
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A software architecture for low-resource autonomous mobile manipulation / Cheng, Pangcheng David Cen; Indri, Marina;
Maresca, Federico; Ragazzo, Antonio; Sibona, Fiorella. - ELETTRONICO. - (2023). (Intervento presentato al convegno
2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA) tenutosi a Sinaia,
Romania nel 12-15 September 2023) [10.1109/ETFA54631.2023.10275582].

Original

A software architecture for low-resource autonomous mobile manipulation

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETFA54631.2023.10275582

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983744 since: 2023-11-10T13:05:01Z

IEEE

A software architecture for low-resource
autonomous mobile manipulation

Pangcheng David Cen Cheng, Marina Indri, Federico Maresca, Antonio Ragazzo, Fiorella Sibona
Dipartimento di Elettronica e Telecomunicazioni

Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

{pangcheng.cencheng, marina.indri, fiorella.sibona}@polito.it
fmare94@gmail.com, antonio.ragazzo@outlook.it

Abstract—Mobile manipulators can significantly contribute to
enhance the flexibility of several processes, such as automated
order-picking systems and various logistic applications, thanks
to their capability to manipulate objects and deliver them to
different locations. A primary role is envisaged for them in
Smart Factories, as workmates of the operators, if they are
able to safely navigate in human-shared environments. This
paper proposes a lightweight and flexible ROS1-based software
architecture, designed for low-resource mobile manipulators, to
make them able to autonomously search for the items requested
by a human operator, independently from the starting pose, and
pick and place them in a predefined depot location. The validity
of the proposed architecture, which is potentially applicable to
different low-resource mobile manipulators, is proven through
its experimental implementation on a Locobot mobile robot.

Index Terms—Mobile manipulation, autonomous pick and
place, ROS1

I. INTRODUCTION

Robotic arms have been widely employed in assembly and
manipulation tasks in many industrial applications. In recent
years, there have been many developments of manipulators
to safely work in environments shared with human operators,
improving the performance of the overall system, as well as
providing additional flexibility to satisfy the task requirements.

However, manipulators that are installed in a fixed place
have limited working space and cannot provide the same
flexibility as mobile agents. On the other hand, mobile manip-
ulators can manipulate objects and deliver them to different
locations, in a very useful fashion for various applications,
e.g., for logistics, assistive assembly, automated order picking
systems and ASRS (Automated Storage and Retrieval Sys-
tems), reducing time, cost and space in environments like
warehouses [1].

The potentialities of the mobile manipulators can be fully
exploited only through efficient solutions to the various prob-
lems intrinsically involved, such as path planning, safe nav-
igation with collision avoidance and object recognition and
grasping. Mobile manipulators path planning approaches can
be divided into two groups: (i) the mobile platform and the
manipulator are treated as separated subsystems and (ii) both
the mobile base and the manipulator are considered as a single
unit [2]. The former approach allows solving the path planning
conveniently but obtaining sub-optimal results, while the latter
provides better solutions but requires higher computational
resources to deal with high DOF systems.

An Optimized Hierarchical Mobile Manipulator Planner
(OHMP) is presented in [3]. The path planner decouples the
motion planning of the mobile platform and the manipulator,
and deploys the Probabilistic Roadmap (PRM) with a hybrid
sampling approach to generate collision-free trajectories. How-
ever, the approach has only been validated in simulation envi-
ronments. Furthermore, in [4], an approach based on Inverse
Kinematics solutions is designed to compute collision-free
trajectories in complex environments for mobile manipulators.
In particular, it considers a reachability database and a query
of poses that allow the robot to reach each desired grasping
pose and joint angle.

In [5], a reactive motion combined with a holistic controller
for a mobile manipulator allows the robot to execute visual-
based grasping while maximizing manipulability. The algo-
rithm considers the robot’s mobile platform and the manipu-
lator as a unique structure, and it can be implemented for both
non-holonomic and holonomic platforms.

