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Summary  

The conceptualization of a novel technique aimed to straightness measurements 
and the practical realization of a mechanical device able to perform them without 
contact is presented. Such device –called InPlanT– is based on the acquisition of 
the luminous signal backscattered by a spherical dielectric target by means of a 
photodiode placed in the backward beam; the device proved capable of extracting 
the information about the lateral position of the target with respect to the onward 
beam. Three different prototypes were built, all of them based on the mechanical 
modulation of the signals retroreflected by the target. Suitable mathematical 
approaches to deal with the peculiar patterns of the signals (changing with the 
longitudinal distance of the sphere) were implemented, an acquisition procedure 
and a processing strategy of the data were implemented in order to extract the 
sought spatial information from them by means of a proper software expressly 
written. Quantitative evaluations –carried on with a statistical approach– of the 
factors affecting the accuracy of the measurements (primarily the jitter and the air 
turbulence, especially over large distances) were key to gain a better knowledge of 
the dynamics of the phenomena involved, and proper software adaptations to deal 
with these issues were applied.  

The last versions of the device were preliminary tested on a high-accuracy 
CMM to evaluate their response in terms of maximum error of indication with 
respect to targets exploring a nearly perfect straight line in space. Experimental 
results showed that the achieved accuracy is better than ±2.1 μm within the 
measuring range of ~(0 ÷ 1.7) m. A straightness measurement on a simulated 
sinusoidal path was also performed, obtaining a peak-to-peak indication error of 
±7 μm. 
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Chapter 1 

Straightness measurement in Large 
Volume Metrology 

 

1.1 Introduction 

Straightness – and its associated tolerance – is a feature that belongs to an ideal 
straight line, and characterizes a line extrapolated by an artifact (e.g. an edge, the 
intersection of an ideal plane or a section plane with the volume of a body, a median 
line etc.), when there is no need to explore its whole surface, or when sampling a 
large portion is unpractical; it is a form characteristic of a profile that can be 
extracted either from a surface by intersecting it with a reference plane (nominally 
orthogonal to the surface itself) or from a path in 3D space by projecting it onto a 
straightness plane: the first case is applied to material workpieces and standards, 
and it is an aspect investigated in inspections; the second case is crucial for 
machines, such as CMMs (coordinate measuring machines) and machine tools, 
since it contributes to their performance: a proper straightness of their guides 
ensures a good performance in their motion along their linear axes; its importance 
stems from the fact that, in mechanics, straightness (and other features too, of 
course, like flatness that is simply its extension to 3D space) evaluation of a 
workpiece helps to assess its conformity to some fundamental specifications. 
Emblematic cases can be found in industry both in manufacturing of products (like 
in machine tool control systems, where a tight tolerance in motion straightness is 
required in order to ensure a high machining quality and, consequently, a low 
percentage of discarded pieces), and in their inspection: the accuracy of a 
dimensional measurement carried on through coordinate measuring machines 
cannot indeed prescind from the goodness of the guideways’ straightness).  

Straightness error – whose tolerance zone is specified by the International 
Standard Organization (1) – is defined as the maximum orthogonal deviation with 
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respect to a reference straight line fitting the profile under examination: if a 
reference line is extrapolated in the assessment of a profile, the local straightness 
deviation ∆Sl can be seen as the distance of each point of the studied profile from 
the chosen reference line, which should comply with the specificity of the 
straightness characterization; usual reference lines found both in literature and in 
common practice are minimum zone (MZ) and least-squares (LS) reference lines, 
but also the reference line passing through two points defining the profile extremes 
is also used, since this strategy is strictly reminiscent of the procedure of zeroing 
the instrument at the extremes of its stroke in a normal alignment process. The 
derived measured parameters – such as the peak-to-valley straightness deviation 
(STRt) or the root-mean-square straightness deviation (STRq) – quantify the total 
amount of deviation of the profile from ideal straightness.  

The correct estimation of this particular class of form errors, together with the 
evaluation of other geometrical errors, allows to implement proper techniques of 
compensation both in machining and in measurement processes. The practical 
methods for straightness error measurement ordinarily rely on two basically 
different strategies: measuring the angle or measuring the length (2); this thesis 
work, after the description of the mathematical model formulated to apply the 
concepts of straightness error measurement to machine tools, explains the efforts 
carried on to design and build a device able to a contactless estimation of the 
straightness error of a linear path on the base of a totally new paradigm. A 
fundamental role in the assessment of form errors in general and, specifically, of 
the straightness error is played by the algorithm chosen to perform the calculation 
on the available dataset, traditionally based on least squares method or on minimum 
zone principle ((3), (4)), but also optimization algorithms (like the genetic algorithm 
(5) and particle optimization algorithm (6)) are recently gaining popularity.  

The approach of measuring the angle is principally used to estimate the 
straightness of a rail, a guide or, generically, other artifacts; a common method 
relies on fixing a mirror on a square support which is in contact with the guide 
undergoing measurement: the tilts of the same mirror are evaluated by means of a 
fixed remote optical assembly, with the square continuously or in discrete steps 
scanning the profile; by analyzing the measured tilts it is possible to reconstruct the 
tilts of the surface, and consequently the straightness. Instruments based on angle 
sensors (7), autocollimators (8), angular interferometers ((2), (9)) are typically used 
in research applications and industry, but also a simple level (10) can fit the purpose. 
For what concerns optically machined surfaces, the same surface can function as a 
reflective mirror, leading to even greater precision in results; however, this 
particular circumstance is rarely applicable on a large scale (11). Also machine 
vision-based techniques are worth to be mentioned, and are gaining popularity (12).  

Two main approaches to measure the straightness with reference to a machine 
moving along an ideally straight line are suitable: by reference to a material 
standard (13) or to a laser beam. The first approach relies on the installation of a 
straightness standard near the axis under investigation, and the distance between 
them is measured along the path by using dedicated sensors such as optical or 
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mechanical probes (14), capacitive sensors (15) or interferometric techniques. 
These procedures are eventually affected by the accuracy of the straightness 
standard and of its calibration, resulting in a mix of contributions due both to the 
imperfection of the measuring machine and to the artifact to be measured; 
sometimes the combined straightness deviations can be separated by reversal 
technique (14). The use of a laser beam is in general the most practical, and is at the 
foundation of the presented work. One of the most common realizations consists in 
an interferometric arrangement where a Wollaston prism splits the incident beam 
along the measurement axis into two sub-measurement beams diverging by a small 
angle, impinge onto a pair of reflectors installed on the moving stage under test, 
travel back towards the Wollaston prism and interfere with each other; the 
interference fringes measure the optical path difference, and hence quantify the 
straightness (16). This technique is complex, expensive due to the high accuracy 
interferometric set up required, and is sensitive to yaw. Another approach is based 
on the estimation of the lateral displacement of the testing machine with respect to 
the center of mass of a laser beam; it is based on a certain type of detector (e.g. a 
CMOS camera, a 4-quadrant photodetector or a position sensitive device) 
connected to the machine capable of extracting the sought information on the 
transversal position of a representative portion of the laser beam (like the center of 
mass). Another strategy relies on the application of a retroreflector (17) on the 
moving machine, with a detector placed to the still machine component (18). 
Sometimes, when a high level of accuracy is required, the non-perfect straight 
nature of the laser beam should be accounted for, especially when air turbulence 
randomly influences the beam stability; likewise, a bending of the beam caused by 
an orthogonal gradient of the air refractivity should be evaluated, since it introduces 
a systematic effect in the measurement that needs to be compensated (19). To 
conclude this review, another technique is focused on the evaluation of transverse 
acceleration while the axis is moving at constant speed (20).  

Independently on the peculiar approach used to manage the obtained data, the 
algorithm used to infer the sought information on straightness is a key factor for the 
success of the whole measurement process. The results of the work described in this 
thesis arise from the application of a custom algorithm that converts the phase 
information of a laser beam retroreflected by a special target (sampling the signal 
in a grid of aligned points) into a spatial information; after a proper calibration, the 
obtained datum is subsequently translated into the sought straightness error of the 
trajectory followed by the same target with respect to the reference beam 
(propagating along a “perfect” straight line) impinging on target itself.  

 

1.2 Background and motivation 

Large Volume Metrology (LVM) – the ability of measuring size, shape, 
location and orientation of large objects, assemblies or machine tools – has a key 
role in many fields involving advanced technology and engineering, manufacturing 
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and scientific research.  Several issues had recently been spotted requiring 
significant improvements: geometric inspection in production technology (in 
accordance with geometrical product specifications - GPS), new techniques for the 
simultaneous measurement of multiple targets with accuracy better than 
photogrammetry, need for traceability in absolute distance meters, how to guarantee 
a proper compensation of refractive index (responsible for bending effects in laser 
propagation), how to achieve better compensation for thermal 
expansion/contraction in presence of temperatures different from standard, 
dynamic acquisition of target positions, and so on. LVM also plays a role in several 
critical processes of alignment in such facilities as CERN and ESRF, in surveying 
industries, in automotive and aeronautics factories, often in non-cooperative 
environment, where optical techniques relying on the use of electromagnetic beams 
propagating in ambient air; however, these techniques generally suffer from lack of 
proper traceability to primary standards of length, and the difficulty of estimation 
of measurement uncertainties often constitute a limit to a large-scale diffusion and 
applicability. LVM technologies are vital in several industrial contexts, where the 
items to be measured or aligned are so bulky in size that they cannot fit with 
conventional measuring machines, nor their transportation to a laboratory is viable 
due to their mass or because they are part of an infrastructure: this means that these 
items necessarily need to be measured in situ, requiring complex strategies to be 
implemented in order to satisfy the metrological needs which arise from time to 
time. Nowadays, novel system are required to be engineered to be a compromise 
between costly yet precise laser trackers and more affordable yet less precise 
photogrammetry, alongside an ongoing requirement for highly accurate and 
traceable large-scale references (such as telemeters) for increasingly expansive 
photogrammetry networks. This will facilitate broader adoption of LVM by small 
and medium-sized enterprises (SMEs), resulting in new applications; the expressed 
requests involve the need for extra innovative LVM instruments relying on 
unconventional and/or affordable sensors and methodologies to address the 
continuously growing range of end user situations, such as enhanced precision 
photogrammetry, and three-dimensional coordinates measurement over extended 
distances, to be exploited in harsh conditions.  

As stated by the International Federation of Robotics and the IEEE Robotics 
and Automation Society, real-time feedback is an essential necessity for complex 
manufacturing tasks, like robotic drilling machines that require precise 
measurement across extensive volumes. Present large-scale factory measurement 
networks, for example those based on iGPS, lack the necessary level of accuracy. 
On the other hand, local solutions based on laser trackers are either too costly or 
too slow. Moreover, there is a lack of integration between localized and factory-
wide metrology, hindering the seamless transition between different measurement 
devices during the manufacturing process. In order to achieve autonomous and 
efficient production, it is crucial to integrate various layers of measurement systems 
that vary in range, speed, accuracy, and cost per target. This combination of 
integrated and diverse LVM systems enables the control system to oversee the 
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entire production or assembly process, allowing flexibility in robot positioning and 
part placement based on measured data. These requirements align with the concepts 
of a "smart factory," "factory of the future," or "industry 4.0." However, for such 
applications, there is currently no standardized and procedural method to estimate 
uncertainty. Simply querying a measurement device for uncertainty estimates based 
on the device model is not feasible. 
The need for improved geometrical performance in machining large parts can be 
divided into two aspects: firstly, the challenging task of determining the error map 
of a large machine tool, which is essential for compensating for geometrical errors; 
secondly, the verification of machine performance during production. Large 
machine tools fall outside the scope of classical Coordinate Measuring Machine 
(CMM) systems, where laser error mapping is feasible, and do not fit into the realm 
of true large volume metrology (ranging in tens or hundreds of meters). Measuring 
volumes of, for example, (6 × 3 × 2) m³ require error mapping and compensation, 
along with the need for high-speed metrology checks during production cycles 
(within maximum cycle times of 20 to 40 seconds). Achievable accuracy is at the 
limit (100 µm) in such applications, and it poses significant challenges in terms of 
traceability and testing. While research exists for small machine tools, the same 
level of investigation is lacking for very large tools and certainly not readily 
available.  

 

1.3 InPlanT: the conceptual starting point 

The work described in this thesis drew inspiration from EMPR project IND53 
LUMINAR (21), and in its context several new tools and facilities were developed, 
tested and demonstrated in a live factory environment at Airbus (Filton, UK). In 
that project, INRIM had developed a device (whose acronym is “InPlanT” – 
Intersecting Planes Technique – (22)) to measure the spatial coordinates of a 
spherical retroreflector contactless in harsh conditions, such as aerospace and 
automotive industry (Figure 1). It relies on the idea that a point target in 3D space 
can be seen as the intersection of three non-parallel planes: the coordinates of the 
target, when using a Cartesian coordinate system, are the Cartesian triad expressing 
the positions of the mutually orthogonal planes.    
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Figure 1. CAD design of measurement axes. 

 
For each coordinate axis, an independent device realized an orthogonal optical 

coordinate plane through the retroreflecting target. The two degrees of freedom 
necessary for the tracking are realized by a linear and a rotary stage; the former 
effectively measures one coordinate of the target. The coordinate of the coordinated 
plane was then one of the sought target coordinates. This was measured by the linear 
stage. The yaw and pitch errors of each moving carriage and the squareness error 
between axes were measured by a common autocollimator and compensated for. 
The beam of a laser is separated in two by a pentaprism mounted on a hollow rotary 
table. The reflected beam impinges on the target, and the retroreflected beam is 
observed by a camera. The passing beam is detected by an autocollimator at the end 
of the linear axis stroke, to detect yaw and pitch errors of the linear stage. In a 2D 
measurement, the autocollimator is common for the two axes to provide the 
squareness reference. Figure 2 and Figure 3 illustrate both the concept and working 
principle of the device. 
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Figure 2. Concept of InPlanT (source: link) 

 

  
 

Figure 3. Working scheme of each InPlanT device. 
 

Several designs of rotary light beam were considered: a beam source with 
tracking capability (like a laser tracer); a continuously tracking rotating stage; and 
a light blade, distributed in space (e.g. using a cylindrical lens or mirror). 
Preliminary tests settled on the second option of a tracking, rotating stage. This 
required further development in order to optimize both the beam launching and 
return beam detection arrangements – tests were performed using a pentaprism 
mounted onto a hard disk motor assembly with a four-quadrant detector for the 
return beam. A final design was arrived at, based on a commercial linear slideway 
onto which is mounted a carriage with commercial rotation stage which holds the 
pentaprism. Light is collimated onto the prism from a nearby lens source. In order 
to maintain orthogonality of the planes, and to compensate for pitch and yaw errors 
of the linear stages an assembly of crossed autocollimators was designed and 
aligned. These achieved a sensitivity of 12 microradians per pixel. 

 

https://www.imeko.org/publications/tc14-2014/IMEKO-TC14-2014-18.pdf
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Figure 4. A 2D version of the INRIM InPlanT system tested at the Airbus facilities as 
two measuring axes (sliders, diagonal on left and right). The two axes are angularly 
linked by an orthogonal pair of autocollimators (rectangular table supporting the 
optics) (source: QMT Magazine, Spring 2017). 

 

  

(a) (b) 
 

Figure 5. Details of 1 m (a) and 2 m (b) strokes. 

 
The images in Figure 4 and Figure 5 show the final pair of linear axes with their 

rotating carriages – the project budget was only sufficient to manufacture a two-
axis prototype - the key elements of the design can be easily seen. A moving linear 
stage carries: a rotary table with rotation axis aligned to the measurement axis, a 
laser collimator (fed by a fibre) aligned to the rotation axis, a pentaprism attached 
to the rotary table which deflects the beam 90° regardless of its orientation. The 
beam impinges onto a retro-reflecting target and the returning beam is deflected 
back by the pentaprism and impinges through a beam splitter onto a camera. The 
camera sees the luminous image of the retro-reflecting sphere and the position of 
the sphere in the camera image drives: vertically, the rotary table; horizontally, the 
linear stage. When the image is centred – possible residuals are compensated –, the 
linear position is measured by a linear encoder and constitutes the sought coordinate 
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for that axis. The mechanical and optical systems were integrated by linking the 
rotary stage controller to a Raspberry Pi computer using Ethernet. The Pi also linked 
to the camera and the linear stage controllers using USB interfaces. A web server 
interface was used to provide user access to the system. Figure 6 and Figure 7 
schematically illustrate the (hardware and software) architecture of the developed 
system. 

