the RTG4 

FPGA. The selective activation of the SET filtering will avoid 

drastic performance degradation due to the massive SET 

filtering application on each LUT. 

In order to select the FFs candidate for the SET filtering, we 

analyzed the detailed placement, and we evaluated the 

propagation radiation-induced transient pulse towards the 

sequential elements located on the boundary between the neural 

node slice and the filtering area. We exploited the feature 

provided by the Microsemi implementation tool to apply the 

selective insertion of the SET filtering and we considered that 

for the RT4G device, the manufacturing filtering capability of 

transient pulses is settled at 0.6 ns.  

 
Fig. 10. The original detailed placement (a) and the selective insertion 

of the guard-gate structure within the filtering area (b). 

We analyzed the transient pulse propagation using the 

analytical tool developed in [21] that provides the maximal SET 

pulse width observable at the input of a sequential resource, and 

we implemented two alternative SET filtering methods. In case 

the SET width is lower than 0.6 ns we enable the selective 

filtering on the considered Flip-Flop by setting the mitigation 

option per instance, vice versa we insert a guard-gate logic 

structure before the input of the element located in the neuron 

slice area, as illustrated in Figure 10. The guard-gate logic 

structure is composed of four combinational gates individually 

mapped on four LUTs and several inverter pairs able to insert a 

filtering capability. The number of inverter pairs is computed 

based on the maximal pulse width computed for the destination 

Flip-Flop. As it is possible to notice in Figure 9, the placement 

of the guard-gate logic resources and the inverter pairs requires 

a fixed placement location in order to guarantee the exact 

filtering capability. 

V. EXPERIMENTAL RESULTS 

The developed design flow has been applied on the ZFNet 

implemented on the RT4G150 Radiation Tolerant Flash-based 

FPGAs manufactured by Microchip. The scheme of the 

implemented ZFNet is illustrated in Figure 10. We physically 

implemented the eight layers of the network and we evaluated 

the performance and the reliability of a pre-trained network 

using the OPS-SAT sub-set images.  

A. ZFNet Architecture implementation details   

The ZFNet architecture is a convolutional network model 

based on 8 layers, as described in Figure 11. The input data is 

based on a 224 by 224 image crop with 3 color planes. This 

image is convolved with 96 different filters for the red 

component at the first layer. Each filter has a size of 7 by 7, 

using a stride of 2 in both x and y coordinates. The obtained 

feature map is then computed in three different phases: 

1. It is passed through a rectifier linear function 

2. It is pooled with a kernel matrix of 3x3 regions, using a 

stride of 2 units 

3. It is contrast normalized across a feature map to generate 

96 different 55 by 55 element feature maps.  

The same operations are repeated in layers 1 to 4. Layers 5 and 

6 are fully connected, elaborating features from the top 

convolutional layer as input in vector form of 512 dimensions. 

The final layer is a C-way softmax function with 256 functional 

units.  

 
Fig. 11. The architecture of the pruned ZFNet implemented on the 

RTG4 radiation-hardened FPGA.  

The pruned ZFNet architecture has been implemented on 

the RTG4 device using three approaches:  

• Original: implemented with timing performance 

optimization and without any specific placement and 

mitigation constraints. 

• Commercial: implemented with the SET filtering feature 

provided by commercial tools (i.e., up to 600 ps of filtering 

capabilities) for all the sequential resources on the device 

and without any specific placement constraint. 

• Proposed: implemented with the developed placement 

constraints targeting DSP performance and LSRAM 

resources and adopting selective SET filtering.  

B. Single Event Transient analysis   

The Single Event Transient analysis has been performed on 

the entire mapped circuitry on the radiation-hardened FPGA, 
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therefore transient pulses have been injected and propagated on 

the resources belonging to the ZFNet architecture, on the 

synchronized weight buffer and on the Input/Output DMAs. For 

the purpose of our analysis, we used a drift-based transient 

pulse voltage glitch model introduced in [22] and developed an 

analyzer tool for FPGAs in [23] adapted to the radiation-

hardened 65-nm Flash-based FPGA technology. 

 

 

 

 

 

 

 

 

 

 
Fig. 12. A SET pulse with an amplitude of 1.8V and duration of 

180ps. 

The propagation of the SET pulse within the node has been 

done by modeling two pulse effects:  

1. Drift Pulse: this function describes the physical generation 

of the pulses. The generation is performed according to the 

sensitive volume cross-section. The amplitude of the 

generated pulse depends on the cumulative Energy (E) on 

the crossed volumes and the relative distributed eV per 

node. The eV outcome values are used as the input point of 

the subset value for the SET generation. The results are the 

description of the drift glitch, as in Figure 12, the left part of 

the glitch shape. 

