
Doctoral Dissertation

Doctoral Program in Energetic Engineering (35thcycle)

Data Driven Techniques for
On-board Performance Estimation

and Prediction in Vehicular
Applications

By

Alessandro Falai
******

Supervisor(s):
Prof. Daniela Anna Misul

Prof. Ezio Spessa

Doctoral Examination Committee:
Prof. Alfredo Gimelli , Referee, Università degli studi di Napoli Federico II
Prof. Manfredi Villani, Referee, The Ohio State University
Prof. Stefano D’Ambrosio, Politecnico di Torino
Prof. Phillip Kollmeyer, McMaster University
Prof. James Marco, University of Warwick



ii

Politecnico di Torino

20-06-2023



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Alessandro Falai
20-06-2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).



I would like to dedicate this thesis to my family, which has always supported me
throughout my career.



Acknowledgements

First and foremost I am extremely grateful to my supervisors, Prof. Daniela Anna
Misul for her invaluable advice, continuous support during my PhD study.

A debt of gratitude is also owed to experienced engineers of the Addfor SPA and
Danisi Engineering companies with whom I had the opportunity to collaborate and
from whom I learned a lot during my PhD carrier.



Abstract

The primary objective of this doctoral dissertation is to devise data-driven models for
the purpose of performance evaluation within the domain of terrestrial transportation.
The contemporary automotive industry is witnessing an increasing need for precise
estimation methodologies, and data-driven models have surfaced as a viable solution.
This dissertation puts forth three significant contributions to fulfil this requirement.
Initially, a virtual sensor is suggested for the purpose of promptly forecasting and
supervising NOx discharges in diesel engine contexts, particularly during variable on-
road driving conditions. The utilization of AI algorithms, specifically the XGBoost
machine learning model, has demonstrated exceptional suitability and reliability in
the execution of this task. The model has exhibited remarkable flexibility, robustness,
and outstanding performance in predicting NOx engine-out. The implementation
of this virtual sensor can be carried out on the engine control unit (ECU), thereby
facilitating the uninterrupted monitoring and regulation of emissions.
Subsequently, a simulated environment has been created to emulate the functioning
of electric vehicles, with a specific focus on evaluating the performance of a two-
wheeled electric vehicles. The global model employs the battery discharge current as
an input variable and forecasts the instantaneous velocity of the vehicle. The battery
model and vehicle dynamic model parameters were established via a calibration
procedure utilizing data obtained from on-road experimental measurements. Through
the integration of a battery model and a dynamic vehicle model, this environment
facilitates a thorough evaluation of the overall performance, thereby assisting in the
optimization and design decisions.
Finally, a tool for estimating the optimal state-of-health (SOH) is presented for the
purpose of managing battery systems (BMS). The development of the estimator
involved the utilization of multiple Bi-LSTM neural networks. These networks were
employed to leverage various datasets that contained time series of charge data with
varying lengths across the entire SOC domain, creating a predictive tool that might



vii

be smoothly incorporated into the Battery Management System (BMS). This tool
accurately predicts battery cell lifetime by determining the optimal state of charge
(SOC) window, thereby enhancing battery management efficiency and reliability.
The utilization of data-driven models presents notable benefits and enhancements
within the realm of land vehicles. The provision of precise and up-to-date evaluations
of diverse automobile parameters facilitates the implementation of improved control
strategies and optimization methodologies. Moreover, these models serve to facilitate
the practice of predictive maintenance, thereby enabling the timely identification
of potential faults or degradation. In addition, they assume an essential role in the
advancement of eco-friendly and energy-efficient vehicles through the facilitation of
emission monitoring and the optimization of battery performance. To summarize, this
dissertation presents innovative data-driven models for evaluating the performance
of land-based vehicles. These models provide valuable insights and advancements
in emission prediction, electric vehicle performance analysis, and battery health
estimation. The applications of these models are crucial for enhancing vehicle
efficiency, reducing emissions, and improving overall performance and reliability in
the realm of land vehicles.
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Chapter 1

Introduction & Background

1.1 Motivation: technical and historical factors

1 The automotive sector has undergone a substantial shift in recent times, primarily
due to the progress made in data-driven methodologies and the growing accessibility
of data from diverse vehicular applications. The capacity to gather, manipulate, and
scrutinize extensive quantities of data has introduced novel prospects for augmenting
vehicular performance and security. The utilization of data-driven techniques has
become imperative in tackling issues pertaining to the estimation and prediction
of on-board performance in vehicular applications. The accurate estimation and
prediction of performance in vehicles has been a persistent concern within the auto-
motive industry. Historically, physical models and sensor measurements have been
utilized to establish performance metrics. Nevertheless, these techniques frequently
encounter constraints, such as intricate modeling efforts, elevated computational
demands, and uncertainties linked to real-world operational circumstances. The uti-
lization of data-driven methodologies has resulted in a significant change in approach
towards the development of performance estimation and prediction models, with a
focus on utilizing vast amounts of data to enhance accuracy and reliability.

1Part of this chapter has been published in the form of papers as: (1) Falai, A.; Misul, D.A.
Data-Driven Model for Real-Time Estimation of NOx in a Heavy-Duty Diesel Engine. Energies,
vol. 16, 2125, 2023; (2) Falai, A.; Giuliacci, T.A.; Misul, D.; Paolieri, G.; Anselma, P.G. Modeling
and On-Road Testing of an Electric Two-Wheeler towards Range Prediction and BMS Integration.
Energies 2022, 15, 2431; (3) Falai, A.; Giuliacci, T.A.; Misul, D.A.; Anselma, P.G. Reducing the
Computational Cost for Artificial Intelligence-Based Battery State-of-Health Estimation in Charging
Events. Batteries 2022, 8, 209.
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The integration of data-driven models in automotive applications has a rich his-
tory that dates back several decades. Initially, vehicle performance estimation and
prediction were based on empirical models and simplified mathematical formulations.
However, with the proliferation of sensors, embedded systems, and connectivity, the
automotive industry has transitioned towards data-driven approaches. The incorpo-
ration of data-driven models in automotive applications has a substantial historical
background that spans several decades and can be attributed to the nascent stages of
computing and the advent of machine learning (ML) algorithms. In the beginning,
data-driven methodologies were predominantly employed for the purpose of identify-
ing faults and regulating systems in automobiles. The estimation and forecasting of
vehicle performance, however, relied heavily on empirical models and rudimentary
mathematical expressions. With the advent of enhanced computing capabilities and
the availability of vast amounts of data, coupled with the widespread use of sensors,
embedded systems, and connectivity, the automotive sector has shifted towards
data-centric methodologies, encompassing a diverse array of applications.

The emergence of data-driven techniques in the automotive industry can be
attributed to a confluence of technical and historical factors. Technical factors refer to
the various aspects of technology that can impact a system or process. These factors
can include hardware, software, networks, and other technological components that
are necessary for the functioning of a system. Understanding technical factors is
important in order to ensure that systems are designed, implemented, and maintained
in a way that maximizes their efficiency and performance. The main points can be
summarized below.

• The complexity of vehicles has been on the rise, with modern models featuring
a multitude of interconnected subsystems and components. The intricate
relationships and interactions among various parameters present challenges
for conventional analytical models, as their complexity makes it arduous to
capture them all. The article depicted in reference [2] illustrates how the
proliferation of digitalization, along with its disruptive processes, is poised to
dissolve numerous traditional approaches.

• The proliferation of data has been observed as a consequence of the develop-
ment of sensors, embedded systems, and connectivity in automobiles. Vehicles
produce copious amounts of data pertaining to their functionality, usage,
ecological circumstances, and user conduct. Conventional analytical method-
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ologies encounter difficulties in managing such a vast amount of data and
deriving significant insights from it. For instance, [3] examine currently avail-
able car data, including sensor data for autonomous driving, and underscore
the potential financial gains that can be realized through the development of
services that leverage this data.

• The field of data analysis has witnessed significant advancements in recent
times, particularly in the area of machine learning [4]. These developments
have introduced novel methodologies for extracting meaningful insights from
voluminous and intricate datasets. Machine learning algorithms have the
capability to detect patterns, correlations, and anomalies in data that may not
be immediately discernible through conventional analytical techniques.

• Real-time decision making is a critical factor in optimizing performance,
efficiency, and safety within the automotive industry. In order to adhere
to rigorous global standards pertaining to safety, quality, sustainability, and
efficiency, automotive suppliers are obligated to conform to novel product
and requirements [5]. The utilization of data-driven techniques allows for the
ongoing observation and examination of data, which in turn enables the ability
to promptly adjust and make informed decisions in a proactive manner.

Factors pertaining to the past events and circumstances that have influenced the
current state of the art.

• The triumph and extensive implementation of data-driven methodologies in
sectors such as finance, healthcare, and e-commerce have motivated the au-
tomotive industry to investigate their prospective benefits. Automotive man-
ufacturers and researchers have demonstrated an increased interest in the
development of data-driven models and algorithms for a variety of applica-
tions, such as performance estimation and predictive maintenance, due to the
observed benefits in other domains.

• The incorporation of sophisticated sensors and embedded systems in auto-
mobiles has transformed the process of data acquisition and application. In
the initial stages of vehicle development, the sensory functionalities were re-
stricted to measuring fundamental parameters such as engine RPM and speed.
With the progression of technology, a wider array of sensors, including but
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not limited to GPS, accelerometers, pressure sensors, and temperature sensors,
have become ubiquitous. The sensors offer a plethora of information that can
be utilized for evaluating and forecasting performance.

• The emergence of big data and cloud computing has had a notable impact on
the integration of data-centric methodologies within the automotive industry
[6]. The advent of cloud-based computing resources and scalable storage
solutions has enabled the efficient processing and analysis of vast quantities of
data. The establishment of a direct virtual connection among human, vehicle,
and infrastructure has facilitated our entry into the Digital Twin epoch [7].

It is clear how the proliferation of connected vehicles and telematics systems has
intensified the demand for data-driven methodologies in the realm of connectivity
and telematics. The ability of connected vehicles to transmit real-time data to
central servers or cloud platforms facilitates uninterrupted monitoring and analysis.
The interconnectivity has facilitated prospects for remote diagnostic, prognostic
maintenance, and enhanced performance optimization.

In terms of theoretical explication, it is pertinent to commence with the defini-
tion provided by Toshika Srivastava, an accomplished Artificial Intelligence (AI)
technical team lead at Audi. Srivastava characterizes data-driven development as
the process of creating features, tools, methods, and services based on the insights
derived from the vast amount of data that an organization has accumulated. This
involves acquiring knowledge of features and patterns from databases to facilitate
specific functionalities [8]. Here is explained how in contemporary times, a preva-
lent approach to extracting insights from data is through the utilization of artificial
intelligence and machine learning techniques, which have demonstrated high levels
of efficacy. The methodologies being utilized in the development of the described
software are also encompassed within the product development cycle, which is a
multi-step process, as shown and referred in Srivastava’s work [8].
This study provides a comprehensive account of the product development cycle,
focusing on the in-vehicle acquisition utilized for the purposes of development,
testing, and implementation of a data-driven approach. The workflow delineates
the systematic approach of data acquisition, refinement, and augmentation, with a
primary emphasis on data preparation, labeling, and subsequent training and test-
ing in a simulated environment. Subsequently, the tool that has been developed
may undergo code generation and hardware integration processes, enabling it to be
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subjected to Hardware–In–Loop (HIL) testing and ultimately facilitating its actual
vehicle on-board implementation.

The inquiry remains unresolved: What are the benefits of developing and employ-
ing data-driven models for the prediction of vehicle performance? Let us proceed to
furnish specific particulars regarding the potential implications of this phenomenon
within the realm of the automotive sector.

1.2 Evolution of land vehicle performance: history
pills

The remarkable advancements in ground vehicle performance witnessed today are the
result of a lengthy evolutionary process and significant milestones attained through
comprehensive research. The advent of the internal combustion engine during the lat-
ter part of the 1800s represented a significant turning point in the realm of terrestrial
vehicle capabilities. The utilization of petroleum-based fuels enabled the propulsion
of vehicles, thereby facilitating the advancement of automobiles and motorcycles. In
the 1885, Karl Friedrich Benz is known to have made the first true automobile. It
was a gasoline powered automobile with an internal combustion engine and it had
three wheels [9].During the early 20th century, the launch of the first "Performance
Cars" occurred. The primary objective of a performance automobile was to possess
maneuverability, reduced weight, and an aerodynamic configuration optimized for
competitive racing. The Tatra Rennzweier is considered to be among the pioneering
automobiles that were exclusively engineered for motor sport purposes [10]. The
emergence of mass production techniques, which were pioneered by Henry Ford,
marked a significant development in the early 20th century. In 1908, the Ford Model
T was unveiled as the inaugural mass-produced automobile that was economically
accessible to the general public. This event denoted a noteworthy change in the
proficiency of terrestrial vehicles by rendering automobiles attainable to a broader de-
mographic, thereby revolutionizing the domain of transportation and the community
at large [11]. During the 1920s and 1930s, scholars directed their attention towards
optimizing aerodynamics in order to augment the performance of land vehicles. The
implementation of streamlining techniques, such as the utilization of sloping designs
and enclosed bodies, resulted in a decrease in drag and an enhancement of fuel effi-
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ciency. Streamlined vehicles were utilized to establish land speed records, thereby
expanding the limits of vehicular performance. The enhancement of land vehicle
performance was significantly influenced by the evolution of suspension systems.
Advanced suspension systems offer improved maneuverability, stability, and comfort.
The implementation of advanced features such as independent suspension, shock
absorbers, and anti-roll bars has significantly augmented the handling and steering
capabilities of automobiles. Advancements in engine technology have resulted in
notable enhancements in power output over the course of several decades. The
implementation of advanced fuel injection systems, turbocharging mechanisms, and
variable valve timing has resulted in a significant enhancement of both performance
and efficiency. Engines with high performance, such as those commonly found in
sports cars, exhibit remarkable capabilities in terms of acceleration and maximum
velocity. The incorporation of electronic systems and controls has significantly influ-
enced the operational efficiency of land vehicles. The implementation of electronic
fuel injection systems, anti-lock braking systems (ABS), traction control, stability
control, and advanced driver-assistance systems (ADAS) has resulted in improved
safety, performance, and handling capabilities. The prominence of alternative fuel
and electric vehicles has increased due to mounting environmental concerns. Hybrid
automobiles, which utilize both internal combustion engines and electric motors,
provide enhanced fuel economy. Electric vehicles that operate solely on electric-
ity are capable of eliminating emissions and delivering immediate torque, thereby
transforming the performance of land vehicles. Rimac and Tesla are prominent
corporations that prioritize electric technologies and the advancement of hypercars.
Hence, within the power systems of an automobile, the energy storage system, which
presently comprises lithium-ion batteries, assumes a pivotal role with regard to safety,
efficacy, ecological footprint, and performance.

The utilization of software modeling has played a significant role in the develop-
ment and production of high performance vehicles over the past century. This can be
attributed to the emergence of new technologies, the imperative to mitigate environ-
mental impact, and the pursuit of optimal levels of safety and efficiency. Historically,
the foundation of scientific and engineering knowledge was reliant on limited data
that was often acquired through experimental methods designed to test a particular
hypothesis (physics-based models). The experimental results were constrained to a
narrow scope, producing a restricted amount of data. Currently, there is a copious
amount of data that is readily available and can be easily collected in every individual
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experiment at a relatively low expense. The utilization of data-driven modeling and
scientific discovery represents a paradigm shift in the approach to problem-solving
across various fields of science and engineering.

1.3 Physics-based models vs data-driven models in
automotive sector: literature review

In recent years, the engineering industry, particularly in the automotive sector, has
witnessed a distinct divergence between the two primary methodologies employed
for modeling vehicle systems and their constituent parts. These methodologies
are characterized as physics-based models and data-driven models. This main
classification of the two methodologies adopted in practice could be found in [12].
A simplified representation of such classification is shown in the Figure 1.1 which
depicts the categorization of the two methodologies involved. Occasionally, it is
possible to develop a methodology that combines both approaches into a hybrid
blended format.

Fig. 1.1 Classification of modeling approaches: data-driven, physics-based.

Physical models are propelled by an understanding of specific mechanisms. The
automotive industry has been utilizing mathematical equations to advance their
product development and conceptualization based on the physical properties of
vehicles for a considerable duration. During the design phase, the physical behavior
of the vehicle system and its individual components, such as the engine [13–15],
suspension [16–18], tire [19], powertrain [20], and after-treatment system [21] for
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burnt gases, are modeled using advanced software. The utilization of physics-
based modeling necessitates numerous experimental methodologies to procure the
parameters of said models, leading to increased development costs and time [22]. As
previously mentioned, data-driven models are constructed through the utilization
of algorithms that acquire knowledge of patterns and correlations from the data
itself, without any explicit comprehension of the fundamental physical principles
that govern the system. The aforementioned models employ machine learning
methodologies to extract valuable insights and generate forecasts by analyzing
patterns derived from either historical or real-time data.