 

 

Figure 6. Hardware architecture of the prototype. 

 

 

Figure 7. Software architecture of the prototype.  

 
Testing in the laboratory at INRIM was completed very shortly before the 

transportation for the tests at Airbus. The pentaprism pose was adjusted on the 
rotary stage to obtain a residual angle of (111 ± 46) microradians. The squareness 
error was measured as 935 μm but was reduced down to 97 μm. The sensitivity of 
an axis system was demonstrated as 0.31 pixels/μm. For these prototypes, 
maximum tracking speed is about 1 cm/s because of limited control bandwidth 
(general purpose LabVIEW setup), however the residual error is below 25 μm when 
target is stopped. Granularity in position due to actuator step size is similarly 25 μm. 
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Linear position maximum tracking noise of around 10 μm at 7 m target range was 
demonstrated. In principle, to achieve a (10 × 10 × 5) m³ measuring volume, two 
10 m and one 5 m axes were required. Due to the budget limitation, the project 
prototype was limited to two axes only, with strokes of 1 m and 2 m, respectively. 
Only the 2D coordinates of the projection of the target over a measuring plane could 
be measured at that moment, limited to an area of (1 × 2) m². However, 
measurements in a 3D space at full distance (e.g. at 10 m) were possible thanks to 
the mutual independence among axes. For the measurement campaign, a pre-
calibrated ball-bar (of two n = 2 targets) was attached to a precision rotary indexing 
table, then the table was rotated to 8 different locations and in each location the two 
InPlanT axes were used to measure 2D coordinates of the two targets (Table 1). The 
resulting data were used for a data fit of the parameters (x0, y0) being the centre of 
the circle, and R1 and R2 being the radii of an ellipse (an ellipse was used rather 
than a circle to allow for non-planarity of the experiment) (Figure 8). Initial standard 
deviation of the fit was 276 μm using only the linear encoders on the axes, and this 
was improved to 45 μm by including the measured yaws & pitches of the axes’ rails 
and thermal compensation of the rail distances (Figure 9). 

 

 

Table 1. Testing conditions for the InPlanT final experiment.  
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Figure 8. Strategy for the derivation of the results. 

 

   

(a) (b) (c) 
 

Figure 9. Results obtained in the experiment; (a): without any compensation (σ = 
276 μm), (b): correcting with cameras and thermometer data (σ = 196 μm); (c): 
compensating for yaws and pitches (σ = 45 μm). 

 

1.4 InPlanT concept applied to machine tools 

LUMINAR project ended with encouraging results, and its follow-up project 
EMPIR-17IND03 “LaVA” (23) was at the base of this thesis work, whose intention 
was to apply the explored concepts and the gained experience to a real application 
field. The geometry error compensation of medium/large volume machine tools was 
identified as the target application. The axes of Cartesian machine tools are in fact 
precision linear stages. To implement the new InPlanT concept, the rotary table 
only had to be added as an additional device. The most suitable location to install 
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the rotary table at was initially identified at the machine tool ram, but afterwards it 
was recognized that a mechanical simplification was necessary and the device could 
be installed outside the working space of the machine tool, with just the target 
connected to the spindle (Figure 10). 

  

(a) (b) 
Figure 10. Concepts of InPlanT applied to a machine tool. 

 
Let’s stay with the InPlanT implementation depicted in Figure 10 (a). As the 

device has sensitivity only along the rotary table axis, the rotary table had to be 
reoriented in subsequent measurements. 

An important question about the application was: does a set of measurements 
carried out with such a device gather enough information to detect all machine tool 
geometry errors? Let us take an axis at a time; for illustration, let x be the stroke 
and let z be the alignment of the rotary table axis, coincident with the direction of 
sensitivity. Let us take two targets at the extremes of the x stroke, as depicted in 
Figure 10 (a); they can be illuminated by a rotation of 180° of the rotary table. The 
InPlanT device is effectively a zero detector with a limited measuring range. Its 
zero signal drives the machine tool to adjust its position finely. The extremely good 
measuring capability of the machine axes is then exploited to detect the position in 
space and eventually the geometry errors. 

Two geometry errors give contributions in the direction of sensitivity, the x 
vertical straightness (txz) and pitch (rxy). At each carriage coordinate, the former 
results in the same error at either opposite targets, while the latter in opposite errors, 
as a function of the current distance to the target (that is, the optical arms). By 
comparing the measurements of either targets, the two geometry errors can be 
separated. After 90° repositioning of the rotary table axis to align it to y axis 
(sensitivity along y), the same applies to the x horizontal straightness (txy) and the 
yaw (rxz). Therefore, four geometry error functions of the x carriage (txy, txz, rxz, rxy) 
out of six can be derived. The remaining two are the roll rxx and the scale error txx. 
The roll can be detected with the two targets at the same extreme of the x stroke, at 
the same z coordinate, but y separated as much as possible, that is, at the extremes 
of the measuring volume. The ram supporting the rotary table is moved along x at 
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the same z coordinate as the targets and at a y coordinate nominally mean of the 
targets. Again, each target can be illuminated with a proper rotation of the table. At 
any position of the carriage, three geometry error components give effects: the 
vertical straightness txz, the pitch rxy and the roll rxx. However, the former two are 
already known from the previous measurement and can be compensated for. In 
addition, their errors are equal at either target (or at least have the same sign), while 
that of the roll has opposite signs, and a direct separation is also possible. 

InPlanT is admittedly unable to detect the scale error. In fact, the scale error 
has effect in the same direction of the stroke, whereas InPlanT has sensitivity in an 
orthogonal direction only. In addition, the scale errors are the link to the traceability 
to the SI unit, the metre. There is no calibrated standard of length or length 
measuring instrument in InPlanT, so the scale error cannot be derived through it. 
The scale error should be taken care of separately. This is not deemed as a major 
obstacle, as checking machine tools along their axes e.g. by an interferometer is 
common practice in industry (see (24)). Similar reasoning, set up and derivation of 
results is then applied in turn to the other machine axes, y and z. 

What remains is the joint effect of the axes, the squarenesses. They are three 
angular values and can be easily derived separately after InPlanT compensation of 
all other geometry errors. Conventional techniques exist, such as the comparison of 
the measurement of a same length (either a gauge or an interferometric distance) 
when oriented on two diagonals of each coordinate plane. This is also common 
practice, particularly for Coordinate Measuring Machines (25). 

The above reasoning is not necessarily mirrored by the experimental procedure; 
it is rather intended to provide confidence that the measurements convey enough 
information. In practice, measurement data taken along a set of measurement lines 
are collected and the geometry errors are derived by best fit adjustment to the data. 
In this view, the above reasoning proves that at least a possible set of data (that is, 
an experimental procedure) exists that makes the adjustment possible without 
encountering singularities and/or ill conditioning. 

The adjustment of the geometry errors to the measurement data by best fitting 
required an error model. This section describes it. We may separate two constituent 
blocks: the rigid body model, which describes the geometry errors itself, and the 
procedural model, which mirrors the measurement set up. The following 
subsections describe them separately. 

 

1.4.1 The first error model for the InPlanT approach: the rigid 
body error model 

The machine tool error model is assumed to follow the conventional rigid body 
model (26), here reported in the formulation first given in (27) and then endorsed 
in (28): 
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𝒆𝒆 = 𝒕𝒕𝑥𝑥 + 𝒕𝒕𝑦𝑦 +  𝒕𝒕𝑧𝑧 + 𝒓𝒓𝑥𝑥 × 𝒉𝒉𝑥𝑥 + 𝒓𝒓𝑦𝑦 × 𝒉𝒉𝑦𝑦 + 𝒓𝒓𝑧𝑧 × 𝒉𝒉𝑧𝑧 , (1) 

where 
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(2) 

are the 9 translational error functions t’s and the 9 rotational error functions r’s. The 
first subscript of each t or r indicates the pertaining axis and the second the 
orientation of the error: the direction of translation for translational ones, or the 
rotation axis for rotational ones. For example, txy is the translation along y of the x 
carriage, and ryz is the rotation about z of the y carriage1. 
hx, hy, hz in equation (1) are referred to as the effective Abbe arms, i.e. the arms that 
transform rotations to translations, while × indicates the cross product. Due to the 
seriality of the machine kinematic, the expression of the effective Abbe arms is not 
the same for all axes: 

𝒉𝒉𝒙𝒙 = �
𝑝𝑝𝑥𝑥

𝑝𝑝𝑦𝑦 + 𝑡𝑡𝑦𝑦
𝑝𝑝𝑧𝑧 + 𝑡𝑡𝑧𝑧

� ,𝒉𝒉𝒚𝒚 = �
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

𝑝𝑝𝑧𝑧 + 𝑡𝑡𝑧𝑧
� ,𝒉𝒉𝒛𝒛 = �

𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
� (3) 

where p (and its components px, py, pz) is the probe offset2, and s (and its 
components sx, sy, sz) is the machine scale readings. Equation (3) can be interpreted 
as follows. Let us consider the reference point attached on the ram when 𝒔𝒔 = 𝟎𝟎, i.e. 
at homing3. Let us regard it as three coincident points, each attached to the x, y, z 
carriage, respectively. After the machine moves away from homing, the three points 
separate, each following its own carriage. The effective Abbe arm of an axis is the 
offset of the stylus tip/effective point to the point of that axis. The probe 
tip/effective point always keeps its position relative to the z reference point: the z 
effective Abbe arm is equal to the probe offset. Its position relative to the y reference 
point instead changes when the z axis slides: this introduces the term sz in equation 

                                                 
1 The ISO 230 1 (33) provides a different notation. For instance, txy is indicated as EYX instead 

and ryz as EBX. The two notations have coincident meanings, including the positive directions. The 
notation above is used for reasons of tradition, as INRIM initiated the investigation of geometry 
error compensation many years ago (34) specifically for coordinate measuring machines (CMMs), 
for which no such standard existed at the time. 

2 The term probe offset is used to follow an established practice with CMMs. It is the vectorial 
displacement of the probe tip (for CMMs) or of the functional point ( (33) § 3.4.2, for machine tools) 
from a reference point established on the ram. 

3 In some machines, the homing occurs at different values: 𝒔𝒔 ≠ 𝟎𝟎 at homing and the scale are 
preset to predefined values rather than reset. Regardless of this, a point in space exists where 𝒔𝒔 = 𝟎𝟎. 
In some cases, this point cannot be reached, i.e. it is outside the measuring/working volume, e.g. the 
z axis is always negative. This is immaterial for what follows. 
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(3). Finally, its position relative to the x reference point changes when the y and z 
axes slide: this introduces the terms sy and sz in equation (3). 

In conclusion, the geometry error model requires 18 error functions. Each one, 
in turn, requires a parametric description such as a tabular form with linear 
interpolation. The full set of parameters describing the 18 error functions constitutes 
the complete description of the geometry error, and is in fact the sought outcome of 
the optimization, so called “error map”. 

Previous studies ((27), (29), (30)) indicated that the set of unknown error 
parameters are not linearly independent and that they cannot be separated by best 
fitting. To solve this, arbitrary constraints must be introduced. In spite of being 
arbitrary, they do not alter the compensation, rather select one out the infinite 
equivalent solutions resulting from the observations. A typical example of such 
constraints is as follows: all 18 error functions are constrained vertically (e.g. null 
at the left extreme of their domain), the straightnesses are constrained in their slope 
(e.g. they are null at the right extreme too of their domain) and three constant values 
are added to the model to account for the axis squarenesses. Another typical 
example is as before, but with three straightnesses only out of six constrained in 
their slopes, with no need for additional squareness values. In all cases, 21 degrees 
of freedom are to be constrained: 18 constant values + 6 slopes – 3 squarenesses in 
the first example, 18 constant values + 3 slopes in the second. 

 

1.4.2 The procedural model 

Even if the rotary table is capable of angular measurement, the following model 
does not rely on this and the table is regarded merely as a precision handler rather 
than as a measuring instrument. Counting on the table measurements would require 
a very accurate piece of equipment due to the long optical arms involved, resulting 
in an expensive device, affordable in this research work but not suited for the 
industrial target.  

The most basic property of rotations is that the geometrical relation to the 
rotation axis of anything attached to the rotating body remains the same regardless 
of the rotation angle. 

 

Figure 11. Scheme of the laser beam as rotated by the rotary table. 
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Let 𝒂𝒂 and 𝒗𝒗 be the unit vectors of the rotation axis and of the laser beam 
pointing to the target 𝒄𝒄, respectively (Figure 11). Then the simple equation holds: 

𝒂𝒂T𝒗𝒗 = 𝑞𝑞,    𝑞𝑞 = cos𝜗𝜗, (4) 

regardless of the rotation angle 𝜑𝜑. Only the inclination angle of the beam to the 
rotation axis, 𝜗𝜗, counts. This angle is nominally right, i.e. 𝜗𝜗 ≈ 𝜋𝜋

2
, 𝑞𝑞 ≈ 0. The table 

is attached to the ram and is then subject to its parasitic rotations. Let 𝒓𝒓 = 𝒓𝒓𝑥𝑥 +
𝒓𝒓𝑦𝑦 + 𝒓𝒓𝑧𝑧 be such parasitic rotation, sum of those introduced by each carriage; then 

𝒂𝒂 = 𝒂𝒂0 + 𝒓𝒓 × 𝒂𝒂0 = [𝑰𝑰 + (𝒓𝒓 ×)]𝒂𝒂0, (5) 

where 𝒂𝒂0 is the table rotation axis in the absence of parasitic errors, i.e. when the 
machine is in a position where they are null, and the rotations are assumed to be 
small. 
Let us assume at first that the laser line 𝒗𝒗 intersects the rotary table axis 𝒂𝒂, i.e. it is 
not skew to it; we will consider later the effect of skewness. Then 

𝒗𝒗 =
𝒄𝒄 − 𝒃𝒃
‖𝒄𝒄 − 𝒃𝒃‖

, (6) 

The point 𝒃𝒃 can be considered as the localization point of the device and is 
conceptually similar to that of a stylus tip in a CMM or of the effective point in a 
machine tool. It is affected by the geometry error. Equation (6) becomes then 

𝒗𝒗 =
𝒄𝒄 − 𝒔𝒔 − 𝒑𝒑 − 𝒆𝒆
‖𝒄𝒄 − 𝒔𝒔 − 𝒑𝒑 − 𝒆𝒆‖

=
1
𝑑𝑑

(𝒄𝒄 − 𝒔𝒔 − 𝒑𝒑 − 𝒆𝒆), 𝑑𝑑 = ‖𝒄𝒄 − 𝒔𝒔 − 𝒑𝒑 − 𝒆𝒆‖ (7) 

where 𝒔𝒔 is the position of the reference point on the ram as measured by the scale 
readout triplet, 𝒑𝒑 is the probe offset, 𝒆𝒆 is the geometry error of equation (1) and 𝑑𝑑 
is the distance of the target to the point 𝒃𝒃. 
By introducing equations (5) and (7), equation (4) becomes 

𝒂𝒂0T[𝑰𝑰 − (𝒓𝒓 ×)](𝒄𝒄 − 𝒔𝒔 − 𝒑𝒑 − 𝒆𝒆) ≈ 𝒂𝒂0T[𝑰𝑰 − (𝒓𝒓 ×)](𝒄𝒄 − 𝒔𝒔 − 𝒑𝒑) − 𝒂𝒂0T𝒆𝒆 =
𝑑𝑑𝑞𝑞, (8) 

where the minus sign for the rotation 𝒓𝒓 stems from the antisymmetry of the matrix 
(𝒓𝒓 ×) and the second order product 𝒓𝒓 × 𝒆𝒆 of the small rotation and the small 
geometry error is neglected. 
Let us extend to the case that the laser line 𝒗𝒗 is skew to the rotary table axis 𝒂𝒂, due 
to an imperfect adjustment of the device. Let us decompose the probe offset in its 
components along and orthogonal to 𝒂𝒂: 

𝒑𝒑 = 𝑝𝑝𝒂𝒂 + 𝒑𝒑⊥, 𝑝𝑝 = 𝒂𝒂T𝒑𝒑,  𝒑𝒑⊥ = (𝑰𝑰 − 𝒂𝒂𝒂𝒂T)𝒑𝒑. (9) 

Let us observe that 
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𝒂𝒂0T[𝑰𝑰 − (𝒓𝒓 ×)]𝒂𝒂 = 𝒂𝒂𝟎𝟎𝐓𝐓[𝑰𝑰 − (𝒓𝒓 ×)][𝑰𝑰 + (𝒓𝒓 ×)]𝒂𝒂0 = 

 = 𝒂𝒂𝟎𝟎𝐓𝐓[𝑰𝑰 − (𝒓𝒓 × 𝒓𝒓 ×)]𝒂𝒂0 ≈ 1, 
(10) 

where we neglected the second order term (𝒓𝒓 × 𝒓𝒓 × 𝒂𝒂0) (𝒓𝒓 is a vector of small 
angles). By introducing equations (9) and (10) in equation (8), and by remembering 
that 𝒂𝒂0T𝒑𝒑⊥ = 0 by definition, the procedural model becomes 

𝒂𝒂0T[𝑰𝑰 − (𝒓𝒓 ×)](𝒄𝒄 − 𝒔𝒔 − 𝒑𝒑⊥) − 𝑝𝑝 − 𝒂𝒂0T𝒆𝒆 =
= 𝒂𝒂𝟎𝟎𝐓𝐓{[𝑰𝑰 − (𝒓𝒓 ×)](𝒄𝒄 − 𝒔𝒔) + 𝒓𝒓 × 𝒑𝒑⊥} − 𝑝𝑝 − 𝒂𝒂0T𝒆𝒆 = 𝑑𝑑𝑞𝑞. (11) 

Any small error δ𝒑𝒑⊥ of the estimate of 𝒑𝒑⊥ gets multiplied by the small rotation 
vector 𝒓𝒓 and results in a negligible second order term. Consequently, any accidental 
misalignment of the laser beam causing skewness to the rotation axis would be 
sensed negligibly by the model equation. This is understood physically by 
considering the kinematic redundancy introduced by the rotary table, which is in 
fact a fourth axis: a small movement of the ram orthogonal to the rotation axis can 
be recovered by a small table rotation. A further consequence is that the value of 
𝒑𝒑⊥ does not need to be refined by fitting to the data – i.e. to be an unknown in the 
fitting – and an a priori estimation suffices. 
The model delivers an equation for each measurement. We can index each 
measurement by three attributes: 

• Which of the 𝑀𝑀 table orientations: let us indicate this with the index 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤
𝑀𝑀. 

