
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Physics-informed Neural Network for Quadrotor Dynamical Modeling / Gu, Weibin; Primatesta, Stefano; Rizzo,
Alessandro. - In: ROBOTICS AND AUTONOMOUS SYSTEMS. - ISSN 0921-8890. - ELETTRONICO. - 171:(2024).
[10.1016/j.robot.2023.104569]

Original

Physics-informed Neural Network for Quadrotor Dynamical Modeling

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.robot.2023.104569

Terms of use:

Publisher copyright

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.robot.2023.104569

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983720 since: 2023-11-09T13:09:40Z

Elsevier

Robotics and Autonomous Systems 171 (2024) 104569

A
0
n

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Physics-informed Neural Network for Quadrotor Dynamical Modeling
Weibin Gu a, Stefano Primatesta b, Alessandro Rizzo a,∗

a Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy
b Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy

A R T I C L E I N F O

Keywords:
Physics-informed neural network
Learning-based dynamical modeling
Interpretability
Unmanned aerial vehicle

A B S T R A C T

The explosive growth of civil applications of Unmanned Aerial Vehicles (UAVs) calls for control algorithms that
enable safe and trustworthy operations, especially in complex environments to facilitate real-world deployment.
Although Model-Based Control (MBC) has found great applicability in the last decades, it relies heavily on the
accuracy of the underlying mathematical models. Thanks to their powerful approximation capability, data-
driven approaches such as Artificial Neural Networks (ANNs) have raised a great interest in UAV dynamical
modeling in recent years. Despite the promising results achieved in learning either full or partial dynamics such
as aerodynamic effects, prior studies merely pay little to no attention to the black-box nature of ANNs, yielding
poorly interpretable learning processes and implying a lack of generalization capability due to undesirably
learned spurious relationships among features and labels. While nowadays practitioners and society are far
from being concerned just with performance, such risk evidently reduces the overall trustworthiness of the
control system with ANNs as control-oriented models. With the goal of both accurate and interpretable
neural modeling of nonlinear dynamics, we propose a novel modeling approach that utilizes Physics-Informed
Neural Networks (PINN), designed to seamlessly embed physical laws into Deep Neural Networks (DNN).
To further enhance model interpretability, we adopt the Covariance Confidence Ellipse (CCE) as post-hoc
visualization to help understand the model behavior. We also set up a visual and physical simulator based
on AirSim with custom implementation on quadrotor ground effect, which is made publicly available to
facilitate further experiments for the community. An extensive simulation campaign validates our approach
on data sets including aerodynamics and periodic wind, highlighting advantages regarding the accuracy and
physical consistency, pointing to further insight on the development of learning-based control-oriented models
for quadrotors, and facilitating flight controller design with performance guarantees.
1. Introduction

The 21st century has witnessed an explosive growth of civil applica-
tions of Unmanned Aerial Vehicles (UAVs), ranging from the inspection
of industrial infrastructures such as power lines [1] and wind tur-
bines [2], to operations in human-interactive environments such as
delivery of goods [3], to name a few [4]. Such a scenario calls for con-
trol algorithms that not only provide sufficient tracking performance,
but also enable safe and trustworthy operations, especially in complex
and populated environments, to facilitate real-world deployment as
well as to avoid injury and property damage by all means.

Model-Based Control (MBC) techniques have found great applicabil-
ity in the last decades thanks to the underlying analytical formulation
of system dynamics in terms of differential equations, which typically
informs the design of performance-guaranteed control techniques [5].
However, a remarkable drawback of MBC techniques is their heavy
reliance on the accuracy of the mathematical model of the system

∗ Corresponding author.
E-mail addresses: weibin.gu@polito.it (W. Gu), stefano.primatesta@polito.it (S. Primatesta), alessandro.rizzo@polito.it (A. Rizzo).

under control [6]. Uncertainties and disturbances, such as parametric
uncertainty and unmodeled dynamics, are ubiquitous in real-world
flight, which may set back the derivation of such control-oriented
models, with a clear adverse impact on the control performance. A
typical example is the loss of system stability, which, for UAVs, results
in dangerous and uncontrollable deviations from the planned path,
eventually incurring accidents [7].

To address the modeling issues induced by uncertainties and distur-
bances, many efforts in the control community have been put forward
in robust and adaptive control theory [6]. For example, adaptive back-
stepping controllers were designed to account for the changes in mass
and inertia matrix of UAV [8] and in payload [3]; another adap-
tive sliding backstepping control scheme was proposed to guarantee
attitude tracking under unmodeled dynamics [9]. Nonetheless, most
of the resulting controllers are usually mathematically complex and
the design very often leans toward conservative approaches, tuned
vailable online 2 November 2023
921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.robot.2023.104569
Received 29 May 2023; Accepted 24 October 2023
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:weibin.gu@polito.it
mailto:stefano.primatesta@polito.it
mailto:alessandro.rizzo@polito.it
https://doi.org/10.1016/j.robot.2023.104569
https://doi.org/10.1016/j.robot.2023.104569
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104569&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.

d
n

a
g
i
f
a
l
c
i
s
h
c
w
a
b
N
p
t
c
C
p
l

w
d
s
c
S
q
s
p
t
a
a
f
s
a
c
r

2

d
d

2

t
o
h
t
d
s
d
e
D
c
i
c
c

t
a
f
m
s
a
o
c
t
i
t
m
I
s
w
t
s
i
p
r
s

2

(
j
m
s

w
l
t
s
i
i
t
m
a
b

p

on the demanding, yet unlikely, worst-case scenario, thus limiting the
possibilities of guaranteeing desired performance [6].

On the other side of the spectrum, data-driven approaches have
been pursued with the aim to learn the real system dynamics in its
entire complexity from empirical data sets, including uncertainties and
disturbances, which could be subsequently used for MBC design. Artifi-
cial Neural Networks (ANNs), as universal approximators with powerful
learning capability, have probably raised the most interest for UAV
dynamical modeling due to the advances in computer hardware in
recent years [10–13]. As they started to be applied to the growing
UAV industry, trustworthiness has become an exigent demand, which by
efinition [14], requires human understanding and trust, especially for
ew techniques. Due to the black-box (a.k.a., model-agnostic) nature of

ANNs, however, the performance metrics mainly rely on the assessment
of input–output numerical deviations of the available data. Hence, the
outcome of the learning process is typically poorly interpretable, often
implying a lack of generalization capability outside the training data set
due to undesirably learned spurious relationships among features and
labels. This issue becomes particularly harmful when ANNs are used as
a control-oriented model to design control actions, since such systems
respond to external stimuli with behaviors that are maybe effective
yet inexplicable. While nowadays practitioners and society are far from
being concerned just by performance, such risk evidently reduces the
overall trustworthiness of the control system [14].

To meet the expectations of both accurate and interpretable neural
modeling, here we propose a novel approach for dynamical modeling of
quadrotors, inspired by Physics-Informed Machine Learning (PIML) [15],
n emerging machine learning paradigm that aims at achieving better
eneralization capability by incorporating a-priori system knowledge
nto the learning process. Such paradigm has been successfully applied
or modeling in many scientific and engineering disciplines such as the
coustic field of a quadrotor [16–18], robotic manipulators [19–21],
ake temperature [22], pandemic spread [23], just to list a few. In our
ontext, we seamlessly embed the law of conservation of momentum
nto the training of a Deep Neural Network (DNN) in the form of
oft constraints (or learning bias) to model fast, high-dimensional, and
ighly nonlinear dynamics. Comparison and ablation studies have been
arried out over multiple seeds in a visual and physical simulator that
e customized on top of AirSim [24] on several data sets including
erodynamics such as drag, ground effect, and periodic wind. It has
een consistently shown that our proposed Physics-Informed Neural
etwork (PINN) outperforms both linearized mathematical models and
urely black-box approaches such as vanilla DNN [11] in terms of
est error (generalizability on unseen data) and exhibits better learning
apability of underlying relationships than vanilla DNN by means of
ovariance Confidence Ellipse (CCE) [25], a post-hoc model inter-
retability technique introduced to reveal physical consistency of the
earned model.