There are several techniques used to recognize an object
to be grasped, in particular, fiducial markers are widely em-
ployed, since they provide useful information in an image. The
authors in [6] compare the performance of several fiducial
markers for pose estimation, e.g., ARTag, AprilTag, ArUco
and STag. Among those markers, ARTags [7] showed the
overall lowest computational cost, making them suitable for
low-powered platforms.

This paper proposes a ROS1-based software architecture
that allows the robot to (i) be able to receive commands
and search for the requested items and (ii) pick and place
them. The mobile manipulator is intended as able to navigate
safely in a human-shared environment, thanks to a dynamic
path planner, such as the one developed in [8], and briefly
recalled in this paper. Thanks to the proposed architecture,
a low-computational mobile manipulator working in indoor
environments can autonomously find an item, requested by
a human operator, and bring it to a desired depot location.
Developed for a mobile manipulator with limited resources
and not depending on predefined starting poses, the presented
solution is lightweight and flexible. Note that we consider as
low-computational or limited resource robot any platform that
performs computations relying only on its CPU, i.e., it does
not include a dedicated GPU for processing algorithms that
require higher amounts of data, such as object detection.

The remainder of the paper is structured as follows: Section

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II introduces some preliminaries related to the developed soft-
ware architecture, while Section III unfolds the development
steps of the proposed approach. Then, Section IV presents
the experimental setup and illustrates the experimental testing
outcomes. Finally, Section V draws some conclusions and
open issues, as well as future works.

II. PRELIMINARIES

The developed architecture and the adopted algorithms
concepts are potentially applicable to different low-resources
mobile manipulators. This paper illustrates their implementa-
tion on a Locobot mobile manipulator [9], starting from some
initial findings presented in [10]; the code for such implemen-
tation is accessible online at [11]. Detailed information on the
Locobot characteristics, as well as on the hardware setup and
sensors, is available in Section IV.

The contribution of this paper will focus on the manipulator
workflow for the pick-and-place of items requested by a
human. To ease the description of the proposed framework,
some preliminary information is provided hereafter.

A. Problem scenario

Mobile robot assistants are becoming increasingly popular
to assist human workers with tasks such as picking, selecting,
packaging, and shipping products. By using robots to handle
and move products, the agility and quality of operations can be
improved, while allowing humans to focus on more complex
tasks or leading to collaborative solutions [12]. Moreover,
using mobile manipulators for pick-and-place operations pro-
vides a highly flexible solution in plants and warehouses, for
example to allow the human to command the robot to look
for, pick and place specific products.

The target environment for a possible application of the
framework is a warehouse, in which it is necessary to pick
stored items and place them in a depot. This kind of envi-
ronment includes static obstacles, such as shelves and walls,
and dynamic obstacles with varying degrees of predictability,
varying from other mobile manipulators to humans. The exper-
imental tests reported in Section IV are relative to a laboratory
demonstration, in which the problem is scaled down to a single
room with some obstacles, humans, and some shelves where
the products/items are stocked. The dimensions of the shelves
and the considered items to be handled are compatible with
the Locobot characteristics; in particular, the handled items are
represented by cardboard packaging (small boxes), suitable for
the gripper and compliant with the maximum payload.

B. Manipulator motion planners

Given the above problem scenario, our main objective
during manipulation is to avoid collisions with the shelves
when picking an item. Several planners and libraries have
been tested to choose the most suitable ones. Among these,
the probabilistic optimization framework STOMP (Stochastic
Trajectory Optimization for Motion Planning) [13] proved to
have good tunability and stable behaviour in scenes dense
with obstacles. In particular, we tested the planner using linear
interpolation as an initialization method for the optimization
process, and a collision-related cost function, as the objective

of our motion planning algorithm is to prevent colliding
with obstacles. Another planner worth to be mentioned is
the CHOMP (Covariant Hamiltonian Optimization for Motion
Planning) algorithm [14], a gradient-based trajectory optimiza-
tion method. It is highly tunable through parameters, but also
subject to local minima issues leading to limitations in finding
a feasible path in narrow passages, thus less preferable with
respect to the STOMP planner. Nevertheless, to improve the
above described methods performances, an optimized version
of the Rapidly-exploring Random Tree algorithm, namely
RRT∗ [15], can be used as a pre-processing algorithm.