Numerous studies in the literature have focused on the development of AI/ML
models for the purpose of estimating and predicting performance in the vehicular
application domain. For instance, the process of estimating an advanced model of
vehicle dynamics is a complex task, as it involves dealing with uncertainties and
nonlinearities [23]. Moreover, the computational expense associated with resolving
the dynamics of intricate multi-body systems, such as automobiles, is considerable.
To adequately tackle this matter, the utilization of data-driven modeling through deep
learning methodologies offers a proficient approach for instantaneous simulation of
the multi-body systems of vehicles [24]. The second chapter of this work focuses
on a key topic, namely the reduction of polluting emissions in diesel vehicles.
Within this field, a number of studies in the literature have explored the use of
neural networks for various applications. The study presented in reference [25]
compares the effectiveness of an Artificial Neural Network (ANN) and a Neuro-
Fuzzy approach in predicting the volumetric oxygen concentration at the engine
intake during transient operational conditions. In [26] An ANN was used for NOX
evaluation in real driving emission (RDE) tests conducted using vehicles equipped
with portable emissions measurements systems.

The present dissertation’s main points of interest are identified and accompanied
by relevant literature works as follows. Numerous studies have been devoted to
the design and development of battery systems in response to the widespread com-
mercialization and increasing market penetration of electric vehicles (EVs). The
primary emphasis of their efforts has been directed towards achieving enhanced
energy efficiency, superior thermal performance, and optimized designs for battery
enclosures that incorporate multiple materials. The implementation of simulation-
based design optimization for the battery pack and Battery Management System
(BMS) has undergone development and now encompasses advancements such as
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artificial intelligence/machine learning (AI/ML) to enhance efficiency in design,
manufacturing, and operations for their utilization in electric vehicles and energy
storage systems. Regarding battery management systems (BMS), these sophisticated
concepts facilitate a more precise estimation of battery functionality, including the
State of Health (SOH) and State of Charge (SOC) estimations.
Accurate estimation of the state of charge (SOC) is of paramount importance in
prolonging cell lifespan and guaranteeing safe operation in electric vehicle appli-
cations. In [27] a deep learning-based transformer model is developed without the
requirements of feature engineering. In addition, research involving comparative
analyses or the implementation of hybrid artificial intelligence models has yielded
favorable outcomes in the prediction of State of Charge (SOC), as evidenced by
references [28–31].
The evaluation and control of cells deterioration, particularly in the context of elec-
trified vehicular operations, is a critical concern and a topic of significant discourse
in contemporary times. The monitoring of the state-of-health (SOH) is of utmost
importance in this regard. Over the past year, a number of novel works have been
produced in the context of SOH estimation [32–34]. During this period, researchers
have explored the potential of artificial neural networks (ANN), convolutional neural
networks (CNN), and recurrent neural networks (RNN) for monitoring the remaining
useful life of batteries. This investigation was made possible by the availability
online of open-source data pertaining to cell aging tests conducted in specialized
experimental laboratories.
Battery modeling has demonstrated to be a valuable tool for the on-board imple-
mentation of battery management systems (BMS) in predicting and optimizing
fundamental battery parameters, including state of charge (SOC), state of health
(SOH), and charge/discharge characteristics, as well as the overall performance
along its lifespan. Various individual models exhibit variations in their complexity,
computational expenses, and overall predictive accuracy, rendering them appropriate
for diverse domains of application [35]. In the literature, models utilizing either
Equivalent circuit models (ECM) [36, 37] or ML [38–40] are commonly employed
for the purpose of monitoring, controlling, and managing batteries through BMS
in a software-in-the-loop (SIL) environment. Battery modeling, in-vehicle diagnos-
tic tools and data-driven approaches can be combined in a framework to create a
battery digital twin [41]. The utilization of battery digital twins enables researchers
and engineers to enhance battery designs, refine battery management systems, and
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formulate sophisticated control strategies. The utilization of virtual replicas allows
for the evaluation of crucial parameters such as state-of-charge and state-of-health
without the necessity of physical testing, ultimately leading to a reduction in both
time and costs [42].

1.4 Objectives and original contributions

The present dissertation aims to address the current challenges in the automotive
industry, focusing on three key objectives: the development of a real-time estimator
of NOX emissions in diesel engines that can be incorporated into the engine control
unit, or more broadly, the electronic control unit (ECU), the modeling of batteries for
their implementation in batteries BMS and the development of a lithium cell state of
health (SOH) estimator for implementation on BMS. Through this research, it aims
to contribute to the development of advanced technologies and improvements in the
automotive sector by exploiting data-driven techniques. Within this framework, there
exist a number of unresolved matters that continue to serve as the foundation for the
current study.

• Original Equipment Manufacturers (OEMs) in the automotive industry are
encountering several obstacles in the contemporary landscape. The automotive
industry is distinguished by a rise in ecological regulations and consumer
demands for enhanced performance, efficiency, and reduced emissions. OEMs
must therefore constantly seek to improve their vehicles to meet these ever-
increasing demands.

• Moreover, the shift towards electric mobility poses a significant opportunity
and challenge for OEMs. The incorporation of lithium battery technologies
and the enhancement of battery management systems (BMS) are crucial factors
for the advancement of dependable and effective electric vehicles.

This dissertation aims to address the aforementioned needs and make a contribution
to the research domain of developing performance estimators and predictors that can
be integrated on-board in ground vehicles. To achieve this, the following research
objectives have been identified:
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• Development of virtual sensing techniques based on machine learning for the
control and monitoring of engine-out NOx emissions under transient on-road
vehicle operating conditions. The model that has been formulated utilizes the
predictive potential of the extreme gradient boosting (XGB) algorithm. The
research presents a potential methodology for designing a virtual sensor as
an alternative to conventional in-vehicle physical sensors, thereby mitigating
their limitations.

• Development of a data-driven identification approach for modeling a lithium-
ion battery-powered two-wheeler vehicle that can be used to analyze its per-
formance under real-world driving conditions. The objective of this study is
to create a computational model that can verify and describe the behavior of
batteries by means of experimental tests conducted on city routes.

• Development of a deep learning model-based estimator that can accurately
predict the state of health (SOH) in lithium-ion batteries in real-time, while
also maintaining a low computational cost. The objective of this study is to
examine a methodology that has the potential to enhance the accuracy of the
estimation of the battery’s remaining useful life. This feature can be integrated
into the BMS.

The present dissertation has been designed as a papers collection, therefore the
format of the manuscript was chosen based on the type of structure.

1.5 Outline of the dissertation

The dissertation comprises three distinct research chapters, namely Chapter 2 through
Chapter 4.Finally, Chapter 5 presents the primary findings and suggestions for future
research.
In Chapter 2, the development of a virtual sensor for NOx monitoring in diesel
engines was carried out using a machine learning approach, specifically the Extreme
Gradient Boosting (XGBoost) algorithm. A campaign of experimentation was con-
ducted to gather data from the engine test bench and the engine electronic control unit
(ECU) in order to develop and calibrate a virtual sensor under steady-state conditions.
Subsequently, the virtual sensor underwent comprehensive testing during an on-road
driving mission to assess its prediction performance under dynamic conditions. The
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calibration procedure underwent an optimization process that enabled the assessment
of the efficacy of this methodology in the real-time estimation of NOx.
In Chapter 3, the development and subsequent assessment of a two-wheeled elec-
tric scooter model, with a focus on its performance under real-world driving cycle
conditions. The proposed model is based on the energy based-longitudinal dynamic
approach. Additionally, it is integrated with a second-order RC equivalent circuit
model for Li-Ion Battery, which enables accurate prediction of the electric range.
The model’s validity was confirmed through experimental tests carried out in urban
streets, which were also utilized to retrieve the principal parameters of the model.
Subsequently, an assessment was conducted to gauge the effectiveness and electrical
power of the two-wheeled pure electric vehicle. The development and assessment of
electric vehicle models serve as a foundation for the design of BMS. This approach
offers an efficient and cost-effective method to examine the optimal control logics of
batteries within a Software-in-the-Loop setting.
Chapter 4 focuses on the development of a computationally lightweight approach for
estimating the SOH of lithium-ion cells in electric vehicles during partial charging
procedures. The utilization of artificial intelligence (AI) algorithms has demonstrated
significant potential as a data-driven modeling technique for predicting the SOH
of cells. This is attributed to their high level of suitability and low computational
requirements. The attainment of a precise on-board SOH estimation is accomplished
by identifying an optimal State of Charge (SOC) window during the cell charging
procedure. A random-search algorithm has been utilized to train multiple Bi-LSTM
networks using data from a constant current constant voltage (CCCV) test protocol.
Finally, a potential integration within the BMS control unit could enable it to guaran-
tee optimal performance and extend the lifespan of the cells.
The last chapter in this study will provide a summary of the scientific discover-
ies and outcomes of each research theme, while also suggesting potential future
advancements to enhance the practicality of the models presented.



Chapter 2

Real-time pollutant emissions
estimation in heavy-duty CI engines
using data-driven approach

1 Pollution from heavy-duty diesel engines is a significant concern due to its negative
impact on human health and the environment. Heavy-duty diesel engines are a
significant contributor to air pollution and have been associated with various health
problems. Nitrogen oxide (NOx) emissions from these engines are particularly
problematic, as they contribute to air pollution, climate change, and respiratory prob-
lems. Traditional approaches to estimate these emissions using mathematical models
based on engine performance parameters have limitations and can be inaccurate
due to the complex nature of diesel engine combustion. Additionally, the current
emission regulations impose strict limits on NOx emissions, and compliance with
these regulations is crucial for engine manufacturers. Real-time monitoring and
control of these emissions are necessary to ensure compliance and improve engine
efficiency. However, current monitoring techniques are often costly, time-consuming,
and require complex equipment, making them unsuitable for real-time monitoring.

Recently, data-driven approaches, such as machine learning and deep learning
algorithms, have shown promise in improving the accuracy of real-time pollutant
emissions estimation. Machine learning algorithms can learn patterns from large

1Part of this chapter has been published in the form of a paper as: Falai, A.; Misul, D.A. Data-
Driven Model for Real-Time Estimation of NOx in a Heavy-Duty Diesel Engine. Energies, vol. 16,
2125, 2023.
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datasets and make predictions based on the learned patterns. On the other hand,
deep learning algorithms, a subset of machine learning, use artificial neural networks
to extract features from raw data, allowing for more accurate predictions. For
instance, these algorithms can be trained using engine sensor data such as pressure,
temperature, and fuel injection rate, to estimate pollutant emissions in real-time.
The advantages of using data-driven approaches for real-time pollutant emissions
estimation in heavy-duty CI engines are:

• Improved accuracy: Data-driven approaches can learn patterns from large
datasets and make predictions based on the learned patterns. This can lead
to more accurate estimations of pollutant emissions compared to traditional
mathematical models.

• Real-time monitoring: Data-driven approaches can provide real-time esti-
mations of pollutant emissions, allowing for timely and effective control of
emissions.

• Cost-effective: Data-driven approaches can be implemented using existing
engine sensors and data acquisition systems, making them a cost-effective
solution for real-time pollutant emissions estimation.

• Reduced complexity: Data-driven approaches eliminate the need for complex
mathematical models and can be easily integrated into existing engine control
systems.

In this chapter, we will discuss the application of data-driven approaches for
real-time NOx emissions estimation in heavy-duty CI engines. We will review the
literature on the topic and provide an overview of the methodology used for data
collection, processing, model training and validation.

2.1 Introduction

The emission of pollutants from vehicles, particularly nitrogen oxide (NOx), is a
significant issue of both environmental and public health significance. The implemen-
tation of stringent regulations on a global scale has been aimed at mitigating NOx
emissions from vehicles. In response, car manufacturers are proactively exploring
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avenues to enhance the efficiency of their internal combustion engines (ICEs) to
comply with these regulations [43].

The predominant methods for mitigating and regulating engine-out NOx pri-
marily encompass the subsequent approaches: the implementation of Exhaust Gas
Recirculation (EGR) [44–48] and advanced combustion techniques, such as ho-
mogeneous charge compression ignition (HCCI) [49, 50] and premixed charge
compression ignition (PCCI) [51, 52], have been shown to effectively reduce NOx
emissions by regulating the air–fuel mixture and combustion process. Additionally,
diverse injection strategies targeting pressure and timing [53, 54] have been explored
for further NOx reduction. Concerning vehicle tailpipe emissions, the primary tech-
niques for reducing NOx emissions include the utilization of filters and catalysts.
One such catalyst is Selective Catalytic Reduction (SCR) [55], which involves the
injection of a reducing agent, such as urea, into the exhaust stream to reduce NOx
emissions through a catalytic converter. Another technique is the Lean NOx Trap
(LNT) [56], which temporarily stores NOx emissions in a catalytic converter for
reduction at specific engine operating conditions. Additionally, the Diesel Particulate
Filter (DPF) [57] utilizes a filter to capture particulate matter from the exhaust stream
and can also assist in reducing NOx emissions. These techniques are commonly
employed to mitigate the negative impact of vehicle emissions on the environment.
However, achieving the desired level of NOx reduction performance is contingent
upon the utilization of dependable NOx sensing technology.

There exist various models that can be employed to predict NOx emissions in
engines. One established method for calibrating the model is through the exploitation
of engine maps. During transient conditions, the model can be tested on-road [58–
60]. Engine maps are graphical representations that illustrate the correlation between
different engine operating variables, such as load, speed, and fuel flow rate, and the
resultant engine performance attributes, such as power output and emissions. The
aforementioned maps possess the capability to forecast the NOx emissions of an
engine based on a specific set of operating conditions [61, 62]. In the study referenced
in [63], a technique was devised to utilize engine maps for the purpose of predicting
NOx emissions. The electronic control unit (ECU) was equipped with an engine
map, which was expressed through mathematical models. This map was utilized
to calculate NOx emissions based on the engine’s observed operating conditions.
The calibration of the model was conducted through the utilization of engine test
bench data, followed by an on-road assessment to evaluate its predictive capacity
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in real-world scenarios. The literature contains various applications pertaining to
virtual NOx sensing that utilize engine map operating points during steady-state
conditions [64]. Additionally, applications derived from experimental test bench
acquisition have also been documented [65]. Insufficient scholarly inquiry has been
carried out regarding the virtual sensing and prediction of NOx emissions in the
context of authentic on-road driving conditions, while also factoring in the impact of
transient events.

The reduction of NOx emissions continues to be a significant challenge in con-
temporary times. To circumvent the limitations of physical solid-state sensors in
obtaining engine-out NOx information in diesel engine applications, virtual sensing
techniques have gained widespread usage, as evidenced by sources such as [66]
and [67]. In recent times, there have been various endeavors to develop virtual
sensors that utilize machine learning algorithms [68, 69]. The objective of these
sensors is to forecast the engine-out NOx levels by considering the engine operating
conditions, as obtained from the ECU. The potential of machine learning algorithms
as virtual measurement tools is noteworthy, owing to their capacity to identify highly
non-linear behavior in the examined physical system [70, 71]. Various machine
learning algorithms have been utilized for virtual sensor applications in predicting
engine NOx. These algorithms include linear regression [72], support vector ma-
chines (SVM) [73], and artificial neural networks (ANNs) [74]. According to a study
published in [75], the XGBoost model has demonstrated a notable level of efficacy
in comparison to other machine learning models, including gradient boosting (GBT)
and random forest (RF). XGBoost’s capability to manage voluminous datasets and
handle missing values makes it a suitable choice for virtual sensor applications,
where data may be incomplete or contain noise. Furthermore, it has been deter-
mined that XGBoost is a powerful and efficient machine learning instrument for a
diverse range of applications, such as engine-out NOx levels prediction[76]. Re-
cent research has investigated the utilization of ensemble models, including random
forest and adaptive boosting, in conjunction with XGBoost [77, 78]. Ensemble
models amalgamate the forecasts of several individual models to attain enhanced
precision, while maintaining a level of resilience comparable to that of the individ-
ual models. Furthermore, ensemble methods primarily depend on randomization
techniques, resulting in the generation of numerous distinct solutions for the given
problem. Within this particular framework, it has been observed that the XGBoost
algorithm has demonstrated superior predictive capabilities in comparison to other
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ensemble models, including GBT and RF, [79]. Therefore XGBoost turned out to
be a model particularly suitable for the use of real-time applications. In addition,
several Extreme Gradient Boosting Regression Tree models have been developed
to examine the precision of estimating physical parameters, including tailpipe NOx
emissions [80, 81]. The existing body of literature is constrained in terms of in-
vestigating the regulation and monitoring of NOx emissions from engines during
transient conditions. This study aimed to investigate the application of the XGBoost
algorithm in real-time engine-out NOx sensing under real-world driving conditions.
The virtual sensor utilizing XGBoost was calibrated under stationary conditions
and subsequently validated during dynamic on-road traces, as part of experimental
efforts carried out both on the test bench and on the road.

2.2 Materials and methods

In recent years, virtual sensing techniques have emerged as a promising alternative
to physical measurement instruments, particularly in situations where the latter are
economically or practically challenging to use. In this context, the present study
focuses on the development of a machine learning-based virtual sensor for predicting
NOx emissions in a diesel engine application. To ensure the robustness and reliability
of the developed model, a thorough analysis was conducted on the steady-state data
acquired from the engine. The performance evaluation of the machine learning
algorithms was performed using various metrics such as root mean squared error
(RMSE), and R-squared value. The results of this analysis helped to identify the most
suitable architectures of the machine learning algorithm for the specific problem
task. Following this, the study employed XGBoost, a state-of-the-art machine
learning algorithm, to develop the virtual sensor for predicting NOx emissions.
The performance of the developed model was verified and validated through an
experimental campaign conducted on-road. The real-world driving mission data
was collected using an on-board diagnostic (OBD) system and the developed virtual
sensor was tested against it. The evaluation of the prediction accuracy was performed
using the same metrics as before. The case study vehicle and the involved datasets,
as well as the proposed method for model training and validation, were thoroughly
investigated in this study. The data used in this study were collected under controlled
laboratory conditions, i.e steady-state tests, and in the real-world driving scenarios,
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i.e transient tests. The data processing and cleaning techniques were applied to
ensure the accuracy and reliability of the data.