• Which of the 𝑁𝑁 targets: let us indicate this with the index 𝑗𝑗, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁. 
• The ordinal index, given an 𝑖𝑖 and a 𝑗𝑗. A same target can be pointed at from 

different angles and machine positions. Let us indicate this with the index 𝑘𝑘𝑖𝑖𝑖𝑖, 
1 ≤ 𝑘𝑘𝑖𝑖𝑖𝑖 ≤ 𝑂𝑂𝑖𝑖𝑖𝑖 where 𝑂𝑂𝑖𝑖𝑖𝑖 is the number of measurements done with the 𝑖𝑖-th table 
orientation and the 𝑗𝑗-th target. To avoid a second level index, 𝑘𝑘𝑖𝑖𝑖𝑖 will be 
abbreviated to 𝑘𝑘 whenever unambiguous for sake of simplicity. 

Based on the above, let us attribute proper subscripts to each variable in equation 
(11): 

• 𝒂𝒂𝟎𝟎 depends only on (effectively is) the orientation of the table; as in the equation 
there is no more need to distinguish between when it is unaffected (𝒂𝒂𝟎𝟎) or 
affected (𝒂𝒂) by the geometry errors, let us use the symbol 𝒂𝒂𝒊𝒊, with no subscript 
0 for sake of simplicity. 

• 𝒓𝒓 and 𝒆𝒆 depend on the position of the carriages (and on the probe offset): 𝒓𝒓𝑖𝑖𝑖𝑖𝑖𝑖 
and 𝒆𝒆𝑖𝑖𝑖𝑖𝑖𝑖. 

• 𝒄𝒄 depends only on (effectively is) the position of the targets: 𝒄𝒄𝑖𝑖 . 
• 𝒔𝒔 depends only on (effectively is) the position of the carriages: 𝒔𝒔𝑖𝑖𝑖𝑖𝑖𝑖. 
• 𝒑𝒑⊥ and 𝑝𝑝 define the table position imposed by wrist articulation: 𝒑𝒑⊥𝑖𝑖 and 𝑝𝑝𝑖𝑖. 
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• 𝑑𝑑 is the distance to the target and depends on the position of the carriages: 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖. 
• 𝑞𝑞 is a global scalar which is a characteristic of the coupling of the pointer to the 

table: no subscripts. 

As a result, equation (11) becomes 

𝒂𝒂𝑖𝑖𝐓𝐓��𝑰𝑰 − �𝒓𝒓𝑖𝑖𝑖𝑖𝑖𝑖 ×���𝒄𝒄𝑖𝑖 − 𝒔𝒔𝑖𝑖𝑖𝑖𝑖𝑖� + 𝒓𝒓𝑖𝑖𝑖𝑖𝑖𝑖 × 𝒑𝒑⊥𝑖𝑖� − 𝑝𝑝𝑖𝑖 − 𝒂𝒂𝑖𝑖T𝒆𝒆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞 (12) 

Equation (12) is the sought procedural model. 
 

1.5 The error model for the straightness approach 

The rigid body model is equally valid for this approach as it was for the 
previous one (see § 1.1.1). What changes and is of interest in this section is the 
procedural model. 
Let 𝒗𝒗 be the unit vector of the direction of sight of the instrument and 𝒏𝒏 the 
orthogonal unit vector in the direction of sensitivity, 𝒏𝒏T𝒗𝒗 = 0. Let 𝒃𝒃 be a point on 
the line 𝒗𝒗 where the device indicates zero and 𝓵𝓵 the device reading. The following 
equation holds: 

ℓ = 𝒏𝒏T(𝒄𝒄 − 𝒃𝒃), (13) 

where 𝒄𝒄 is the position of the target, given by the combination of the scale readings 
𝒔𝒔, the probe offset 𝒑𝒑 and the geometry error 𝒆𝒆: 

𝒏𝒏T(𝒔𝒔 + 𝒑𝒑 − 𝒃𝒃 + 𝒆𝒆) = ℓ, (14) 

We made the point earlier that the device is mostly a zero detector, and that the 
machine is driven finely to search a nearly null reading of the device. As a 
consequence, we expect ℓ to be small at any measurement point. Also, the device 
reading ℓ and the position of the machine along the sensitivity direction 𝒏𝒏T𝒔𝒔 are 
coupled: a small movement of the machine along 𝒏𝒏 causes an equivalent increment 
of the reading ℓ. 
Let us investigate the sensitivity unit vector 𝒏𝒏 and particularly whether its two 
degrees of freedom (orientation angles) are equally important to the model. 
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Figure 12. The direction of sight 𝒗𝒗, the direction of sensitivity 𝒏𝒏 and the auxiliary unit 
vector 𝐚𝐚 = 𝒗𝒗 ×  𝒏𝒏 form a right-handed orthogonal triple. 

Let us apply a small rotation to 𝒏𝒏 about either 𝒗𝒗 or 𝒂𝒂 (Figure 12): 

𝒏𝒏𝒗𝒗′ ≈ 𝒏𝒏 + 𝛼𝛼𝒂𝒂,  
𝒏𝒏𝒂𝒂′ ≈ 𝒏𝒏 − 𝛽𝛽𝒗𝒗 (15) 

where 𝛼𝛼 and 𝛽𝛽 are two small rotation angles. Substitution of equations (15) in 
equation (14) yields 

(𝒏𝒏 + 𝛼𝛼𝒂𝒂)T(𝒔𝒔+ 𝒑𝒑 − 𝒃𝒃 + 𝒆𝒆) = ℓ,  
(𝒏𝒏 − 𝛽𝛽𝒗𝒗)T(𝒔𝒔+ 𝒑𝒑 − 𝒃𝒃 + 𝒆𝒆) = ℓ 

(16) 

The first equation (16) indicates that an error 𝛼𝛼 in the planar orientation about 𝒏𝒏 
introduces sensitivity to the straightness in the orthogonal direction 𝒂𝒂. This 
contribution is second order, being the product of such straightness and the small 
angle 𝛼𝛼. 
In the second equation (16), (𝒔𝒔 + 𝒑𝒑 − 𝒃𝒃 + 𝒆𝒆) is mostly directed along the line of 
sight 𝒗𝒗 and the product 𝒗𝒗T(𝒔𝒔 + 𝒑𝒑 − 𝒃𝒃 + 𝒆𝒆) results in a linear coordinate along the 
line of sight 𝒗𝒗. We may take the origin of this coordinate in the centroid of all points 
measured along the line: 

𝛽𝛽𝒗𝒗T(𝒔𝒔 + 𝒑𝒑 − 𝒃𝒃 + 𝒆𝒆) ≈ 𝛽𝛽𝛽𝛽, where 𝛽𝛽 = 𝒗𝒗T(𝒔𝒔 − 𝒔𝒔�), with 𝒔𝒔� =
1
𝑁𝑁
∑ 𝒔𝒔𝑖𝑖𝑁𝑁
𝑖𝑖=1 . (17) 

In other words, a linear term with slope 𝛽𝛽 gets added due to the misalignment, as 
expected. 
The conclusion is that the two degrees of freedom of 𝒏𝒏 are not equally important: 
the spatial orientation (about 𝒂𝒂) is important and is then to be included as an 
unknown in the optimization, whereas an a priori estimation of the planar 
orientation (about 𝒗𝒗) is sufficient with no need to be refined in the optimization. 
We can capture this by transforming equation (14) to 

𝒏𝒏0T(𝒔𝒔 + 𝒑𝒑 − 𝒃𝒃 + 𝒆𝒆) + 𝛽𝛽𝛽𝛽 = ℓ, (18) 

where 𝒏𝒏0 is an approximation of the sensitivity direction no more subject to 
optimization. 
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Let us consider now the probe offset 𝒑𝒑 and the localisation point of the device 𝒃𝒃. 
They never occur separately, always do as 𝒑𝒑 − 𝒃𝒃. This means that in fact they are 
a single model parameter. Also, only its component along 𝒏𝒏 is of interest. As a 
consequence, it is a scalar unknown for each measurement line. This effectively 
captures the location of the reference line (e.g., the intercept) in the straightness 
measurement. Let us call this ℎ = 𝒏𝒏0T(𝒑𝒑 − 𝒃𝒃). Equation (18) transforms to 

𝒏𝒏0T(𝒔𝒔 + 𝒆𝒆) + 𝛽𝛽𝛽𝛽 + ℎ = ℓ. (19) 

Let us rearrange it as 

𝒏𝒏0T𝒔𝒔 − ℓ + 𝛽𝛽𝛽𝛽 + ℎ + 𝒏𝒏0T𝒆𝒆 = 0, (20) 

to highlight the correlation of 𝒏𝒏0T𝒔𝒔 and ℓ, as illustrated earlier on. 
The model delivers an equation for each measurement. We can index each 
measurement by two attributes: 

• Which of the 𝑀𝑀 lines: let us indicate this with the index 𝑗𝑗, 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀. 
• The ordinal index, given a 𝑗𝑗. Let us indicate this with the index 𝑖𝑖𝑖𝑖, 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖 

where 𝑁𝑁𝑖𝑖 is the number of measurements along the 𝑗𝑗-th line. To avoid a second 
level index, 𝑖𝑖𝑖𝑖 is abbreviated to 𝑖𝑖 whenever unambiguous for sake of simplicity. 

Based on the above, let us attribute proper subscripts to each variable in equation 
(20). 

• 𝒏𝒏0 depends only on (effectively is) the orientation of the device (and then of the 
measurement line): 𝒏𝒏0𝑖𝑖. 

• 𝒔𝒔, 𝒆𝒆 and ℓ depend on the position of the carriages (and on the probe offset): 𝒔𝒔𝑖𝑖𝑖𝑖, 
𝒆𝒆𝑖𝑖𝑖𝑖 and ℓ𝑖𝑖𝑖𝑖. 

• 𝛽𝛽 and ℎ depend on (effectively are) the measurement reference line: 𝛽𝛽𝑖𝑖 and ℎ𝑖𝑖 . 
• 𝛽𝛽 is the abscissa of individual points along a measurement line: 𝛽𝛽𝑖𝑖𝑖𝑖. 

As a result, equation (20) becomes 

𝒏𝒏0𝑖𝑖T 𝒔𝒔𝑖𝑖𝑖𝑖 − ℓ𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 + ℎ𝑖𝑖 + 𝒏𝒏0𝑖𝑖T 𝒆𝒆𝑖𝑖𝑖𝑖 = 0, (21) 

Apart from the unknowns directly related to the rigid body model introduced by the 
term 𝒆𝒆𝑖𝑖𝑖𝑖 (that is, the sought optimization outcome), 2𝑀𝑀 additional unknowns are 
introduced, namely 𝛽𝛽𝑖𝑖 and ℎ𝑖𝑖 , 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀. They are clustered according to the 
measurement line 𝑗𝑗: if and only if points are on the same measurement line share 
the same �𝛽𝛽𝑖𝑖,ℎ𝑖𝑖� values. This leads to separation of the variables in the 
optimization, resulting in 

𝒏𝒏0𝑖𝑖T 𝒆𝒆𝑖𝑖𝑖𝑖 = ℓ�𝑖𝑖𝑖𝑖,   where   ℓ�𝑖𝑖𝑖𝑖 = −𝒏𝒏𝑖𝑖T𝒔𝒔𝑖𝑖𝑖𝑖 + ℓ𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 − ℎ𝑖𝑖 . (22) 
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ℓ�𝑖𝑖𝑖𝑖 are the joint readings of the machine and of the device after subtraction of a least 
squares line. 
Equation (22) is the sought procedural model. The optimization is exclusively about 
unknowns of interest, that is, the machine geometry error 𝒆𝒆. 
Even a first glance comparison of equations (22) and (12) shows the great 
simplification this approach has enabled in the procedural model. 
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Chapter 2 
 

Implementation of the concept 

The old InPlanT concept investigated in LUMINAR project suffered from 
two major drawbacks: 

• the distance of the target sphere influenced the shape and size of the 
backscattered pattern dramatically; 

• the accurate processing of the image was time consuming and heavily 
affected by acquisition noise. 

A new paradigm was then implemented to overcome the cited limitations. As the 
measured lateral displacement is 1D only, the camera was replaced by a fast 
photodiode integrating the total intensity through a focusing lens. To improve the 
resolution, a mechanical modulation was introduced by a controlled and cyclic 
movement of a slit chopping the laser beam.  
It was proven that the signal coming from the sphere were mainly influenced by 
two parameters: the distance between laser source and the target itself, and the slit 
width. To estimate their contribution, some optical simulations were carried out 
using a proper software (Figure 13), replicating a suitable optomechanical set up: a 
collimated gaussian source (which constitutes the pointing direction of the 
instrument) impinging onto a S-LAH79 glass sphere, backscattering ~15 % of the 
signal, with a beam splitter directing the return signal towards a detector; to estimate 
the signal behaviour, several distances of the sphere were investigated in the range 
(0 ÷ 5) m, with a variable-aperture (0.5 ÷ 8) mm slit placed in the return branch of 
the signal at different transversal positions (-1 ÷ 1 mm). Figure 14 shows the results, 
with (a) and (b) exhibiting the total luminous intensity received by the detector: in 
(a) the dependence of attenuation on the distance between sphere and target is 
linear, with a rate of 1 dB/m; in (b) the response at different slit widths shows a 
saturation (-17 dB represent the amount of attenuation of backward signal in the 
absence of the slit, namely with any portion of the signal masked). 
Figure 15 shows the dependence of the backscattered signal on the lateral 
movement of the target, in correspondence with three different working distances 
of the sphere and three slit widths (with the lateral distance normalized to the radius 
R of the sphere); this new simulation proved that slit widths in the range (1 – 2) mm 
could be considered as eligible for the purpose.  
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In the performed simulations, the intensity profile of the retroreflected beam 
exhibits a central symmetry with a distinct peak in the center. This peak propagates 
along the line from the target center parallel to the instrument pointing direction 
and conveys the information of the target lateral position. 
The backscatter image and total power were investigated to predict whether enough 
resolution was achievable in different optomechanical layouts; the results were 
encouraging and validated the concept. 
 

 

Figure 13. Example of simulation with Zemax Optic Studio software. 