C. Items identification and obstacle avoidance
For what concerns item recognition, the most recent and

advanced solutions exploit deep learning. However, given we
are considering a limited-resource platform, we preferred to
use markers to identify items. To this aim, we decided to make
use of ARTags, a fiducial marker system to support augmented
reality. In particular, the ARTag maker system achieves a low
rate of false positives and inter-marker confusion with minimal
marker size, through the use of digital coding theory. It is
designed to be robust against variations in lighting by utilizing
an edge linking method [16]. In order to identify a specific
item to be grasped, we took advantage of the possibility of
generating unique ARTags to be recognized through a depth
camera. This way, the object’s pose can be retrieved and
translated into a pose goal for the end-effector. The main
drawback behind this approach is the limited scalability, due
to the limited number of unique tags and the constraints
associated with detection range and line-of-sight.

To accomplish obstacle avoidance, we exploited 3D occu-
pancy grid planning and scene mapping techniques, in order
to create a 3D model of an environment by estimating the
occupancy of the space [17]. This technique involves dividing
the 3D space into a grid and assigning a binary value to each
cell, indicating whether it is occupied or free. The grid is
typically constructed from sensor data obtained from cameras,
LIDAR, or other sensors mounted on a robot.

III. MOBILE MANIPULATOR FRAMEWORK DESCRIPTION

The proposed framework has been developed using ROS1,
employing a modular architecture so as to foster flexibility for
the debugging process and functionalities enhancement. Fur-
thermore, the framework proposed in this paper has the aim of
demonstrating autonomous capabilities for low-computational
mobile manipulators, such as the Locobot, for navigating in
the environment and manipulating objects. In the considered
scenario, the robot is required to pick and place specific objects
in the working place. The ARTag markers associated to the
objects to be manipulated provide relevant information to the
robot, such as ID and location.

The developed software architecture is based on a decoupled
planning of the entire task, from the object pickup request
to the placement operation, by means of the communication
manager, which commands the manipulator and the base
individually through dedicated channels.

In particular, the structure is composed of three main nodes,
as shown in Figure 1.

Fig. 1: Structure of the proposed framework using ROS1

• Communication Node: it manages the task requests and
sends commands to control both the mobile platform and
manipulator. In particular, it reads the IDs of the ARTags
in the scene and compares them with the ID request: if
both IDs match, the pick-and-place operation is enabled.
Furthermore, it implements also a recovery behaviour in
case of failure.

• Base Controller Node: it controls the motion of the
mobile platform, and its working status (running, plan-
ning success or planning failure) is transmitted to the
Communication Node.

• Arm Controller Node: it plans the motion of the manip-
ulator to reach the desired pose and controls the opening
or closure of the gripper. This node also communicates
its working status to the Communication Node.

A. Communication Node

The Communication Node handles the item request, com-
mands the robot to search for the requested item in the
scene, and manages the pick-and-place operations once the
required item is identified. In case of failure, it implements a
mechanism to deal with unsuccessful attempts.

1) Item request handling: A task is started after receiving
an item-picking request, which is submitted by a human
operator through a dedicated interface (not introduced here).
The item is identified with an ID and the robot scans the
working place searching for an ARTag that contains such an
ID. The ARTag contains also information about the object’s
pose, so the trajectory to reach the goal position for the mobile
robot and the manipulator can be easily computed. If the
desired ARTag is not within the robot’s field of view, then
it proceeds to the searching phase.