The present study followed a consistent and well-defined methodology which is
composed by sequential steps for the robustness analysis and validation process, and
shown in Figure 2.1.

Fig. 2.1 The sequential steps describing the proposed methodology of the performance model
evaluation.

As shown in figure, the main sections are described as composed by several
sequential steps, filling each represented box. Specifically, the method follows a
recognized approach in the field of data science and model development. The three
main phases and relative sub-steps are described as follows:

• preprocessing phase: the engine data values acquired from the experimental
campaigns were analyzed, handled, and cleaned to ensure their accuracy and
reliability. The data were checked for outliers, missing values, and inconsis-
tencies, and appropriate measures were taken to address any issues found. The
cleaned data were then used for the subsequent phases of the study;

• model training: the data were normalized and split into training, validation,
and test sets as necessary. The XGBoost algorithm was chosen as the machine
learning model of choice for this study due to its ability to handle complex
non-linear relationships and its high prediction accuracy. Several XGBoost
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architectures were trained using the training set to find the most accurate
model for the specific case study. To achieve this, the grid search algorithm
was employed as a powerful hyperparameters tuning technique to identify the
optimal combination of hyperparameters for each XGBoost model architecture.
The performance of an AI model is heavily dependent on the hyperparameter
values, so a combination of grid search and cross-validation approaches was
used to identify the optimal values for a specific model. The hyperparameters
of the XGBoost model were specified to tailor the model for the specific
application.;

• Performance evaluation: the best XGBoost architecture was evaluated by
considering a test dataset according to different metrics, i.e., RMSE and the
coefficient of determination (R-squared). RMSE is a measure of the difference
between the predicted and actual values, while R-squared is a measure of how
well the model fits the data. The XGBoost model’s performance was evaluated
by comparing the predicted values with the actual values of the test dataset.

To evaluate the development approach and better emphasize the practical details
that were engaged throughout the current work, it is necessary to provide a detailed
description of the major steps briefly described above.

2.2.1 Preprocessing phase

In this study, the case study for the deployed AI-based virtual sensor was an 11 L
diesel engine for heavy-duty application. The engine was tested both at steady-state
and under transient conditions to capture a comprehensive range of operating condi-
tions. The details of the experimental campaign, together with a deep insight into
the experimental set-up and the engine behavior, can be found in [82]. The engine’s
primary parameters during steady-state conditions were obtained via an engine test
bench that was equipped with physical sensors integrated into the acquisition system.
Additionally, the variables obtained from the ECU sensors and maps were also uti-
lized. These parameters correspond to the main descriptors of the combustion process
inside the cylinders, as well as the formation of the emission at the engine outlet. On
the other hand, in the transient case, a prototype heavy-duty (HD) vehicle equipping
the same CI engine was tested on-road to capture different driving conditions under
real-world scenarios, and the main engine parameters were acquired by the on-board
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system acquisition. The acquired engine data values were analyzed and handled
in the preprocessing phase to ensure their accuracy and reliability. Any missing
or erroneous data values were identified and corrected or removed as appropriate.
The data were checked for outliers and inconsistencies, and appropriate measures
were taken to address any issues found. The cleaned engine data values were then
used for the subsequent phases of the study, including the XGBoost models training
phase and the performance evaluation phase. The preprocessing phase was critical
for a data driven-based virtual sensor design and assessment, especially for real-time
applications. Table 2.1 provides an overview of the main characteristics of the tested
vehicle, including the engine type and test conditions. The table serves as a useful
reference for the reader and provides context for the subsequent phases of the study.

Table 2.1 Main engine parameters and test characteristics.

Segment of Application Displacement Turbocharger
Heavy-duty vehicles &

trucks
11 L VGT type

Fuel injection system Engine params n° engine points
High pressure common

rail
14 4711 1

1 The operating engine points are related to the steady state tests over the engine map.

During the experimental campaign, the main engine parameters acquired in the
steady-state and on-road scenarios follow:

• ωeng: engine speed in [RPM];

• Qtot : total amount of injected fuel inside the cylinders in [mm3/(cycle ×
cylinder)];

• Prail: pressure in the rail system in bar;

• Qmain: amount of injected fuel during the main injection in [mm3/(cycle ×
cylinder)];

• Qpil: amount of injected fuel during the pilot injection in [mm3/(cycle ×
cylinder)];

• SOImain: start of the injection of the main injection in degree;
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• SOIpil: start of the injection of the pilot injection in degree;

• IMAP: pressure value in the intake manifold in [bar];

• IMAT : temperature value in the intake manifold in [K];

• O2: oxygen concentration in the chamber in %;

• Qair: amount of air introduced in the chamber in [kg/(cycle × cylinder)];

• λ : ratio between air and fuel quantities.

• EGR: amount of exhaust gas recirculated in [kg/(cycle × cylinder)];

• NOx: amount of nitrogen oxides emitted in [PPM].

The experimental campaign was conducted at Politecnico di Torino utilizing
an engine test bench that was outfitted with an ELIN APA 100 AC dynamometer.
The gaseous emissions that were produced by the engine without any treatment
were quantified using an AVL AMAi60 device, which was equipped with two sets
of instruments for measuring the concentrations of the primary gaseous species.
These measurements were taken at both the intake and exhaust manifolds simultane-
ously. The testing equipment was configured with thermocouples and piezoresistive
pressure transducers to collect temperature and pressure data at multiple locations,
encompassing both upstream and downstream positions relative to the turbine, com-
pressor, and intercooler. Additionally, measurements were taken in the intake mani-
fold and EGR circuit [83]. The experimental acquisitions were executed utilizing
diverse engine strategies, which are not disclosed due to confidentiality concerns.
The information is consistently presented in a normalized form. The data obtained
from the engine experiment was utilized in the development of a machine learning
model and the creation of a real-time virtual NOx sensor. Figure 2.2 displays the
engine’s steady state operating points as a function of engine speed and total injected
fuel quantity.
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Fig. 2.2 Engine operating points in stationary conditions through (a) test bench and (b) ECU
acquisition systems.

The graphs depict the typical configuration of the engine map shape and the full
load (FL) curve, along with the implementation of various experimental strategies
that have resulted in an atypical grouping phenomenon. The experimental acquisition
was conducted under steady-state testing conditions, resulting in the elimination of
transient events’ characteristic time for each engine point represented on the map.
In contrast, the road tests were characterized by transient events exhibiting a high
degree of variability. Consequently, the sampling frequency utilized for acquiring
the engine variables was established at 100 Hz.

2.2.2 Model training approach

The development and assessment of the NOx predictor involved the use of the
XGBoost algorithm, which is known for its high accuracy and efficiency in regression
problems [84]. In this study, the XGBoost algorithm was used to develop virtual
sensors for predicting nitrogen oxides in the compression ignition engine-equipped
vehicle. The mathematical problem belongs to the class of supervised learning, due
to the presence of desired output corresponding to the data labels for the learning
process.The steady state analysis involved defining and training the machine learning
models on engine operating points detected using two different acquisition systems:
a test bench equipped with physical sensors and the ECU sensors and maps. As
required by machine learning algorithms for training and testing purposes of models,
the whole dataset was split in training, validation and test sets, before fed into the
process phase corresponding to the learning tasks. The training set is the set of data
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that is used to train model in learning the hidden patterns in the data and should
have a diversified set of inputs so that the model is trained in all scenarios. The
validation set is a set of data used to validate the model performance during training
and it gives information for hyperparameters tuning process. Finally, the test set is
a set of data used to test the model after completing the training and it provides an
unbiased final model performance metric. To ensure the robustness of the selected
models, a sensitivity analysis was performed on the size of the datasets used for the
training and testing phases. As machine learning algorithms are driven by data, the
amount of data supplied to the training phase can have a significant impact on the
learning performance. However, increasing the number of training points can lead to
overfitting, where the model learns the training data too well and fails to generalize to
new data. To avoid this, the size of the training dataset was reduced while increasing
the number of test datasets, allowing for the assessment of the models’ robustness
despite a potential loss in accuracy. The amount of data considered in the validation
set was set to be the 10% of the training set, and for the sensitivity analysis the
datasets’ size is computed defining the test set dimension through train_test_split
parameter, which was set to [10,50,95] values as the percentage of total amount of
data. On the other hand, the training set is the complement to one of the validation
and test set. The three different values employed in the sensitivity analysis is shown
in Figure 2.3.

Fig. 2.3 Splits between train, test and validation over sensitivity analysis. The test set size is
(a) 10%, (b) 50% and (c) 95% of the whole dataset, rispectively.

Since machine learning models are data-driven techniques, there is no optimal
percentage of the train-test split. Generally, the split percentage is highly dependent
on the project goals and taking into consideration the following factors:

• computational cost in the model training,

• computational cost in the model evaluation,
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• training set representativeness,

• test set representativeness.

As seen in Figure 2.1, the second phase of the data split and learning process takes
data normalization into consideration during the preprocessing phase. Typically,
machine learning models, particularly those belonging to the deep learning branch,
need a step consisting of data normalization prior to the learning phase in the order to
increase the model stability and accelerate training. Nevertheless, not every models’
performance is impacted by this strategy. Similar to the current research, a decision
tree-based algorithm provides no benefit in terms of the prediction accuracy through
its normalized data, the learning phase may be accelerated. In addition, for purposes
of confidentiality, the numerical values of the data have been hidden by using the
Min-Max normalization described in Equation 2.1

Xi,norm =
Xi −min(Xi)

max(Xi)−min(Xi)
(2.1)

To identify the most influential and weighted variables, a feature extraction
approach was employed during the creation of the predictors. This approach, com-
monly known as feature importance, is considered a critical preprocessing step in
creating ML models. The feature extraction process involves analyzing the input
data and selecting the most relevant features for the model. This not only helps
to improve the accuracy of the model but also reduces the computational burden,
making it more suitable for practical applications. Moreover, feature extraction is
particularly useful if the number of system variables is large and finding the most
relevant ones is an objective of the analysis, or if is important to know which features
are driving the model predictions. In the case of the XGBoost algorithm, feature
importance is relevant for several reasons:

• Model interpretability: by identifying the most important features, a better
understanding of how the model is producing the predictions, and how different
features are interacting with each other, can be gained. This can be helpful to
interpret the results of the models and to make more informed decisions based
on its predictions.

• Feature selection: identifying the most important features can also be useful for
feature selection, which is the process of selecting a subset of features to use
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in the models. By selecting the most important features, the performance of
the models can be potentially improved by eliminating less important features
that may be adding noise or reducing the model’s ability to generalize.

• Model debugging: if poor model performance is experienced, identifying
the most important features can be helpful to debug the model and identify
potential issues. For example, if a particular feature is not statistically very
important, it can be removed from the model.

Basically, the feature importance algorithm identifies, for each feature, a correspond-
ing weight that represents the total gain of splitting data along the feature. It is
calculated as the sum of the improvement in the loss function for all splits that
use the selected feature. Features with higher weights are generally considered
to be more important. The feature extraction technique was applied to the engine
parameters listed in Section 2.2.1. The output of the algorithm was the computation
of the relative importance of each parameter for NOx formation, and the results are
presented in the Result section. In literature there are also other methodologies for
investigating and interpreting the relationships of the input features with the model
performance. A SHAP [85, 86] and feature importance techniques were investigated
in [87] to study the correlation between the features and the output of the model,
resulting in a faithful evaluation between the two methods.

As far as the mathematical definition of the feature importance technique is
concerned, there are different ways to compute the relative importance of each input
variable. In the present work, the Gini importance was employed for the considered
algorithm [88]. The Gini importance was exploited to compute the node impurity
and the feature importance was basically through the impurity reduction metric
computed in a node weighted by the number of samples reaching that node from the
total number of samples [89]. From the mathematical point of view, the importance
of a node which is used to calculate the feature importance for every decision tree is
described in Equation 2.2 [90]:

ni j = w jC j −wle f t( j)Cle f t( j)−wright( j)Cright( j) (2.2)

where ni j is the importance of node j, w j is the weigthed number of samples reaching
the node, C j is the impurity value of the node, le f t( j) and right( j) are respectively
the child node on the left and on the right of the node j. Each single feature was
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used in the different branches of the tree and, thus, its feature importance can be
computed through the Equation 2.3 [90].

f ii =
∑ j:Node jSplitsOnFeaturei ni j

∑ j∈AllNodes ni j
(2.3)

The values are first normalized relative to the entire number of feature values that
are represented in the tree, and then the result is divided by the total number of trees
reaching the estimate of the overall feature significance.

XGBoost algorithm & hyperparameters tuning

The field of data science makes extensive use of the algorithm known as XGBoost,
which is classified under the umbrella term of ensemble models [91]. This algorithm
takes multiple weak learners and combines them into a single strong learner, which
then produces results that are significantly more accurate [92]. The decision tree is
the fundamental component of XGBoost, and each of them is trained on a specific
subset of the available data. As a consequence, the final prediction of the model is
the result of a combination of the predictions produced by each of the component
building blocks. The real strength of this approach lies in the fact that it is a gradient-
boosting decision tree technique that is both scalable and distributed, and that it offers
concurrent boosting of the tree [93, 94]. Gradient boosting decision tree (GBDT) is a
supervised learning which uses the gradient descent method to generate progressively
weaker models based on a particular loss function. Iteratively shallow decision trees
are trained, and at each iteration, the residual error of the model that came before it
is used to construct the model that comes after it. The final prediction is found to
be a weighted prediction sum of the individual decision trees. This idea is where
XGBoost originates; yet, it pushes the boundaries of what can be accomplished
with computer power. In point of fact, the trees in this scenario are constructed in
parallel as opposed to sequentially as they are in GBDT, and in addition, second
order gradients of the loss function are used. Moreover, the loss function is an
advanced objective function that also includes regularization terms. These terms
impose penalties on the expansion of the algorithm by adding more decision trees.
This enables the development of the ensemble model to be constrained, which helps
avoid overfitting [91]. As far as the objective function is concerned, the expression to
be minimized at each iteration as a combination of loss function and regularization
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term is given in the Equation 2.4 [95]:

Lt =
n

∑
i=1

l(yi, ŷi
t−1 + ft(xi))+Ω( ft) (2.4)

where the first term is the loss function which measures the difference between
the target yi and the prediction ŷi, while the second term represents the penalty for
controlling overfitting and shown in Equation 2.5 [95]:

Ω( f ) = γT +
1
2

λ∥w∥2 (2.5)

where T is the number of leaves in the tree, w is the score of each leaf and γ,λ are
the regularization degrees. The Equations 2.4, 2.5 can be found in [91].

Due to a large number of hyperparameters to configure and a wide range of values
that each can assume in the XGBoost model, it has been found necessary to apply
optimization strategies to increase its performance. For each of the hyperparameters
a definition space is created, after which the GridSearchCV method has been applied
to find the optimal combination across the entire space. Grid search and k-fold cross-
validation [96] techniques were combined to perform hyperparameter tuning in order
to determine optimal values for the given model. All different parameters were fed
into a parameter grid, and based on a scoring metric (accuracy), the best combination
was identified. The k-fold cross-validation process was allowed to perform the
models’ learning, evaluating each parameter combination over different datasets, i.e.,
validation set. The procedure involves partitioning the original training data into k
subsets, where k is a positive integer, typically 5 or 10. The model is then trained on
k-1 folds before being evaluated on the remaining fold. This procedure is repeated
k times, with each test set fold being utilized once. The model’s performance is
measured by its average performance throughout all k iterations. In this investigation,
the k parameter was assigned a value of 10. Using k-fold cross-validation, the model
is trained and assessed on multiple different subsets of data, thus yielding a more
accurate performance estimation [97]. The model hyperparameters involved in the
study are reported in Table 2.2,
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Table 2.2 XGBoost hyperparameters defining the model architecture.

Hyperparameter Description Domain space

n_estimator Number of gradient
boosted trees

[500 - 1500]

learning_rate Shrinkage factor [0.1 - 0.01]
max_depth Maximum number of

tree levels
[3 - 5]

min_child_weight Maximum weight to
create a new node

[3 - 7]

colsample_bytree Subsample ratio of
features for each tree

[0.5 - 1]

where n_estimator is the number of trees which build the entire XGBoost model
architecture; learning_rate is the step size shrinkage used in update to prevent over-
fitting; max_depth is the maximum depth of a tree and it was exploited to control
over-fitting as higher depth allows model to learn specific relations and pattern to a
particular sample; min_child_weight is the minimum sum of weights of all observa-
tions required in a child and it was used to control over-fitting; colsample_bytree
specifies the subsample ratio of columns when constructing each tree and subsam-
pling occurs once for every tree constructed;

2.2.3 Performance evaluation

The chosen models were utilized as virtual predictors of NOx pollutant, and their
prediction performance was evaluated using various metrics. The evaluation of the
XGBoost models for each case study was conducted by analyzing their performance
using specific metrics in conjunction with the test data. Hence, the involved metrics
are as follows:

• the coefficient of determination R2, defined by the Equation 2.6;

R2 = 1− ∑
n
i=1(xi − x̂i)

2

∑
n
i=1(xi − x̄i)2 (2.6)
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• the real RMSE in ppm considering the test dataset and defined by the Equation
2.7;

RMSE =

√
∑

n
i=1(xi − x̂i)2

n
(2.7)

• the normalized RMSE considering the test dataset, defined by the Equation
2.8;

RMSEnorm =

√
∑

n
i=1(xn,i − ˆxn,i)2

n
(2.8)

where xi is the experimental data, x̂i is the model estimated value, x̄i is the mean of
experimental measured data, xn,i are the normalized experimental data, ˆxn,i are the
normalized estimated value and n is dataset sample size. The performance evaluation
of the machine learning models and the selection of the best hyperparameter values
are widely discussed and analysed in the Results and Discussion section.