 

  

(a) (b) 
 

Figure 14. (a): simulated attenuations of the signal backscattered from the sphere as a 
function of the distance of the detector in case of null lateral displacement of the slit 
(31); input power = 10 mW, slit aperture = 1 mm, detector size = (3 × 3) mm2, φsphere 
= 16 mm, slit in axis with beam; (b): attenuation as a function of the slit width at a 
fixed distance of 1 m, same layout as (a).  
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(a) (b) (c) 
 

Figure 15. Simulated attenuation as a function of the sphere lateral displacement, with 
three slit widths (1 mm, 1.25 mm and 1.5 mm) at three different distances of the target 
(0.5 m, 1 m and 1.5 m). The apparent asymmetry is due to unequal spacing of the 
sampled points. 

 
Figure 16 shows the very first set up implemented on a breadboard to study the raw 
signals backscattered by the sphere, with a CMOS camera used as a sensor to 
digitally acquire and process the patterns; Figure 17 shows the peculiarity of the 
patterns to deal with (also in the continuation of the work) (see (32) for an extensive 
description of the peculiar backscattered patterns from high-index ball lenses), with 
and without the slit masking a portion of the signal.   

 

 

Figure 16. “Static” experimental set up used to test the concept. 
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Figure 17. Typical signals backscattered from the sphere, placed at approximately 
90 cm away from the camera, without (figure above) and with (figure below) a slit 
initially positioned in axis with the onward signal and then moved aside. 

With the aim of improving the resolution and reducing the effects of noise, a 
mechanical modulation was introduced, moving from a static signal processing in 
the space domain to a dynamic processing in the time domain. Since the modulation 
has a periodic nature, the analysis of data was turned into a phase measurement, 
thus allowing the rejection of some factors affecting the uncertainty of the data 
themselves; moreover, averaging over an arbitrary number of modulation cycles 
permitted to compress the noise, as it will be explained in detail in §2.3.1.  
Two different strategies were investigated to implement the slit movement and 
consequently the modulation of the signal: a rotating disc and an oscillating stage 
(33). These mechanisms were totally different in design, each of them requiring 
peculiar components and different approaches; they also generated different signal 
in different positions of the target (one peak per cycle in the case of the rotating disc 
and two peaks per cycle for the oscillating stage, as shown in Figure 18), so efforts 
were made to face the complications of managing such a variability of situations 
(in turn related to many different patterns of the signals based on the location of the 
sphere). Anyway, both for the rotating disc and the oscillating stage, the strategy 
for the achievement of the sought information about the lateral position of the 
sphere relied on the analyses of the peak phase: within the cycle in the former 
situation, in reference to each other in the latter. 
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(a) (b) 

  
Figure 18. Patterns of the photodiode signals as a function of time: with rotating disc 
(a) and periodically oscillating stage 

 

2.1 Built prototypes 

2.1.1 First prototype (“P1”): description and characterization 

P1 was implemented on the basis of a light source consisting in a collimated laser 
diode, with the necessary optics to focus the retroreflected signal on a photodiode 
(a commercial Newport model4), a 200 mm diameter plastic disc driven by a DC 
motor, and an Optek optical switch5 placed at the edge of the disc and in charge of 
generating the reference signal. A Picoscope 44246 was chosen as the oscilloscope 
to acquire the signals. Various slits of different widths were made on the surface of 
the disc to investigate their effect on the pattern of the backscattered signals, but 
only one at a time was used during the measurements (Figure 19), occasionally 
covering the others. Figure 20 shows the pattern of the signals acquired by 
Picoscope, and Figure 21 shows preliminary the set up used for testing the concept. 
Four different chopping schemes were tested, labelled A, B1, B2 and C depending 
on the chosen position of the slit in the layout: A and C chopped both the onward 
and backward beam, while B1 and B2 chopped the backward beam only (Figure 
22). 
 

                                                 
4 Model 2051-FS-M 
5 Datasheet link for optical switch 
6 Datasheet link for oscilloscope 

https://www.newport.com/p/2051-FS-M
https://eu.mouser.com/datasheet/2/414/OPTIS02326_1-2564911.pdf
https://www.saelig.com/supplier/picotech/PicoScope4000SeriesDataSheet.pdf
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Figure 19. Rotating disc for the modulation of the signals. 

 

 

Figure 20. Signals acquired by Picoscope (no phase displacement between sphere and 
optical switch signal – “perfect” alignment). 

 

 

Figure 21. Set up for testing the modulation of photodiode signal by rotating disc. 
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(a) (b) 

 
Figure 22. Tested layouts and corresponding chopping schemes. 

The optical switch detected the rotation of the disc, without taking into account the 
position of the target; the phase measurement was referred to the time base provided 
by the optical switch, with the photodiode signal conveying the information about 
the lateral displacement of the sphere. The relative phase was obtained by cross-
correlating the detected peak with a reference peak that was in phase with the clock 
signal (Figure 23): that was possible by implementing a software written in Python. 
The next step was to estimate the resolution of the system; the implemented 
procedure can be described in this way: the target was moved laterally (with respect 
to the impinging beam) in controlled steps of 200 µm using a micrometric stage, 
and the signals were acquired (Figure 24 (a)). Their cross-correlations with a 
reference signal were calculated (Figure 24 (b)), so that the response characteristic 
could be best fitted, allowing the determination of the sensitivity k (Figure 24 (c)). 
For the evaluation of the noise, ten signals were acquired with the sphere always in 
the same position; the standard deviation 𝜎𝜎𝑡𝑡noise of the cross-correlations maxima 
was calculated (Figure 24 (d)), so that the resolution could finally be evaluated as 
𝜎𝜎𝑡𝑡noise 𝑘𝑘⁄  (Table 2). 

  

(a) 
(b) 

 
Figure 23. Example of cross-correlation strategy implemented on real sphere signals; 
(a): sphere in a reference position (black curve) and sphere moved aside (red curve). 
(b): cross correlation of the same signals; the peak position identifies the time 
displacement ∆𝜏𝜏 between the acquired signals. 
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(a) (b) 

 
 

(c) (d) 
 

Figure 24. Strategy for the evaluation of the resolution. 

 

Layout 
Sensitivity 
k / (µs/µm) 

Noise 
𝝈𝝈𝝉𝝉𝒏𝒏𝒏𝒏𝒊𝒊𝒔𝒔𝒆𝒆/µs 

Resolution 
/ µm 

Target 
distance d / cm 

A 0.04 0.65 15.77 135 

B1 0.12 0.92 7.60 145 

B2 0.03 0.86 27.55 135 

C 0.13 1.05 7.87 135 

B1 bis7 0.09 0.79 8.46 297 
 

Table 2. Resolution of P1 prototype. 

 

2.1.2 Second prototype (“P2”): description and characterization 

P1 suffered from two major limitations: the overall size and the resolution that could 
be achieved. To minimize the effects connected to the rotation (especially the 
vibrations), a large diameter (∅ 200 mm) disc was necessary; in addition, the 

                                                 
7 Same chopping scheme as B1, but with higher target distance. 
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device was substantially blind over most of the time during its rotation, detecting a 
signal only when the slit intercepted the beam, and this occurred in a tiny time 
fraction: that required a fast signal detection or a low rotation speed, forcing us to 
a compromise between resolution and throughput. For these reasons, the ideal 
modulation mechanism for our application turned out to be a pure translating 
instead of rotating slit. This awareness triggered the need of a completely new 
design, where the modulation could be achieved by means of a slit moving with 
oscillating motion. 
In order to realize a reciprocating motion, three strategies were investigated (34): 
cam and follower mechanism, Scotch Yoke (or slotted link) and the slider-crank 
linkage. Custom solutions that could be adapted to our specific needs were designed 
(Figure 25), but the slider-crank proved to be the most practical to be realized. 
 

   

(a) (b) (c) 
 

Figure 25. Various strategies for the implementation of the reciprocating motion of 
the slit: with cam and roller follower (a), Scotch-Yoke (b) and slider-crank (c). 

A preliminary ABS 3D-printed prototype, consisting in a connecting rod, bearings 
and a slotted guide, propelled by a DC motor, was followed by an upgraded one 
based on the same concept, with a lubricated steel guide and an accurate hard disc 
motor used to drive the slit (Figure 26). 
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(a) 

 
(b) 

 
Figure 26. Prototype P2. First 3D printed version, with its test bed (a); second 
implementation of the same concept, with upgraded parts and its test bed (b).    

P2 yelded two peaks per cycle, unlike P1 (yelding just one), while the slit crossed 
the center of symmetry of the back-reflected beam in both directions of motion. The 
derivation of the lateral displacement of the target is conceptually possible with 
some modelling.  
Let 𝑡𝑡1 and 𝑡𝑡2 the times corresponding to the occurrence of the first and second peak, 
𝑇𝑇 the period, 𝑡𝑡0 the initial time and 𝜑𝜑1 and 𝜑𝜑2 the phases of the peaks. The following 
relations hold: 

𝜑𝜑1 = 2𝜋𝜋 𝑡𝑡1−𝑡𝑡0
𝑇𝑇

;  𝜑𝜑2 = 2𝜋𝜋 𝑡𝑡2−𝑡𝑡0
𝑇𝑇

, (23) 

∆𝜑𝜑 = 𝜑𝜑2 − 𝜑𝜑1 = 2𝜋𝜋
𝑡𝑡2 − 𝑡𝑡1
𝑇𝑇

, (24) 

Focusing on the central point of oscillation, a variable 𝑦𝑦 can be introduced to 
express the lateral position of the beam with respect to that point; the two peaks are 
displayed on the data acquisition hardware when the slit occurs at the same position 
(that of the backscattered beam center of symmetry). The corresponding equation 
are: 
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�
𝑦𝑦 = 𝑓𝑓(𝜑𝜑1)
𝑦𝑦 = 𝑓𝑓(𝜑𝜑2)
∆𝜑𝜑 = 𝜑𝜑2 − 𝜑𝜑1

 (25) 

where 𝑓𝑓 is the law expressing the motion of the slit a function of the phase. If we 
divide the cycle into a couple of intervals where 𝑓𝑓 is monotonic, 𝜑𝜑1 and 𝜑𝜑2 occur 
respectively in the first and in the second interval. Introducing the piecewise inverse 
functions 𝑔𝑔 and ℎ to solve Equation (25), it holds: 

�
𝜑𝜑1 = 𝑔𝑔(𝑦𝑦)
𝜑𝜑2 = ℎ(𝑦𝑦)
∆𝜑𝜑 = 𝜑𝜑2 − 𝜑𝜑1

  ⇒  ℎ(𝑦𝑦) − 𝑔𝑔(𝑦𝑦) = ∆𝜑𝜑 (26) 

From Equation (26) the target position 𝑦𝑦 as a function of the phase difference ∆𝜑𝜑 
of the two peaks can be derived. Considering now the sensitivity 𝑡𝑡, the following 
equation can be written: 

𝑡𝑡 =
𝜕𝜕∆𝜑𝜑
𝜕𝜕𝑦𝑦

=
𝑑𝑑ℎ(𝑦𝑦)
𝑑𝑑𝑦𝑦

−
𝑑𝑑𝑔𝑔(𝑦𝑦)
𝑑𝑑𝑦𝑦

=
1

𝑑𝑑𝑓𝑓(𝜑𝜑2)
𝑑𝑑𝜑𝜑2

−
1

𝑑𝑑𝑓𝑓(𝜑𝜑1)
𝑑𝑑𝜑𝜑1

 (27) 

If the slit speeds 𝑣𝑣1 and 𝑣𝑣2 at the peaks are introduced, and keeping in mind the 
definition of phase, we get: 
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(28) 

with 𝑣𝑣H identifying the harmonic mean of the speeds in correspondence of the 
peaks. It is important to emphasize that between 𝑡𝑡 and the slit speed when crossing 
the beam there is an inverse proportionality; in a purely sinusoidal motion with a 
centered target, 𝑣𝑣1 = −𝑣𝑣2 = 𝐴𝐴𝐴𝐴 (with 𝐴𝐴 = oscillation amplitude and 𝐴𝐴 = angular 
speed), and this expresses an avoidable trade-off between sensitivity and measuring 
interval: having defined an oscillation frequency, a large amplitude allows a large 
measuring interval, but at the cost of the sensitivity. Moreover, the law of motion 
of a crank and connecting rod is not purely harmonic (35) (Figure 27); since the law 
of motion is expressed with a transcendental equation, the device response cannot 
be derived from Equation (26): this awareness forces us to calibrate the device, 
instead of proceeding analytically.  
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Figure 27. Plot showing the dependance of normalized slit position, speed and 
acceleration on crank angle 𝜃𝜃, with l = 80 mm connecting rod and r = 5 mm crank 
radius.  

 

Figure 28. Normalized signals (photodiode: magenta – centered target and blue – 
1 mm aside, digital switch: green) acquired by Prototype P2; each curve is the mean 
of 100 samples @ 1 MHz. 

Figure 28 shows the normalized signals acquired by P2 prototype, with the time 
base given by an optical switch setting the phase scale and the photodiode signal 
captured in two positions of the sphere: at “central” position, and aside. Defining 
as “odd” the peaks on the descending fronts of the clock signal (slit moving left) 
and “even” those on the raising fronts (slit moving right), when moving the target 
aside the odd and the even peaks translated in opposite directions; the sought phase 
information could hence be inferred by quantifying this displacement observed in 
changing positions of the peaks in time. The elected mathematical tool for the phase 
derivation was the mutual cross-correlation, as it was done for P1. The distinction 
between odd and even peaks, possible thanks to the observation of the digital signal 



 

34 
 

(triggering the acquisition of the photodiode signal), allowed to set the sign of the 
instrument indication. Near the extremes of the measuring interval of the target 
some caution was required, since the peaks were prone to lose separation and to 
coalesce gradually, especially with the sphere placed at high distances (> 3 m). To 
face this problem, software thresholding and filtering were adopted as a 
countermeasure. 
The achievable resolution was investigated following the same procedure used for 
P1 (Figure 29), and the best result was 1.67 µm at a sphere distance of 218 cm 
(Table 3), satisfactorily smaller than P1. 
 

 

Figure 29. P2 Calibration curves at different distances of the target; sphere lateral 
position measured by TESA TESATRONIC TT60 LVDT. 

 

Target distance d 
/ mm 

Sensitivity k 
/ (µs/µm) 

Intercept 
/ ms 𝑹𝑹𝟐𝟐 Noise 

𝝈𝝈𝝉𝝉𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 / µs 
Resolution 

/ µm 

1025 111.45 1.37 0.9980 0.024 2.67 
1500 131.23 −2.15 0.9985 0.021 2.78 
2180 129.99 −3.92 0.9991 0.013 1.67 
2775 135.40 −1.37 0.9967 0.013 1.69 
312.5 127.11 −2.03 0.9998 0.033 4.26 

 
 

Table 3. P2 calibration results. 

2.1.3 Third prototype (“P3”): description and characterization 

The third evolution of the device was designed as a compact and portable version 
of the previous ones, possibly suitable to be installed onboard of machine tools. The 
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need to scale down all the maximum numbers components was fulfilled in part, 
since P3 remained a prototype still built for investigation. A mix of sturdy 
aluminum components, commercial (Thorlabs) steel stands and clamps, and 3D 
printed plastic parts was at the base of its design. Accurate alignment and fine 
adjustment of the key components (especially the slit and the photodiode, the 
metrological heart of the whole system), after an initial installation on the 
breadboard, were mandatory; to fulfil this requirement, all the degrees of freedom 
were identified and satisfied, also by means of the introduction of fine positioning 
facilities that helped for the purpose, adding redundancy beyond the expected 
needs. To achieve a nearly perfect 50 % duty cycle of the digital signal, a high 
precision translation stage was used for a fine adjustment of the optical switch with 
respect to the slit (Figure 30, Figure 31 and Figure 32). 

  

  
 

Figure 30. Some views of the rendered model of P3 prototype. Kinematic mounts are 
available on the top and bottom surfaces to enable reversal if required. 

 

Figure 31. Rendered interior of P3, with the key components mounted on breadboard.  
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Figure 32. Front and back view of the rendered slit-optical switch assembly, with 
slider-crank linkage driven by hard disc motor. 