2) Searching phase: The searching phase is triggered when
the robot does not successfully find the ARTag with the
requested ID. Within this phase, the robot explores the working
place searching actively for the required item. During the ex-
ploration phase, the robot repeats a few times some predefined
functions until the item is found: it first rotates to change its
field of view and, if the item is still not found, then it moves
to another location.

Note that the robot performs the searching process in a
different location only after completing a rotation of 360◦ with
steps of 30◦ clockwise. This behaviour is depicted in Figure
2. The searching phase is interrupted as soon as the requested
marker is found, and the robot is then ready to perform the
next task.

Fig. 2: Robot searching phase procedure to find he requested
item

3) Pick-and-place routine: The pick-and-place routine is
built taking into account the interaction between the mobile
base and the arm through the Communication Node. Figure 3
illustrates the main steps for picking and placing an object.

Fig. 3: Actions performed for picking and placing an object

It is worth underlining that a new task is executed only
if the previous one has been completed; this is achieved
by implementing the status topic, where the mobile base
or robotic arm communicates its status: running, failing or
succeeding. Furthermore, in order to improve the success rate
of completing each task, the motion of the mobile platform
and the robotic arm has been split into two sub-motions: the
robot base is first moved in a neighbourhood of the object to
be picked (or the depot for placing), and then the robotic arm
is properly moved by assigning to the end-effector suitable
poses for picking/placing.

4) Recovery behaviour: The Communication Node has
been designed to deal with those situations in which the robotic
arm or the mobile base does not successfully complete the
assigned tasks. In any case, the mobile manipulator checks
the feasibility of the planned plan before executing it, but
if a failure occurs due to incorrect positioning (related to
path planning or software issues), the recovery behaviour is
triggered. It consists in repositioning the mobile platform or
the robotic arm in case it could not complete its task. In
particular, the recovery behaviour considers two cases:

• Case 1 - robotic arm fails: If the robotic arm is not able to
reach the goal pose, it is possible to exploit the additional
degree of freedom provided by the mobile base, so as
to reposition the mobile manipulator. The mobile base
reposition behaviour is similar to the one described in the
search phase, in which the robot moves to another spot
and rotates until it finds another feasible path to reach the
goal.
In this case, the arm will enter in the fail mode, so that
the Communication Node can handle the repositioning
request. First, the arm controller node sends to the Com-
munication Node the status FAIL to inform that probably
the position reached by the mobile base is not the desired
one, so it is required to be relocated. To this aim, the
mobile platform then returns to the HOME position and
performs a further searching phase to re-estimate the
correct marker position. This procedure can be done no
more than twice, before considering the item unreachable
and returning to the HOME position, ready to take another
command. An example of an arm fail-handling procedure
is presented in Figure 4.

Fig. 4: Mobile base repositioning behaviour when the robotic
arm fails to succeed in the current task.

• Case 2 - mobile base fails: The feasibility of the planned
path to reach the destination is first checked by the global
path planner provided by the ROS Navigation Stack. For
instance, the destination goal corresponds to the pose
of the ARTag marker that matches the requested ID. A

failure occurs when the navigation system is not able to
generate a valid path to reach the detected ARTag marker,
e.g., due to sensor noise and map uncertainty. In other
words, the estimated pose of the ARTag marker does
not correspond to the one in the real environment. To
overcome this issue, the Communication Node modifies
the distance-to-goal of the marker, until a feasible path
is found again. The repositioning procedure can be at-
tempted twice, after which the system resets and waits
for the next task.

B. Base Controller Node

This node publishes the status of the mobile base in order
to be read by the Communication Node. The node status can
take several values. Namely:

• BASE TO GOAL: this status lets the communication
manager know that the base is moving to the goal and
has yet to conclude its movement.

• BASE GOAL OK: this status signals the successful com-
pletion of the movement.

• BASE GOAL FAIL: it indicates that a re-planning phase
is necessary.

• BASE IDLE: while sending a goal to the base, the
communication manager checks for this flag. If the base
is idle, then it can receive new goals; if not, the commu-
nication manager waits for it to become available.