As far as the model tuning of hyperparameters is concerned, a combination of a
large amount of XGBoost architectures was investigated through the GridSearchCV
technique which has been defined in the Section 2.2.2, combining the hyperparameter
space definition with the grid search and the optimization procedure by the k-fold
cross-validation technique. Therefore in this context, the selected optimized model
architecture was chosen basing on the performance metric defined by the mean
squared error shown in Equation 2.9

MSE =
∑

n
i=1(xi − x̂i)

2

n
(2.9)

The computational efforts in the design of the virtual sensor based on machine
learning and the whole preprocessing phase were covered exploiting the high-level
Python programming language and a PC worker with an Intel(R) Core(TM) i7-8700
processor ar 3.20 GHz and 64GB RAM architecture.

2.2.4 Virtual NOx Sensing in Steady-State Conditions

In the automobile industry, virtual sensing is a strategy that is frequently adopted to
assure sensorless solutions that are capable of correctly calibrating the primary engine
parameter, hence allowing for consumption and emissions reduction. Despite this,
the virtual NOx prediction sensor need to be calibrated under stationary conditions
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over the whole of the engine’s operating range in order to account for the fluctuating
dynamic scenarios that an engine is subjected to during the course of regular on-
road driving missions. These kinds of operations call for a significant number of
experimental measurements, but they would ultimately make it possible for the ECU
to provide accurate engine control during actual driving scenarios. As a result, the
focus of this research moved from the development and calibration of an AI-based
virtual sensor through the steady-state data collection. It is important to keep in
mind that the experimental campaign resulted in the collection of two distinct sets
of acquisition data: one set of data was collected at the test bench (Bench), and the
other set of data was directly acquired from the engine control unit. As a result, the
ML virtual sensor was developed according to various combinations of the available
data sets for the training and testing phase. This was done in order to further study
how the algorithm reacts when given certain inputs.

Since this work is based on the development of a virtual NOx sensor calibrated
in steady-state conditions and validated in transient scenarios, the first real step in
determining whether the data collected by the bench sensors and the control unit are
sufficiently representative of the engine’s behavior in real-world operating conditions
is to investigate the model’s steady-state behavior. How it is mentioned in the Section
2.2.2, a sensitivity analysis was carried out on the training and test sub-set splits,
defining the test dataset size as a percentage amount of whole data, in order to assess
the robustness of the methodology. The different cases analyzed are reported in
Table 2.3, whereas the XGBoost model performance results are widely discussed in
the Results and Discussion section.

Table 2.3 Steady-state case analysis based on datasets and train–test split sensitivity.

Case Study Train–Test Test Dataset Size [%]

#1 Bench–Bench [10;50;95]

#2 ECU–ECU [10;50;95]

#3 Bench–ECU NO 1

1 The datasets involved in the training and test phases were derived from the two different acquisition

systems. Hence, a train–test split technique was not adopted.

In both the Bench–Bench and ECU–ECU examples, the datasets that were used
for model learning were distinct, although they originated from the same experiments.
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More specifically, the Bench–Bench case relied on engine bench test data, while the
ECU–ECU case relied on engine data received from the ECU. In the last investigated
scenario, Bench—ECU, the training dataset and the test dataset were both received
from the respective measures system applications. As a direct consequence of this,
there was no train-test split, and all of the dataset samples were used for the different
learning and testing phases. The evaluation of model performance in Case Study 3
was dependent on the extent to which the virtual sensor, which serves as a potential
real-time estimator on ECU, was able to detect physical phenomena accurately. This
was due to the fact that the bench acquisition system utilizes precise physical sensors
to identify real events, while the engine map employs both data tables and sensors.

2.2.5 Virtual NOx Sensing in Transient Conditions

Following the calibration and testing of the virtual sensor in a steady-state environ-
ment to evaluate the model’s robustness and its ability to predict NOx emissions,
validation was conducted under dynamic conditions. To ensure precise forecasting
of NOx emissions across diverse operational scenarios, it was imperative to train the
virtual sensor model utilizing engine map data and subsequently validate it through
real-world driving missions. The engine map data, encompassing details of engine
speed and load, serves to simulate a range of stable conditions that the engine could
potentially encounter. Nevertheless, it is possible that these conditions do not accu-
rately reflect the dynamic and realistic operating conditions that an engine would
encounter while driving on a roadway. Through the process of testing the sensor
during an on-road driving mission, it becomes feasible to evaluate the efficacy of the
virtual sensor in accurately predicting real-time emissions and its performance under
actual driving scenarios. Identification of potential issues or limitations that require
attention is possible when integrating a virtual sensor into a control system. Hence,
in this study, the algorithm was trained using stationary experimental data obtained
from the ECU and bench, and validated using on-road-based measurements to assess
the accuracy of NOx prediction during real-world driving missions. In the course
of empirical road trials, the vehicle propelled by a compression ignition engine was
outfitted with a physical measuring equipment for the purpose of managing and
monitoring engine-out operations. The creation and evaluation of a virtual NOx
sensor suitable for immediate implementation would facilitate the replacement of
real sensors, potentially leading to enhancements in cost-effectiveness and reliability.
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The experimental campaign involved the vehicle performing a real driving mission
in Piedmont, encompassing a range of operating conditions and maneuvers that were
pertinent to the constraints and demands of both urban and extra-urban scenarios. To
evaluate and establish the virtual NOx sensor model, the analysis incorporated data
obtained from both steady-state measurement systems.

Table 2.4 Dynamic on-road case analysis based on training phase over different acquisition
systems.

Case Study Train–Test

#1 Bench–On-road mission

#2 ECU–On-road mission

Bench-On road relates to training done on a stationary engine test bench, whereas
ECU-On road examines the learning process on stationary engine ECU data and
validation in transient scenarios. Given the heterogeneous nature of the variables
and the fact that the creation of the virtual sensor was geared toward a future real-
time implementation and might thus be implemented in the ECU, it was essential
to evaluate the two data gathering systems separately. Hence, the performance
prediction of the engine map-based model may be compared to the actual collection
of physical sensors.

2.3 Results and Discussions

The present section reports the scientific findings obtained through the analyzes
conducted for the development of the virtual sensor. In this case, prediction per-
formances are shown in steady-state conditions through engine bench acquisitions.
Consequently, the XGBoost model for the real-time estimation of NOx in on-road ap-
plications was built by training the model under steady-state conditions, from which
the entire engine map domain might be completely covered during experiments, and
testing it on real-world driving data.
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2.3.1 NOx Predictions in Steady-state Conditions

The case study results concerning the training and test phases on bench test conditions
(Bench–Bench), and taking into account the sensitivity analysis conducted on the
train–test split, are summarized in Table 2.5 and the regression results are shown in
Figure 2.4.

Table 2.5 Summary of performance prediction results for test case Bench–Bench. The test
size is here reported for the sensitivity analysis, considering the different percentage values
10%, 50% and 95%.

Test Size [%] 10 50 95

R2 0.98 0.97 0.85
RMSEnorm 0.017 0.022 0.052
RMSEppm 60.0 77.4 186.5

q 0.0034 0.0062 0.0224
m 0.985 0.976 0.912

n_estimator 1500 1500 1200
learning_rate 0.08 0.08 0.08
max_depth 4 3 3

min_child_weight 3 7 7
colsample_bytree 1 0.7 1

Fig. 2.4 Regression prediction results on test dataset for bench test conditions. Sensitivity
analysis on the three different sizes of test dataset: (a) 10%, (b) 50% and (c) 95%.

The decrease in engine points allocated to the model learning phase, as the
test dataset was increased from 0.1 to 0.95, resulted in a significant reduction in
prediction performance. The results indicate that when 95% of the data was allocated
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for testing, notable errors were observed, despite a moderate rise in RMSE as the
partition shifted from 10% test size (60.0ppm) to 50% test size (77.4ppm). It is
noteworthy to emphasize that the model’s predictive ability remained robust even
after reducing the training dataset by half, indicating a remarkable capacity for
accurately capturing physical phenomena. Additionally, the regression line in Figure
2.4 demonstrates the rise in noise brought on by the test size-appropriate sensitivity
analysis.

The case study results concerning the training and test phases on ECU test
conditions (ECU–ECU) are summarized in Table 2.6 and the regression results are
shown in Figure 2.5.

Table 2.6 Summary of performance prediction results for test case ECU–ECU. The test size
is here reported for the sensitivity analysis, considering the different percentage values 10%,
50% and 95%.

Test Size [%] 10 50 95

R2 0.98 0.97 0.76
RMSEnorm 0.021 0.024 0.067
RMSEppm 73.3 84.9 237.7

q 0.0038 0.0047 0.0309
m 0.985 0.9802 0.862

n_estimator 1500 1500 1200
learning_rate 0.08 0.08 0.08
max_depth 4 4 3

min_child_weight 7 7 5
colsample_bytree 1 0.7 1

Fig. 2.5 Regression prediction results test dataset for ECU test conditions. Sensitivity analysis
on the three different size of test dataset: (a) 10%, (b) 50% and (c) 95%.
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Like the previous scenario, it was observed that the precision of NOx estimation
exhibited a tendency to deteriorate (and the discrepancy to augment) with an increase
in the test size and a decrease in the training size. The marginal reduction in R2,
specifically 0.98 for 90% and 0.97 for 50% of the full dataset, due to the utilization
of almost 50% less data for model training, is a significant observation. The observed
phenomenon can be attributed to the considerable efficacy of the employed machine
learning techniques, particularly in light of the fact that the data utilized in this
specific context were obtained in a state of equilibrium. Hence, commencing with
stable engine operating conditions was found to be a more effective approach for
capturing NOx generation phenomena.

As a summary, Figure 2.6 shows the trend of R2, RMSE and computational time
as the train-test split varies in order to evaluate the performance of the models in
different data configurations.

Fig. 2.6 R2, RMSE and computational cost trend as functions of train-test split parameter.

The trends of R2 and RMSE indicate that the model’s fit and performance
are satisfactory. Moreover, the behavior exhibited during the process of model
acquisition aligns with the computational duration, as a reduction in the quantity of
data required for training results in an almost-linear decrease in processing time.
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Finally, the case study results concerning the training conducted on Bench test
conditions and test conducted on ECU test conditions (Bench–ECU) are summarized
in Table 2.7 and the regression results are shown in Figure 2.7.

Table 2.7 Summary of performance prediction results for test case Bench–ECU.

R2 0.97
RMSEnorm 0.024
RMSEppm 86.7

q 0.0037
m 0.972

n_estimator 1500
learning_rate 0.08
max_depth 4

min_child_weight 3
colsample_bytree 1

Fig. 2.7 Regression prediction results of training conducted on bench test conditions and test
carried out under ECU test conditions.

The results obtained in this example demonstrate consistency with the findings
of previous cases, particularly in relation to the robustness of the virtual sensor.
Furthermore, the Bench-ECU illustration exemplifies the precise estimation (R2

of about 98%) of the formation phenomenology of nitrogen oxides through the
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utilization of the developed virtual sensor, which was evaluated using ECU engine
data.

During the learning process of the training phase, the XGBoost based predictive
model provided the relative importance in percentage that each engine variable had in
the predicting the instantaneous NOx value. Hence the feature importance algorithm
was applied to identify the most influential from mathematical point of view, defining
the close correlations between input and output variables. The complexity of a
model increases with the number of features it possesses, resulting in sparser data
and greater susceptibility to errors induced by variance. This, in turn, affects the
model’s prediction performance. The feature importance approach is a crucial
aspect of machine learning, specifically within the feature engineering process. Its
primary objective is to select the minimum number of features necessary to generate
a feasible model, thereby avoiding any potential bias in results that may arise from
the inclusion of irrelevant data [89]. The production of nitrogen oxides in diesel
engines is significantly impacted by the engine’s particular operating conditions.
To streamline the models and evaluate their effectiveness, the feature extraction
method is utilized. The verification of prediction robustness can be achieved through
a comparison of the statistically significant engine variables utilized in the models
with the empirical understanding of the relevant physical phenomenon. Given the
complete availability of data during the training phase of the models, where the test
size is equivalent to 10% for both the Bench–Bench and ECU–ECU case studies,
the results of the feature extraction method are presented in Table 2.8. Table 2.9
presents the hyperparameters of the optimal XGBoost architecture for each analysis
considered, using the same train-test split value.
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Table 2.8 The feature importance outputs for the three steady-state cases study which
highlight the relative importance of each variable. The percentage values identify the most
influential engine variables. Considering a threshold value of 90%, the variables beyond this
value are labeled in red and they were discarded as they were considered non-influential.

Variable Bench–Bench ECU–ECU Bench–ECU
1 SOImain(13.9%) SOImain(13.5%) SOImain(14.2%)

2 Prail(13.4%) Prail(13.4%) ωeng(13.3%)

3 ωeng(13.3%) ωeng(13.0%) Prail(13.3%)

4 λ (9.5%) λ (10.7%) λ (9.7%)

5 O2(9.3%) IMAT (7.9%) O2(9.6%)

6 IMAT (7.5%) Qtot(7.9%) IMAT (7.7%)

7 Qtot(7.4%) O2(6.3%) EGR(7.4%)

8 EGR(6.8%) Qmain(6.3%) Qtot(6.5%)

9 IMAP(5.6%) IMAP(6.1%) Qair(5.9%)

10 Qair(5.5%) SOIpil(5.4%) IMAP(5.1%)

11 SOIpil(4.5%) Qair(4.6%) SOIpil(3.8%)

12 Qmain(2.6%) EGR(4.1%) Qmain(2.7%)

13 Qpil(0.7%) Qpil(0.8%) Qpil(0.8%)

According to the feature importance definition, the variables SOIpil , Qmain and
Qpil were discarded as they proved not to be significantly affected by large varia-
tions. The algorithm, therefore, did not consider SOIpil and Qpil to be particularly
significant in the evolution of NOx emissions. Furthermore, since the Qmain was
strictly proportional to Qtot , only one of them was taken into account.
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Table 2.9 Best XGBoost architectures and grid values setup for the three case studies under
investigation. The mean squared error (MSE) evaluation metric was used to obtain the
optimal value by the GridsearchCV algorithm.

Hyperparams Grid Values Bench–
Bench

ECU–ECU Bench–ECU

learning rate [0.1, 0.05,
0.08, 0.1,

0.15]

0.08 0.08 0.08

max_depth [3, 4, 5] 4 4 4
n° estimators [500, 1000,

1200, 1500]
1500 1500 1500

min_child_weight [3, 5, 7] 3 7 7
colsample_bytree[0.5, 0.7, 1.0] 1 1 1

It is evident that the feature extraction process identified nearly identical engine
variables as the most pertinent in all three cases examined. It is probable that
the variables with the highest relevance for forecasting NOx emissions remain
consistent across various data sources and testing environments. Variables such as
engine load, fuel flow, and exhaust gas temperature are crucial in predicting NOx
emissions, regardless of the source of data collection, be it from a test bench or the
engine control unit of the vehicle. Furthermore, the XGBoost algorithm identified
comparable engine variables as the most significant across the three distinct scenarios,
due to the similarity of the training and testing datasets. The dataset utilized to train
the model on the test bench exhibited similarities to the dataset employed for testing
the model on the vehicle’s ECU. Thus, the pertinent variables exhibited similarity in
both instances. The algorithm’s ability to detect descriptive patterns in the data would
yield similar results in predicting the occurrence of NOx formation, for identical
reasons. Hence, the architectures of XGBoost in all three instances exhibited a high
degree of similarity.

2.3.2 NOx Predictions in Transient On-road Conditions

After evaluating the model’s ability to accurately predict and capture phenomeno-
logical events during steady-state conditions, a virtual NOx sensor was developed
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for real-time use by utilizing on-road experimental data. The model demonstrated
high predictive performance and robustness. In contrast to bench tests, which en-
tail collecting data while the engine is operating under controlled conditions to
ensure consistent and replicable testing conditions, on-road data is obtained while
the vehicle is being driven on real roads in realistic scenarios. The aforementioned
data accurately portrayed the working conditions of the engine, encompassing en-
vironmental factors such as temperature, humidity, and altitude, in addition to the
fluctuating dynamic loads that transpired throughout the driving mission. The mea-
surements taken during on-road testing encompassed the vehicle’s velocity and rate
of change of velocity, which might impact engine performance. The virtual NOx
sensor’s design was established through calibration in stationary conditions, such
as bench or ECU, and subsequently verified through real-world experimental tests.
The engine parameters under consideration were identified through the feature im-
portance process in the preceding stages of the analysis. Thus, the acquisition stage
was encompassed by the feature importance outcome derived from the steady-state
conditions. The predictive performance results for the two case studies are listed in
Table 2.10 outlining the same statistical metrics.