The remainder of this paper is organized as follows. We start
ith providing an overview on the prior studies on learning-based
ynamical modeling of UAVs and the development of PIML in learning
ystem dynamics in Section 2, followed by the highlight on our main
ontributions that distinguish our work from the state of the art. In
ection 3, we summarize the well-developed mathematical model of
uadrotors with notations and formulate the problem that we aim to
olve within this paper. Section 4 elaborates the main idea of our
roposed PINN for quadrotor dynamical modeling accompanied by all
he other details of our network design. We then introduce the visual
nd physical simulator that we set up and customized for simulating
dvanced aerodynamics such as ground effect and collecting flight data
or network training in Section 5, where main results from multiple
eed campaigns as well as discussion are also given to reveal the
dvantages of our proposed approach. Finally, Section 6 draws our
onclusions, provides main takeaways, and points out some future
2

esearch directions. a
. Related work and contributions

Recent efforts mostly related to our work are contributed by two
istinct communities, i.e., UAV control and machine learning, yet with
ifferent research focus as outlined below.

.1. Learning-based dynamical modeling of UAV

Prior studies in the UAV control community have widely proved
he effectiveness of deep learning techniques for dynamical modeling
f UAV thanks to their great potential in capturing complex features
idden in the data. For example, DNN was successfully adopted to learn
he dynamics of helicopter [10] and quadrotor [11] from real flight
ata. Besides direct modeling of the full dynamics, it has been recently
tudied that utilizing DNN to learn the residual forces and/or torques
ue to advanced aerodynamics is feasible such as quadrotor ground
ffect [12] and aerodynamic interactions between multirotors [13].
espite the satisfactory results achieved in these studies, vanilla DNN is
ommonly selected as the modeling architecture, which is notorious for
ts purely black-box characteristics, thereby susceptible to learn physi-
ally inconsistent relationships and leading to degraded generalization
apability [15].

In regard to this issue, only a few attempts have been made so far
o seek ways to make the learned model more interpretable. In [26],

hybridization of analytical and empirical techniques was proposed
or linear velocity estimation of a quadrotor, where the data-driven
odel was trained by a custom loss function, i.e., the average of the

um of Mean Squared Errors (MSEs) of prediction error, step response,
nd the gain of response given a sinusoidal input signal. Similar idea
f hybridization was adopted in [27] where quadrotor model was
onstructed by the combination of Blade-Element-Momentum (BEM)
heory with a neural network compensating the residual dynamics us-
ng real flight data of agile maneuvers. However, the structure and the
raining process of the employed network used in these learning-based
odels still remain black-box. Very recently, Domain Adversarially

nvariant Meta-Learning (DAIML) was proposed to learn offline the
hared representation of winds and then a composite adaptation law
as designed to update online the wind-specific linear coefficients of

his basis function [28]. Clustered linear coefficients with similar wind
peed can be visualized a posteriori which implies DAIML succeeds
n learning the basis function shared by all wind conditions, thus
roving the interpretability of the approach. Nonetheless, this approach
equires a very representative data collection that covers different wind
peeds, which could be very laborious and time-consuming.

.2. Learning dynamics from trajectory data using PINN

With the recent success of solving Partial Differential Equations
PDEs) by using PINN [29], research on learning dynamics from tra-
ectory data by leveraging physical insights began to flourish among
achine learning scientists. Here we broadly classify these works into
tructured and unstructured learning.

Lagrangian neural networks [19–21] and Hamiltonian neural net-
orks [30,31] are two typical frameworks belonging to structured

earning, which use Lagrangian and Hamiltonian mechanics to inform
he structure of neural Ordinary Differential Equation (ODE) of the
ystem. The major advantage of these structured learning techniques
s that energy conservation can be guaranteed if the system does not
nclude non-conservative forces such as friction. Despite the fact that
his could be true, especially for the dynamical modeling of robotic
anipulators, aerodynamic forces can make significant impact during
quadrotor’s flight, thereby making these frameworks challenging to

e applied in our proposed scenario.
On the other side, unstructured learning aims to incorporate a-

riori domain knowledge into the loss function as learning bias to

chieve more physically consistent predictions. In some literature, this

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.

3

3

E
a
r
a
d
v

a
g

i

c

𝑚

3

t
w
a
t
d

is also known as Theory-Guided Data Science (TGDS) [32]. The crux
of unstructured learning is the embedding of knowledge from the be-
ginning [14] and the assessment of its compliance with the knowledge
eventually learned by the model. Continuous investigations in recent
years in both scientific and engineering disciplines have also shown the
effectiveness of this line of research such as acoustic field modeling of
a quadrotor [16–18], lake temperature modeling [22] and pandemic
spread prediction [23].

2.3. Main contributions

This work falls under the category of unstructured learning, where
a PINN is designed for modeling the full dynamics of a quadrotor. The
reason for not doing residual modeling is that advanced aerodynamics
are in general too complex to be analytically modeled, due to their
highly nonlinear characteristics. Thus, finding an appropriate prior
domain knowledge to be incorporated into PINN for modeling these
aerodynamic forces becomes extremely challenging. As an example,
despite the fact that recent studies on quadrotor ground effect have
revealed some critical variables based on the analyses on empirical
data [33,34], there still does not exist a widely acknowledged math-
ematical model for all possible quadrotor configurations and flight
maneuvers. To bypass this obstacle, we exploit the well-known law of
conservation of momentum in the full dynamical modeling, which helps
inform the network even when non-conservative forces exist. Our main
contributions are summarized as follows:

• We propose a PINN for full dynamical quadrotor modeling in-
formed by the law of conservation of momentum, which is em-
bedded into the training loss function as learning bias via a local
monotonicity function.

• We implemente a parametric model of quadrotor ground effect
derived from empirical data [33] as a custom class1 to the visual
and physical simulator, AirSim [24], for flight data collection,
also provided with high-level C++ and Python user Application
Programming Interfaces (APIs) to facilitate further research in the
UAV community.

• We carry out extensive comparison and ablation studies over mul-
tiple seeds to evaluate the advantages of our proposed PINN over
linearized mathematical model and vanilla DNN. In particular,
we adopt CCE as post-hoc model interpretability technique to
visualize physical consistency of the learned model.

. Mathematical model of quadrotor and problem formulation

.1. Quadrotor dynamics

The kino-dynamic model of a quadrotor can be formulated through
qs. (1) [35]. There, we consider North-East-Down (NED) inertial
nd Front-Right-Down (FRD) body-fixed coordinates as the adopted
eference frames indicated by superscripts  and , respectively, and
generic quadrotor configuration, as depicted in Fig. 4(c). We further
enote the position of the quadrotor by 𝐩 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)T ∈ R3, linear
elocity by 𝐯 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)T ∈ R3, attitude rotation matrix from

the body frame to the inertial frame by 𝐑
 ∈ SO(3) expressed in

Euler angles 𝜼 = (𝜙, 𝜃, 𝜓)T ∈ R3, body-fixed angular rate by 𝝎 =
(𝑝, 𝑞, 𝑟)T ∈ R3, and mass and inertia matrices as 𝑚 ∈ R and 𝐉 =
diag(𝐽𝑥, 𝐽𝑦, 𝐽𝑧) ∈ R3, respectively. Moreover, 𝐟u = (0, 0, 𝑇)T ∈ R3

nd 𝝉u = (𝜏𝑢,𝑥, 𝜏𝑢,𝑦, 𝜏𝑢,𝑧)T ∈ R3 are the total thrust and body torque
enerated by the four rotors, 𝐟a, 𝝉a ∈ R3 are the aerodynamic forces

and torques such as drag and ground effect, and 𝐠 = (0, 0, 𝑔)T ∈ R3

s the gravity vector with gravitational acceleration constant 𝑔. Lastly,

1 Our custom implementation of ground effect in AirSim: https://gitlab.
om/PoliToComplexSystemLab/AirSim-GE
3

Φ is the transformation matrix that converts body angular rate to the
variation of Euler angles.
 𝐩̇ = 𝐯
𝐯̇ = −𝑚𝝎 × 𝐯 + 𝐑

𝑚
𝐠 + 𝐟𝑢 + 𝐟𝑎

𝜼̇ = Φ𝝎

𝐉𝝎̇ = 𝐉𝝎 × 𝝎 + 𝝉𝑢 + 𝝉𝑎

(1)

.2. Rotor model

The overall quadrotor model is completed by taking into account
he rotor model, which associates the generated thrust 𝑇 and torque 𝝉𝑢
ith the rotor angular speeds 𝑛𝑖 (𝑖 = 1, 2, 3, 4) in revolutions per second
s given in Eq. (2), where 𝑐𝑇 is the dimensional thrust coefficient, 𝑐𝑄 is
he dimensional moment coefficient, and 𝑙 is the moment arm, i.e., the
istance from the rotor axis to the principal axis of the quadrotor.