2. Diffusion Pulse: this function describes the physical 

behavior of the Voltage glitch diffusion effect. The shape of 

the diffusion is computed on the basis of the cell volumes 

involved in the propagation of the glitch, as illustrated in 

Figure 12, the right part of the glitch shape 

 
Fig. 13. The maximal SET pulse width distribution for the overall 

CCN sequential element (FFs and Block RAMs).  

We modeled four different SET pulses in order to mimic the 

overall scenario of radiation-induced SET pulses thus analyzing 

pulses with the following widths: 150 ps, 250 ps, 350 ps, and 

450 ps. We compared the original, commercial, and proposed 

ZFNet implementations with two analyses: the former consists 

of evaluating the maximal pulse width at the input of each 

sequential element (e.g., DFF and input memory pin) with an 

exhaustive injection in all the circuit-sensitive nodes, and the 

latter consists of evaluating the pulse width distribution over a 

random injection of 10,000 transient pulses.  

The exhaustive maximal pulse width distribution after the 

propagation is illustrated in Figure 13. The Propagation Induced 

Pulse Broadening (PIPB) effect is strongly present in the 

original ZFNet implementation, especially for the longest 

source pulse that is broadened more than one order of 

magnitude, thus generating SET pulse glitches at the input of 

an FF with a duration of 4.8 ns.  On the contrary, small source 

pulses have a reduced PIPB effect which is marginal for the 

three ZFNet implementations. The commercial ZFNet 

implementation adopting full filtering of 600ps per each FF is 

only marginally reducing the impact of long transient pulses for 

350 and 450 ps. The application of the proposed 

implementation flow efficiently filters the maximal transient 

pulse width duration, reducing the maximal pulse width 

duration by approximately 4 times with respect to the original 

version. 

 
Fig. 14. Monte Carlo SET pulse width distribution obtained thanks to 

random fault injection on the CCN resources. 

The random transient pulse width distribution has been 

computed using a Monte Carlo approach with a maximal 

injection of 10,000 transient pulses in the overall sensitive 

nodes of the ZFNet implementation, including FFs and Block 

RAM input resources. The results are illustrated in Figure 13. 

The PIPB effect does not substantially change with respect to 

the exhaustive transient analysis, however, it is possible to 

notice that the median pulse width distribution is higher than 

the maximal pulse width ones. In particular, the original ZFNet 

implementation has a median pulse distribution higher than 0.5 

ns on average for the 250 ps, 350 ps, and 450 ps original pulse. 

This means that more than 50% of the transient pulse will be 

broadened by a factor between 4 and 6 times the original 

radiation-induced pulse. The commercial implementation of the 

ZFNet does not improve effectively the original ones, since 

there is only a marginal reduction of the median pulse 

distribution of 0.12 ns while the overall median pulse 

distribution is broadened by a factor between 3 and 4 times with 

respect to the maximal width distribution. Finally, the proposed 
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solution drastically reduces the median pulse distribution of a 

factor of more than 4 times, similar to the maximal pulse width 

distribution. This demonstrates that the proposed approach is 

not only able to effectively filter the critical sensitive nodes of 

the ZFNet impacting on the maximal pulse overshoot, but it is 

also capable of effectively selecting the filtering nodes in order 

to achieve overall lower sensitivity to transient effects. This will 

result in a lower error rate of the ZFNet computation. 

C. Reliability analysis   

The evaluation of the maximal and random pulse width 

distribution is not sufficient to have an effective reliability 

analysis of the ZFNet behavior under radiation-induced 

transient errors. Therefore, we evaluated further metrics: the 

Single Event Transient (SET) sensitive nodes and the error 

propagation vulnerability. The first metric aims to compare how 

many ZFNet circuit nodes are sensitive to a radiation-induced 

transient pulse, thus being able to trigger a transient pulse on 

their sensitive silicon regions. The second metric focuses on 

evaluating the propagation of the transient pulse after its 

generation on the sensitive node, thus evaluating how much a 

circuit is prone to propagate a transient pulse to a circuit 

sequential resource and then, transform the transient pulse into 

a computed behavioral error.   

The result of the SET-sensitive nodes comparison is 

illustrated in Figure 15. As it is possible to notice the ZFNet 

original implementation has from 37.0% to 65.3% of circuit 

nodes potentially sensitive to SET ranging from 0.15 ns up to 

0.45 ns; the ZFNet commercial implementation is drastically 

reducing the sensitive node that ranges from 21.7% up to 36.9% 

of the overall ZFNet circuit nodes. The ZFNet proposed 

implementation is characterized by a further reduction of the 

percentage of sensitive nodes to a range from 22.8% to 28.1%.  