Whenever the sent mobile goal is not associated to reach
an item for picking or placing operations, this is recorded in
a Boolean flag variable, as this information could be useful in
future framework extensions.

C. Arm Controller Node

This node publishes the status of the robotic arm in order
to be read by the Communication Node. This node status can
take several values. Namely:

• ARM FAIL: it is implemented to allow the replanning of
the mobile base, if the pick or place actions fail.

• ARM SUCCESS: this status is the one sent at the end of
a pick/place action that is performed successfully. After
5 seconds, the status is changed back to ARM IDLE.

• ARM IDLE: this is a necessary step to make the commu-
nication node aware that the arm completed its motion.
Without this status published, the base cannot move.

• ARM RUNNING: this message is exchanged only to make
the user aware that the current node is running.

The grasp pose and the pre-grasp pose store the pose goals
for the arm during the pick phase.

D. Description of the pick or place topic

The routine of movements to be performed changes if
dealing with picking or placing. The sequence of actions to
be executed is published on a specific topic, from which the
arm can interpret two options: PICK or PLACE.
The routine is accordingly split into two parts, as it can be seen
in Figure 5. The main difference between these two phases
regards the update of the planning scene and the presence or
not of some intermediate poses to approach the target position.

Once the Arm controller has received the goal pose and the
action to be carried out, the routine starts and performs the
desired moves taking into account the planning scene.

1) Pick routine: As sketched in Figure 5, the picking
routine is the one that has the highest number of actions to be
performed. The steps that take place, from the motion planning
point of view, are:

a) Perform the motion to go in the pre-grasp pose.
b) Give the command to Open the gripper.
c) Move in the grasp pose.
d) Give the command to Close the gripper.
e) Perform the motion to reach the retraction pose.
The pre-grasping and retraction poses references frames are

shown in Figure 6. At the same time, the planning scene must
be updated so that the motion planner can take into account
the presence of the item attached to the end-effector. To do
so, we have to perform the following actions in sequence:

a) Add the item in the planning scene.
b) Attach the item to the gripper, so that the motion planner

can consider its presence.
The pre-grasp, grasp, and retraction poses are computed as

follows, starting from the knowledge of the position and the
orientation of the ARTag and the end-effector with respect to
the map frame. The roto-translational transformation between
the ARTag frame and the map frame is then computed.

Let Tmap
ARTag ∈ R4x4 be the homogenous roto-translational

matrix representing the ARTag frame in the map frame,
defined as:

Tmap
ARTag =

[
R t
0 1

]
where R ∈ R3x3 is a rotational square matrix and t ∈ R3x1 the
translation vector. The pre-grasp position pre graspARTag ∈
R3x1 is defined in the ARTag frame as:

pre graspARTag =
[
0 0 0.1

]T
(i.e., at a distance of 10 cm along the Z-axis of the ARTag
frame), and then transformed in the map frame as:[

pre graspmap

1

]
= Tmap

ARTag

[
pre graspARTag

1

]
(1)

The obtained vector pre graspmap then represents the
position that the end-effector has to reach before grasping the
object.

The grasp pose is set in correspondence of the marker, with a
suitable orientation for grasping.
The retraction pose is defined similarly to the pre-grasp one at
10 cm away along the X-axis and 10 cm higher to simulate
the action normally a human would perform.

The vector of the retraction position retractionARTag ∈
R3x1 is then defined in the ARTag frame as:

retractionARTag =
[
0 − 0.1 0.1

]T
and subsequently transformed in the map frame as:[

retractionmap

1

]
= Tmap

ARTag

[
retractionARTag

1

]
(2)

2) Place routine: The picked object must be placed in the
target location by correctly moving the robot base and then
imposing the required sequence of actions to the manipulator.
The place routine manages the entire motion, according to
the following steps:

a) Perform the motion to go to the target place pose.
b) Give the command to Open the gripper.
c) Perform the motion to go in the retraction pose as

depicted in Figure 7.
d) Give the command to Close the gripper.