P3 underwent a more thorough test than the previous prototypes. As well as the 
other straightness measurement devices, P3 compared a tested profile with a 
reference line; in our case, the reference line was the paraxial ray impinging on the 
sphere and backscattered from the same sphere, with the laws of Physics ensuring 
that the light rays are enough straight (in our distance range) at a high degree of 
accuracy. As the distance of the target varied, the peaks of the photodiode signal 
changed their shape, risking to introduce a systematic contribution in their 
processing; for this reason, taking advantage of a nearly perfectly straight stroke — 
the CMM carriage stroke —, P3 measured the straightness error of a virtually 
perfect straight line: each deviation from a zero indication should have been 
attributed to a systematic error of the instrument reference line. A high accuracy 
CMM (Leitz PMM-C 10 12107) available at INRIM was used for this validation. 
The longest usable stroke was 1.2 m, which fixed the maximum distance of the 
target. The device was hence installed on the CMM basement and the target 
attached to a stage with micrometer screws, with the position of the sphere 
measured by a high precision LVDT (Figure 33). 

 
 

(a) (b) 
Figure 33. (a): Render of the testing set up of P3, installed on the CMM; (b): view of 
the physical realization on the prototype mounted in the CMM, at INRIM facility. 
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In order to estimate the combined effects of the air turbulence in the laboratory and 
the vibrations generated by the slider-crank mechanism, an investigation was 
carried out consisting in the acquisition of the pattern of the backscattered signals 
by means of a CMOS camera, integrated into the device; the observation and the 
consequent processing of the images confirmed the need for averaging the signals, 
because of unavoidable micrometric fluctuations noticed during the test at different 
distances of the target: the plot in Figure 34 shows the coordinates of the image 
centers of mass (“CdM”) with a still CMM at three different distances of the target 
(d = 0 mm, d = 600 mm, d = 1200 mm). The dispersion of the CdMs increases with 
the target distance: the calculated pooled standard deviations of the spots 
coordinates are 𝜎𝜎0 𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  1.6 μm, 𝜎𝜎600 𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  3.2 μm, 𝜎𝜎1200 𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  4.3 μm. 
 

 

Figure 34. Detection of the combined effects of mechanical vibrations and air 
turbulence on backscattered images from the sphere. By performing an Orthogonal 
Distance Regression of the centers of mass of the three separate point clouds, the peak-
to-valley straightness deviation can be quantified in ≃ 4.6 μm. 

 
The alignment procedure of the device with respect to the CMM stroke was 
achieved by placing a flat object (typically a piece of paper) beyond the sphere, and 
keeping the attention fixed on the thin halo generated by the peripheral portion of 
the impinging beam; the absence of any relative movement of the same halo over 
the whole stroke was considered as satisfactory for the alignment. The conversion 
of the signal phase measurement into a lateral displacement measurement of the 
target was possible through calibration, in the following manner: with a least-
squares best fit method, the linear response of the instrument was evaluated in 5 
lateral positions of the target, 0.5 mm apart from each other, to cover a range of 
±1 mm; this approach was repeated at 5 different distances of the sphere, in steps 
of 300 mm, to cover the whole range of (0 ÷ 1200) mm, so that at the end of the 
process a grid of points in a (2 × 1200) mm2 region of space was available to be 
interrogated by a Python script in data post processing. Figure 35 and Table 4 show 
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that the sensitivity was quite stable over the full range of distances between device 
and target. The calibration lines proved to be essentially parallel to each other, but 
spread vertically, and this could be explained admitting a slight misalignment of the 
beam pointing on the target with respect to the CMM stroke; in addition to that, it 
must be kept in mind that the return beam is known to suffer a slight divergence 
(32): for this reason, even in presence of a perfectly collimated forward beam 
impacting on the target, the return beam cannot be schematized with just a single 
direction. 

 

 

Figure 35. Calibration curves (in the phase domain instead of time domain, as in 
Figure 29) of P3 at different distances to the sphere. 

 
Target distance 

d / mm 
Sensitivity 

k / (10−3 °/µm) 
Intercept 

/ ° 
R2 

0 −48.9 ± 0.6 4.43 ± 0.47 0.9993 
300 −46.1 ± 0.7 −1.53 ± 0.50 0.9991 
600 −44.6 ± 0.9 −6.04 ± 0.68 0.9981 
900 −44.2 ± 0.6 −9.73 ± 0.41 0.9993 
1200 −44.2 ± 0.5 −14.11 ± 0.37 0.9994 

 
Table 4. Results of the linear best fitting of the calibration data for P3. 

The calibration results were then used in actual measurement, in this way: given a 
distance to the sphere, the curves in correspondence with the immediately longer 
and shorter distances (in the calibration table) were used to get two lateral 
displacements, in order to derive the actual device instrument indication as an 
interpolation between them.  
The next step consisted in an independent scan of the full CMM stroke in 24 points 
in steps of 50 mm; for each step, the device indication was calculated by 
interpolation, as described above. Three different strategies of straightness 
deviation calculations were adopted, with different reference line (and consequent 
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peak-to-valley straightness deviations “STRt”): the least-squares reference line LS, 
the reference line joining the extreme points, and the mean minimum zone reference 
line MZ (36) (Figure 36). 
 

   
(a) (b) (c) 

 
Figure 36. Characterization of the internal reference line for P3. Plots of the derived 
straightness deviations vs. the distance to target, with 3 different strategies: LS fit (a), 
end points fit (b) and minimum zone fit (c). 

 

Reference Line Peak-to-Valley Straightness 
Deviation (STRt) / µm 

Least squares (LS) ±5.3 
End points ±6.0 

Mean minimum zone 
(MZ) ±4.8 

 
Table 5. Calculated peak-to-valley STRt values. 

In order to justify our choice of taking the CMM carriage stroke as a reference for 
the derivation of the instrument indication error, a direct measurement of the 
effective stroke straightness was performed with a comparison technique. An 
approach similar to the previous measurement was adopted, with a 5 MPix CMOS 
camera (with 2.2 µm pixel size) replacing the sphere and a Renishaw RLU10 laser 
unit as a source8: from the migrating center of mass of the laser spot (whose profile 
proved to be mantaining its simmetry along the investigated range) detected by the 
camera, the sought information on the “real” straightness deviation of the stroke 
were extracted. To reduce the impact of the air turbulence, the camera acquired the 
laser spot at 6 Hz for 100 s, and the centers of mass of the frames were averaged. 
The same positions explored by the sphere in the previous experiment were sampled 
by the camera. In Figure 37 a plot shows the results, and it is worth mentioning the 
fact that the first portion of the stroke (< 900 mm) is characterized by stable and 
plausible results, while the last portion is affected by oscillations due to the air 
turbulence (since we are sampling regions of space that are the furthest form the 
device); for this reason, it is correct to affirm that the straightness of the CMM X-

                                                 
8 https://www.renishaw.com/en/rlu-compact-laser-unit-with-fibre-optic-delivery--20999 
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carriage can be assessed within ±0.5 µm, which confirms the assumption of a nearly 
perfectly linear (for our needs) stroke.  

 

Figure 37. Straightness deviation of the CMM X-carriage. The LS fit reference line 
was subtracted, and the horizontal axis represents the stroke.  

 

2.3 Last mechanical upgrade: tests and results 

With the aim of improving the performances of the devices, some updates to the 
mechanical assembly were designed and implemented. Specifically, the heart of the 
slit driving mechanism — crank and connecting rod— consisted of 3D-printed 
elements linked together by a ball bearing, and another bearing allowed the linkage 
of the crank to the slit support: this chain of elements proved to be susceptible to 
wear out over time, due to the dynamic friction and to poor geometric accuracy 
inherent in the production process (fused deposition modeling); the clearance 
between the components caused by imperfect coupling had an impact on the signals 
to be processed, generating inconsistencies in their processing. A viable solution to 
this problem was seen in the replacement of the critical plastic parts and in a sturdier 
design of the mentioned components, machining them in solid aluminum and 
paying attention to their tolerances and ensuring better accuracy in their assembly 
(Figure 38); also the old bearings were replaced by a high quality pair of new 
bearings, in order to achieve maximum fluidity in the rotation and smoothness in 
the slit motion. 
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Figure 38. Picture showing the new aluminum machined parts, held in place by an 
oversized 3D printed plastic support. 

Great care was also taken in the installation of the flywheel on the motor rotor, 
trying to minimize the runout error: a 120° service setup with bearings supported 
by micrometric screws and a LVDT making contact on the edge of the flywheel 
was equipped and tested as the screws were tightened (Figure 39); by iteratively 
tuning the assembly procedure, it was possible to achieve a ~ 60 µm maximum 
runout error (measured in 180° rotation of the flywheel itself) (Figure 40). 
 

 

Figure 39. Set up for minimizing the run out error. 

 

  
 
Figure 40. Minimum (on the left) and maximum (on the right) run out error in the 
flywheel installation. 
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At the end of the process, these mechanical efforts were paid off both in the nearly 
total absence of clearances (witnessed by a considerably reduced noise in working 
regime), and in an improved transmission of the motion to the slit.  
 

2.3.1 Jitter evaluation 

After the described step, in order to achieve a better knowledge of our device under 
a wide range of testing conditions before the necessary subsequent new calibration, 
we decided to investigate the observed frequency jitter in the acquired signals, 
inevitably occurring during the measurement process. As it is known in literature, 
jitter is a phenomenon affecting the correct interpretation of the electronic signals 
(Figure 41); it can be defined as a “deviation of significant instances of a signal 
from their ideal location in time” (37). 

 

 

Figure 41. Possibility of misinterpretation of transmitted data due to jitter (source: 
(37)). 

 
By convention, two categories identify the amount of timing variations, and they 
are known as jitter and wander on the base of the Fourier analysis: timing variations 
occurring at a slow rate are called wander, while jitter is related to variations 
occurring more rapidly; according to ITU-T Recommendation G.810 (08/96) 
“Definitions and Terminology for Synchronization Networks”, the threshold 
separating wander from jitter is defined to be 10 Hz.  
Often the sources of jitter can be placed into two distinct categories: bounded and 
unbounded, with the former reaching maximum and minimum phase deviation 
within a recognizable time interval, and the latter not capable of achieving the same 
behaviour within any time interval, theoretically approaching infinity; these types 
of jitter are respectively referred to as “deterministic” and “random” jitter. The total 
jitter on a signal, characterized by a phase error function 𝜑𝜑𝑖𝑖(𝑡𝑡), is the cumulative 
sum of the aforementioned contributions: 

𝜑𝜑𝑖𝑖(𝑡𝑡) =  𝜑𝜑𝑖𝑖(𝑡𝑡)𝐷𝐷 + 𝜑𝜑𝑖𝑖(𝑡𝑡)𝑅𝑅 
In this equation, 𝜑𝜑𝑖𝑖(𝑡𝑡)𝐷𝐷, the deterministic component (distinguished by peak-to-
peak value 𝐽𝐽𝑃𝑃𝑃𝑃𝐷𝐷) can be calculated by summing maximum and minimum 
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phase/time displacements produced by bounded jitter sources together; the random 
component 𝜑𝜑𝑖𝑖(𝑡𝑡)𝑅𝑅 (related as a standard deviation value 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and assumed to 
follow a Gaussian distribution), is generated by all random noise sources shaping 
the signal. In this work there is no intention to explore extensively the concept and 
to propose a rigorous procedure to separate deterministic from random jitter in the 
collected signals, nevertheless an estimation of the overall jitter affecting the 
subsequent handling of the collected data can be an interesting exercise; our 
measurand is just the temporal displacements of the signals backscattered by the 
target, in a condition where the trigger for their acquisition is the “on/off” signal 
provided by the optical switch due to the rotation of the motor: an uneven rotation 
speed is responsible for adding unwanted noise in the time displacement 
measurement, and leading to under- or overestimating the calculated straightness 
error at the end of the process. In order to accomplish this task, the behaviour of the 
period jitter (that is the deviation of any clock period from its mean clock period 
within an observation window, therefore comparing the length of each period to the 
average period of an ideal clock), among the other forms of jitters (like cycle-cycle 
jitter and time interval error – TIE), was chosen for this investigation (Figure 42). 
 

 

Figure 42. Different ways to measure the jitter (source: (38)) 

The acquisition settings for this test are shown in Figure 43; briefly, a collection of 
1000 waveforms (containing at least an entire period of the square wave) were 
saved, each one storing 10000 samples at a frequency of 100 kHz in a time interval 
of 100 ms for each waveform, with a resolution of 10 μs; rotation speed of the motor 
during the test was set at 15 Hz, approximately. 
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Figure 43. Acquisition settings chosen for jitter measurement. 

By using a custom-made Python script working on all the collected waveforms, the 
rising and the descending fronts of the square waves were isolated and resolved in 
time in order to provide the periods on which statistical evaluations were performed, 
allowing to estimate the jitter affecting the signals. Figure 44 shows a plot of both 
the clock periods (roughly ranging from 65 ms to 67 ms) and the period jitter (in 
the approximate interval of ±1 ms), with the latter obtained by filtering out the DC 
component of the raw clock signal. 

 

Figure 44. Plot of the clock periods (in black) and of the period jitter (in red), 1000 
waveforms. 

By performing a gaussian fitting of the filtered data points over the whole time 
interval (100 s) and performing a multiple peak analysis, the plot in Figure 45 could 
be generated.  
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Figure 45. Multiple peak analysis of the filtered data points in a 100 s time interval. 
Horizontal scale is in ms. 

Simple statistics on collected data (spread over 18 bins, ranging from -0.9 to 0.9 
ms) suggested to be in presence of a distribution characterized by a bimodal nature 
rather than a single Gaussian curve, and allowed to create a histogram of the period 
jitter (Figure 46); this behaviour is typical of a signal affected by both random and 
deterministic jitter: the confirmation of this assumption lies in the evaluation of the 
power spectral density (PSD) of the same signal (Figure 47), where two peaks can 
be isolated in the 0 – 5 Hz band: the first at about 0.49 Hz (corresponding to a 
modulating signal with a periodicity of ~ 2 seconds, clearly visible during the real 
time acquisitions of samples), and another at ~ 3.6 Hz, pertinent to a weaker 
modulation; both of the modulating signals are likely generated by the motor driver, 
in the absence of any other mechanical or electric perturbative source. Figure 48 
shows the Allan deviation of the filtered jitter period.  
 

 

Figure 46. Histogram of the period jitter for the 1000 waveforms acquired. 
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Figure 47: PSD of the period jitter signal, with two peaks (at 0.49 Hz and 3.6 Hz) 
which can be discerned above the noise. 

 

 

Figure 48. Plot with Allan deviation of the period jitter examined in 1000 waveforms. 
 

Peak-to-peak deterministic jitter 𝐽𝐽𝑃𝑃𝑃𝑃𝐷𝐷 (39) can be evaluated by taking into 
consideration the distribution in the histogram plotted in Figure 46: performing 
some statistics on it allowed to estimate its contribution in 1.68 ms, while the 
random jitter 𝐽𝐽𝑅𝑅 shows to be represented by a Gaussian curve with a 0.46 ms 
standard deviation; this means that the total peak-to-peak jitter, assuming a bit error 
rate (BER) of 10-3 (just one over 1000 samples), can be estimated by the formula: 

𝐽𝐽𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝  = 𝑅𝑅𝑀𝑀𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑖𝑖𝑝𝑝𝑀𝑀𝑖𝑖𝑀𝑀𝑡𝑡 × 𝐽𝐽𝑅𝑅 + 𝐽𝐽𝑃𝑃𝑃𝑃𝐷𝐷 ≅ 4.52 ms 
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Table 6. BER with its Appropriate RMS Multiplier. 

(choosing the RMS multiplier from first column of Table 6 (40)). 
 
In order to have a more robust statistic and to improve the resolution in the same 
frequency band, with the aim of better estimating the amount of jitter disturbing our 
measurements another test was performed; this time, each acquisition file consisted 
in 2000 samples (100 ms each one) of the signal clock, sampled at 20 kHz and with 
a resolution of 50 µs, for a total of 8192 waveforms containing at least a whole 
period of the square wave: these settings matched the maximum amount of data that 
could be acquired due to the limited buffer size of the Picoscope).  By applying the 
same methodology described before, the results of the acquisitions are shown in 
Figure 49, Figure 50, Figure 51, Figure 52 and Figure 53. 
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Figure 49. Plot of the clock periods (in black) and of the period jitter (in red), 8192 
waveforms. 

 

 

Figure 50. Multiple peak analysis of the filtered data points in a 819 s time interval. 
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Figure 51. Histogram of the period jitter for the 8192 waveforms acquired. 
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Figure 52. PSD of the period jitter signal, with three peaks (at 0.002 Hz, 0.477 Hz and 
3.595 Hz) standing out above the noise. 
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Figure 53. Plot with Allan deviation of the period jitter examined in 8192 waveforms. 