⎡

⎢

⎢

⎢

⎢

⎣

𝑇
𝜏𝑢,𝑥
𝜏𝑢,𝑦
𝜏𝑢,𝑧

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝑇 𝑐𝑇 𝑐𝑇 𝑐𝑇
−𝑐𝑇 𝑙 𝑐𝑇 𝑙 𝑐𝑇 𝑙 −𝑐𝑇 𝑙
𝑐𝑇 𝑙 −𝑐𝑇 𝑙 𝑐𝑇 𝑙 −𝑐𝑇 𝑙
𝑐𝑄 𝑐𝑄 −𝑐𝑄 −𝑐𝑄

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑛21
𝑛22
𝑛23
𝑛24

⎤

⎥

⎥

⎥

⎥

⎦

(2)

3.3. Linearized model

To facilitate the design of the controller, a simplified model is com-
monly adopted, which can be derived from the linearization of Eqs. (1)
around a stable hovering condition, under the assumption that aero-
dynamic forces and torques are negligible. This yields the linearized
equations of translational and rotational dynamics Eq. (3). While such
a linearized model provides a good approximation of the quadrotor
dynamics close to the hovering condition, conditions far from the
equilibrium such as agile maneuvers or stringent control performance
call for the usage of a more accurate, if not complete, dynamical model
that includes nonlinearities and aerodynamics factors [7].

𝑣̇𝑥 = − 1
𝑚
𝜃𝑇 , 𝑣̇𝑦 =

1
𝑚
𝜙𝑇 , 𝑣̇𝑧 = − 1

𝑚
𝑇 + 𝑔

𝑝̇ = 1
𝐽𝑥
𝜏𝑢,𝑥, 𝑞̇ = 1

𝐽𝑦
𝜏𝑢,𝑦, 𝑟̇ = 1

𝐽𝑧
𝜏𝑢,𝑧

(3)

3.4. Problem formulation

It is well acknowledged that aerodynamic forces and torques caused
by the interaction effects among the propellers such as drag and ground
effect become significant when the quadrotor is commanded to execute
more agile maneuvers. In this work, instead of learning these residual
dynamics using DNNs, we aim to approximate the full dynamical model
including these unknowns by a PINN, which is informed by a known
physical law during network training to pursue better generalization
capability and enhance interpretability. The PINN takes quadrotor
states and accelerations as input features and predicts the motor speeds,
thereby serving as an inverse dynamical model that could be applied
with feedback linearization control technique.

4. Physics-Informed Neural Network

In this section, we elaborate the proposed PINN for modeling the
inverse dynamics of the quadrotor. Following unstructured learning
strategy, the main objective is to find appropriate domain knowledge
and incorporate it into network training so that the resulting network
can make more physically consistent predictions. This can also be
regarded as constructing a custom physics-informed loss function that
guides the network, which can take any arbitrary structure such as
feedforward neural network or Recurrent Neural Network (RNN), to
learn the inherent relationship among data. In the sequel, we first detail
the network structure that we adopt throughout this work, followed by

reasoning and explanation of how we incorporate physics into network

https://gitlab.com/PoliToComplexSystemLab/AirSim-GE
https://gitlab.com/PoliToComplexSystemLab/AirSim-GE

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.
Fig. 1. Overall structure of PINN. PINN is indeed a vanilla DNN trained with
a physics-informed loss function, in which prior domain knowledge is embedded
as opposed to the model-agnostic conventional loss function. In addition to the
prediction error, the output of the network will also be evaluated by means of post-hoc
visualization to see how well the network actually learns the prior knowledge and can
be further used in the controller design.

training by devising a physics-informed loss function. We also shed
light on a post-hoc model interpretability visualization for verifying
network capability of extracting underlying knowledge and a practical
trick of adjusting regularization to achieve better training performance
for our application. The overall structure of the proposed PINN is
depicted in Fig. 1.

4.1. Network structure

The proposed PINN, which approximates the inverse dynamics of
the quadrotor, can be expressed as 𝑌 = PINN(𝑋;𝛩), where 𝑋 denotes
the network input in the form of a vector consisting of quadrotor states
and accelerations, 𝑌 denotes the network predictions on control inputs,
and 𝛩 denotes the trainable network parameters. Since yaw angle may
suffer from abrupt changes from 0 to 2𝜋, sine and cosine operators are
used for embedding to ensure the continuity of the signal. Besides, we
use the dimensionless form of Pulse Width Modulation (PWM) of rotors
as control inputs due to the signal property from the visual and physical
simulator that we set up for data collection as will be discussed later.
Therefore, the input and output of the network can be formulated as
follows:

• 𝑋 ∶= (𝐯̇T, 𝝎̇T, 𝐯T, 𝝎T, 𝜙, 𝜃, sin𝜓, cos𝜓)T ∈ R15

• 𝑌 ∶= (𝑢̂1, 𝑢̂2, 𝑢̂3, 𝑢̂4)T ∈ R4, where 𝑢𝑖 is the PWM signal of each
rotor

We adopt DNN as the structure of our network and hence, our PINN
can be re-written as Eq. (4), where {𝐖[1],𝐛[1]} is the pair of network
parameters of the first layer in 𝛩, 𝑔(⋅) = ReLU(⋅) is the activation
function, and 𝑓 (𝜷) = 𝐖[𝑖]𝜷 + 𝐛[𝑖], with 𝑖 ∈ [1, 𝑁𝑙]. Note that if the
model in Eq. (4) is trained with conventional loss function, i.e., MSE
between 𝑌 and 𝑌 , then it becomes the vanilla DNN (e.g., see [11]).
However, we elaborate our custom physics-informed loss function in
the following, which is specifically designed with the aim of guiding
the network to learn the inherent relationship between input–output
data so as to satisfactorily generalize on unseen data sets.The network
has therefore the form

PINN(𝑋,𝛩) ∶= 𝑓◦ 𝑔◦⋯◦𝑓◦𝑔
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(𝐖[1]𝑋 + 𝐛[1]) (4)
4

𝑁𝑙 hidden layers
4.2. Incorporation of physics as learning bias

As mentioned in Section 2.3, the fact that no widely acknowl-
edged mathematical representations or even empirical domain exper-
tise of advanced aerodynamics exist, makes incorporating this domain
knowledge extremely challenging. Therefore, we pivot to leverage an
ubiquitous physical law to guide the training of the network, which,
for quadrotors, is the law of conservation of momentum. Such a law
inherently governs the dynamical equations and can be considered as
a fundamental property of the system. As such, the problem then boils
down to incorporating this physical law into network training through
suitable loss terms.

The embedding of the law of conservation of momentum is moti-
vated by the correlation of accelerations and control inputs. Taking
our collected data (of agile maneuvers with drag) as an example, as
shown in Fig. 2, it can be easily evaluated the Pearson Correlation
Coefficient (PCC) of the derivative of roll angular rate 𝑝̇ and the PWM
signals used to generate such acceleration, which has a numerical value
of 0.67. This means that these two quantities have a strong correlation
and graphically, these data series share a similar pattern to a great extent
(see Figs. 2 (a)&(b)). Such strong correlation also holds positively for
pitch and yaw motion (see Figs. 2 (e)&(f), (i)&(j)). For better visual-
ization, we plot the sorted samples with CCE [25], which represents
the enclosure of 98.9% of data, as shown in Figs. 2 (d)&(h)&(i). The
positive correlation can then be implied by the slope (or more precisely,
the rotation angle) of the CCEs. From the perspectives of mathematical
formulation, it can be observed that 𝜔̇ and 𝜏𝑢 are collinear when
nonlinearities and aerodynamics are marginal as shown in Eq. (3).

Based on the above empirical observations, we devised a local
monotonicity loss term to embed the law of conservation of momentum
into the loss function for network training. The local monotonicity loss
term penalizes the violation of two data series in terms of inconsistent
patterns. More specifically, if the first data series increases whereas
the second data series in the meanwhile decreases, then the network
will be penalized during the training by adding this local monotonicity
loss term into the final loss function. The detailed implementation of
the local monotonicity loss term is given in Algorithm 1, where we
use tanh(⋅), a differentiable approximation of the sign function, for
examining if two data series share the same pattern. Moreover, we
impose the local monotonicity loss to the quantities of all the three
degrees of rotation, which results in the final physics-informed loss
function for network training as given in Eq. (5) where 𝜆LM is the
hyperparameter and MSE is the (conventional) MSE between targets
and predictions.