Also, in this case, the planning scene has to be updated to
consider the object’s presence in the grasping hand. Since we
added and attached the item in the previous routine, we have
only to perform two actions:

a) Detach the object from the end-effector.
b) Remove the object from the planning scene.

Once completed the previous steps, a retraction position
retractionARTag ∈ R3x1 is defined similarly to the pre-
grasp one. In particular, as depicted in Figure 7, such position
is set at 10 cm away along the Z-axis of the ARTag frame,
as:

retractionARTag =
[
0 0 0.1

]T
and then transformed in the map frame as:[

retractionmap

1

]
= Tmap

ARTag

[
retractionARTag

1

]
(3)

IV. EXPERIMENTAL VALIDATION

The software architecture has been built using ROS1 Noetic,
and tested in a laboratory environment. The Locobot WX250
mobile manipulator by Trossen Robotics, whose technical
specifications are available in [9], has been used to test the
proposed framework. It has a Kobuki mobile platform and
a WidowX250 6-DOF manipulator (Figure 8). The mobile
platform has differential wheels and active bumpers to sense
if there is any contact with obstacles. Moreover, it is equipped
with an RPLIDAR A2M8 (360° 2D LIDAR) and an Intel
RealSense D435 (Stereo RGB-D), used for both manipulation
and navigation tasks.

The mobile base implements the reactive strategy for
human-obstacle avoidance and the physics-based technique for
predicting the path, developed in [8]. In particular, a social
navigation layer has been incorporated to avoid humans during
path planning, using a Gaussian-based costmap approach. The
standard ROS1 Navigation Stack has been utilized, with A∗

serving as the global planner and Timed-Elastic Band (TEB)
[18] as the local planner. The TEB local planner complements
the global planner A∗ by reducing the stair-like pattern in the
global plan. With the focus on the pick-and-place manipulation
steps, the RRT∗ method alone has been used to reduce latency
and overall computational time. In fact, using a combination
of RRT∗ and the STOMP algorithm (introduced in Section II)
would have allowed for smoother paths, but at the expense of
much longer computational times.

The ARTag recognition implementation exploits a node,
provided by the wrapper ROS package for the Alvar ARTag

Fig. 5: Flowchart for understanding in which order the actions are performed.

Fig. 6: Pre-grasp pose with respect to the item, 10 cm away
along the Z-axis of the item reference frame. Definition of
the retraction pose starting from the grasp pose, 10 cm away
along the Z-axis and the X-axis of the item frame.

Fig. 7: Representation of reference frames during a placing
action.

tracking library [19], which subscribes to the topics of the
camera and computes the pose of the ARTag marker with
respect to the camera frame. As the ARTag marker of interest
is detected, a message containing its ID, pose and relative
frame of reference is published on an ad-hoc topic.

For what concerns the 3D occupancy grid planning and
scene mapping we adopted Octomap [17], a probabilistic
3D mapping framework that uses an octree data structure
to represent occupancy information of an environment. The

generated 3D occupancy grid map is capable of modelling
the environment without prior information, constrained by the
field of view of the camera. In our case, the data are sourced
from a depth camera with a maximum range of 4 m and
used for planning collision-free paths. Each time the frame is
updated, the map is reconstructed according to a user-defined
rate. In particular, for the simulation validation we have set an
update rate of 10 Hz. For the real robot instead, in order to
reduce the computational effort, we decided to impose some
delays in the code and to have an update rate of 1 Hz.

The experimental validation has been performed both in
simulation, within a Gazebo world that reconstructs the lab-
oratory environment, and in the real-world laboratory setting
(Figure 9). In particular, simulation was used to validate the
framework algorithm workflow, while the execution on the real
mobile manipulator allowed to test scenarios with different
obstacles and objects positions.