PSD of the new data confirm the same deterministic component in the jitter, at the 
same frequencies of ~ 0.48 and 3.6 Hz as seen before, and the appearance of a new 
strong peak at lower frequency, at 0.002 Hz, accounting for a slow modulation of 
the clock signal by means of a perturbation with a period of ~ 410 s (also barely 
visible in the PSD of the period jitter signal in Figure 47). Overall jitter 
contributions can be estimated by adding together deterministic and random 
components, with the same formula used before: 
 

𝐽𝐽𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝  = 𝑅𝑅𝑀𝑀𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑖𝑖𝑝𝑝𝑀𝑀𝑖𝑖𝑀𝑀𝑡𝑡 × 𝐽𝐽𝑅𝑅 + 𝐽𝐽𝑃𝑃𝑃𝑃𝐷𝐷 ≅ 11.82 ms 
 
with 𝑅𝑅𝑀𝑀𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑖𝑖𝑝𝑝𝑀𝑀𝑖𝑖𝑀𝑀𝑡𝑡 = 7.438 (from Table 6), 𝐽𝐽𝑅𝑅 = 0.81 𝑚𝑚𝑡𝑡 and 𝐽𝐽𝑃𝑃𝑃𝑃𝐷𝐷 = 5.8 ms 
 
For what concerns the acquisitions effectively used for the characterization of the 
upgraded device, it was established that a population of only 100 samples of both 
the clock and the cross-correlation signal should be collected in order to perform 
the necessary calculations (that will be explained in the next paragraph); with such 
a poor resolution the distinction of the two components of the jitter resulted very 
difficult (Figure 54, Figure 55, Figure 56), however leading to an estimation of  
𝐽𝐽𝑃𝑃𝑃𝑃𝐷𝐷 in 0.5 ms and of 𝐽𝐽𝑅𝑅 in 0.18 ms; choosing a RMS Multiplier equal to 4.653 
(corresponding to the probability error of 0.01 (41)), total jitter could be estimated 
in 1.34 ms: this quantity can be seen as a rough estimation of the main contribution 
to uncertainty in the evaluation of the cross-correlations of the even and odd peaks 
of the windowed photodiode signals, triggered by the clock signal. 
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Figure 54. Plot of the clock periods (in black) and of the period jitter (in red), 100 
waveforms. 

 

Figure 55. Multiple peak analysis of the filtered data points in a 10 s time interval. 
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Figure 56. Histogram of the period jitter for the 100 waveforms acquired. 

2.3.2 Calibration procedure  

Clock signals revealed to be affected by jitter, whose composite nature allowed it 
to be separated into deterministic and random contributions; they were quantified 
with a statistic approach in different test conditions, in order to provide a basis for 
an estimation of the uncertainty occurring in our measurements. Since crossing the 
50 % threshold of the clock signal maximum amplitude was the trigger for the 
acquisition of the photodiode signal, the presence of jitter inexorably affected the 
timestamps of the calculated cross-correlations of the photodiode signal, 
introducing some unwanted noise in the subsequent calculations. In order to face 
this problem, the coherence of clock and cross-correlation signals was evaluated; 
clock and photodiode signals are normally in a specific phase relation —ideally 
constant in time—, depending on the lateral position of the target, but clock and 
cross-correlation signals disclose their synchrony when plotted together (Figure 
57). 
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Figure 57. Plot of smoothed and normalized clock and cross-correlation signals (data 
coming from same acquisition of the same 1000 samples described in the previous 
paragraph). 

 

 

Figure 58. Scatter matrices of clock and cross-correlation signals, with 95 % 
confidence ellipse and histograms of the couple of distributions on the diagonals. 
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Scatter matrices of these signals (Figure 58) point out the strong correlation 
between them, also confirmed by the Pearson’s r coefficient (≅ 0.97); this 
awareness allows us to define another measurand, that turned out to be eligible to 
replace the rough cross-correlation signal used so far for calibrating the device: the 
cross-correlations normalized on the clock signal periods, so that the noise induced 
by the jitter even in presence of a still target tends to be cancelled out by averaging 
on a sufficient amount of acquired waveforms of both clock and photodiode signals. 
Adopting such a strategy, the main contribution to the dispersion of the calculated 
values of the new measurand is the turbulence of air, that cannot be compensated 
and is primarily responsible for adding totally random components to the collected 
photodiode signals; an upgraded Python script (reported in Appendix A, with its 
flowchart in Figure 73) takes this necessary modification into account, generating 
the sought outputs. 
Also in the context of this calibration process, five mutual distances between target 
and device were investigated, ranging from 0 mm to 1200 mm (plus a constant 
offset of 470 mm, due to the experimental layout equipped on the CMM, as shown 
in Figure 59), with the sphere occupying five different lateral positions (from 
- 500 µm to 500 µm) to unbalance the system and trigger the straightness sensitivity 
of the instrument; the overall strategy can be schematized in the generation of a grid 
of 25 calibration points sampling a narrow rectangle of space (1 mm wide and 
1200 mm long) explored by the sphere in the process (Table 7). 
 

 

Figure 59. Set up on the CMM and initial position (𝑑𝑑 = 0 mm, “null” lateral 
displacement of the sphere) for the calibration of the device. 
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Table 7. Results obtained by processing the acquired data of clock periods and 
photodiode signals in the 25 positions explored by the sphere during calibration; the 
occasional low or even negative values of the Pearson coefficient may indicate some 
turbulence perturbating the acquisitions. 

 

Photodiode signal t_clock σt_clock t_cross-corr σt_cross-corr f_clock Δφ
(V) (ms) (ms) (ms) (ms) (Hz) (°)

-500 6.31E-01 6.64E+01 2.78E-01 -6.42E+00 3.23E-02 -9.66E-02 2.67E-04 1.51E+01 -1.74E+01 9.91E-01
-250 6.35E-01 6.65E+01 2.22E-01 -4.31E+00 1.97E-02 -6.48E-02 2.18E-04 1.50E+01 -1.17E+01 9.58E-01

0 6.08E-01 6.63E+01 3.11E-01 -2.13E+00 1.85E-02 -3.21E-02 2.43E-04 1.51E+01 -5.77E+00 8.97E-01
250 6.47E-01 6.63E+01 3.25E-01 5.04E-02 1.95E-02 7.60E-04 2.93E-04 1.51E+01 1.37E-01 5.72E-01
500 6.52E-01 6.66E+01 2.57E-01 2.22E+00 2.00E-02 3.33E-02 2.77E-04 1.50E+01 6.00E+00 8.71E-01

Lateral sphere 
displacements 

(µm)
Pearson

d = 0 mm

t_cross-corr/t_clock σt_cross-corr/t_clock

Photodiode signal t_clock σt_clock t_cross-corr σt_cross-corr f_clock Δφ
(V) (ms) (ms) (ms) (ms) (Hz) (°)

-500 5.35E-01 6.67E+01 3.79E-01 -6.04E+00 4.13E-02 -9.06E-02 3.00E-04 1.50E+01 -1.63E+01 9.92E-01
-250 5.54E-01 6.59E+01 3.48E-01 -3.96E+00 2.76E-02 -6.01E-02 2.49E-04 1.52E+01 -1.08E+01 9.86E-01

0 5.42E-01 6.65E+01 3.01E-01 -1.96E+00 2.16E-02 -2.95E-02 3.04E-04 1.50E+01 -5.32E+00 6.37E-01
250 5.60E-01 6.65E+01 2.52E-01 1.37E-01 1.74E-02 2.05E-03 2.61E-04 1.50E+01 3.70E-01 4.07E-01
500 5.67E-01 6.65E+01 1.81E-01 2.26E+00 1.81E-02 3.40E-02 2.71E-04 1.50E+01 6.12E+00 3.74E-01

Lateral sphere 
displacements 

(µm)
Pearson

d = 300 mm

t_cross-corr/t_clock σt_cross-corr/t_clock

Photodiode signal t_clock σt_clock t_cross-corr σt_cross-corr f_clock Δφ
(V) (ms) (ms) (ms) (ms) (Hz) (°)

-500 4.63E-01 6.64E+01 2.38E-01 -5.90E+00 2.93E-02 -8.88E-02 2.83E-04 1.51E+01 -1.60E+01 9.58E-01
-250 4.75E-01 6.64E+01 3.31E-01 -3.92E+00 3.07E-02 -5.90E-02 3.36E-04 1.51E+01 -1.06E+01 9.45E-01

0 4.76E-01 6.61E+01 3.16E-01 -1.84E+00 1.99E-02 -2.79E-02 2.80E-04 1.51E+01 -5.02E+00 6.48E-01
250 4.88E-01 6.67E+01 2.62E-01 2.20E-01 1.95E-02 3.30E-03 2.92E-04 1.50E+01 5.93E-01 -3.57E-01
500 4.88E-01 6.65E+01 1.87E-01 2.27E+00 1.98E-02 3.41E-02 2.91E-04 1.50E+01 6.14E+00 5.05E-01

Lateral sphere 
displacements 

(µm)
Pearson

d = 600 mm

t_cross-corr/t_clock σt_cross-corr/t_clock

Photodiode signal t_clock σt_clock t_cross-corr σt_cross-corr f_clock Δφ
(V) (ms) (ms) (ms) (ms) (Hz) (°)

-500 4.09E-01 6.65E+01 2.85E-01 -5.74E+00 4.32E-02 -8.63E-02 4.47E-04 1.50E+01 -1.55E+01 9.70E-01
-250 4.19E-01 6.63E+01 2.66E-01 -3.77E+00 2.50E-02 -5.69E-02 2.89E-04 1.51E+01 -1.02E+01 9.67E-01

0 4.18E-01 6.64E+01 2.75E-01 -1.70E+00 2.70E-02 -2.56E-02 3.73E-04 1.51E+01 -4.60E+00 6.85E-01
250 4.31E-01 6.62E+01 2.21E-01 3.08E-01 1.77E-02 4.65E-03 2.68E-04 1.51E+01 8.37E-01 -9.78E-02
500 4.29E-01 6.65E+01 2.81E-01 2.31E+00 2.12E-02 3.47E-02 2.96E-04 1.50E+01 6.24E+00 7.59E-01

Lateral sphere 
displacements 

(µm)
Pearson

d = 900 mm

t_cross-corr/t_clock σt_cross-corr/t_clock

Photodiode signal t_clock σt_clock t_cross-corr σt_cross-corr f_clock Δφ
(V) (ms) (ms) (ms) (ms) (Hz) (°)

-500 3.66E-01 6.62E+01 2.88E-01 -5.55E+00 3.27E-02 -8.38E-02 3.39E-04 1.51E+01 -1.51E+01 9.27E-01
-250 3.80E-01 6.63E+01 2.83E-01 -3.51E+00 2.45E-02 -5.30E-02 2.80E-04 1.51E+01 -9.54E+00 9.39E-01

0 3.77E-01 6.64E+01 2.48E-01 -1.52E+00 2.73E-02 -2.28E-02 3.89E-04 1.51E+01 -4.11E+00 5.14E-01
250 3.89E-01 6.61E+01 3.81E-01 4.88E-01 1.70E-02 7.39E-03 2.55E-04 1.51E+01 1.33E+00 7.09E-01
500 3.85E-01 6.64E+01 2.82E-01 2.47E+00 2.28E-02 3.72E-02 3.03E-04 1.51E+01 6.70E+00 8.15E-01

Lateral sphere 
displacements 

(µm)
Pearson

d = 1200 mm

t_cross-corr/t_clock σt_cross-corr/t_clock
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Figure 60. Calibration curves of the upgraded P3 device. 

 

Table 8. Summary of the parameters calculated through linear fitting (target distances 
increasing from top to bottom) of the normalized cross-correlations.  

The obtained values of the measurand 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 for all the 25 positions of the sphere 

were thence plotted, as shown in Figure 60, and the sought linear dependencies 
from the transverse sphere translations were deduced by least square fitting of the 
data (Table 8). Looking again at Figure 60, it is interesting to highlight two details: 
since the five curves have slightly different slopes, they seem to intersect in a region 
of space external to the calibration range (> 500 µm); secondly, what it is more 
important, there is the fact that each calibration curve shows a specific abscissa of 
transverse position corresponding to a null value of the cross-correlation (Figure 
61). 
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Figure 61. Magnification of plot in Figure 60 showing the behaviour of the calibration 
curves near the null ordinate value. 

By inverting each calibration curve, extracting the abscissa at which 𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐−𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 has 
a null value and assuming that the corresponding transverse sphere translation 
∆𝑅𝑅𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝 is a linear function of the distance 𝑑𝑑 of the sphere, a new linear equation 
can be deduced (fit parameters in Figure 62):  

∆𝑅𝑅𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝  = 246.35 μm − 0.04 
μm
mm

∙ 𝑑𝑑 

This relation expresses the amount of lateral displacement to be imposed to the 
target in order to keep the value of the cross-correlation of the photodiode signal 
null, exploring increasing distances of the same target from the device; reversing 
the perspective, this equation also quantifies the correction as a function of 𝑑𝑑 to be 
applied to the position of (the support carrying) the slit, orthogonal to the 
backscattered beam, for the same condition to occur: through this analysis the extent 
of the intrinsic mechanical misalignment of the device was then estimated. 
Remembering that the initial alignment of the sphere in the beam was carried out 
in a qualitative way (looking at the best circular symmetry of the luminous halo of 
the sphere projected onto a rear screen, like in Figure 59), it turns out that the error 
made in the positioning of the target at its minimum distance is about a quarter of a 
millimeter, as it can be inferred from the same equation: something that makes 
perfect sense, since that procedure was performed with the maximum accuracy 
allowed by human eye. Another aspect that emerged from the data that deserves to 
be mentioned was the exponential decaying nature of the photodiode signal 
amplitudes, as a function of sphere distance and of its lateral displacement (Figure 
63).  
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Figure 62. Linear fit to estimate the mechanical misalignment of the device. 

 

 

Figure 63. Photodiode signal amplitudes as a function of sphere distance and lateral 
displacement, and their exponential fit.  

2.3.3 Straightness deviation estimation 

Next step was aimed to the estimation of the indication error of the device, with the 
same strategy used in the context of the previous version of the device itself. 25 
positions of the target were explored in the range (0 ÷ 1200) mm (with an initial 
offset of 470 mm because of the chosen installation layout), with the sphere moving 
along an almost ideal straight line traveled by the CMM X-carriage9 (Figure 64, 
Figure 65). 
 

                                                 
9 According to CMM error map, txy is within the range [-1 ÷ 0.4] µm. 
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Figure 64. Linear fit of the normalized 𝒕𝒕𝒄𝒄𝒓𝒓𝒏𝒏𝒔𝒔𝒔𝒔−𝒄𝒄𝒏𝒏𝒓𝒓𝒓𝒓 values in the 25 positions occupied 
by the sphere in its path along an ideal straight line. 

 

 

Figure 65. Exponential fit of the photodiode signal amplitude as a function of the 
distance of the sphere from the device 

In order to quantify the maximum indication error of the device, the calibration 
parameters calculated before at only five distances were used to perform a linear 
interpolation to estimate the response of the device at the untested distances of the 
sphere; so, starting from the linear relation 

𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐−𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐,𝑛𝑛𝑝𝑝𝑐𝑐𝑚𝑚 = 𝐴𝐴 + 𝐵𝐵 ∙ ∆𝑅𝑅 
with ∆𝑅𝑅 = transverse position of the sphere, by inverting this equation we get: 

∆𝑅𝑅 = −
𝐴𝐴
𝐵𝐵

+  
𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐−𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐,𝑛𝑛𝑝𝑝𝑐𝑐𝑚𝑚

𝐵𝐵
= 𝛼𝛼 + 𝛽𝛽 ∙ 𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐−𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐,𝑛𝑛𝑝𝑝𝑐𝑐𝑚𝑚 

where [𝛼𝛼] =  [𝛽𝛽] = µm. Taking advantage of the fitting parameters already 
obtained by calibration (resumed in Table 9) and converted into the coefficients 𝛼𝛼 
and 𝛽𝛽 (Table 10), it was easy to assemble a look-up table for the estimation of the 
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resulting straightness (Table 11), perform linear fit (Figure 66) and then plot the 
residuals of the linear fit (Figure 67); some simple statistics applied on the 
calculated residuals allowed to estimate the indication error of the device (its own 
straightness error, according to least square fitting) in 4.4 µm. 
 

d / mm A  B / µm-1 

0 -0.032 1.302E-04 
300 -0.029 1.246E-04 
600 -0.028 1.232E-04 
900 -0.026 1.214E-04 

1200 -0.023 1.209E-04 
 

Table 9. Parameters of the calibration for upgraded P3. 