Table 2.10 Performance prediction results over on-road test driving mission.

Case Study #1 Bench—On-Road
Mission

#2 ECU—On-Road
Mission

R2 0.76 0.75
RMSEnorm 0.054 0.055
RMSE[ppm] 192.0 194.9

m 0.92 0.97
q −0.007 −0.017

The analysis of the metrics revealed a significant decline in predictive perfor-
mance, with a reduction of up to 75% in accuracy. Additionally, a substantial shift
in the regression line was observed, with a significantly higher q value compared
to the stationary cases. Furthermore, a considerable increase in the error was also
noted. The observed phenomenon can be attributed to the dissimilarity between the
operating conditions experienced by the engine while performing a road driving task
and those encountered during the model learning phase, which was characterized by
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stationary conditions. The predicted levels of NOx in the two case studies are pre-
sented in conjunction with the empirical traces in Figure 2.8. This figure highlights
three distinct time intervals [50 s 250 s], [500 s 700 s], [850 s 1050 s] during the
missions, each spanning 200 s. The model’s forecasting capability was evaluated
across various real-world conditions that the vehicle may encounter, by presenting
three distinct time windows that corresponded to different operating conditions.
These time windows were of considerable duration.

Evidently, the estimated NOx signals precisely depicted both the qualitative and
quantitative pattern of the experimental unit, along with its transient trend throughout
the driving mission. During the time interval of [50,250], certain mission points
resulted in negative NOx values due to overestimation or underestimation of exper-
imental outcomes. The observed phenomenon can be attributed to the prevalence
of operating points where the lambda values exceeded the defined domain of the
learning phase, coupled with the sudden surges in the values of fuel injected quantity.
Furthermore, the signal exhibited significant spikes owing to the instantaneous nature
of the measurement sensor utilized in the model. Each point of the mission was
characterized by distinctive engine variables, which differed substantially from those
of the subsequent instants. The aforementioned factor, coupled with the inadequacy
of the learning phase to account for the NOx formation dynamics and their corre-
sponding characteristic times, contributed to the differences between the anticipated
and observed signals.
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Fig. 2.8 The NOx predicted signals for cases study #1 and #2. (a)–(c) depict three distinct
200 s-length windows of driving mission.

The lower R2 values observed in Table 2.10 and Figure 2.8 may be attributed to
the anticipation of the predicted signals in relation to the observed signal. Real-time
virtual sensing applications may experience a significant decrease in performance
due to the timing of predicted signals, either in anticipation or delay. This can result
in incorrect emission control. This behavior is associated with the characteristic
time delay of the measurement system and the line. The latter phenomenon arises
due to a time lag between the measured level of NOx and the corresponding time
frame to which the measurement pertains. As a matter of fact, the predicted NOx
were referred to the implemented engine parameters at the given time-step, whereas
the measured NOx would have been produced by the engine setting at a previous
time frame. The latter phenomenon is correlated with the duration required for
the discharge of exhaust gases from the engine to reach the acquisition probes, in
addition to the sensor’s related time lag. In conditions of steady-state, the delay
is effectively eliminated due to the stationary nature of the test, in contrast to its
origin from transient conditions. The model’s NOx signal output was delayed by 1
second [98]. As a result, the expected signal closely approximated the experimental
signal, as depicted in Figure 2.9, which pertains to a specific time interval.
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Fig. 2.9 The NOx predicted signals for cases studies #1 and #2, taking into account the line
delay of measurement system.

The R2 value for both case studies was observed to be 85%, indicating the virtual
sensor’s ability to predict NOx emissions with a high degree of accuracy in real-time,
as reported in [99].



Chapter 3

Li-ion Battery and Vehicle Modeling
for On-Road Testing of an Electric
Two-Wheeler

1 Electric vehicles (EVs) are gaining popularity worldwide due to their low carbon
footprint, reduced operating costs, and improved performance. In 2020, the sales
of electric vehicles totaled over 400,000 units and exhibited exponential growth of
157% over the preceding year [100]. These statistics represent a significant shift in
the market trajectory of electric automobiles. However, one of the main challenges
associated with EVs is their limited driving range, which causes range anxiety among
consumers. To address this challenge, it is crucial to develop accurate models of EVs
that can predict their range and optimize their performance.

Traditional modeling techniques for EVs have relied on physics-based models,
which can be complex and time-consuming to develop. Physics-based models
require detailed knowledge of the components of the vehicle and their interactions,
making them difficult to develop for newer technologies such as lithium-ion batteries.
Moreover, they may not capture the variability in real-world driving conditions, such
as traffic, weather, and driver behavior. Therefore, there is a need for alternative
modeling techniques that can capture the complex interplay between the various
components of EVs and provide accurate predictions of their performance. From

1Part of this chapter has been published in the form of papers as: Falai, A.; Giuliacci, T.A.; Misul,
D.; Paolieri, G.; Anselma, P.G. Modeling and On-Road Testing of an Electric Two-Wheeler towards
Range Prediction and BMS Integration. Energies 2022, 15, 2431
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the perspective of the accumulators, a reliable and cost-effective management of the
energy storage system is an essential component for the development of this device,
as well as for their longevity and the optimization of vehicle performance. Data-
driven modeling techniques offer a promising approach to modeling EVs, where
data collected from real-world driving can be used to build models that accurately
capture the vehicle’s performance or, generally speaking, the on-road behaviour.

In this chapter, we present a data-driven approach for the electric two-wheeler
parameters identification, which includes both the li-ion battery and the vehicle. The
objective of this study is to develop a model that accurately predicts the vehicle’s
distance driven and optimize its performance. The model is developed using data
collected from on-road testing, and it is developed towards an online integration in
a battery management system (BMS) to estimate the battery states and adjust the
vehicle’s performance accordingly.

The contributions of this chapter are two-fold.

• first, we present a data-driven approach to identify the parameters of an electric
two-wheeler model that can accurately predict the vehicle’s range and optimize
its performance during on-road driving missions. The data-driven modeling is
focused combining a standalone energy storage system model with a dynamic
vehicle model for a reliable and manageable approach in the global vehicle
performance perspective;

• second, we demonstrate the feasibility of modeling techniques for EVs, com-
bining batteries and vehicle dynamics, where the model parameters were
calibrated through real-world driving mission data.

This study provides a foundation for future research on data-driven modeling tech-
niques for EVs, which can help to improve the accuracy of range predictions and
optimize the performance of these vehicles.

3.1 Introduction

The worldwide proliferation of electric vehicles is currently facing a number of
constraints. The autonomy of e-vehicles is expected to be limited, ranging from
100 to 300 km, due to the battery size [101]. Increasing the capacity of the battery
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pack results in elevated expenses, augmented vehicle weight, and subsequently,
amplified energy consumption. Therefore, it is imperative to focus on determining
an appropriate balance between the electric range and battery capacity. One of
the primary benefits of e-powertrain pertains to the superior efficiency of electric
motors at lower vehicle velocities in comparison to internal combustion engines
(ICEs). Consequently, electric mobility is predominantly aimed at urban areas. Given
the uncommon and limited availability of electric charging stations [102], coupled
with the absence of extensive fast charging infrastructure [103], it is imperative to
effectively manage and mitigate range anxiety through precise predictive models.
Electric two-wheelers have the potential to be a significant advancement in electric
mobility, particularly in urban traffic, where two-wheelers have historically been a
popular transportation option. Reference [104] presents a comprehensive vehicle
model that elucidates the dynamic characteristics of electric scooters, with the aim of
enhancing their design and production capabilities. Conversely, the implementation
of electric two-wheelers necessitates the creation of specialized BMS in order to
guarantee adequate performance and electric range. The successful deployment and
implementation of BMS necessitates a comprehensive understanding of both the
vehicle and battery behaviors. Regarding the battery, the utilization of lithium has
become extensively prevalent. Lithium-ion batteries (LIBs) are renowned for their
intricate yet efficient electrochemical mechanisms, which result in exceptional energy
storage capacity, high-power density, extended lifespan, minimal self-discharge,
low maintenance expenses, and negligible environmental footprint. Therefore, the
investigation of LIBs and their modeling are crucial aspects for evaluating their
performance and application constraints, as well as for designing a tailored, adaptable,
and dependable Battery Management System [105].

The performance models of LIBs are categorized into three primary groups,
namely electrical models [106, 107], analytical models [108, 109], and electrochem-
ical models [110, 111]. The reduction in computational cost is accompanied by
a decrease in the degree of complexity and an increase in the levels of accuracy.
Equivalent circuit models (ECM) have been found to be appropriate for analyzing
BMS controllers from a system-level perspective due to their high precision and
low computational expense, making them a popular choice among electrical models
[112, 113]. The current study is based on the utilization of Thevenin equivalent cir-
cuit representation. The second-order equivalent circuit model is utilized to describe
each battery cell, which comprises of a voltage source, resistors, and capacitances.



3.2 Material & Methods 47

The present research work did not take into account the battery thermal management
issues, despite their extensive investigation in the literature [114, 115]. The proposed
model is intended to be integrated into a software-in-the-loop (SIL) environment,
serving as a foundation for the development of battery management systems. Future
research endeavors may explore various strategies and control logics to optimize
battery management. Furthermore, the implemented instrument will be advantageous
in examining and contrasting diverse battery architectures and configurations.

3.2 Material & Methods

Data-driven modeling is an approach to modeling complex systems, such as electric
vehicles, that relies on data rather than explicit knowledge of the underlying physical
principles. In data-driven modeling, a large amount of data is collected from the
system of interest, and this data is used to develop a mathematical model that can
accurately predict the system’s behavior. Moreover, the experimental data can be
exploited for parameters identification involving physical modeling of a complex
system. In order to complete this assignment, it is necessary to specify the data
generation system, the collection system, and the experimental environment, in
addition to the required amount of data to be collected. In the present work, an
extensive experimental campaign was carried out on a prototype electric two-wheeled
vehicle. The on-road tests were conducted in Turin (Italy). A physical-based model
was constructed and then connected with a battery model in order to evaluate the
vehicle’s behavior in terms of energy consumption. Using the experimental data
gathered from many road testing, model identification and validation were performed
following an optimization process.

The case under consideration was an electric two-wheeler equipped with a
prototype lithium-ion battery pack consisting of 180 cells grouped in 9 parallel
modules, each of which included 20 cells in series. According to the classification
terminology, the investigated battery layout is a 20s9p configuration. The basic
component of the battery pack was Li-ion cylindrical cell of Samsung INR21700-
50E type. The cell physical dimensions nad technical specifications are shown and
listed in Figure 3.1 and Table 3.1. Finally, the composition of the cells in series and
parallel to form the entire battery pack is described in the Table 3.2, showing the
technical information.
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Fig. 3.1 Outline dimensions of INR21700-50E.

Table 3.1 Technical specifications of SAMSUNG INR21700-50E cell as reported on Samsung
company data sheet [1].

Parameters Values Measurement Unit

Cell Format Cylindrical -
Technology Li-Ion -

Nominal Voltage 3.6 V
Nominal Capacity 4.9 Ah

Maximum continuous
discharge current

9.8 A

Maximum non
continuous discharge

current

14.7 A

Recharge maximum
current

4.9 A

Discharge Cut-off
Voltage

2.5 V
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Table 3.2 Technical specifications of the prototype battery pack.

Parameters Values Measurement Unit

Pack configuration 20s9p -
Nominal Voltage 72 V

Nominal Capacity 44.1 Ah
Total Energy 3.17 kWh

Maximum continuous
discharge current

88.2 A

Maximum non
continuous discharge

current

117.6 A

weight 12.5 kg

The electric two-wheeler was a vehicle on the market, therefore due to industrial
and project secrecy it is not possible to provide information concerning the brand.
However, some technical characteristic regarding the vehicle’s performance and
powertrain is shown in the Table 3.3. It is worth specifying that the standard battery
of the vehicle has been replaced by the prototype one described in the Table 3.2
according to a previously existing industrial project. Therefore, the technical and
performance specifications of the vehicle related to the original battery on board
(such as electric range, voltage, charging time) are no more meaningful.

Table 3.3 Technical information of the electric two-wheeled vehicle.

Parameters Values Measurement Unit

Maximum velocity 90 km/h
Weight 98 kg

Powertrain - engine Brushless -
Powertrain - power 4 kW

3.2.1 Global Modeling approach

The adopted modeling method in this activity is based on an energy-based approach,
which takes into account the electrical energy produced by the battery flowing via
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the vehicle drivetrain components to the driven wheels. Each drivetrain component
under consideration can be represented as stated in the following sections. Matlab©

and Simulink© were utilized for data post-processing and model building. The DSP
System and Model Identification toolboxes were the most useful for this goal. The
physical differential equations are solved using Simulink, and the overall vehicle
modeling work is divided into two sections: battery and vehicle dynamic modeling,
as indicated in the global model overview in Figure 3.2. The battery model takes
as input the driver current request, which can also be computed by opening the
accelerating knob, and returns the output battery pack electrical power. The electrical
power from the battery pack is then the input of the vehicle model in order to estimate
the vehicle longitudinal speed. From a global point of view, the developed model
takes battery current as input and forecasts the real two-wheeler longitudinal speed.

Fig. 3.2 Global model: battery and dynamic vehicle blocks set implemented on Simulink©.

The detailed analysis of the models, with the motivated choice of approaches is
shown in the following sections.

Modeling approach for Li-ion battery pack

The modeling techniques of energy storage systems, such as lithium-ion batteries,
belong to a topic widely discussed nowadays. As previously described in the 3.1,
in the literature there are different approaches based on different levels of detail,
with consequent different levels of computational power required and achievable
accuracy in the estimation of parameters and in the prediction of operating variables.
Depending on the application and the objectives to be achieved, it is essential to select
a battery model that fits the design requirements. Since the present work was born as
a precursor to the development of a customized and flexible BMS, the need arose
to adopt computationally efficient and simplified techniques, but in which accuracy
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would not be too negatively affected. A common model technique which is widely
employed in several different applications [116–118] is the equivalent circuit model
due to the low obtained relative errors which can generally satisfy the precision
requirements for the practical engineering calculation. In order to capture both
fast dynamic events, e.g., resistance and charge transfer effect, and slow dynamic
events, e.g., diffusion effects, a second-order RC model was exploited to characterize
each single cell as the basic element of the battery pack. The behavior of each cell
can be analyzed independently, which lays the groundwork for BMS control logic
development. Usually, first-order RC and second-order RC are used interchangeably
as the modeling levels are similar in terms of computational effort, but with results
slightly in favor of the second order. In the [119] is shown how the first-order RC
model could be the preferred choice for portable consumer electronics, while the
second-order RC model could could be more suitable for stringent applications
such as automotive. In the present study the same initial comparative analysis was
conducted, obtaining only slightly higher accuracies in the second-order RC model
case. An example of a result is shown in the Table 3.4, where the two models are
compared in terms of error and precision in estimating the output voltage.

Table 3.4 First and second-order RC models compared in an initial step of the project.

First-order RC model Second-order RC
model

RMSE[V] 0.048 0.041

R2 0.942 0.965

The cell model adopted, therefore, is shown in the Figure 3.3, where V and I are,
respectively, the cell terminal voltage and current, Vj with j = 0,1,2 are voltages
drops across resistors due to the flowing current. R0 and R j and C j with j = 1,2 are
the time-varying model parameters corresponding to resistors and capacitors which
model both the static and dynamic behaviors of the cell.
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Fig. 3.3 The second-order RC cell model with operating parameters.

Specifically, R0 determines the cell static resistance, and each RC pair determines
different time constant dynamic behaviors: the first R1C1 models charger transfers
and the double layer effect, while the last pair of R2C2 are employed to capture
the cell diffusion phenomena occurring at a much higher time scale. The OCV is
the cell Open-Circuit Voltage, which is modeled as an ideal voltage source and
corresponding to the theoretical voltage that the cell can ideally supply. All these
parameters are function of the cell’s SOC as internal state of the system. In some
advanced modeling approaches, hysteresis for the OCV [120] and parasite current
phenomena are included. These two aspects were not considered in this work in
order to preserve the simplicity of the model while obtaining a satisfactory accuracy.

The RC pairs is directly linked to the model order, which is a trade-off between
model accuracy and complexity. For L-ion batteries, an ECM with two RC branches
is commonly employed and it achieves good level of accuracy [121]. The operat-
ing conditions of cells were described through the ECM model according to the
differential equation in Equation 3.1 [122]

dV1

dt
=− V1

R1C1
+

I
C1

dV2

dt
=− V2

R2C2
+

I
C2

SOC
dt

=− I
Qcell

(3.1)
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where Qcell is the cell nominal capacity in ampere-seconds. The only variable in (3.1)
is the current amplitude I. Once all parameters have been defined, the model takes
the current I as input and solves a first-order differential equation which is able to
simulate the total voltage delivered by the cell according to the Second Kirchhoff’s
Law, applied to the circuit model in Equation 3.2 [122]:

v = OCV −R0I −V1 −V2 (3.2)

This modeling approach was implemented as a Simulink block, and it constitutes
the initial component of the global vehicle model: for a given input current, it returns
an output voltage. Using the model of a single cell to connect multiple cell models in
accordance with the battery pack’s 20s9p configuration, a general battery pack model
was generated. The 20 ECMs were connected in series to form a single module, and
then 9 modules were connected in parallel to replicate the pack layout, as shown in
Figure 3.4.