A. Testing in simulation

Figure 10 shows the rviz representation of the framework
validation in simulation. The tested working phases for the
pick-and-place of an item of interest are described hereafter.

a) The robot receives the command, and approaches the
identified item. Here only the mobile base is working.

Fig. 8: The employed laboratory demonstrator (left) and its
3D visualization (right).

Fig. 9: The laboratory environment in Gazebo (left) and the
real word shelves setup (right).

b) The base reaches the desired pose and the pre-grasp pose
is taken. The item to be grasped is added to the planning
scene as an object (green box).

c) As the manipulator is ready to pick the object, the gripper
is opened, and the box added previously in the planning
scene is attached to the end effector link, so that the robot
is aware of its presence (the box turns purple).

d) Once the object is picked, the place pipeline is executed.
After reaching the home pose, the mobile manipulator
reaches the placing pose. Here the gripper is opened and
the item is detached (the box returns green instead of
purple).

e) The manipulator goes to the retraction pose and finishes
its operations, eventually returning to its home pose ready
for the next command.

B. Testing scenarios in the laboratory setup

In the experimental validation in the real world, not only the
workflow is tested, but several shelf configurations have been
considered to demonstrate the adaptability of the proposed
framework. A brief demo video showcasing the experimental
validation is available at [20]. In particular, first a general
framework workflow is showcased (00:00 to 01:34). After a
searching phase, then some focus is put on the pick and place
phases (01:35 to 02:39). Another example of the framework
validation is provided from 02:40 to 03:24. Finally, as can be
seen at 03:25, if the item is already in the field of view of the
robot, the searching phase is avoided, because not necessary.

Hence, the workflow of the proposed framework can be
summarized as follows (Figure 11): (a) the mobile manipulator
looks for the requested item, performing the searching phase if
needed; (b) the mobile manipulator reaches the picking pose to
pick the item and then heads to the placing pose; (c) the robot
reaches the place pose and deposits the item, then eventually
goes back to the home pose, ready for the next command (d).

V. CONCLUSIONS

A software architecture for autonomous mobile manipu-
lation has been presented in this paper, with a particular
focus on the case of low-computational mobile manipulators.
Furthermore, a working open-source example is introduced,

developed in ROS1 on a low-resource mobile manipulator and
then validated in simulation and tested in a laboratory setup.

The proposed implementation allows to entrust to an au-
tonomous mobile manipulator the searching and picking of a
desired item, as requested by a human operator. This includes
the exploration of an area to search for a specific item by
scanning its surroundings.

The use of ARTag markers demonstrated to be a valid
approach for low-computational powered platforms to estimate
the object’s pose to be grasped, making the overall system
independent of the definition of predefined poses. Neverthe-
less, the use of ARTag markers limits the objects that can be
manipulated, since the size of the marker is a fundamental
factor to be considered, i.e., the smaller the marker, the less
accurate the pose estimate.

Future works will involve the substitution of ARTag markers
with an object recognition system using machine learning
techniques, leveraging object affordance to improve the robot’s
manipulation and grasping. However, this improvement might
require higher computational resources, for example, a dedi-
cated GPU. This way, the overall system will be more flexible
and adaptable to other application scenarios. A comparative
analysis with similar architectures should also be considered
in the future, to highlight pros and cons of the proposed one.

REFERENCES

[1] L. Custodio and R. Machado, “Flexible automated warehouse: a litera-
ture review and an innovative framework,” The International Journal of
Advanced Manufacturing Technology, vol. 106, pp. 533–558, 2020.

[2] T. Sandakalum and M. H. Ang Jr, “Motion planning for mobile manip-
ulators—a systematic review,” Machines, vol. 10, no. 2, p. 97, 2022.

[3] Q. Li, Y. Mu, Y. You, Z. Zhang, and C. Feng, “A hierarchical motion
planning for mobile manipulator,” IEEJ Transactions on Electrical and
Electronic Engineering, vol. 15, no. 9, pp. 1390–1399, 2020.