𝜶𝜶 / µm 𝜷𝜷 / µm 

244.818 7679.371 
231.515 8027.551 
224.475 8115.500 
213.255 8240.151 
190.247 8268.016 

 
Table 10. Coefficients used for the interpolation. 

 

d / 
mm 

𝒕𝒕𝒄𝒄𝒓𝒓𝒏𝒏𝒔𝒔𝒔𝒔−𝒄𝒄𝒏𝒏𝒓𝒓𝒓𝒓
𝒕𝒕𝒄𝒄𝒄𝒄𝒏𝒏𝒄𝒄𝒄𝒄

 p10 
STR 

“before”11 / 
µm 

STR 
“after”12 

/ µm 

STR 
res13 / 

µm 

residuals14 
/ µm  

5 -0.032 0.017 1.622 -22.709 1.216 1.811 
50 -0.031 0.167 5.230 -18.937 1.202 1.655 

100 -0.031 0.333 9.180 -14.807 1.184 1.480 
150 -0.030 0.500 12.786 -11.038 0.874 1.012 
200 -0.030 0.667 16.660 -6.988 0.895 0.875 
250 -0.029 0.833 19.601 -3.914 0.006 -0.172 
305 -0.029 0.017 -1.770 -11.366 -1.930 -2.281 
350 -0.029 0.167 0.168 -9.406 -1.428 -1.920 
400 -0.029 0.333 1.221 -8.342 -1.967 -2.617 
450 -0.028 0.5 3.016 -6.527 -1.756 -2.563 
500 -0.028 0.667 6.047 -3.463 -0.293 -1.258 
550 -0.028 0.833 7.847 -1.644 -0.062 -1.185 
605 -0.027 0.017 1.429 -13.216 1.185 -0.111 

                                                 
10 Interpolation factor; 𝑝𝑝 =

𝑝𝑝𝑐𝑐𝑠𝑠ℎ𝑒𝑒𝑐𝑐𝑒𝑒−𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑒𝑒𝑏𝑏𝑐𝑐𝑐𝑐𝑒𝑒

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,after"−𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑒𝑒𝑏𝑏𝑐𝑐𝑐𝑐𝑒𝑒
 

11 Straightness “before”; 𝑅𝑅𝑇𝑇𝑅𝑅𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑐𝑐𝑝𝑝 = 𝛼𝛼𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑐𝑐𝑝𝑝 + 𝛽𝛽𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑐𝑐𝑝𝑝 ∙
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

12 Straightness “after”; 𝑅𝑅𝑇𝑇𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡𝑝𝑝𝑐𝑐 = 𝛼𝛼𝑡𝑡𝑏𝑏𝑡𝑡𝑝𝑝𝑐𝑐 + 𝛽𝛽𝑡𝑡𝑏𝑏𝑡𝑡𝑝𝑝𝑐𝑐 ∙
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

13 Resulting straightness; 𝑅𝑅𝑇𝑇𝑅𝑅𝑐𝑐𝑝𝑝𝑐𝑐 = 𝑅𝑅𝑇𝑇𝑅𝑅𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑐𝑐𝑝𝑝(1 − 𝑝𝑝) + 𝑝𝑝 ∙ 𝑅𝑅𝑇𝑇𝑅𝑅𝑡𝑡𝑏𝑏𝑡𝑡𝑝𝑝𝑐𝑐  
14 Residuals of linear fit of “Resulting straightness” 𝑅𝑅𝑇𝑇𝑅𝑅𝑐𝑐𝑝𝑝𝑐𝑐 
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650 -0.027 0.167 3.633 -10.979 1.198 -0.240 
700 -0.027 0.333 6.922 -7.640 2.068 0.472 
750 -0.026 0.500 10.122 -4.390 2.866 1.113 
800 -0.026 0.667 12.566 -1.908 2.917 1.006 
850 -0.026 0.833 14.615 0.172 2.579 0.511 
905 -0.025 0.017 3.664 -20.052 3.269 1.027 
950 -0.025 0.167 6.752 -16.955 2.801 0.417 

1000 -0.024 0.333 11.445 -12.246 3.548 1.007 
1050 -0.024 0.500 15.165 -8.513 3.326 0.628 
1100 -0.024 0.667 19.233 -4.432 3.457 0.600 
1150 -0.023 0.833 22.547 -1.106 2.837 -0.177 
1195 -0.023 0.983 25.312 1.669 2.063 -1.093 
 
Table 11. Results of the linear interpolation for the straightness evaluation of the 
collected data. 

 

 

Figure 66. Calculated straightness by least square fitting of “STR res”. 

 

Figure 67. Straightness error calculated by least square fitting. 

The calculation of the straightness error of the device by “end points” fit, using data 
collected in Table 12, led to a value of 5.1 µm (Figure 68). Besides, by 
implementing in a Python script the concept of the minimum zone found in 
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literature to get the height of the minimum area box (42) drawn around the convex 
hull (43) of the residuals of the least square fit, a smallest value of 4.1 µm was 
obtained (Figure 69); this quantity is comparable to the one extrapolated through 
the totally different experimental strategy described in Figure 34. Table 13 
summarizes the values of the straightness deviation STRt calculated according to 
the three different strategies just explained. 

 
A15 B16 / µm δi 17 / µm 

7.116E-04 1.216E+00 

-0.004 
-0.050 
-0.103 
-0.449 
-0.464 
-1.388 
-3.363 
-2.893 
-3.467 
-3.292 
-1.864 
-1.669 
-0.461 
-0.481 
0.354 
1.116 
1.131 
0.759 
1.409 
0.908 
1.620 
1.363 
1.458 
0.802 
-0.004 

 
Table 12. Parameters used for evaluation of straightness error by “end points” fit. 

 

                                                 
15 𝐴𝐴 =

𝑅𝑅𝑇𝑇𝑅𝑅𝑐𝑐𝑒𝑒𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑅𝑅𝑇𝑇𝑅𝑅𝑐𝑐𝑒𝑒𝑐𝑐,𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑐𝑐𝑠𝑠ℎ𝑒𝑒𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑐𝑐𝑠𝑠ℎ𝑒𝑒𝑐𝑐𝑒𝑒,𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

16 𝐵𝐵 = 𝑅𝑅𝑇𝑇𝑅𝑅𝑐𝑐𝑝𝑝𝑐𝑐,𝑏𝑏𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡 
17 𝛿𝛿𝑖𝑖 = 𝑅𝑅𝑇𝑇𝑅𝑅𝑐𝑐𝑝𝑝𝑐𝑐 −

𝐴𝐴∙𝑝𝑝𝑐𝑐𝑠𝑠ℎ𝑒𝑒𝑐𝑐𝑒𝑒+𝐵𝐵

�1+𝐴𝐴2
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Figure 68. Straightness error of the device calculated according the End Points Fit 
strategy. 

 

  
Figure 69. Plots showing the convex hull of the residuals of the least square fit (on the 
left), and minimum bounding box surrounding the residuals of the fit. 

 
Reference line/ 

Strategy for calculation 
Peak-to-valley straightness 
deviation (STRt) / µm 

Least Squares ±2.2 
End Points ±2.5 

Minimum zone ±2.1 
 

Table 13. Results of the peak-to-valley straightness deviation (STRt). 

 

2.3.4 Straightness measurement of simulated path 

Last test conducted in order to evaluate the performances of the device consisted in 
the estimation of the straightness deviation of the “path” of the same sphere in 25 
sequential positions, sampling a full cycle of a sinusoid projected onto the same 
rectangle of 2D space used for the calibration. In order to do so, the chosen lateral 
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positions of the sphere were accurately imposed by using a translation stage with 
micrometer screws and measured from time to time with the TESA TESATRONIC 
TT60 LVDT with the resolution of 0.1 µm, and, statically at each elected position, 
the same acquisition strategy described for calibration was followed. Table 14 
shows the results of the measurements, with the column “∆𝑅𝑅𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝” labelling the 
effective lateral positions of the target as measured by LVDT. 
 

 

Table 14. Results of the straightness measurement of the sphere sampling a sinusoid 
projected onto a plane parallel to XY coordinate plane.   

Since we sampled the explored longitudinal range of (0 ÷ 1200) mm in more points 
than the ones available from calibration, in order to express the dependance of the 
normalized cross-correlation both on the longitudinal distance and on the lateral 
displacement a least square fitting with a 2 variables function was performed; in the 
absence of a suitable mathematical model to be guided by, with the aim of 
statistically managing the calculated values, the choice fell on a two-dimensional 
polynomial function: 

𝑧𝑧 = 𝑧𝑧0 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑦𝑦 + 𝑡𝑡𝑎𝑎2 + 𝑑𝑑𝑦𝑦2 + 𝑓𝑓𝑎𝑎𝑦𝑦 
 
By replacing 𝑎𝑎, 𝑦𝑦 and 𝑧𝑧 respectively with ∆𝑅𝑅𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝, 𝑑𝑑𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝 and 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
, the 25 

values of the available normalized cross-correlations were fitted, with the results 
reported in the plot shown in Figure 70; having thereby quantified the parameters 
of the polynomial function, it was easy to reverse the equation in order to solve it 
with respect to ∆𝑅𝑅𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝:  
 

∆𝑅𝑅𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝 =
−�𝑓𝑓𝑑𝑑𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝 + 𝑎𝑎� + ��𝑓𝑓𝑑𝑑𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝 + 𝑎𝑎�2 − 4𝑡𝑡 �𝑧𝑧0 −

𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐−𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐
𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖

+ 𝑏𝑏𝑑𝑑𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝 + 𝑑𝑑 ∙ 𝑑𝑑𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑐𝑐𝑝𝑝2�

2𝑡𝑡  

 

0 0.0 64.46 0.51% -2.04 -1.05% -0.032 -0.90% 15.51 -5.70 0.94
50 129.4 63.07 0.39% -0.88 -2.12% -0.014 -2.07% 15.86 -2.51 0.58
100 250.0 65.92 0.41% 0.12 15.54% 0.002 15.50% 15.17 0.34 0.29
150 353.6 66.52 0.34% 1.02 1.75% 0.015 1.77% 15.03 2.77 0.51
200 433.0 66.20 0.38% 1.71 1.12% 0.026 1.08% 15.11 4.66 0.66
250 483.0 66.15 0.42% 2.13 0.98% 0.032 0.87% 15.12 5.80 0.93
300 500.0 66.43 0.39% 2.28 0.94% 0.034 0.85% 15.05 6.19 0.78
350 483.0 65.81 0.51% 2.10 1.04% 0.032 0.93% 15.20 5.74 0.83
400 433.0 63.68 0.40% 1.63 1.13% 0.026 1.17% 15.70 4.62 0.56
450 353.6 63.86 0.41% 1.03 1.82% 0.016 1.81% 15.66 2.91 0.78
500 250.0 66.11 0.49% 0.21 9.37% 0.003 9.33% 15.13 0.58 0.31
550 129.4 66.05 0.32% -0.77 -2.25% -0.012 -2.19% 15.14 -2.10 0.45
600 0.0 66.27 0.43% -1.84 -1.15% -0.028 -1.06% 15.09 -4.99 0.73
650 -129.4 66.41 0.38% -2.89 -0.82% -0.043 -0.67% 15.06 -7.82 0.84
700 -250.0 66.01 0.33% -3.86 -0.59% -0.058 -0.49% 15.15 -10.52 0.90
750 -353.6 66.51 0.44% -4.69 -0.82% -0.071 -0.65% 15.03 -12.70 0.89
800 -433.0 66.47 0.43% -5.28 -0.78% -0.079 -0.61% 15.04 -14.30 0.94
850 -483.0 65.70 0.33% -5.56 -0.64% -0.085 -0.50% 15.22 -15.24 0.90
900 -500.0 63.68 0.15% -5.47 -0.51% -0.086 -0.48% 15.70 -15.47 0.66
950 -483.0 63.90 0.63% -5.34 -0.89% -0.084 -0.62% 15.65 -15.04 0.92

1000 -433.0 65.94 0.54% -5.11 -0.67% -0.078 -0.42% 15.17 -13.96 0.95
1050 -353.6 66.15 0.52% -4.44 -0.87% -0.067 -0.57% 15.12 -12.07 0.93
1100 -250.0 66.49 0.69% -3.57 -0.90% -0.054 -0.55% 15.04 -9.65 0.96
1150 -129.4 66.21 0.34% -2.56 -0.81% -0.039 -0.75% 15.10 -6.96 0.61
1200 0.0 65.65 0.43% -1.51 -1.39% -0.023 -1.31% 15.23 -4.14 0.62

σnorm f_clock (Hz) Δφ (°) Pearsonσ t_clock t_cross-corr (ms) σ t_cross-corr t_cross-corr/t_clockdsphere (mm) ∆Ssphere (µm) t_clock (ms)
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In this way, we can rely on a relation expressing the expected values of the lateral 
displacement of the sphere on the basis of the a priori knowledge of cross-
correlation values of the photodiode signal and the exact longitudinal distance of 
the sphere itself (with ∆𝑅𝑅𝑡𝑡𝑐𝑐𝑡𝑡𝑝𝑝 and 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 almost perfectly in phase, as shown in 

Figure 71). Expected values of lateral displacements of the target as a function of 
sphere distance and photodiode signals were collected in Table 15, and the 
differences 𝜖𝜖 between the expected and true values were plotted in Figure 72, with 
an overall indication error 𝜀𝜀𝑐𝑐𝑝𝑝𝑐𝑐 = 𝑚𝑚𝑎𝑎𝑎𝑎(𝜖𝜖) −𝑚𝑚𝑖𝑖𝑚𝑚(𝜖𝜖) = 14.1 μm .  
 

 

 

Figure 70. Polynomial surface fit of the 25 calibration points. 

 

Figure 71. Plot showing the good phase correlation (∆𝜑𝜑 ≅ 0.05 rad) between the true 
lateral displacements of the target and the normalized cross-correlations of the 
photodiode signal. 
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ΔS expected / 
µm ΔS true / µm difference ε 

/µm 
0.4 0.0 0.4 

136.1 129.4 6.7 
257.2 250.0 7.2 
360.6 353.6 7.0 
441.0 433.0 8.0 
489.5 483.0 6.6 
505.1 500.0 5.1 
484.4 483.0 1.4 
433.7 433.0 0.7 
357.1 353.6 3.5 
252.1 250.0 2.1 
131.2 129.4 1.8 
-0.4 0.0 -0.4 

-130.7 -129.4 -1.3 
-256.1 -250.0 -6.1 
-358.7 -353.6 -5.2 
-436.0 -433.0 -2.9 
-482.9 -483.0 0.0 
-497.9 -500.0 2.1 
-482.8 -483.0 0.1 
-436.9 -433.0 -3.9 
-353.7 -353.6 -0.1 
-245.4 -250.0 4.6 
-124.0 -129.4 5.4 

3.7 0.0 3.7 
 

Table 15. Expected and true values of lateral displacements of the target. 

 

Figure 72. Indication error of the device in the range (−500, 500) μm ×
 (0,1200) mm (with the usual longitudinal offset of 470 mm to be added to the 
horizontal scale). 
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2.3 Conclusions 

At the end of this thesis work, three different versions of a device for measuring the 
1D straightness of a path in space were designed, realized and tested; the design 
principles were based on a totally new concept, with a special glass sphere used as 
a target of a laser beam impinging on it, to be placed on the profile where the 
measurement is intended to be carried out. The driving principle is the mechanical 
modulation of the backscattered beam, which allows micrometric detection of the 
beam center and, consequently, of the lateral target position. The device was 
characterized up to a distance of ~1.7 m, taking advantage of a high accuracy CMM 
for the fine positioning of the target. A maximum indication error of ±2.1 µm was 
demonstrated, together with a good linearity of its response over a ±0.5 mm 
measuring interval and a peak-to-peak indication error of ±7 µm on a straightness 
measurement over a sinusoidal virtual path. The overall dimensions of the 
instrument are (300 × 300 × 175) mm3: its size is quite compact to be used as a 
portable device to measure straightness of real machined profiles, and is prone to 
be further miniaturized. In order to be effectively installed onboard a machine tool, 
some improvements are foreseen in future work: 

• The alignment procedure of the slit with respect to the reflected beam should be 
refined, and the addition of a stage for micrometric positioning of the assembly 
supporting the slit should be contemplated; although the target pointing was 
satisfactory (with the halo “perfectly” centered on the sphere shadow), the two 
peak signals detected by the photodiode were not equidistant (at the resolution 
allowed by the DAQ acquisition system). An improvement of the alignment 
procedure is expected to refine the calibration curves behaviour shown in Figure 
60, reducing their spread.  