Fig. 3.4 Battery pack modeling: 9 modules are connected in parallel and each module has 20
cells connected in series, each single one modeled as an independent ECM: ’i’ is the battery
pack current, and ∆V is the voltage of the battery pack.

The Simulink implementation was performed by exploiting the Simscape Elec-
trical libraries: The entire battery pack model is illustrated in Figure 3.5. The first
layer of the battery pack model composed by 9 modules in pair is represented inside
the black box. Then, each of the 9 modules are composed by 20 cells connected
in series (green box). Finally, the single cell structure can be appreciate in the last
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red box: a SOC block estimation is presented, and it was useful to evaluate the
SOC-dependency of the cell parameters in the look-up table. This allows each cell to
have a different behavior. According to the Simulink libraries, the blue, red and black
lines represent respectively the electrical, the physical and the signal connections.

Fig. 3.5 Model of the battery pack configuration on the Simulink virtual environment.

As already discussed for Figure 3.3, each cell was modeled as a 2RC-ECM, and
the unknown parameters which characterize the cell model properties are:

• OCV [V];

• R1 [Ω];

• C1 [F];

• R0 [Ω];

• R2 [Ω];

• C2 [F].

These are implemented in appropriately calibrated one-dimensional look-up
tables as a function of SOC, as explained in the next sections of the present work.
The SOC for each cell is in turn evaluated according to the Coulomb Counting
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equation. This is obtained by integrating the third equation of (3.1) as show in the
Equation 3.3:

SOCt = SOCT 0 −
∫ t

T 0

I
Qcell

dt (3.3)

This approach enables the modeling independence of each cell, and this is neces-
sary for future BMS integration and the development of some future optimization
strategies, such as cell equalization. However, this makes the model more expensive
from the computational load point of view. In this phase of the activity, all the cells
were modeled assuming the same values for all the parameters, which makes them
identical to each others. This assumption is a good approximation of the reality
considering that the cells in the tested battery pack are fresh and they should therefore
be identical [123], assuming appropriate manufacturing tolerances [124, 125]. After
the present work, a dispersion regarding values of the parameters will be investigated
in order to analyze the battery pack behavior more realistically.

Vehicle modeling approach: longitudinal dynamic model

The physical modeling of the longitudinal vehicle dynamics can be defined by
considering the instantaneous energy balance for the two-wheeler’s body in the
Equation 3.4:

mtot a v = Pmot −Pdiss, (3.4)

where mtot is the vehicle equivalent mass, v and a are the velocity and the acceleration,
respectively, of the two-wheeler’s center of gravity at a specific time instant t, Pmot is
the power generated by the power train system at the wheels level, and Pdiss stands for
the power of all the dissipative phenomena occurring. The equations are derived from
the longitudinal vehicle dynamic modeling theory. By integrating Equation (3.4)
over a time interval, the energy associated to the body can be calculated following
the Equation 3.5: ∫

mtot a v dt =
1
2

mtot v2 (3.5)

The total energy of the vehicle body is related to the contributions of both the
longitudinal speed and the rotational speed of the drive train components. Among
the latter, the most important one is the rotatory inertia of the electric motor, which
absorbs part of the traction power delivered by the battery, and it dissipates energy
in deceleration phases. The same holds for the mechanical transmission, yet its
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contribution can be assumed as negligible. Hence, just the inertia of the electric
motor was considered in this work. Equation (3.4) can thus be written as Equation
3.6:

mtot a v = m a v+ Jmotor θ θ̇ . (3.6)

where m is the translating mass of the vehicle, consisting of the sum of vehicle
and driver masses, Jmotor is the motor rotating inertia, while θ and θ̇ are the motor
rotational velocity and its acceleration, respectively. By considering the kinematic of
the vehicle transmission, we obtain the Equation 3.7:

Jmotor ·θ · θ̇ = Jmotor ·
τ2

R2 · v ·a. (3.7)

where R is the wheel dynamic radius, and τ is the speed ratio between the motor
and the driven wheel rotational velocity. Two-wheelers equipped with ICE generally
embed a CVT (continuously variable transmission). However, nowadays, CVTs
are solutions generally not exploited for electric vehicles [126]. The drivetrain of a
two-wheeler is an “in-body” transmission. Hence, it is reasonable to assume τ as a
constant parameter. So, it can be assumed by the Equation 3.8:

Jmotor ·
τ2

R2 = mr; (3.8)

Therefore, the left-side term of Equation (3.4) becomes Equation 3.9:

mtot a v = (m+mr)a v (3.9)

where mtot is the equivalent mass.

As far as the motor power Pmot is concerned, it is considered corresponding to
the battery power model output Pbattery, V and I being the voltage and the current
delivered by the overall battery pack, respectively, and assuming a battery-to-road
efficiency ηb2r due to electrical and mechanical energy conversion (e.g., inverter,
power electronics, bearings, tire friction and other transmission loss terms). The Pmot

is, then, expressed in the Equation 3.10:

Pmot = ηb2r V I (3.10)
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As far as the dissipation terms are concerned, different contributions could be
included into the equation term Pdiss depending on the level of accuracy required.
Pdiss is equal to the product between the overall dissipative force acting on the vehicle
Fdiss and its velocity v, shown in Equation 3.11:

Pdiss = Fdiss v. (3.11)

The main phenomena considered in Fdiss are:

• aerodynamic forces, which represent the air resistance to the vehicle motion
and dependent on the square of vehicle velocity, air proprieties and geometrical
vehicle shape. The mathematical formulation is expressed in Equation 3.12:

FAerodynamic =
1
2
·ρair ·A f ·Cx · v2, (3.12)

and more precisely, ρair is the air density, A f is the frontal area of the vehicle
and Cx is a dimensionless parameter lower than 1 called the drag coefficient,
describing the aerodynamics of the body. According to the mathematical
formulation, the lower this coefficient’s value, the better the aerodynamic
performances of the considered vehicle.

• Tire rolling resistance, which represents the resistance produced by the contact
between tires and the road surface. The energy dissipation of this term is due
to the elastic micro-deformation in the tire body. Its magnitude is modeled by
the Equation 3.13:

FTire = m ·g · f · cos(α), (3.13)

The α parameter indicates the road grade, g is the gravity acceleration and
m is the vehicle mass. Particular importance is give to the value of the f
coefficient, which is called rolling resistance coefficient, and it depends on the
tire composition and the road surface material. Concerning passenger cars, its
value can range from 8 kg

t considering homogeneous asphalt [127] and normal
tires up to 45 kg

t considering an off-road path [128]. The FTire formulation can
also include a factor which depends on the square of vehicle velocity and an f2

coefficient, but because this values is quite small, considering the application
of a two-wheeler, these were neglected in this work.
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• Gravity resistance consisting in resistance forces produced by the road slope.
Its value can be calculated following Equation 3.14:

FSlope = m ·g · sin(α); (3.14)

Since all the experimental tests were driven on approximately flat road, the
values of both α and Fslope are neglected.

All the other elements which cause the dissipation of energy and which are not
included above (for instance the internal friction between the mechanical elements)
will be afterwards considered in the generic factor ηb2r, standing for the overall
efficiency of the system. In general, the sum of the dissipative forces Fdiss can thus
be broken down according to the Equation 3.15:

Fdiss(v) = FAerodynamic +FTire +FSlope =
1
2

ρairA fCxv2 +mg f cos(α)+mgsin(α)

(3.15)
which is rewritten in the form of Equation 3.16:

Fdiss = A+B · v+C · v2, (3.16)

with: 
A = mg f ;

B = 0;

C = 1
2ρairA fCx;

(3.17)

Finally, the vehicle velocity can be predicted from the all previous equations and
the battery electrical power, solving and substituting all terms of the (3.4), obtaining
Equation 3.18: (

m+mr

)
v

dv
dt

= ηb2r ·V I − v
(

A+Cv2
)
. (3.18)

where the acceleration a is written as dv
dt exploiting the differential relationship.

The equation (3.18) is implemented in the second block of the global model and
shown in Figure 3.6
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Fig. 3.6 Longitudinal dynamic equation of the electrified two-wheeler vehicle model imple-
mented on Simulink.

3.2.2 Data acquisition system and on-road experimental cam-
paign

The data of the two-wheeled prototype vehicle provided by the tests of the conducted
experimental campaign were acquired on various driving missions. This was made
possible by equipping the vehicle with an acquisition board capable of recording the
signals from the vehicle’s standard sensors, used for internal communication between
the ECU, BMS, and driver monitor, as well as the signals from additional sensors,
such as a Hall’s effect current (LEM) sensor capable of enhancing the quality of
the acquired current signal. Finally the raw signals of data are driven to an external
data logger through the CAN bus protocol system and handled by a commercial
software DEWEsoft® on an user device and memorized on a dedicated memory. The
simplified scheme of the acquisition system is shown in the Figure 3.7.
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Fig. 3.7 A simplified scheme of the acquisition system used in the experimental campaign.

The main signals of interest collected through the BMS channels and external
sensor were:

• battery pack voltage [V ],

• battery pack current delivered [A],

• lowest and highest voltage among all internal cells [V ],

• lowest and highest temperature among all internal cells [V ],

• state of charge (SOC) of the entire battery pack,

• state of health (SOH),

• vehicle speed [km/h],

• opening percentage of throttle knob.

However, not all of these acquired signals were useful for the analyzes developed as
they were not exploitable for the modeling approaches adopted. Several different
driving missions were performed in order to define the parameters of battery and
dynamic vehicle models and for the validation process among different operating
on-road conditions. The different performed tests of the experimental campaign are
listed in Table 3.5 and the relative routes performed in Turin are shown in Figure 3.8
and 3.9.
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Table 3.5 Experimental tests available for the models identification.

Test Test
Type/Session

Test
Specifications

Repetitions

1 Discharging Test SOC in range [1,
0.3]

1

2.1 Coastdown 1 from 22 to 8 m/s 4
3.1 Coastdown 2 from 22 to 8 m/s 4
3.2 Coastdown 2 from 22 to 8 m/s 4
4.1 Coastdown 3 from 22 to 8 m/s 4
4.2 Coastdown 3 from 22 to 8 m/s 4
5.1 Constant Speed 1 5.5 m/s 2
5.2 Constant Speed 1 11 m/s 2
5.3 Constant Speed 1 16.5 m/s 2
5.4 Constant Speed 1 22 m/s 2
6.1 Constant Speed 2 5.5 m/s 2
6.2 Constant Speed 2 11 m/s 2
6.3 Constant Speed 2 16.5 m/s 2
6.4 Constant Speed 2 22 m/s 2
7 Partial Knob 50 % 1

The selected route for test #1 is shown in Figure 3.8, while the route for the
remaining tests is shown in Figure 3.9. The same ’Test Type/Session’ name refers to
different tests performed in the same operating conditions. More details about tests
conditions are provided below.
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Fig. 3.8 Selected route in Turin, Italy, for the battery model calibration procedure.

Fig. 3.9 Selected route in Turin, Italy, for the calibration of the dynamic vehicle model.

Regarding the battery characterization tests, a driving mission was repeated until
the BMS disconnected the battery voltage and the vehicle was turned down. This
particulate test consisted of acceleration, constant speed, and deceleration phases,
taking into account all possible operating conditions. The battery installed on the
vehicle is a prototype pack unrelated to the manufacturer’s on-board BMS, with a
capacity approximately 50 percent greater than the battery for which the on-board
BMS is designed. When the on-board BMS detected that the capacity delivered by
the battery was close to the limit imposed by the manufacturer (which is calibrated
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on the original, non-over sized battery), it disabled the vehicle and turned it off to
prevent critical issues arising from the under-voltage condition. The BMS system
is a closed system and then the internal parameters cannot be altered. Therefore, it
was not possible to completely discharge the prototype battery pack. As a result, the
prototype battery was only discharged to approximately 70% of its entire capacity,
whereas the calibration procedure was only feasible above this threshold value.
In addition, temperature data were unavailable during the acquisitions phases due
to the absence of specific sensors. In the present investigation, the battery has
been partially modeled in the entire SOC domain, while temperature dependence
has been neglected. Thus, the model’s performance only referred to the standard
environmental condition. The experimental signals of the variables exploited in the
parameters identification of each single cell numerical model is graphed in Figure
3.10 showing the dynamic operation of the battery pack during the on-road trace and
highlighting the transient, corresponding to the test #1 of "Discharging Test" name
of the Table 3.5.
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Fig. 3.10 Operating battery pack (a) voltage, (b) current and (c) power delivered during the
tests #1.

A better highlight can be appreciate looking at the details represented in the
Figure A.1 of the Appendix A, where the typical voltage response is shown under
transient conditions and the total voltage drop due to the electrochemical phenomena,
such as charge transfer, diffusion and static resistance. As can be seen, the SOC
estimation reported in the figure had dual natures, as already explained. The dashed
orange line corresponds to the SOC computed by the on-board BMS which is
calibrated on the original battery pack, while continuous orange line is the post-
processing SOC estimation performed and considered in this study through the
Equation 3.3. Literature reveals that a number of SOC estimation methodologies
take battery capacity into consideration; this may explain why the original BMS
of the two-wheeler conducts an incorrect SOC estimation when monitoring the
prototype pack. For the current analyses, however, only the estimated SOC after
post-processing was considered, as determined by the Coulomb Counting method.
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Once the initial condition SOCT 0 is known [129, 130], this method has a powerful
and reliable computation, which is sufficient for the actual needs in this work.

As far as the vehicle dynamic model identification, the experimental data ex-
ploited were those belonging to the tests from #2.1 to #7 of the Table 3.5 and carried
out in different part of Turin (Italy). These tests were used to estimate the parameters
of the dynamic vehicle equation. Specifically in the test sessions, different types of
conditions among the driving mission were covered by the driver and explained as
follows:

• the coastdown test consists of a phase of vehicle acceleration up to a cer-
tain speed, followed by a phase of deceleration down to zero speed, on an
approximately flat road without braking and under stationary environmental
conditions. In general, it is crucial to avoid selecting any gear during the
deceleration phase of this type of test in order to avoid the inertia of driveline
rotating elements [131, 132]. The two-wheeled electric vehicle, however, lacks
a manual transmission selector. The vehicle is driven up to 80 km/h before
the coastdown test begins, and numerous experimental records of this test are
performed.

• In the constant speed test the drive had the objective of keeping the vehicle
speed constant for several seconds and with several repetitions. The constant
speed levels at which the vehicle was held were 20, 40, 60 and 80 km/h.

• In the partial knob tests, the driver held the acceleration knob at a constant
partial opening of 50% for a few seconds.

In the Figure 3.11 some repetitions are shown concerning the three different driving
conditions. How to use the different tests to identify the model parameters is
explained below.
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Fig. 3.11 Examples of some repetitions of the on-road experimental tests conducted over the
three different driving conditions: (a1) Current, (a2) power and (a3) vehicle speed of the
coastdown test; (b1) Current, (b2) power and (b3) vehicle speed of the constant speed test at
20, 40, 60, and 80 km/h; (c1) Current, (c2) power and (c3) vehicle speed of the partial knob
test.

Each of the distinct subfigures depicts the complete time series obtained through-
out the corresponding on-road test. The appropriate driving traces were appropriately
truncated for the purpose of parameter calibration procedures, enabling the applica-
tion of the modeling procedure. In the context of identifying coastdown parameters
using the coastdown model, it is pertinent to note that only the segments pertaining
to the vehicle’s free deceleration, wherein the speed reduces and the battery’s power
output is zero, are considered. Similarly, with respect to the constant speed tests,
the parameter identification model was applied by segmenting the data to exclu-
sively analyze the vehicle’s traces at the predetermined vehicle speed levels where it
maintained a constant speed.

3.2.3 Parameter identification of the battery cells and vehicle
models

Unknown parameters were found through an identification procedure in order to
fully and uniquely define battery pack and vehicle models. Using multi-experiment
data, parameters were estimated and validated in accordance with the tests defined
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in the table 3.5. As a result, the procedure for identifying the associated parameters
has been established differently based on the subsystem taken into account via
multiple datasets. As displayed, dataset #1 was used to calibrate the battery model’s
parameters, whereas datasets #2.1, #3.1, #4.1, and #5 were used to calibrate the
dynamic vehicle model’s parameters. On the same dataset consisting of datasets #3.2,
#4.2, #6 and #7, both the standalone models and the global model have been tested
and validated. For a better visualization of the subdivision between the datasets used
for calibration and those used for validation, the values are reported in the Table 3.6.

Table 3.6 Datasets used for model identification and validation, with reference to column
"Test" of the Table 3.5.

Model Identification Model Testing

Battery Model 1 3.2 – 4.2 – 6 – 7

Dynamic Vehicle Model 2.1 – 3.1 – 4.1 – 5 3.2 – 4.2 – 6 – 7

Global Model - - - 3.2 – 4.2 – 6 – 7

Since the two models and their parameters were independently optimized, the
global model was built by coupling the standalone models. Consequently, the
identification of the global model has already been completed, and the relative box
of the table contains no reference datasets.