 = MSE +
∑

𝑖
𝜆𝑖LM𝑖LM, 𝑖 = {𝜙, 𝜃, 𝜓} (5)

A few more comments on the proposed physics-informed loss func-
tion are in order. First, one may notice that we do not directly embed
PCC into the composition of the final loss function. This is because
PCC is dependent on assumptions on the data distribution and it may
yield poor training performance, whereas it is an effective metric to
assess the correlation between variables, once the data vectors are
available. Notably, it may happen that two data series with different
patterns might have the same value of PCC.2 Hence, using PCC for
training would steer the network parameters toward similar values
even in presence of different patterns in input, clearly yielding ill-posed
optimization problems. Second, the observation of sharing the same

2 An explanatory example: Let the first pair of data series be 𝑥1 =
[1, 2, 3, 4, 5], 𝑦1 = [1,−2,−3, 4, 5] and the second pair of data series be 𝑥2 =
[1, 2, 3, 4, 5], 𝑦2 = [1, 2, 3, 1.9455, 2.5]. It is straightforward to see that the
increasing/decreasing pattern between 𝑥𝑖 and 𝑦𝑖 where 𝑖 = 1, 2 is significantly
different. However, PCC cannot tell the difference (both two pairs of data series
have PCC of approximately 0.626) whereas the proposed local monotonicity
loss can do it (1.0 for 𝑖 = 1 and 0.5 for 𝑖 = 2).

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.
Fig. 2. Correlation within training data series. (a), (b), (e), (f), (i), (j): Data series of the derivative of angular rate and the corresponding PWM signals to generate such
acceleration. (c), (g), (k): Coherence plots between the data series for roll, pitch, and yaw motion, where the calculated PCCs are also indicated in gray boxes. (d), (h), (i):
CCE plots between the data series for roll, pitch, and yaw motion, where samples are depicted by blue dots and 3𝜎 CCE is depicted by orange ellipses. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
pattern does not always hold, and hence neither does the devised local
monotonicity loss. This is because our proposed embedding (i.e., local
monotonicity term) is also an approximation rather than rigorous math-
ematical equation. However, this could happen only when the system
dynamics are dominated by the highly nonlinear aerodynamic terms.
The solution to this is to include the local monotonicity loss as an
auxiliary learning bias, i.e., a soft constraint (hence, can be violated)
that helps improve the network learning through the hyperparameter
𝜆LM, which is scheduled by cyclical annealing method [36]. Third,
compared to the conventional MSE loss function used for training the
vanilla DNN, the additional computational complexity of our physics-
informed loss function mainly comes from the inclusion of the local
monotonicity loss (i.e., Algorithm 1), which is composed of tanh(⋅)
and other basic arithmetic operators. We will show in Section 5 that
such additional computational complexity is generally acceptable for
non-time-critical situations by providing empirical evidence.

4.3. Cyclical annealing scheduler

As mentioned in the previous section, the two loss terms in Eq. (5)
contradict each other when aerodynamics prevail over the body wrench
generated by the four rotors. Hence, the local monotonicity loss fails
to guide correctly the network to learn the real aerodynamic effect. To
address this issue, we adopt a practical trick, namely cyclical annealing
scheduler, which was first introduced to machine learning field to
mitigate Kullback–Leibler (KL) vanishing problem of Variational Au-
toencoder (VAE) [36]. Similar to our physics-informed loss function,
VAE has a loss function consisting of MSE (i.e., reconstruction error)
and KL regularizer. By scheduling the hyperparameter of KL regularizer
5

in a cyclical fashion, it was empirically found that the network can
leverage latent codes learned in the previous cycle as warm re-starts,
thereby improving the performance progressively.

In our case, we apply a similar idea but with inverse scheduling
as given in Eq. (6), where 𝑘 is the current epoch index, 𝑇 (with a
slight abuse of notation) is the maximum number of epochs, 𝜆max
is the maximum value to which 𝜆LM will be annealed, 𝑀 is the
number of cycles, and 𝑅 is the proportion used to maintain 𝜆max. As
such, the training process is split into 𝑀 cycles, each starting from
𝜆max at which the network tends to abide by local monotonicity, to
0 when our physics-informed loss function recovers the conventional
loss function and attempts to simply minimize the MSE with its all
effort (see Fig. 3). This scheduling strategy is shown to be effective in
achieving better training performance in Section 5. Such a strategy can
be mathematically summarized as

𝜆LM =

{

1−𝛽
1−𝑅𝜆max if 𝛽 > 𝑅
𝜆max if 𝛽 ≤ 𝑅

𝛽 =
mod(𝑘, ⌈𝑇 ∕𝑀⌉)

⌈𝑇 ∕𝑀⌉

(6)

4.4. Post-hoc model interpretability visualization

To design trustworthy artificial intelligence, besides developing
transparent models such as our proposed PINN, a parallel way is to ap-
ply post-hoc model interpretability techniques including explanations
by example, text explanations, feature relevance, and so forth [14].
Here, we apply post-hoc visualization to further improve the inter-
pretability of the learned model. Different from [28], where a dimen-
sionality reduction technique was adopted to cluster different wind

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.
Algorithm 1: Calculation of physics-informed loss function
Input: Training data , network parameter 𝛩
Parameter: Batch size 𝑁𝑏, hyperparameter 𝜆LM
Output: Physics-informed loss 

1 Function LocalMonotonicityLoss(𝑚, 𝑛):
2 LM𝑚, LM𝑛 ← tanh(𝑚[2, 𝑁𝑏] − 𝑚[1, 𝑁𝑏 − 1]), tanh(𝑛[2, 𝑁𝑏] − 𝑛[1, 𝑁𝑏 − 1])
3 loss ← 1

𝑁𝑏
(1 − LM𝑚 × LM𝑛) // element-wise multiplication

4 return loss
5 𝑋𝑏𝑎𝑡𝑐ℎ, 𝑌𝑏𝑎𝑡𝑐ℎ ← DataLoader(, 𝑁𝑏) // X: features, Y: labels
6 𝑌𝑏𝑎𝑡𝑐ℎ ← PINN(𝑋𝑏𝑎𝑡𝑐ℎ, 𝛩) // forward propagation
7 MSE ← 1

𝑁𝑏
(𝑌𝑏𝑎𝑡𝑐ℎ − 𝑌𝑏𝑎𝑡𝑐ℎ)2 // (conventional) MSE

8 LM ← LocalMonotonicityLoss(𝑌𝑏𝑎𝑡𝑐ℎ, 𝑋𝑏𝑎𝑡𝑐ℎ) // local monotonicity loss
9  ← MSE + 𝜆LMLM
10 return 
Fig. 3. Illustration of cyclical annealing scheduler 𝜆LM in Eq. (6) with parameters:
(𝑀,𝑅, 𝜆max , 𝑇) = (5, 0.5, 0.1, 300).

conditions, we use CCE as already mentioned in the previous sections
due to the fact that it can roughly reflect PCC (by means of rotation
angle of CCE) and MSE (by means of height and width of CCE). Such
visualization can be very helpful in understanding the model behavior
in either training or deployment, especially for users who are not
familiar with machine learning.

5. Results and discussion

5.1. Visual and physical simulator

To facilitate data collection, a simulator based on the visual and
physical simulator AirSim [24], Unreal Engine 4 (UE4), PX4, and
QGroundControl (see Figs. 4 (a) and (b)), has been set up in our work.
Compared to other open-source simulator alternatives such as Gazebo,3
X-Plane4 and asbQuadcopter by MathWorks,5 AirSim provides a more
complex and realistic environment by building on top of a physics
engine with advanced rendering techniques made by UE4 and featuring
various sensors and aerodynamics features such as drag forces. Thanks
to its excellent extensibility, it is also possible to accommodate various
types of hardware platforms and software protocols and to customize
personalized APIs and functionalities using C++ and Python.