[4] J. Xu, K. Harada, W. Wan, T. Ueshiba, and Y. Domae, “Planning an
efficient and robust base sequence for a mobile manipulator performing
multiple pick-and-place tasks,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 11 018–11 024.

[5] J. Haviland, N. Sünderhauf, and P. Corke, “A holistic approach to
reactive mobile manipulation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 3122–3129, 2022.

[6] M. Kalaitzakis, B. Cain, S. Carroll, A. Ambrosi, C. Whitehead, and
N. Vitzilaios, “Fiducial markers for pose estimation: Overview, applica-
tions and experimental comparison of the artag, apriltag, aruco and stag
markers,” Journal of Intelligent & Robotic Systems, vol. 101, pp. 1–26,
2021.

[7] M. Fiala, “Designing highly reliable fiducial markers,” IEEE Transac-
tions on Pattern analysis and machine intelligence, vol. 32, no. 7, pp.
1317–1324, 2009.

[8] P. D. Cen Cheng, M. Indri, F. Maresca, A. Ragazzo, and F. Sibona,
“Dynamic path planning in human-shared environments for low-resource
mobile agents,” in IEEE 32nd International Symposium on Industrial
Electronics (ISIE 2023), 2023.

[9] T. Robotics, “LoCoBot WidowX-250 6-DOF,” https://docs.
trossenrobotics.com/interbotix xslocobots docs/specifications/locobot
wx250s.html, [Online; accessed April 2023].

[10] F. Maresca and A. Ragazzo, “ROS-based autonomous navigation and
object recognition for a mobile manipulator operating in a warehouse
environment,” Master’s thesis, Politecnico di Torino, 2022.

[11] “Github repository,” https://github.com/AntoRag/thesis, [Online; ac-
cessed April 2023].

[12] A. Pasparakis, J. De Vries, and R. De Koster, “Assessing the impact
of human–robot collaborative order picking systems on warehouse
workers,” International Journal of Production Research, pp. 1–15, 2023.

[13] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 4569–4574.

https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications/locobot_wx250s.html
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications/locobot_wx250s.html
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications/locobot_wx250s.html
https://github.com/AntoRag/thesis

Fig. 10: Workflow validation in the Gazebo world setup.

Fig. 11: Experimental validation sequence in the real-world setup and its relative rviz visualization.

[14] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in 2009
IEEE International Conference on Robotics and Automation, 2009, pp.
489–494.

[15] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, no. 2, 2010.

[16] M. Fiala, “ARTag, a fiducial marker system using digital techniques,”
in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2, 2005, pp. 590–596 vol. 2.

[17] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,

“OctoMap: An efficient probabilistic 3D mapping framework based
on octrees,” Autonomous Robots, 2013, software available at https:
//octomap.github.io. [Online]. Available: https://octomap.github.io

[18] “ROS Timed-Elastic Band,” http://wiki.ros.org/teb local planner, [On-
line; accessed April 2023].

[19] S. Niekum, “ROS wrapper for alvar, an open source ARTag tracking
library,” http://wiki.ros.org/ar track alvar, 2015, [Online; accessed April
2023].

[20] “Experimental test video demo,” https://youtu.be/aAbBya1FV8o, [On-
line; accessed April 2023].

https://octomap.github.io
https://octomap.github.io
https://octomap.github.io
http://wiki.ros.org/teb_local_planner
http://wiki.ros.org/ar_track_alvar
https://youtu.be/aAbBya1FV8o

	Introduction
	Preliminaries
	Problem scenario
	Manipulator motion planners
	Items identification and obstacle avoidance

	Mobile manipulator framework description
	Communication Node
	Item request handling
	Searching phase
	Pick-and-place routine
	Recovery behaviour

	Base Controller Node
	Arm Controller Node
	Description of the pick_or_place topic
	Pick routine
	Place routine

	Experimental validation
	Testing in simulation
	Testing scenarios in the laboratory setup

	Conclusions
	References