In the present study, the model identification process is the technique according
to which the values of the parameters that describe the behavior of the system are
defined. This approach was based on an optimization procedure carried out through
the Matlab© and Simulink© tool called ParameterEstimator [133, 134], which is
based on a non-linear least squares (NLS) optimization method. This technique is
based on the trust-region-reflective algorithm [135, 136] which is widely employed
in the literature [137].

Regarding the calibration of the battery model’s parameters, every single parame-
ter was a function of the discretized state variable SOC, which ranged from 0 to 1 in
0.1-step increments. The parameters were represented in a 1D look-up table (LUT),
as a function of SOC values. Due to the implemented modeling methodology, each
single cell model would have had six 10x1 LUTs, one for each identifying parameter.
Taking into account that the complete battery pack consisted of 180 cells, the opti-
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mization procedure should have identified a 1080 LUT, which corresponds to a total
of 10800 values in the discretization values. To simplify the optimization procedure
and save computation time, the hypothesis of cell equality has been used, limiting the
task to determining the parameters of just one sample cell. This was accomplished
by using a basic Simulink model with just one cell and taking into account the cell
current Īcell , which can be calculated by dividing the battery experimental current
I by the number of battery pack modules which was equal to nine. The single cell
voltage V̄cell was then similarly computed taking into account the number of cells
in series in a single module. The Īcell and V̄cell are computed through the Equation
3.19. 

Īcell =
I

number of modules

V̄cell =
V

number of series

(3.19)

In this calibration procedure, a graphic user interface was used in the optimization
tool in order to set the NLS method as the objective function to be minimized, the
acquired data were specified as input and output and the parameters were set to
be controlled for the minimization process. Finally evaluating and minimizing the
error function of the mathematical problem between model output and experimental
measurements, the parameters’ values of the second-order RC model of lithium-ion
cell has been determined. The Table 3.7 shows a summary of the variables involved
in the procedure.

Table 3.7 Parameters involved in the battery model identification procedure.

Input Output Control variable State variable

Īcell(A) V̄cell(V ) R0, R1, R2, C1, C2,
OCV

SOC

The terminology used to describe the types of variables, such as state and control,
is a reference to what is known in the literature as dynamic optimization. The
reference has only the purpose of underlining the role that these variables had in the
problem of the present work . Thus, the state variable SOC is an independent variable
that determines the system’s state, while control variables are parameters whose
values must be selected (and hence optimized) to minimize an objective function.
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On the other hand, as regards the definition of the calibration problem of the
vehicle model parameters, with reference to Equation 3.18 the aim was to determine
the values of A, C related to the dissipative forces of the road load, and ηb2r and
mr related to the driveline. To carry out this activity, the identification process has
been divided into two different phases characterized by different physical operating
conditions. The datasets relating to the coastdown tests were therefore used to
determine the coastdown coefficients A and C. In a theoretical coastdown test
application, the vehicle is decelerated without any mechanical coupling between the
transmission and the wheel and thus not providing any power to the motion through
the battery. Hence, in this case, the reference equation was reduced to the Equation
3.20. (

m+��mr

)
v

dv
dt

=�����
ηb2r ·V I − v

(
A+Cv2

)
. (3.20)

Then, the objective function to be minimized in the optimization process was defined
and it is reported in the Equation 3.21.

min{
(
m
)
v

dv
dt

+ v
(
A+Cv2)}; (3.21)

After the coastdown coefficients characterizing the road load were obtained, the
constant speed test datasets were applied to compute the battery-to-road efficiency
ηb2r and the mass associated with the rotating inertia mr. Given the nature of constant
speed testing, vehicle acceleration should be theoretically zero and the equation
obtained was that of Equation 3.22

�
���

����(
m+mr

)
v

dv
dt

= ηb2r ·V I − v
(

A+Cv2
)
. (3.22)

and then, the new objective function to minimize in the identification process of the
two vehicle parameter is shown in Equation 3.23

min{ηb2r ·V I − v
(
A+Cv2)} (3.23)

Nevertheless, in the current investigation, the electric two-wheeler had a single-
speed transmission, and the electric motor could not be disconnected from the wheels,
resulting in the resistive torque created by the spinning components’ inertia persisting.
As a result, the term mr could not be neglected during the coastdown calibration
phase, and the parameters were determined iteratively. Initially the value of mr was
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set equal to 0 and the numerical values of the parameters A and C was determined.
Knowing the coastdown coefficients, through test maneuvers and tests available
under constant speed conditions, the parameters mr and ηb2r have been identified.
After this, we proceeded with the next iteration until the convergence of the process
was reached, i.e. until the values of the parameters were in a narrow neighborhood of
their values at the previous steps. Then, for the optimization problem the considered
objective functions to be iteratively minimized at each single step are show by the
Equation 3.24. min{

(
m+mr

)
vdv

dt + v
(
A+Cv2)}

min{
(
m+mr

)
vdv

dt −ηb2r ·V I + v
(
A+Cv2)} (3.24)

It is worth mentioning that the electric two-wheeler had not energy recovery mecha-
nism, such as the regenerative braking. Thus, all vehicle deceleration where a braking
event was expected were carried out by the mechanical brakes. For the vehicle model
parameters identification, the Table 3.8 shows a summary of the involved variables

Table 3.8 Parameters involved in the vehicle model identification procedure.

Input Output Parameter Identified

Pbatt(W ) Vveh(m/s) A, C, ηb2r

A global model has been developed, which combines the Li-ion battery and
vehicle body models. This model has been fine-tuned and validated using experi-
mental tests conducted under real-world driving conditions. Therefore, during the
testing phase, the model’s predictions were evaluated against the experimental data,
and the discrepancies between the datasets were analyzed using statistical methods
to assess the accuracy of the regression. The performance analysis involved the
implementation of the following metrics.

• The Root-Mean-Square Error (RMSE):

RMSE =

√
∑

n
i=1 xi − x̂i

2

n
(3.25)
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• The determination coefficient, R squared (R2):

R2 = 1− ∑
n
i=1(xi − x̂i)

2

∑
n
i=1(xi − x̄i)2 (3.26)

where xi is the experimental measured data, x̂i is the model estimated value, x̄i

is the mean of experimental measured data in the considered test session and n
is dataset sample size. The primary physical parameters employed for assessing
performance were the power and voltage of the battery, the velocity of the vehicle,
the distance covered, and the total electrical energy dispensed during the entire
test. The battery model and vehicle model outcomes are initially presented and
evaluated independently. Subsequently, an analysis is conducted on the overall
performance of the global model, with a focus on benchmarking, to facilitate a
comparison between the distance traversed by the vehicle in experimental settings
and the distance predicted by the models. The aforementioned parameter serves
as the primary metric in evaluating the model when the objective is to estimate a
range. The evaluation of the global battery-vehicle coupled model is based on two
parameters, namely,

global distance traveled =
n

∑
k=1

vk ·T s (3.27)

total energy delivered =
n

∑
k=1

Vk · Ik ·T s (3.28)

where vk is the vehicle speed, Ts is sampling time or test time and equal to 0.1 s, Vk

is battery voltage, Ik is battery current and k is the time index on data acquisition.

3.2.4 The data handling during a pre-processing phase

In the post-acquisition stage, the acquired data underwent a rigorous data handling
process to facilitate their utilization in the development of a data-driven model in
a subsequent phase. The data obtained from on-road test acquisitions underwent
pre-processing procedures to ensure its consistency, robustness, and quality. The
process entailed scrutinizing the data for any instances of missing values, spikes,
outliers, or other undesirable occurrences that could have arisen due to transient mal-
functions in certain sensors. The CAN data transmission-based acquisition system
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comprised distinct channels that corresponded to various sensors. Consequently,
it was imperative to verify the synchronization of the physical signals to ensure
accurate management and advancement of the battery and vehicle models. The
process of cleaning the data was of utmost importance in guaranteeing the robustness
and reliability of the results derived from the subsequent analysis. Furthermore, in
order to ensure accurate analysis and manipulation of the data, it was necessary to
apply signal filtering techniques to eliminate extraneous sensor noise in frequency
bands that fall outside of the operational range. Additionally, consistent frequency
resampling was required to facilitate the proper functioning and development of the
algorithms.

In the context of coast-down acquisitions, the deceleration phases were segre-
gated from the remaining tests and consolidated to determine the coefficients of
the resistance forces. An identical procedure was executed for acquisitions at a
consistent velocity. Through the implementation of pre-processing procedures, the
dataset was appropriately formatted for utilization in subsequent analytical processes,
which encompassed the creation of a model driven by data.

3.3 Results & Discussions

The vehicle’s global model was constructed through the integration of the battery
model and the dynamic behavior modeling of the vehicle. Consequently, this section
presents the evaluations of the individual models as well as the comprehensive model.
Subsequently, the parameterization and response of the battery, vehicle, and global
models are presented as follows.

3.3.1 Battery model

The efficacy of the battery pack model was evaluated through a comparative analysis
of the simulated Voltage and correlated Simulated Power against the corresponding
real-world measurements. The present study maintained the Experimental Current,
as depicted in Figure 3.12, which corresponds to the current supplied by the battery.
The present study examines the power signal to assess the efficacy of the battery
pack model and to investigate the error propagation in the sequential model chain.
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Fig. 3.12 Battery model scheme with Input/Output representation.

The model under consideration employs an ECM for every individual cell. All
individual Li-ion cells were modeled using identical parameter values that were
determined during the identification procedure. It is widely acknowledged in practical
settings that Li-ion cells contained within a battery pack exhibit slight variations
from one another as a result of manufacturing tolerances and temperature gradients.
Hence, it is imperative to have an appropriate battery management system (BMS)
to regulate the state of the battery due to the varying behaviors exhibited by cells
during operational phases. Nonetheless, it is plausible to consider the hypothesis
of cell similarity [138, 139] in this instance, as the effect on the prediction of the
two-wheeler’s range is relatively minor. As previously stated, the determination of
cell parameters is based on data from experiments and remains significant until the
state of charge (SOC) diminishes to 30% of the overall charge capacity, as shown in
Figure 3.13.

Fig. 3.13 Second-order cell model parameters estimated through the identification process.

The BMS constraint outlined in the Material & Methods section restricts our
ability to fully utilize the battery’s complete operational range. Nevertheless, the
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methodology may be expanded to encompass the value of SOC equivalent to 0%
subsequent to further experimental assessments aimed at attaining total discharge.
The assessment of model performance can be conducted through a comparative anal-
ysis between the voltage signal obtained from the model output and the experimental
data. Subsequent to the calibration phase, the simulated voltage is graphed in relation
to the target voltage across a period of time, as illustrated in Figure 3.14. Figure
A.5 depicts an enlarged representation of the simulated voltage in comparison to the
measured voltage, accompanied by the corresponding point-wise error.

Fig. 3.14 Test #1.1: regression process results for estimation of model voltage. (a) The
simulated voltage and experimental voltage on real driving mission and (c) residual error
of estimation. (b) Regression process results in terms of fitting equation and bisector
comparison.

As per the depicted diagram, the simulated voltages exhibit a relative inaccuracy
that remains below 1% in absolute value for the majority of the data points. However,
during transient discharging cycles, a few peaks of 4% are achieved. This holds
true for the majority of the simulated voltages. Furthermore, the outcomes of the
regression analysis are exhibited in Figure 3.14 in the shape of fitted points. The
equation displayed for the regression line exhibits a satisfactory level of overlap with
the bisector, with a angular coefficient of about 0.995 and a relatively low value of
the intercept. The performance results in terms of metrics seen in previous section
are reported in Table 3.9.
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Table 3.9 Performance metric results for battery model.

Test # RMSE (V) R2

1 0.383 0.993

Table 5 highlights that the optimized battery parameters enable us to confine
the RMSE with empirical data to less than 0.38 V. Furthermore, the predictive
abilities have been validated by the R-squared metric, which indicates a value of
99.3%. To assess the scope and efficacy of the two-wheeler, the battery’s electrical
power output is utilized as an input for the vehicle model. Therefore, a similar
analysis is conducted to assess the residual error that arises from battery modeling
and is subsequently transmitted through the overall model. Figure 3.15 displays the
estimation outcomes computed for the battery power.

Fig. 3.15 Test #1.1: Regression process results for estimation of model power. (a) The
simulated and experimental power on real driving mission and (c) residual error of estimation.
(b) Regression process results in terms of fitting equation and bisector comparison.

It is evident that the error in the simulated power residual is confined to a
narrow range of values, specifically between 0.1kW and −0.1kW . Furthermore, it is
noteworthy that the residual error for the majority of the time intervals is markedly
less than 0.02 kW. The fitting process displayed in the right-hand sub-figure of
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Figure 3.15 underscores the consistency of the estimation results. Table 3.10 presents
a summary of the statistical metric parameters computed, which serve to further
validate the accuracy of the estimation.

Table 3.10 Battery Parameter Identification Power and Energy Metrics.

Test # RMSE
(kW)

R2 Experimental
Energy

Delivered
(Wh)

Simulation
Energy

Delivered
(Wh)

Relative
Error

Energy
(%)

1 0.022 0.999 2409.3 2407.9 0.058

The battery model’s introduced error is deemed to be minimal and satisfactory,
thereby resulting in the absence of significant adverse effects of error propagation.
Additional information pertaining to the global models is presented in the Results
section. The aforementioned findings have been validated through the execution of
analogous analyses on disparate datasets in relation to those utilized for parameter
identification during the calibration stage. The evaluation metrics for the model
testing are presented in Tables 3.11 and 3.12.

Table 3.11 Battery voltage performance on different datasets.

Test # RMSE (V) R2

3.2 0.344 0.984
4.2 0.75 0.983
6.1 0.393 0.960
6.2 0.568 0.989
6.3 0.727 0.984
6.4 0.815 0.987
7 0.181 0.981
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Table 3.12 Battery power performance in different datasets.

Test # RMSE
(kW)

R2 Experimental
Energy

Delivered
(Wh)

Simulation
Energy

Delivered
(Wh)

Error (%)

3.2 0.035 0.999 158.8 157.9 0.527
4.2 0.076 0.999 158.6 161.5 1.852
6.1 0.006 0.999 54.5 54.9 0.573
6.2 0.022 0.999 114.8 115.9 0.980
6.3 0.051 0.999 190.7 193.2 1.300
6.4 0.079 0.999 308.7 312.9 1.382
7 0.007 0.999 86.3 86.5 0.182

The battery model exhibits noteworthy outcomes in relation to battery voltage
and electrical power, as evidenced by Tables 3.11 and 3.12. Regarding the electrical
battery power, the prediction capabilities have been demonstrated to be of high
quality. This is evidenced by R-squared values exceeding 99% for every real-world
driving mission in the conducted tests. The findings emphasize the uniformity in esti-
mating overall energy dispensed across on-road empirical routes, with the percentage
discrepancy persisting below 2%. The model exhibits certain limitations. Initially, it
should be noted that the influence of temperature on battery parameters has not been
considered as a result of the unavailability of empirical data. Consequently, the forth-
coming activities will entail conducting novel experimental assessments concomitant
with the monitoring of the temperature of pertinent powertrain components. It may
be of interest to consider additional environmental factors, such as ambient humidity,
to assess the potential improvement in precision with respect to an expanding model
complexity.

3.3.2 Longitudinal dynamic model of the vehicle

As shown in the Methods section, the electric scooter has been modeled through a
longitudinal dynamic approach, which has been represented through Equation 3.18.
The test protocol was executed in accordance with the simplified vehicle schematic
depicted in Figure 3.16. The input to the model is the battery power obtained from
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experimental tests and computed by experimental voltage and current, while the
output of the model is the predicted speed of the vehicle, Simulated Velocity. The
simulation of vehicle speed is evaluated against empirical on-road data.

Fig. 3.16 Vehicle model scheme with Input/Output representation.

The process of defining the vehicle model occurred through the identification of
parameters across different running scenarios. Ultimately, an iterative methodology
facilitated the attainment of parameter value convergence. As previously stated, the
load-resistive power of the road can be assessed through the analysis of coastdown
test outcomes. Through the utilization of the fitting process, the coefficients of the
polynomial Equation 3.16 can be determined. This equation serves as a model for
the resistive phenomena that are encompassed within Equation 3.15. The computed
values of the coastdown coefficients are hereafter reported in Table 3.13, while the
resistive power contribute and the total amount as functions of vehicle speed are
shown in Figure 3.17.

Table 3.13 Coastdown coefficients values. A, B and C are the coefficients describing the
resistive power contributes.

Parameter Value U.d.m.

A 41.8 N
B 0 N · s

m

C 0.3 N · s2

m2
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Fig. 3.17 Road load power terms acting on vehicle body as a velocity-dependent function.

The road load power is comprised of two distinct components, namely the rolling
and aerodynamic phenomena. Figure 3.17 demonstrates that the rolling term is the
dominant factor at lower vehicle speeds, whereas at higher speeds, the aerodynamic
forces are the predominant factor, which is in accordance with established literature.

Upon completion of the road load assessment for the vehicle, the equivalent
inertia of rotating components mr and the overall battery-to-road efficiency ηb2r

were derived through the resolution of the cost-function minimization problem. Table
3.14 contains the numerical values obtained as a result.