In our experiments, besides data collection coding, we implemented
a custom C++ class on top of AirSim’s source code for simulating
the quadrotor ground effect to further enhance the fidelity of our

3 Gazebo: https://staging.gazebosim.org/home
4 X-Plane: https://www.x-plane.com/
5 MathWorks asbQuadcopter project: https://it.mathworks.com/help/

aeroblks/quadcopter-project.html
6

Table 1
Quadrotor specifications.
Parameter Symbol Value

Mass 𝑚 1.5 kg
Inertia 𝐽𝑥 1.469e−2 kgm2

𝐽𝑦 1.686e−2 kgm2

𝐽𝑧 3.093e−2 kgm2

Thrust constant 𝐶𝑇 1.099e−1
Power constant 𝐶𝑃 4.016e−2
Propeller diameter 𝐷 0.2286 m
Propeller spacing 2𝑙 0.690 m

simulator. Specifically, two ground effect models have been included,
i.e., a simple Cheeseman–Bennett model [37] and a parametric model
derived from polynomial fitting using empirical data [33] (see Fig. 5).
We also provide user-level APIs in both C++ and Python, namely
‘‘simSetGroundEffect’’, to facilitate the research of other researchers in
the UAV community. Our implementation complements the advanced
aerodynamics already available in AirSim such as drag and helps users
safely collect representative flight data under ground effect by flying
the quadrotor very close to the ground in the simulator. More design
details and usage instructions of our implementation of ground effect
are referred to the GitLab repository with a self-explanatory README
file therein: https://gitlab.com/PoliToComplexSystemLab/AirSim-GE.

5.2. Network training

Thanks to the visual and physical simulator that we have set up
in Section 5.1, training data set can be easily and safely collected
through manual flight of the quadrotor with specifications as given
in Table 1 (note that thrust and power constants reported therein are
dimensionless), using joystick or gamepad for different maneuvers with
aerodynamics and other uncertainties included. In total, we collected
three data sets for our experiments:

• 1: agile maneuver with maximum linear speed up to 8 m∕s
and drag force, yielding approximately 15k data samples (see
Fig. 4(d))

• 2: near-ground flight with both drag force and ground ef-
fect [33], yielding approximately 6k data samples (see Fig. 5)

• 3: agile maneuver with both drag force and periodic wind,
yielding approximately 5k data samples (see Fig. 6)

All three data sets include physical quantities of the quadrotor
needed for network training and ablation studies with a fixed sampling
time of 0.05 sec.

A trial-and-error procedure led to the selection of 10 hidden layers,
each with 25 hidden neurons, to carry out the training of neural
networks with satisfactory performance. Before training, we initialized

https://staging.gazebosim.org/home
https://www.x-plane.com/
https://it.mathworks.com/help/aeroblks/quadcopter-project.html
https://it.mathworks.com/help/aeroblks/quadcopter-project.html
https://gitlab.com/PoliToComplexSystemLab/AirSim-GE

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.
Fig. 4. Data collection process. (a) Manual flight of quadrotor in the visual and physical simulator. (b) GUI of QGroundControl. (c) Configuration of the employed quadrotor
superimposed with body-fixed reference frame. (d) Flight trajectory with colorbar indicating the magnitude of linear velocity.
Fig. 5. Data set of simulated flight corrupted with ground effect. Top: Parametric
model of quadrotor ground effect [33] (x-axis represents the ratio between altitude
above the ground, 𝑍, and propeller radius, 𝑅, and 𝑦-axis represents the ratio between
the lift experienced while hovering IGE and OGE) and data samples collected from
our implementation in the simulator. Bottom: Collected flight data for training: blue
curve indicates ground effect force along body 𝑧-axis, 𝐹𝑔,𝑧, orange curve indicates the
altitude above the ground of the quadrotor, and shaded areas represent data partition
into training/validation/test data set. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

all the network parameters (i.e., 𝛩) using Xavier initialization method
and picked the size for each batch of 64 data samples. Adam optimizer
with weight decay (i.e., an alternative of network structural error) was
used for training the network to avoid the overfitting problem.

5.3. Model comparison and ablation study

To demonstrate the effectiveness of the proposed PINN, we per-
formed extensive comparisons on a bench of models which can be
categorized into: (i) linearized mathematical model, (ii) purely black-
box model (i.e., vanilla DNN similar to [11]), and (iii) PINN model
(with same structure settings as the vanilla one). Moreover, ablation
study was also carried out to investigate the influence of using Batch
Normalization (BN) and cyclical annealing scheduler along with our
7

Fig. 6. Data set of simulated flight corrupted with periodic wind. The top three
plots illustrate the composition of aerodynamic forces including drag and wind. The
bottom plot shows the profile of periodic wind in forward direction with speed
𝑣𝑤𝑖𝑛𝑑 = 2.5 sin(𝜋𝑡

5
) + 2.5, superimposed with shaded areas representing data partition

into training/validation/test data set.

PINN. A brief overview of all the models considered in our comparison
and ablation studies is reported in Table 2.

All the three test data sets were used for evaluation, taking into
account drag, ground effect, and periodic wind. In our assessment
trials, all the considered models were evaluated in a single setting
with one selected test data set for 20 times, of which results were
averaged over multiple seeds and reported in Table 3. Noted that not
only the prediction error (𝛥𝑌) is considered as performance metrics
in our evaluation, but also the difference of slope (or rotation angle)
between prediction and label CCEs, denoted by 𝛥𝑚, is treated as an

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.

a
E
a
v
s
o
t
t
i
i
l
u
t
s
o

N
p
e
t
i
c

Table 2
Models for comparison and ablation studies. To reveal the effectiveness of our proposed approach, our particular interest is paid to: (i) the
structure of the model, (ii) whether BN is applied or not, (iii) how the regularization hyperparameters are set during the training, and (iv) on
which data set is trained the model. Bullets (∙) symbolizes the highlighted features present within the model.
Model Structure BN Hyperparameter Data set

ID Linearized
model

Vanilla
DNN

PINN w/o w/ Constant Cyclical
annealing

1 2 3 Reduced
data set

1 ∙ ◦ ◦ n/a n/a n/a n/a ∙ ◦ ◦ ◦
2 ◦ ∙ ◦ ∙ ◦ n/a n/a ∙ ◦ ◦ ◦
3 ◦ ◦ ∙ ∙ ◦ ∙ ◦ ∙ ◦ ◦ ◦
4 ◦ ◦ ∙ ∙ ◦ ◦ ∙ ∙ ◦ ◦ ◦
5 ◦ ∙ ◦ ◦ ∙ n/a n/a ∙ ◦ ◦ ◦
6 ◦ ◦ ∙ ◦ ∙ ◦ ∙ ∙ ◦ ◦ ◦
7 ◦ ∙ ◦ ◦ ∙ n/a n/a ∙ ◦ ◦ ∙
8 ◦ ◦ ∙ ◦ ∙ ◦ ∙ ∙ ◦ ◦ ∙
9 ◦ ∙ ◦ ◦ ∙ n/a n/a ∙ ◦ ◦ ∙
10 ◦ ◦ ∙ ◦ ∙ ◦ ∙ ∙ ◦ ◦ ∙
11 ◦ ∙ ◦ ◦ ∙ n/a n/a ◦ ∙ ◦ ◦
12 ◦ ◦ ∙ ◦ ∙ ◦ ∙ ◦ ∙ ◦ ◦
13 ◦ ∙ ◦ ◦ ∙ n/a n/a ◦ ◦ ∙ ◦
14 ◦ ◦ ∙ ◦ ∙ ◦ ∙ ◦ ◦ ∙ ◦
Table 3
Comparison results. 𝛥𝑌 denotes the absolute value of prediction error between prediction 𝑌 and label 𝑌 . 𝛥𝑚𝑖 denotes the absolute difference
of slope (or rotation angle) between prediction and label CCEs where 𝑖 = 𝜙, 𝜃, 𝜓 denotes the three degree of rotation. ̄(⋅) denotes averaging over
multiple seeds and 𝜎(⋅) denotes the corresponding standard deviation. Superscript † and ‡ denote linearized mathematical model (Eq. (3)) and
vanilla DNN, respectively. The results of comparison and ablation studies are reported in group which are splitted by horizontal lines with the
best performance indicated in bold.
Data set Model 𝛥𝑌 𝜎(𝛥𝑌) 𝛥𝑚̄𝜙 𝜎(𝛥𝑚)𝜙 𝛥𝑚̄𝜃 𝜎(𝛥𝑚)𝜃 𝛥𝑚̄𝜓 𝜎(𝛥𝑚)𝜓
1 1† 1.023e−1 – 𝟏.𝟑𝟐𝟏 – 6.327 – 𝟗.𝟐𝟎𝟎e−𝟐 -