• The instrument was calibrated and tested only up to a distance less than 2 m, 
whereas a longest range (up to ~3 m) is of interest for industrial applications in 
the machine tools context. In order to express its potential, the instrument 
should be calibrated and tested in a larger facility; the air turbulence, as it is 
known, is a factor affecting the accuracy and the repeatability of contactless 
measurements (especially at significative distances), but strategies can be 
implemented to face the drawbacks connected to conducting experiments in 
non-cooperative environments. Hopefully, keeping in mind the characteristics 
of the signal backscattered form the sphere (32), the capabilities of the 
instrument can be pushed up to ≃ 3 m without losing too much resolution 
with respect to the current best configuration; for longer distances, 
significant changes to the opto-mechanical set up must be evaluated in 
order to deal with the diverging beam returning from the sphere. 

• The instrument is designed to be sensitive to one direction only, e.g., to the 
straightness deviation as projected in a horizontal plane, but the straightness of 
a 3D path should be fully evaluated in two dimensions by projecting it onto a 
plane; this is achievable, in principle, by rotating the device 90° and repeating 
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the procedure. This is a limitation due to the choice of a modulating the signal 
by an oscillating slit, which is difficult to extend to two dimensions. This 
restriction could be overcome by a totally different strategy for the mechanical 
modulation. Moreover, in a context where the intended use of the device is 
mainly “1-D”, the possibility of replacing the ball lens with another type of 
retroreflector should be investigated: in this case, in fact, the main advantage of 
the sphere —the possibility to sense it over almost the entire solid angle— is 
only partially exploited: a corner cube could, in principle, be fit for the purpose, 
at the expense of redesigning the whole strategy of signal processing.  
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Appendix A 

• Python code written to extract the periods of the clock signals: 

# coding=utf-8 
import pandas as pd 
from scipy.signal import find_peaks 
import matplotlib.pyplot as plt 
import numpy as np 
import numpy 
from scipy.ndimage import gaussian_filter1d 
import glob 
import os 
from alive_progress import alive_bar 
 
path = "D:/INRiM/LaVa/Acquisizioni/Picoscope biella-
manovella/set up compatto presso CMM/stabilità motore/5-6-
23/2047 waveforms_10 kS,10 us/20230605-0001"  
csv_files = glob.glob(os.path.join(path, "*.csv"))  
 
start = -45  
stop = 45  
 
f_poq = open('periodi_oq.txt', 'w') 
 
with alive_bar(len(csv_files)) as bar:   
    for i, f in enumerate(csv_files):         
        data = pd.read_csv(f, delimiter=';', low_memory=False) 
        data_new = data.iloc[3:]  
        df = pd.DataFrame(data_new, columns=['Tempo', 'Canale 
A', '-(B)']) 
        tempi = np.array(df['Tempo'].values, dtype=float) 
        ampiezze_clock = np.array(df['Canale A'].values, 
dtype=float) 
        segnale_digit = np.array(np.transpose([tempi, 
ampiezze_clock]))        
 
        segnale_clock_tronc = segnale_digit[(tempi >= start) & 
(tempi <= stop)]   
        tempi_tronc = segnale_clock_tronc[:, 0] 
        ampiezze_clock_tronc = segnale_clock_tronc[:, 1] 
         
        inv_x = -
np.gradient(gaussian_filter1d(segnale_clock_tronc[:, 1], 5 
        peaks, _ = find_peaks(inv_x, 
height=0.8*np.max(np.abs((inv_x))))  
        pos_max = np.take(tempi_tronc, peaks)         
         
        delta_t = np.abs(numpy.diff(pos_max)) 
        print(delta_t) 
 
        try: 
            print(delta_t[0], file=f_poq) 
 
        except IndexError: 
            print(f'File {i} skipped/n'  
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        bar() 
 
f_poq.close() 
 
periodi_clock = np.loadtxt('periodi_oq.txt') 
plt.figure() 
plt.plot(periodi_clock, marker='o', linestyle='dashed', 
linewidth=2, markersize=12) 
plt.title("periodi del segnale digitale") 
plt.ylabel('tempo (ms)') 
plt.show() 
 
periodo_clock_medio = np.average(periodi_clock) 
sigma_clock = np.std(periodi_clock) 
print('periodo clock medio in ms =', 
np.round(periodo_clock_medio, 3)) 
print('sigma periodo clock in ms =', np.round(sigma_clock, 3)) 

 
 

• Python code written to calibrate the InPlanT device and estimate its indication 
error: 

# coding=utf-8 
import pandas as pd 
from scipy.signal import find_peaks 
import matplotlib.pyplot as plt 
import numpy as np 
import numpy 
from scipy.ndimage import gaussian_filter1d 
import glob 
import os 
from alive_progress import alive_bar 
import scipy.signal 
import scipy.stats 
from scipy.signal import savgol_filter 
 
path = "D:/INRiM/LaVa/Acquisizioni/Picoscope biella-
manovella/set up compatto presso CMM/misure LaVA_29-5-23/misura 
finale di rettilineità/d = 1200 mm_0 um/20230529-0004"   
csv_files = glob.glob(os.path.join(path, "*.csv"))  
 
start = -45  # istante iniziale per lo studio, in ms. Aprire 
prima il file csv per capire dove troncare (devono starci solo 3 
picchi interi del segnale del fotodiodo) 
stop = 45  # istante finale 
 
def lag_finder(picco_sinistro, picco_centrale, picco_destro): 
    nsamples = len(picco_centrale) 
    delay_arr = numpy.linspace(-tempi_tronc[-1], tempi_tronc[-
1], nsamples) 
 
    correlation_sin = scipy.signal.correlate(picco_sinistro, 
picco_centrale, mode='same') / np.sqrt( 
        scipy.signal.correlate(picco_sinistro, picco_sinistro, 
mode='same')[int(nsamples / 2)] * 
scipy.signal.correlate(picco_centrale, picco_centrale, 
mode='same')[int(nsamples / 2)]) 
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    correlation_dx = scipy.signal.correlate(picco_destro, 
picco_centrale, mode='same') / np.sqrt( 
        scipy.signal.correlate(picco_centrale, picco_centrale, 
mode='same')[int(nsamples / 2)] * 
scipy.signal.correlate(picco_destro, picco_destro, 
mode='same')[int(nsamples / 2)]) 
 
    delay_1 = delay_arr[np.argmax(correlation_sin)] 
    print('picco sinistro è ' + str(delay_1) + ' ms sfasato 
rispetto a picco centrale') 
    delay_2 = delay_arr[np.argmax(correlation_dx)] 
    print('picco destro è ' + str(delay_2) + ' ms sfasato 
rispetto a picco centrale') 
    delay = delay_1 + delay_2 
    return delay 
 
# creo 3 files in cui andrò a scrivere man mano le quantità di 
mio interesse: 
max_segnali = open('max_segnali.txt', 'w') 
f_cc = open('crosscorr.txt', 'w') 
f_poq = open('periodi_oq.txt', 'w') 
 
 
with alive_bar(len(csv_files)) as bar: # genera una barra che 
mostra l'avanzamento nel processamento dei files 
    for i, f in enumerate(csv_files): 
        # read the csv file 
        data = pd.read_csv(f, delimiter=';', low_memory=False) 
        data_new = data.iloc[3:] # non considero le prime 3 
righe del csv 
        df = pd.DataFrame(data_new, columns=['Tempo', 'Canale 
A', '-(B)']) 
        tempi = np.array(df['Tempo'].values, dtype=float) 
        ampiezze_clock = np.array(df['Canale A'].values, 
dtype=float) # il trigger del Picoscope deve stare sul fronte di 
salita del segnale dello switch ottico! 
        ampiezze_fotodiodo= np.array(df['-(B)'].values, 
dtype=float) 
        segnale_digit = np.array(np.transpose([tempi, 
ampiezze_clock])) 
        segnale_fotodiodo= np.array(np.transpose([tempi, 
ampiezze_fotodiodo])) 
 
        segnale_clock_tronc = segnale_digit[(tempi >= start) & 
(tempi <= stop)]  # acquisizione max è di 100 ms 
        segnale_fotodiodo_tronc = segnale_fotodiodo[(tempi >= 
start) & (tempi <= stop)] 
        tempi_tronc = segnale_clock_tronc[:, 0] 
        ampiezze_clock_tronc = segnale_clock_tronc[:, 1] 
        ampiezze_fotodiodo_tronc = segnale_fotodiodo_tronc[:, 1] 
 
        inv_x = -
np.gradient(gaussian_filter1d(segnale_clock_tronc[:, 1], 5))  # 
derivo il segnale dopo aver fatto un po' di smoothing e poi ne 
cambio il segno (sono sui fronti discendenti del clock!) 
        peaks, _ = find_peaks(inv_x, 
height=0.8*np.max(np.abs((inv_x))))  # considera solo i picchi 
più alti in modulo della quantità specificata (pari all' 80% del 
massimo del segnale). 
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        pos_max = np.take(tempi_tronc, peaks) #  restituisce i 
tempi associati alle posizioni dei massimi (ovvero dei minimi): 
        #print('N° cicli interi contenuti in intervallo 
temporale scelto:', len(pos_max)/2) 
 
        # ricavo gli intervalli temporali fra i fronti di 
salita: 
        delta_t = np.abs(numpy.diff(pos_max)) 
 
        segnale_max = np.max(ampiezze_fotodiodo_tronc) 
        print("massimo del segnale, in V:", segnale_max) 
        # faccio due sogliature sul segnale del fotodiodo a % 
arbitrarie dell'ampiezza massima per eliminare il rumore in 
basso e in alto, in 2 passaggi: 
        threshold_low = 0.1 # soglia in basso 
        threshold_high = 0.9 # soglia in alto 
        segnale_thresholded_low = 
np.where(ampiezze_fotodiodo_tronc <= threshold_low * 
segnale_max, 0,                                         
ampiezze_fotodiodo_tronc) # in basso soglio ad una % pari a 
threshold_low * 100, tenendo conto dei casi dove c'è più rumore 
        # (quando i picchi si avvicinano troppo l'uno all'altro 
serve infatti una % molto più alta) 
        segnale_thresholded_high = 
np.where(ampiezze_fotodiodo_tronc >= threshold_high * 
segnale_max, threshold_high * segnale_max, 
                                            
ampiezze_fotodiodo_tronc) # in alto, ad una % pari a 
threshold_high * 100 
        segnale_thresholded = np.where(ampiezze_fotodiodo_tronc 
<= threshold_low * segnale_max, segnale_thresholded_low, 
                                       segnale_thresholded_high) 
# combino le due sogliature in basso e in alto, generando un 
segnale sintetico di forma trapezoidale e quasi simmetrico 
 
        # devo ora separare i 3 picchi in 3 file diversi, 
ciascuno contenente un solo picco. 
        # Per farlo, identifico la posizione di ciascun picco (è 
solo di servizio...non interviene nei calcoli successivi): 
        x = segnale_thresholded 
        peaks_fotodiodo, _ = find_peaks(x, width=100) 
        value = np.take(x, peaks_fotodiodo) 
        # trovo le posizioni temporali dei 3 picchi (su segnale 
non sogliato): 
        ascisse_temp = np.take(segnale_clock_tronc[:, 0], 
peaks_fotodiodo) 
 
        # genero quindi ora 3 file con un picco ciascuno, 
tenendo conto della posizione dei picchi trovati sopra: 
        # (sulla base della larghezza temporale dei picchi, che 
alla frequenza circa 13 Hz è di circa 20 ms); 
        # a frequenze più alte del motore, i picchi sono più 
stretti 
 
        larghezza_picco = 20 # ms, (sovrastimata) VERIFICARE 
ogni volta! 
        picco_sinistro = np.where(tempi_tronc <= 
(ascisse_temp[0] + larghezza_picco / 2), segnale_thresholded, 0) 
        picco_centrale = np.where( 
            (tempi_tronc > ascisse_temp[1] - larghezza_picco / 
2) & (tempi_tronc <= ascisse_temp[1] + larghezza_picco / 2), 
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            segnale_thresholded, 0) 
        picco_destro = np.where(tempi_tronc > (ascisse_temp[2] - 
larghezza_picco / 2), segnale_thresholded, 0) 
 
        crosscorr_ris = lag_finder(picco_sinistro, 
picco_centrale, picco_destro) 
 
        try: 
            print(segnale_max, file=max_segnali) 
            print(delta_t[0], file=f_poq) 
            print(crosscorr_ris, file=f_cc) 
        except IndexError: 
            print(f'File {i} skipped/n') 
 
        bar() 
 
f_cc.close() 
f_poq.close() 
max_segnali.close() 
 
massimi = np.loadtxt('max_segnali.txt') 
media_massimi = np.average(massimi) 
 
periodi_clock = np.loadtxt('periodi_oq.txt') 
plt.figure() 
plt.plot(periodi_clock, marker='o', linestyle='dashed', 
linewidth=2, markersize=12) 
plt.title("periodi del segnale digitale") 
plt.ylabel('tempo (ms)') 
plt.show() 
 
periodo_clock_medio = np.average(periodi_clock) 
sigma_clock = np.std(periodi_clock) 
print('periodo clock medio in ms =', 
np.round(periodo_clock_medio, 3)) 
print('sigma periodo clock in ms =', np.round(sigma_clock, 3)) 
 
crosscorr = np.loadtxt('crosscorr.txt') 
plt.figure() 
plt.plot(crosscorr, marker='o', linestyle='dashed', linewidth=3, 
markersize=15) 
plt.title("entità cross-correlazioni picchi") 
plt.ylabel('tempo (ms)') 
plt.show() 
 
crosscorr_media = np.average(crosscorr) 
sigma_crosscorr = np.std(crosscorr) 
print('entità cross-correlazione media, in ms =', 
np.round(crosscorr_media, 3)) 
print('sigma cross-correlazione, in ms =', 
np.round(sigma_crosscorr, 3)) 
 
norm = np.abs(crosscorr/periodi_clock) 
np.savetxt("cross correlazioni normalizzate su clock.txt", norm) 
norm_media = np.average(norm) 
sigma_norm = np.std(norm) 
 
frequenza_onda_quadra_media = 1000*(1./periodo_clock_medio) 
print("il motore gira in media a", 
np.round(frequenza_onda_quadra_media, 3), "Hz") 
periodo_segnale_sfera = periodo_clock_medio/2. 
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print("periodo medio segnale sfera =", 
np.round(periodo_segnale_sfera, 3), "ms") 
fase_angolare_media = np.degrees(np.pi * 
crosscorr_media/periodo_clock_medio) 
print("sfasamento angolare medio sfera rispetto a clock =", 
np.round(fase_angolare_media, 3), "gradi") 
 
savgol_clock = savgol_filter(periodi_clock, window_length=25, 
polyorder=3) 
 
savgol_crosscorr = np.abs(savgol_filter(crosscorr, 
window_length=25, polyorder=3)) 
 
np.savetxt("clock smoothed.txt", savgol_clock) 
np.savetxt("crosscorr smoothed.txt", savgol_crosscorr) 
 
clock_norm = (savgol_clock-
np.min(savgol_clock))/(np.max(savgol_clock)-
np.min(savgol_clock)) 
savgol_norm = (savgol_crosscorr-
np.min(savgol_crosscorr))/(np.max(savgol_crosscorr)-
np.min(savgol_crosscorr)) 
np.savetxt("clock smoothed + norm.txt", clock_norm) 
np.savetxt("crosscorr smoothed + norm.txt", savgol_norm) 
 
pearson, p = scipy.stats.pearsonr(clock_norm, savgol_norm) 
print('coefficiente di Pearson =', np.round(pearson, 3)) 
 
np.savetxt("parametri di interesse.txt", (media_massimi, 
periodo_clock_medio, sigma_clock, crosscorr_media, 
sigma_crosscorr, norm_media, sigma_norm, 
frequenza_onda_quadra_media, fase_angolare_media, pearson)) 
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Figure 73. Flowchart illustrating the Python script used for the calibration of the 
device. 
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