 
Fig. 15. CCN sensitive nodes comparison for the original, commercial, 

and proposed solution.  

The result of the error propagation vulnerability is 

illustrated in Figure 16. The vulnerability factor is computed as 

the total number of circuit paths that undergo transient pulse 

propagation over the total number of injected transient pulses 

performed during the Monte Carlo random distribution. A 

factor lower than 1 means that the propagation is reduced, while 

a higher value means that the propagation is exacerbated by the 

circuit topology and that any eventual pulse filtering solution is 

not effective.  

The analysis shows that the ZFNet original implementation 

propagation vulnerability is drastically high with a factor 

ranging from 1.35 up to 6.95. The ZFNet commercial 

implementation has effective propagation reduction only for 

small transient pulses while it is not efficient for longer pulses 

with a factor ranging from 1.36 up to 1.72. The proposed ZFNet 

implementation is acting efficiently in reducing the error 

propagation since for all the transient pulse scenarios, the error 

propagation vulnerability factor is largely lower than 1 with a 

factor ranging from 0.28 up to 0.37. 

We further investigate the SET propagation within a single 

CNN neuron node. In order to depict the critical locations, we 

extracted the locations of the routing segments and the LUT-4 

and DFF. We use the SET model of the RTG4 to calculate the 

distribution of the transient pulse among the chains and we 

calculated the distribution per ion for every resource classifying 

the transient pulse with respect to the voltage amplitude: small 

if the pulse is between 0.1 V and 0.5 V, middle in case of 0.5 V 

and 1.0 V and high in case of 1.0 V up to 5.0 V. The model does 

not show any pulse provoking a transient glitch greater than 2.4 

V. The transient effects affecting the sensitive nodes have 

widths ranging from 160  ps up to 550 ps. Finally, we observed 

that short and small SETs have a greater PIPB contribution that 

is progressively reduced with the increasing width of the pulses. 

Interestingly, the PIPB effect has a lower impact on high-

voltage  SET pulses. 

 
Fig. 16. CCN implementation Error Propagation Vulnerability for the 

original, commercial and proposed solutions.   

D. Accuracy and Performance Analysis   

In order to evaluate the overall impact of transient pulses on 

the ZFNet accuracy and performance, we used the framework 

proposed in [24] in order to electrically inject SET effects 

within the logic resources of the RTG4 device. The obtained 

results are presented in Table III, where we show the percentage 

of injections that erroneously affect the output of the ZFNet last 

layer. 

TABLE III 

FAULT INJECTION ACCURACY RESULTS 

Resource 

Critical 

Errors 

[%] 

Tolerable 

Errors 

[%] 

ZFNet Original 23.5 23.4 

ZFNet Commercial 12.9 12.1 

ZFNet Proposed 5.2 5.3 
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 The fault injection results are reported in terms of critical 

errors, for all the injections that provoke no masked effect, and 

tolerable errors, in the case that the injection does not affect the 

final network classification. The result shows that the proposed 

solution outperforms around three times the commercial 

mitigation approach. On the other hand, it is possible to notice 

a comparable trend between tolerant and critical errors, except 

for the ZFNet proposed solution where tolerable errors are more 

likely to happen. In addition, we analyzed the critical errors on 

ZFNet and we observed that DSP and Block RAMs have 

similar protection for most of the FFs below the maximal pulse 

of 590 ps, while the proposed solution is the better alternative 

if the whole SET spectra are considered. 

We compared the performance of the implemented ZFNet 

architectures by evaluating the maximal working frequency and 

the maximal clock-to-out delay. The result shows that the 

proposed ZFNet implementation adopting a DSP filtering 

priority combined with selective filtering on the neural network 

logic resources outperforms the traditional mitigation solution 

by more than 27%.   

TABLE IV 

PERFORMANCE CHARACTERISTICS OF THE ZFNET 

Resource 

Max 

Frequency 

[MHz] 

Max Clock-

To-Out 

[ns] 

ZFNet Original 228.833 12.394 

ZFNet Commercial 182.183 12.688 

ZFNet Proposed 201.884 12.456 

 

We evaluated the performance of the implemented ZFNet 

architecture in terms of end-to-end performance characteristics. 