2‡ 3.867e−3 2.424e−4 22.669 4.603 25.309 4.626 1.402 0.466
3 3.775e−3 3.525e−4 12.507 1.666 𝟏.𝟕𝟎𝟔 1.498 0.118 9.611e−2
4 𝟑.𝟒𝟗𝟑e−𝟑 3.296e−4 16.550 2.517 23.543 4.238 0.463 0.204

5‡ 2.625e−3 1.160e−4 26.409 4.746 𝟐𝟖.𝟐𝟖𝟏 5.491 0.499 0.118
6 𝟐.𝟒𝟖𝟎e−𝟑 1.030e−4 𝟐𝟒.𝟑𝟑𝟕 3.555 28.604 4.618 𝟎.𝟐𝟕𝟑 0.0677

7‡ 4.874e−3 6.764e−4 33.717 4.994 22.997 4.762 0.347 0.142
8 𝟑.𝟕𝟗𝟑e−𝟑 3.444e−4 𝟔.𝟓𝟓𝟎 1.546 𝟔.𝟒𝟕𝟐 1.478 𝟎.𝟏𝟑𝟔 4.227e−2

9‡ 5.981e−3 1.190e−3 40.489 7.631 23.196 6.782 𝟎.𝟐𝟔𝟗 0.141
10 𝟒.𝟒𝟎𝟓e−𝟑 6.185e−4 𝟏𝟐.𝟎𝟓𝟑 1.176 𝟏.𝟏𝟕𝟏 1.383 0.316 3.021e−2

2 11‡ 2.747e−4 4.570e−5 𝟒.𝟓𝟖𝟐 1.829 𝟏.𝟔𝟏𝟓 0.796 57.040 11.849
12 𝟐.𝟓𝟖𝟎e−𝟒 4.290e−5 5.662 2.031 1.724 0.631 𝟐𝟑.𝟑𝟗𝟗 5.521

3 13‡ 4.771e−3 3.661e−4 9.526 4.686 18.904 5.065 6.954 0.997
14 𝟒.𝟓𝟐𝟓e−𝟑 3.087e−4 𝟓.𝟕𝟓𝟒 3.315 𝟏𝟔.𝟓𝟖𝟕 3.202 𝟏.𝟕𝟐𝟗 0.716
p
v
p

indicator of how well the network learns the prior knowledge, which
in our case is the conservation law of momentum.

Discussion 1: Linearized mathematical model as baseline. We first ex-
mined the performance given by the linearized mathematical model in
q. (3) (‘‘Model 1’’ in Table 3) compared to a vanilla DNN (‘‘Model 2’’)
nd PINNs (‘‘Model 3 and 4’’) with 1 data set. It was found that both
anilla DNN and PINN, no matter with which settings, outperforms
ignificantly the linearized model in terms of prediction error by at least
ne order of magnitude. This is expected since drag is included during
he data collection which becomes non-negligible for agile maneuvers,
hereby degrading the performance of linearized model. Interestingly, it
s noted that linearized model has relatively small values on 𝛥𝑚, mean-
ng that it is ‘‘in general’’ more physically consistent compared to those
earning-based models. Despite sounding somewhat contradictory, it is
nderstandable because CCE extracts linearity from the data to reveal
he global trend, which is more robust to aerodynamic-dominant data
amples than MSE. As a result, the linearized model has a larger ‘‘bias’’
n prediction, but scores a lower ‘‘bias’’ in terms of the slope of CCE.
Discussion 2: Effectiveness of PINN and cyclical annealing scheduler.

ext, we draw the conclusion that PINN (‘‘Model 3 and 4’’) has superior
erformance than the vanilla DNN (‘‘Model 2’’) in terms of prediction
rror (for better visualization, see Fig. 7). Moreover, it can be seen
hat the use of cyclical annealing scheduler (‘‘Model 4’’ with settings
n Fig. 3) further boosts the performance compared to the one with
8

onstant value of regularizer (‘‘Model 3’’). We also plot 3𝜎 CCE, as
ost-hoc model interpretability technique, of the predictions given by
anilla DNN and PINN for one single seed, which have competitive
rediction performance on test error: 3.322 × 10−3 for the former while

3.061 × 10−3 for the latter. From Fig. 8, it can be seen that the pre-
diction CCE of vanilla DNN has larger deviation of slope (or rotation
angle) compared to the target CCE than PINN does, which implies less
capability of learning prior knowledge and physical consistency of the
learned model.

Discussion 3: Benefitting from BN. As an effective practice to enhance
network optimization by eliminating internal covariate shifts within
each layer, we also studied if PINN can take advantage of BN (note
that ‘‘Model 2 to 4’’ do not use BN). From Table 3 or Fig. 7, it can be
seen that we achieved the best model (‘‘Model 6’’) for 1 data set using
PINN with both cyclical annealing scheduler and BN. Note that vanilla
DNN also reaches competitive performance with BN (‘‘Model 5’’) and
we believe both two models in this situation are near performance
saturation thanks to the large data set and the powerful learning
potentials given by DNN and practical tricks. However, as we will see
next, PINN establishes noticeable superiority over vanilla DNN when
facing relatively smaller data set.

Discussion 4: Performance on reduced data set. To examine the ad-
vantage of PINN in terms of generalization capability on unseen data
endowed by informed physics, we re-trained the vanilla DNN and PINN
on the reduced data set, i.e., 20% (∼ 3k) of 1 instead of 60% (∼ 9k).

In this circumstance, PINN (‘‘Model 8 and 10’’) has shown pronounced

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.
Fig. 7. Comparisons of test error by different model on 1 data set. Vertical axis
represents different models M2 to M10 with abbreviations of the employed loss function
indicated in gray boxes on the right: ‘‘MSE’’ denotes the vanilla DNN, ‘‘PHY-CONST’’
denotes the PINN with constant hyperparameter (𝜆LM = 𝜆max), and ‘‘PHY-CA’’ denotes
the PINN with cyclical annealing scheduler. Results in red bars are yielded from models
(M2, M3, M4) trained on 60% of data (∼ 9k) without BN. Results of similar models
but trained with BN (𝑀5,𝑀6) are shown in green. Yellow (M7, M8) and orange (M9,
M10) bars show the results of models with BN but trained only on 20% of data (∼ 3k)
and evaluated on 40% (∼ 6k) and 80% (∼ 12k) of data, respectively. All the results are
averaged over multiple seeds with error bars representing the standard deviation. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 8. Comparisons of CCE between vanilla DNN and PINN. Targets and predictions
are indicated by dot and plus sign, respectively. Shaded ellipses illustrate 3𝜎 CCEs with
dashed line highlighting the slope. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

performance over vanilla DNN (‘‘Model 7 and 9’’) in terms of both
prediction error and physical consistency, though performance degra-
dation is observed for both networks compared to those trained on the
original (full) data set. This result highlights the stronger generalization
capability of PINN in the small data regime. Hence, our proposed
method constitutes an effective means to train DNN-based controllers
with small data sets, while maintaining an acceptable generalization
capability — an issue that is crucial in many robotics and control
applications [38]. Meanwhile, it may also lay the foundation for online
modeling using real flight data as our future research direction.

Discussion 5: Evaluation on data sets with ground effect and periodic
wind. Lastly, we evaluated the vanilla DNN and PINN on 2 (with
additional ground effect) and 3 (with additional periodic wind) data
set. Same network structure was used except that we took altitude
as an extra input feature for both networks trained with 2 since
it has been empirically proved to be a critical variable for ground
effect [33,34]. From Fig. 9 and Table 3, it is shown that PINN has
lower prediction error on both data sets and reveals higher physical
consistency in terms of CCEs. Therefore, despite the fact that we guide
the network learning with the conservation law of momentum instead
of prior knowledge on aerodynamics, the resulting PINN exhibits better
9

Fig. 9. Comparisons of test error by different model on 2 (upper) and 3 (lower)
data set. All the results are averaged over multiple seeds with error bars representing
the standard deviation.

generalization capability than vanilla DNN when facing different or
even combined aerodynamic effects.

5.4. Computational complexity

Compared to the vanilla DNN, the additional computational com-
plexity of our proposed PINN mainly comes from the inclusion of
the local monotonicity loss (i.e., Algorithm 1), which is composed
of tanh(⋅) and other basic arithmetic operators. Thanks to automatic
differentiation by PyTorch (e.g., ‘‘torch.autograd’’), backpropagation
using the chain rule of the known gradients can be easily performed
due to the fact that we implemented Algorithm 1 all in form of tensors.

According to our training trials over 20 runs with random seed,
given the training dataset of size ∼ 12k (∼ 9k for training, ∼ 3k for
validation) and running for 300 epochs, it took ∼ 234 sec (∼ 3.9min) and
∼ 373 sec (∼ 6.2min) for training a vanilla DNN (‘‘Model 2’’ in Table 3)
and the proposed PINN (‘‘Model 4’’ in Table 3), respectively, using
CUDA on a laptop with AMD Ryzen 7 5800 h and NVIDIA GeForce
RTX 3060. This increment of the training time is partially compensated
by the fact that PINNs generally achieve better performance to vanilla
DNNs in small data regime [15]. Undoubtedly, an online implementa-
tion may be unpractical for both methodologies. However, their usage
is generally acceptable for non-time-critical situations, where offline
training is allowed.

6. Conclusions

Learning-based approaches such as DNN have aroused unprece-
dented attention in modeling and data-driven control in recent years.
Nonetheless, only few efforts have been paid to address the inter-
pretability issue of these black-box methods, thereby leading to ma-
jor concerns in safety and trustworthiness when applied to robotic
applications in the real world. In this work, we step toward this
goal by proposing a PINN for learning quadrotor dynamics, which in
essence is a deep neural network informed by prior domain knowl-
edge. We showed in detail how to seamlessly embed the conservation
law of momentum into the training loss function with cyclical an-
nealing scheduler following an unstructured learning strategy. Besides
the physics-informed model, we also introduced CCE as a post-hoc
model interpretability visualization to evaluate and understand model’s
behavior. All of these are devoted to enhancing the trustworthiness of
learning-based approach.

To facilitate data collection in our studies, we also set up a visual
and physical simulator based on AirSim with a custom implementation
of the quadrotor ground effect. User-level APIs in C++ and Python are
provided, which are all made publicly available for further research

in UAV community. Through our extensive simulation campaign over

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.
multiple seeds, our proposed PINN consistently demonstrates better
generalization capability compared to linearized mathematical model
and vanilla DNN evaluated on both complete and reduced data set
including various aerodynamics. We also carried out ablation studies
and analyzed the additional computational complexity of our proposed
approach compared to vanilla DNN.

As for future work, we aim to continue exploring the potential
of PINN for online learning using real flight data. Besides, we plan
to integrate the proposed PINN as control-oriented model into the
controller design to further evaluate its contribution to the closed-
loop performance. Last but not least, we would like to investigate new
paradigms of PINN that combine structured and unstructured learning
so as to leverage their own advantages for UAV modeling and control.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Weibin Gu reports financial support was provided by Amazon Science.
Alessandro Rizzo reports financial support was provided by PIANO
NAZIONALE DI RIPRESA E RESILIENZA (PNRR).

Data availability

Data will be made available on request.

Acknowledgments

This work has been carried out within the MOST – Sustainable
Mobility National Research Center and received funding from the Eu-
ropean Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA
E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTI-
MENTO 1.4 – D.D. 1033 17/06/2022, CN00000023) and within the
FAIR - Future Artificial Intelligence Research and received funding
from the European Union Next-GenerationEU (PIANO NAZIONALE
DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE
2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013). This
manuscript reflects only the authors’ views and opinions, neither the
European Union nor the European Commission can be considered
responsible for them. Weibin Gu is partially supported by the 2021
Amazon Research Award titled ‘‘Physics-Informed Machine Learning
for Trustworthy Control of Autonomous Robots.’’

References

[1] K. Takaya, H. Ohta, K. Shibayama, V. Kroumov, Tracking control of unmanned
aerial vehicle for power line inspection, Motion Planning [Working Title] (2021).

[2] W. Gu, D. Hu, L. Cheng, Y. Cao, A. Rizzo, K.P. Valavanis, Autonomous wind
turbine inspection using a quadrotor, in: 2020 International Conference on
Unmanned Aircraft Systems, ICUAS, 2020, pp. 709–715.

[3] N. Dalwadi, D. Deb, S.M. Muyeen, Adaptive backstepping controller design of
quadrotor biplane for payload delivery, IET Intell. Transp. Syst. (2022).

[4] H. Shakhatreh, A.H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E.K. Almaita, I.M. Khalil,
N.S. Othman, A. Khreishah, M. Guizani, Unmanned aerial vehicles (UAVs): A
survey on civil applications and key research challenges, IEEE Access 7 (2019)
48572–48634.

[5] W. Gu, K.P. Valavanis, M.J. Rutherford, A. Rizzo, UAV model-based flight control
with artificial neural networks: A survey, J. Intell. Robotic Syst. 100 (2020)
1469–1491.

[6] P.A. Ioannou, J. Sun, Robust adaptive control, 2012.
[7] G. Hoffmann, H. Huang, S.L. Waslander, C.J. Tomlin, Precision flight control

for a multi-vehicle quadrotor helicopter testbed, Control Eng. Pract. 19 (2011)
1023–1036.

[8] T.-W. Ou, Y. Liu, Adaptive backstepping tracking control for quadrotor aerial
robots subject to uncertain dynamics, in: 2019 American Control Conference,
ACC, 2019, pp. 1–6.

[9] T. Chingozha, O.T. Nyandoro, Adaptive sliding backstepping control of quadrotor
UAV attitude, IFAC Proc. Vol. 47 (2014) 11043–11048.

[10] A. Punjani, P. Abbeel, Deep learning helicopter dynamics models, in: 2015
IEEE International Conference on Robotics and Automation, ICRA, 2015, pp.
10

3223–3230.
[11] S. Bansal, A.K. Akametalu, F.J. Jiang, F. Laine, C.J. Tomlin, Learning quadrotor
dynamics using neural network for flight control, in: 2016 IEEE 55th Conference
on Decision and Control, CDC, 2016, pp. 4653–4660.

[12] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue,
S.-J. Chung, Neural lander: Stable drone landing control using learned dynamics,
in: 2019 International Conference on Robotics and Automation, ICRA, 2019, pp.
9784–9790.

[13] G. Shi, W. Honig, X. Shi, Y. Yue, S.-J. Chung, Neural-Swarm2: Planning and
control of heterogeneous multirotor swarms using learned interactions, 2020,
ArXiv. arXiv:2012.05457.

[14] A.B. Arrieta, N.D. Rodríguez, J.D. Ser, A. Bennetot, S. Tabik, A. Barbado, S.
García, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable
artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI, 2019, ArXiv. arXiv:1910.10045.

[15] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang,
Physics-informed machine learning, 2021.

[16] J. Callanan, R. Iqbal, R. Adlakha, A. Behjat, S. Chowdhury, M. Nouh, Large-
aperture experimental characterization of the acoustic field generated by a
hovering unmanned aerial vehicle, J. Acoust. Soc. Am. 150 3 (2021) 2046.

[17] R. Iqbal, A. Behjat, R. Adlakha, J. Callanan, M. Nouh, S. Chowdhury, Efficient
training of transfer mapping in physics-infused machine learning models of UAV
acoustic field, 2022, ArXiv arXiv:2201.06090.

[18] R. Iqbal, A. Behjat, R. Adlakha, J. Callanan, M. Nouh, S. Chowdhury, Auto-
differentiable transfer mapping architecture for physics-infused learning of
acoustic field, IEEE Trans. Artif. Intell. (2023).

[19] M. Lutter, C. Ritter, J. Peters, Deep Lagrangian networks: Using physics as model
prior for deep learning, 2019, ArXiv. arXiv:1907.04490.

[20] J.K. Gupta, K. Menda, Z. Manchester, M.J. Kochenderfer, A general framework
for structured learning of mechanical systems, 2019, ArXiv arXiv:1902.08705.

[21] M. Lutter, J. Peters, Combining physics and deep learning to learn
continuous-time dynamics models, 2021, ArXiv arXiv:2110.01894.