We chose a set of 40 images from the ImageNet collection on 

fauna has been selected for the evaluation set. The input has 

been pre-processed to be suitable for the 224 by 224 image crop 

with 3 colors, where we measured the average computing time 

for the given implementations. We observed that the ZFNet 

original was able to provide a complete classification within 19 

ms, while the commercial solution took 24 ms. Vice versa, the 

proposed implementation was able to reach the classification in 

an average time of 21 ms.  

E. Trade-off Performance Analysis   

In order to evaluate the overall characteristics of the ZFNet 

implementation, we performed a set of experimental 

measurements with the main objective of evaluating the 

performances under varying conditions of robustness and 

accuracy criteria. In particular, we analyzed the behavior of 

ZFNet in terms of mean-time-to-failure (MTTF), at different 

conditions of injected SET pulses and accuracy. The MTTF, 

which is the mean time between two faulty outcomes of the 

network, has been measured for all the evaluated SET pulses 

and in two different accuracy conditions at 95% and 85%. The 

obtained results are reported in Figure 17.  

The experimental analysis shows how the proposed ZFNet 

solution has an almost constant MTTF at different SET pulse 

conditions and with different accuracy criteria. It is interesting 

to notice that, the 10% accuracy difference slightly improves 

the final MTTF. 

 
Fig. 17. Mean Time To Failure (MTTF) for the three ZFNet 

implementations considering two accuracy levels and with the 

injection of the SET pulse scenario.   

VI. RELATED WORK 

Recently, several implementations of CNN architectures on 

FPGAs have been proposed. In particular, it has been 

demonstrated in [3] that is possible to achieve a complete 

design flow for mapping CNN on FPGA. The FPGA 

reconfigurability provides the advantage of adapting their 

design to the CNN inference models without requiring 

significant modification of the hardware architecture [14]. 

Besides, FPGAs achieve extensive computational parallelism, 

enabling the usage of depth-wise separable convolution instead 

of standard convolution CNN, reducing the number of used 

Multiply and Accumulate (MAC) modules [15]. Since 

convolutional computation requires many DSPs, a recent 

solution investigated the adoption of a CNN-optimized systolic 

array for improving the CNN working frequency on FPGAs 

[16]. Several solutions based on a sequential computation on a 

single layer per computation time have been provided; these 

methods require a sequential connection between layers at each 

computation time [17]. Even if these methods can exploit the 

reconfiguration capability of FPGAs, they have a drastic limit 

in the hardware resources considering the acceleration goal. 

Furthermore, these approaches cannot be applied in aerospace 

applications when the reliability requirements require the 

adoption of Flash-based FPGA technologies that do not support 

dynamic reconfiguration. Considering the performance 

improvement, CNN architecture based on sequential 

computation suffers from scalability problems since the 

designed layers are generally not reconfigurable and each layer 

must be completely redesigned in case of network architectural 

modification.  

Another issue is represented by the feature maps that 

typically contain tensors and neuron weights. Since they are 

stored within on-chip memory, sequential architecture is not 

applicable for deeper CNNs due to the limited availability of 

Block RAMs on FPGAs [18].  A study proposing the evaluation 

of traditional selective redundancy techniques has been 

proposed in [19] showing the drastic degradation in terms of 

area and performance when mitigation approaches such as 

Triple Modular Redundancy (TMR) are adopted. However, it is 

a known issue that the redundancy implementation of CNN on 

FPGAs would require a large amount of logic and memory 

resources. Therefore, the adoption of FPGA devices that are 

immune to radiation-induced changes in the configuration is a 

0
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major need. 

In the present work, we designed the CNN considering a 

non-timed model and adopting a bit-width parametric 

architecture. The CNN has been mapped for the first time on a 

rad-hard device that is immune to transient radiation effects 

within the configuration memory. Thanks to the robustness of 

the rad-hard FPGA, the circuit does not require scrubbing or 

reconfiguration of the FPGA in order to mitigate changes in the 

configuration due to radiation particles. Therefore, we focus the 

mitigation exclusively on avoiding transient pulse corrupting 

the CNN functionalities. 

VII. CONCLUSIONS 

We propose a physical implementation methodology of the 

ZFNet convolutional neural network on Radiation Tolerant 

Flash-based FPGAs. The developed solution represents the first 

implementation of CNN on a radiation-hardened FPGA device. 

Furthermore, we evaluated the robustness capability and the 

performance characteristics of the network considering 

different types of mitigation solutions and configurations. The 

experimental result shows that a placement algorithm 

combining DSP and LSRAM routing optimization is the best 

trade-off between accuracy, resiliency, and performance. In 

future works, we intend to evaluate the impact on SRAM-based 

radiation-tolerant FPGAs and to compare the implementation 

tool also considering the synthesis and the mapping phases. 
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