[22] A. Karpatne, W. Watkins, J.S. Read, V. Kumar, Physics-guided neural networks
(PGNN): An application in lake temperature modeling, 2017, ArXiv arXiv:1710.
11431.

[23] S. Shaier, M. Raissi, P. Seshaiyer, Data-driven approaches for predicting spread
of infectious diseases through DINNs: Disease informed neural networks, 2021.

[24] S. Shah, D. Dey, C. Lovett, A. Kapoor, AirSim: High-fidelity visual and physical
simulation for autonomous vehicles, in: FSR, 2017.

[25] C. Schelp, An alternative way to plot the covariance ellipse, 2018, https://
carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html.

[26] J.E. Sierra, M. Santos, Modelling engineering systems using analytical and neural
techniques: Hybridization, Neurocomputing 271 (2018) 70–83.

[27] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, D. Scaramuzza, NeuroBEM: Hybrid
aerodynamic quadrotor model, 2021, ArXiv arXiv:2106.08015.

[28] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar, Y. Yue, S.-J.
Chung, Neural-fly enables rapid learning for agile flight in strong winds, Science
Robotics 7 (2022).

[29] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[30] S. Greydanus, M. Dzamba, J. Yosinski, Hamiltonian neural networks, 2019, ArXiv
arXiv:1906.01563.

[31] Y.D. Zhong, B. Dey, A. Chakraborty, Symplectic ODE-net: Learning Hamiltonian
dynamics with control, 2020, ArXiv arXiv:1909.12077.

[32] A. Karpatne, G. Atluri, J.H. Faghmous, M.S. Steinbach, A. Banerjee, A.R. Ganguly,
S. Shekhar, N.F. Samatova, V. Kumar, Theory-guided data science: A new
paradigm for scientific discovery from data, IEEE Trans. Knowl. Data Eng. 29
(2017) 2318–2331.

[33] S.A. Conyers, M.J. Rutherford, K.P. Valavanis, An empirical evaluation of ground
effect for small-scale rotorcraft, in: 2018 IEEE International Conference on
Robotics and Automation, ICRA, 2018, pp. 1244–1250.

[34] X. Kan, J.R. Thomas, H. Teng, H.G. Tanner, V.R. Kumar, K. Karydis, Analysis of
ground effect for small-scale UAVs in forward flight, IEEE Robot. Autom. Lett.
4 (2019) 3860–3867.

[35] R.W. Beard, Quadrotor dynamics and control, 2008.
[36] H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz, L. Carin, Cyclical annealing schedule:

A simple approach to mitigating kl vanishing, in: NAACL, 2019.
[37] I.C. Cheeseman, P. D, W.E. Bennett, P. D, W.E. Bennett, The effect of Ground

on a Helicopter Rotor in Forward Flight, Tech. Rep., 1955.
[38] G. Joshi, J. Virdi, G.V. Chowdhary, Asynchronous deep model reference adaptive

control, 2020, ArXiv arXiv:2011.02920.

http://refhub.elsevier.com/S0921-8890(23)00208-7/sb1
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb1
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb1
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb2
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb2
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb2
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb2
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb2
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb3
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb3
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb3
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb4
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb4
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb4
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb4
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb4
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb4
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb4
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb5
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb5
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb5
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb5
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb5
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb6
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb7
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb7
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb7
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb7
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb7
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb8
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb8
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb8
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb8
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb8
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb9
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb9
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb9
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb10
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb10
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb10
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb10
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb10
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb11
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb11
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb11
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb11
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb11
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb12
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb12
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb12
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb12
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb12
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb12
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb12
http://arxiv.org/abs/2012.05457
http://arxiv.org/abs/1910.10045
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb15
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb15
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb15
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb16
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb16
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb16
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb16
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb16
http://arxiv.org/abs/2201.06090
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb18
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb18
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb18
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb18
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb18
http://arxiv.org/abs/1907.04490
http://arxiv.org/abs/1902.08705
http://arxiv.org/abs/2110.01894
http://arxiv.org/abs/1710.11431
http://arxiv.org/abs/1710.11431
http://arxiv.org/abs/1710.11431
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb23
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb23
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb23
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb24
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb24
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb24
https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html
https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html
https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb26
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb26
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb26
http://arxiv.org/abs/2106.08015
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb28
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb28
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb28
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb28
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb28
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb29
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb29
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb29
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb29
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb29
http://arxiv.org/abs/1906.01563
http://arxiv.org/abs/1909.12077
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb32
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb32
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb32
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb32
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb32
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb32
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb32
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb33
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb33
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb33
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb33
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb33
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb34
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb34
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb34
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb34
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb34
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb35
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb36
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb36
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb36
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb37
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb37
http://refhub.elsevier.com/S0921-8890(23)00208-7/sb37
http://arxiv.org/abs/2011.02920

Robotics and Autonomous Systems 171 (2024) 104569W. Gu et al.
Weibin Gu is currently a Ph.D. candidate in the Depart-
ment of Electronics and Telecommunications at Politecnico
di Torino. He received his M.Sc. Degree in Mechatronic
Engineering from Politecnico di Torino in 2017 and his B.Sc.
Degree in Mechanical Engineering from Tongji University
and Politecnico di Torino (dual-degree program) in 2015.
From September 2019 to October 2020, he worked as
flight control engineer at Shanghai FOIA Co., Ltd., China,
responsible for UAV-based autonomous project for industrial
applications. He has also been actively collaborating with
the University of Denver and Politecnico di Torino since
July 2017. His research focuses on the intersection of
machine learning and control theory with the applications
to real-world complex systems such as robotics.

Stefano Primatesta is currently an Assistant Professor in
the Department of Mechanical and Aerospace Engineering.
He received his Ph.D. in Computer and Control Engineering
from Politecnico di Torino in 2019, his M.Sc. in Mechatronic
Engineering, and his B.S in Electronic Engineering from
Politecnico di Torino in 2011 and 2014, respectively.

His field of research is the use of Remotely Piloted
Aircraft Systems in urban environments including virtual
modeling and multi-dimensional risk analysis. His research
interests include also autonomous navigation and service
robotics, with applications on unmanned aerial vehicles and
unmanned ground vehicles.
11
Alessandro Rizzo received the Laurea degree (summa cum
laude) in computer engineering and the Ph.D. degree in
automation and electronics engineering from the University
of Catania, Italy, in 1996 and 2000, respectively. In 1998,
he worked as a EURATOM Research Fellow with JET Joint
Undertaking, Abingdon, U.K., researching on sensor valida-
tion and fault diagnosis for nuclear fusion experiments. In
2000 and 2001, he has worked as a Research Consultant at
ST Microelectronics, Catania Site, Italy, and as an Industry
Professor of robotics with the University of Messina, Italy.

From 2002 to 2015, he was a tenured Assistant Pro-
fessor with the Politecnico di Bari, Italy. Since 2012, he
has been a Visiting Professor with the New York University
Tandon School of Engineering, Brooklyn, NY, USA.

In November 2015, he joined Politecnico di Torino,
where he is an Associate Professor in the Department of
Electronics and Telecommunications and established the
Complex Systems Laboratory. Dr. Rizzo is engaged in con-
ducting and supervising research on complex networks and
systems, modeling and control of nonlinear systems, and
cooperative robotics. He is the author of one book, two
international patents, and about 200 papers on international
journals and conference proceedings. He was a recipient of
the Award for the Best Application Paper at the IFAC world
triennial conference in 2002 and of the Award for the Most
Read Papers in Mathematics and Computers in Simulation
(Elsevier) in 2009. He has also been a Distinguished Lecturer
of the IEEE Nuclear and Plasma Science Society and one
of the recipients of the 2019 and 2021 Amazon Research
Awards in robotics.

	Physics-informed Neural Network for Quadrotor Dynamical Modeling
	Introduction
	Related Work and Contributions
	Learning-based dynamical modeling of UAV
	Learning dynamics from trajectory data using PINN
	Main contributions

	Mathematical Model of Quadrotor and Problem Formulation
	Quadrotor dynamics
	Rotor model
	Linearized model
	Problem formulation

	Physics-Informed Neural Network
	Network structure
	Incorporation of physics as learning bias
	Cyclical annealing scheduler
	Post-hoc model interpretability visualization

	Results and Discussion
	Visual and physical simulator
	Network training
	Model comparison and ablation study
	Computational complexity

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