Table 3.14 Vehicle dynamic model coefficients: m is the sum of the vehicle and driver masses,
mr is the value of the equivalent mass of the rotating components and ηb2r is the overall
battery-to-road efficiency, including the electric motors and transmission losses.

Name Value U.d.m.

m 184 kg
mr 16 kg

ηb2r 0.75 -
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Therefore, based on the analysis of Equation 3.17 and with the knowledge of
the vehicle’s mass m and frontal area A f , the aerodynamic drag coefficient Cx and
rolling resistance of the tires f have been precisely determined and presented in
Table 3.15.

Table 3.15 Aerodynamic and rolling resistance coefficient values of two-wheeler road load
model.

Aerodynamic drag coefficient Cx 0.81 -
Rolling resistance coefficient f 11.62 kg

t

The authors’ literature review section exhibits a dearth of comprehensive empiri-
cal findings pertaining to the coefficients of drag and rolling resistance of electric
scooters. A study similar in nature has demonstrated relatively similar values for
the experimentally calibrated coefficients [140]. To assess the performance of the
vehicle model, the same procedure used for the battery was utilized, whereby the
model output was compared to the corresponding experimental data. The numerical
model’s projected velocity during the real-world driving task was evaluated, and
the residual error was analyzed. As aforementioned, the modeling of braking was
unattainable by the two-wheeler prototype, hence it was not included. Consequently,
the determination of the braking torque was obtained through empirical observations,
specifically in relation to velocity and acceleration, with the aim of guaranteeing
conformity with the comprehensive energy equilibrium throughout the entirety of
the driving mission. The Figure 3.18 depicts the input, output, and estimation error
of the model. It is observed that the absolute error remains substantially below 2 m/s.
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Fig. 3.18 Test #4.1. Standalone vehicle model estimation performance: (a) the delivered
battery power, (b) the predicted and measured speed and (c) the residual of the estimation.

Nevertheless, certain inconsistencies between the estimated outcomes and the
empirical evidence have been noted. The estimation of braking phases exhibits
inadequate conformity with the measured data in certain instances of braking events.
Furthermore, the model does not incorporate road slope as a result of the unavailabil-
ity of appropriate acquisition sensors. Although tests were primarily conducted on
roads with a predominantly level surface, it was inevitable that minor variations in
road gradient would occur. Ultimately, a more precise evaluation of the efficacy of
the battery-to-road conversion process must be undertaken to effectively anticipate
the performance of powertrain elements. In summary, notwithstanding the afore-
mentioned reductions in complexity, the model yields favorable outcomes and is
deemed appropriate for the intended task. The experimental results obtained from
the datasets used for parameter calibration and testing tasks confirm the efficacy of
the numerical model’s total distance prediction. The vehicle model performance
have been assessed computing the electric range prediction in terms of total distance
driven estimated along the selected on-road missions. This result is shown in Figure
3.19.
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Fig. 3.19 Test #4.1. Electric range prediction of standalone vehicle model: (a) the total
distance travelled and (b) the instantaneous absolute residual.

The numerical model developed demonstrates a high degree of accuracy in
predicting spatial distance, as evidenced by the experimental data collected. The
instantaneous absolute error appears to remain within acceptable limits, with a
maximum relative error of approximately 0.55% observed for the distance traveled.
This implies that over a cumulative driving distance of approximately 3.5 kilometers,
the actual location of the motorcycle deviates by approximately 20 meters.

The evaluation of the performance of the vehicle model prediction is conducted
on various cycles under real-world driving conditions. Therefore, Tables 3.16 and
3.17 present the results of the prediction performance for the datasets used in the
identification parameters process and the testing phase, respectively.
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Table 3.16 Performance metrics of vehicle model over datasets involved in the identification
process.

Test # RMSE
(m/s)

R2 Total
Distance
Traveled

Experimental
(km)

Total
Distance
Traveled

Model
(km)

Error
Distance

(%)

2.1 0.631 0.990 4.100 4.035 1.578
3.1 0.750 0.986 3.006 3.014 0.272
4.1 0.577 0.994 3.607 3.594 0.346
5.1 0.846 0.933 1.200 1.021 15.009
5.2 0.923 0.984 1.334 1.210 9.272
5.3 0.942 0.976 3.730 3.607 3.294
5.4 1.13 0.977 4.236 4.252 0.381

Table 3.17 Performance metrics of vehicle model over test datasets.

Test # RMSE
(m/s)

R2 Total
Distance
Traveled

Experimental
(km)

Total
Distance
Traveled

Model
(km)

Error
Distance

(%)

3.2 0.914 0.978 3.13 3.12 0.496
4.2 0.503 0.996 3.60 3.61 0.334
6.1 0.507 0.974 1.95 1.86 4.90
6.2 0.638 0.987 2.98 2.85 4.41
6.3 0.908 0.982 3.48 3.42 1.89
6.4 0.788 0.991 4.67 4.62 0.93
7 1.171 0.973 1.59 1.53 3.32

Notwithstanding its simplicity, the vehicle model is capable of accurately approx-
imating the distance covered by the electric two-wheeler during on-road experimental
trials. The numerical model that was developed enabled an accurate estimation of
the electric range.
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Monte Carlo-based method for coastdown coefficients validation

The values of the parameters for coast down and their corresponding aerodynamic and
rolling coefficients, as presented in Table 3.15, have received limited corroboration
in existing literature. It is noteworthy that only a limited number of contemporary
investigations have been conducted and have been alluded to in the preceding section.
Hence, one of the widely recognized computational techniques in the scientific
domain, namely the Monte Carlo method, can be employed to perform a verification
analysis of these parameters. The Monte Carlo method [141] is a computational
methodology that employs random sampling to address problems that are arduous
or unfeasible to solve through analytical means. The application of this concept
is pervasive across multiple disciplines such as physics, engineering, finance, and
computer science.

The fundamental concept underlying the Monte Carlo technique involves the
emulation of a significant quantity of stochastic events or phenomena, and leveraging
the outcomes to approximate the performance of a given system or the likelihood of
a particular result. The approach relies on the principle of the law of large numbers,
which posits that as the quantity of trials or samples escalates, the sample mean
gradually approximates the actual mean of the populace. The Monte Carlo method
is implemented through a series of sequential steps, which typically include:

1. Define the problem and the system to be modeled.

2. Identify the input parameters and their probability distributions.

3. Generate a large number of random samples for each input parameter using a
random number generator.

4. Use the input samples to simulate the behavior of the system and calculate the
output or response variable of interest.

5. Analyze the output samples to estimate the behavior of the system or the
probability of an outcome.

The utilization of this methodology proves to be advantageous in addressing intricate
systems or non-linear associations between input and output variables, and it exhibits
the capability to accommodate numerous inputs.
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The current study employed the Monte Carlo technique to examine the perfor-
mance of the resistive power model as characterized by the coastdown parameters.
Thus, based on the selected algorithm, the inputs A and C were designated as param-
eters. The speed of the vehicle was determined by utilizing the model Equation 3.20
and a pre-existing distribution for the inputs. Subsequently, the distribution of the
calculated speed was validated. The involved input parameters and their considered
normal distribution are reported and show in Table 3.18 and Figure 3.20.

Table 3.18 Input parameters for the Monte Carlo analysis.

Parameters # Mean Value u.m. Statistical
distribution

Samples size

m 184 [kg] - 1
A 23.23 [kg/ton] Normal

Distribution
2500

C 0.3 Ns2/m2 Normal
Distribution

2500

Fig. 3.20 Normal distribution of the input involved in the Monte Carlo analysis.

The study’s output is the estimated speed of the vehicle, obtained through the ap-
plication of the coastdown model with its coefficients featuring a normal distribution.
Figure 3.21 displays the distinct curves that were obtained. The aim is to validate
the normality of the velocity curve distribution subsequent to the implementation
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of a model. Hence, Figure 3.22 depicts the projection of instantaneous windows at
varying speed levels during the free deceleration test, specifically at 5, 10, 15, and
20 seconds.

Fig. 3.21 Vehicle speed curves corresponding to the A and C distribution values.

Fig. 3.22 Instantaneous vehicle speed windows at 5, 10, 15 and 20 seconds.

The preservation of the normality of the distribution in the model outputs is
evidenced through the verification of the employed methodology. The current
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methodology was able to exhibit its robustness and reliability. Through the genera-
tion of a significant quantity of randomized samples for each input parameter and
subsequent simulation of the system’s behavior, a probabilistic approximation of the
output or response variable was attained.

3.3.3 Global model

Ultimately, the comprehensive evaluation and validation of the global model is con-
ducted by integrating the battery and dynamic vehicle model into a unified sequential
model chain. Upon examination of Figure 3.23, the global model was evaluated
through the utilization of the experimental current as a universal input and the sub-
sequent comparison of the simulated velocity with the experimental measurements.
The analysis conducted on the coastdown coefficients remains applicable to the aero-
dynamic and rolling coefficients, as these are defined respectively through constants
starting from A and C. It is noteworthy that the statistical normal distribution is not
affected by a constant.

Fig. 3.23 Global model Input/Output scheme.

As delineated in the preceding sections, the performance capabilities are ex-
amined across various on-road driving missions. Test 6.4 has been selected as the
designated testing procedure for demonstrating prediction outcomes. The results
depicted in Figure 3.24 demonstrate that the prediction of battery performance is
adequate, as evidenced by the battery pack voltage and power residual error in
relation to the experimental measurements. The analysis of the voltage absolute
residual error reveals that only a limited number of peaks, measuring 2 volts, were
attained. The aforementioned observation aligns with the findings presented in
Figure 3.14 of the section pertaining to the battery model. Regarding the power
output of the battery pack, the most significant residual errors are observed during
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the most extreme transient conditions of the cycle, which are associated with the
battery pack’s current peaks. Additionally, the largest residual error is observed in
the voltage prediction. The voltage prediction discrepancy in transient cycle tracks
may be attributed to minor fluctuations in ambient temperature during the day of
experimentation. Consequently, the matter of temperature can be resolved through
the implementation of supplementary testing procedures aimed at scrutinizing the
correlation between battery parameters and temperature. The investigation of the pre-
dictive ability of the global model in terms of spatial distance has been investigated.
The estimation of vehicle speed during a real-world driving mission is presented
in Figure 3.25. The comparison is made between the global model, single vehicle
model, and experimental data.

Fig. 3.24 Test #6.4: (a) battery pack electrical current (A) as global model input, (b) battery
pack voltage and (c) total battery pack power.
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Fig. 3.25 Test #6.4. Two-wheeler performance prediction: (a) the vehicle speed (m/s) of
the global model compared to that of the single vehicle model and experimental data, (b)
absolute residual error of global and vehicle models.

Finally, the global model performance results are shown in Figure 3.26 in terms
of total distance travel predicted.

Fig. 3.26 Test #6.4. (a) Total distance traveled by the two-wheeler expressed as electric
range is estimated by the global model and compared with that of single vehicle model and
experimental data. (b) Absolute residual error is plotted over the test time.
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The computation of the total distance covered by the vehicle during the mission
and the prediction of the spatial distance exhibit a comparatively low level of instan-
taneous error. Table 3.19 presents the comprehensive outcomes obtained from the
on-road, mission-based testing dataset.

Table 3.19 Performance metrics of global model over testing datasets.

Test # RMSE
(m/s)

R2 Total
Distance
Traveled

Experimental
(km)

Total
Distance
Traveled

Model
(km)

Error
Distance

(%)

3.2 0.917 0.978 3.13 3.11 0.763
4.2 0.503 0.996 3.60 3.64 1.106
6.1 0.492 0.975 1.95 1.87 4.539
6.2 0.610 0.987 2.98 2.87 3.855
6.3 0.892 0.982 3.48 3.44 1.209
6.4 0.777 0.991 4.67 4.66 0.263
7 1.169 0.973 1.59 1.53 3.225

Upon comparing Tables 3.17 and 3.19 with regards to the testing datasets, it can
be observed that the total distance estimation error produced by the global model is
comparatively lesser than that of the single vehicle model. The univariate vehicle
model exhibits a tendency to underestimate the overall distance covered by the
vehicle. The observed phenomenon could potentially be attributed to the consistent
magnitude of the global efficiency parameter denoted as ηb2r. This suggests that
the driveline losses remain constant regardless of the vehicle’s operating conditions.
Conversely, the battery model exhibits a slight tendency to overestimate the electrical
power of the battery pack. Consequently, the two errors in estimation exhibit a
tendency to offset one another. Given that the objective of the tool in question is to
predict a range, it is preferable to have an underestimation error as opposed to an
overestimation error.



Chapter 4

Performance Optimization for
Bi-LSTM Neural Network-Based
Battery SOH Estimation in Li-ion
Batteries

4.1 Introduction

1 Electric motors have been employed as a means of propelling road vehicles for a
considerable duration of time. The vehicle known as ’La Jamais Contente’ achieved a
noteworthy milestone in 1899 by surpassing a speed of 100 km/h, thereby becoming
the first electric car in history to do so [142]. Nevertheless, the technology was not
implemented in everyday use due to the challenges associated with the storage of
significant amounts of electrical energy on vehicles. The issue of employing electric
motors for automotive traction has been partially resolved by recent technological
advancements in Li-ion batteries.
In comparison to various other electrical storage systems, such as lead-acid batteries,
it is a well-established fact that Li-ion batteries possess relatively high energy and
power density, exhibit low levels of self-discharge, require minimal maintenance,

1Part of this chapter has been published in the form of a paper as: Falai, A.; Giuliacci, T.A.; Misul,
D.A.; Anselma, P.G. Reducing the Computational Cost for Artificial Intelligence-Based Battery
State-of-Health Estimation in Charging Events. Batteries 2022, 8, 209.
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and demonstrate favorable load characteristics. Furthermore, they are capable of
being partially charged and discharged without incurring damage [143–145]. When
a battery management system effectively oversees Li-ion batteries, they can guar-
antee a satisfactory level of safety and a legitimate lifespan, which are essential
requirements for automotive purposes. Conversely, the the Li-ion battery pack is
unequivocally the most crucial and delicate constituent of the electric vehicle. Moni-
toring and overseeing the status of battery operation is crucial for the preservation of
battery health. The BMS is responsible for ensuring that the battery pack operates
within its safe range and under optimal conditions [146]. It is imperative for cells
to function within a designated range of temperature and voltage, while refraining
from delivering excessively high currents. The variability of these conditions is
contingent upon various factors, including the type of chemistry, and may differ
across individual cells. In certain circumstances, such as when batteries are subjected
to elevated temperatures, they may undergo gas bloating, which can result in leakage
or explosion. Additionally, a thermal runaway event may transpire [147, 148]. The
management of thermal conditions in cells is a crucial concern in battery technol-
ogy. Elevated temperatures accelerate battery degradation, resulting in a decline in
performance over time, as evidenced by previous studies [149–151]. Conversely,
lower temperatures reduce efficiency due to the increased internal resistance of the
cell [152]. Typically, batteries tend to experience a faster rate of degradation when
operating outside of their optimal temperature range, which is typically considered
to be between -20°C and 60°C. As per the existing literature, it has been observed
that batteries undergo degradation at different rates based on the stress cycles, which
are commonly referred to as cycle aging, even when safe conditions are maintained
[153].
The BMS plays a crucial role in preserving the optimal health and performance of
the battery. Additionally, it is imperative to have knowledge of the battery’s current
health status. The degradation of the battery results in a reduction of its capacity,
leading to a decline in the range of the vehicle, and an increase in its internal re-
sistance. In typical automotive applications, batteries are deemed to have reached
their end of life (EOL) when their capacity has declined to 80% of their initial
value or when their internal resistance has increased to 200% of the initial value.
These batteries have the potential to serve various stationary purposes, including grid
energy distribution, thereby providing them with a secondary utility prior to their
recycling [154]. The SOH parameter is employed to characterize the health status of
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the battery. In certain contexts where power capacity outweighs energy quantity, the
internal resistance is commonly considered as SOH metric. As such, SOH is defined
as the ratio between EOL and actual internal resistance, and EOL and initial internal
resistance as expressed in the Equation 4.1,

SOH =
REOL −Ractual

REOL −Rnew
, (4.1)

where REOL is the end of life cell resistance, Ractual is the actual cell resistance
and Rnew is the fresh cell resistance. From the other SOH definition, the SOH is
characterized as the ratio of the current battery capacity to the capacity at the initial
stage of its lifespan, as described in the Equation 4.2,

SOH =
Qcurrent

Qnew
x100%, (4.2)

where Qcurrent is the actual battery capacity and Qnew is the fresh battery capacity.
This metric is particularly relevant in scenarios where the energy availability is of
considerable importance [155].
Thus, the measurement of capacity or internal resistance may be necessary depending
on the specific application. Various methodologies have been suggested in literature
with regards to the assessment of SOH of batteries in electric vehicles [156–159].
The identification of SOH has been addressed in previous studies [160, 161] through
the utilization of a semi-empirical formula, which draws upon the principles of the
Arrenius equation. Considering the lithium-ion loss as main aging mechanism, the
Arrenius equation with a power low relation with the cycles times are reported in
equation 4.3 [159].

ζ = Ae−
Ea
RT nz, (4.3)

where ζ is the relative capacity loss of batteries with unit of %, A is a constant, Ea
represents the activation energy [J mol-1]; R is the gas constant [J/( mol-1 K)]; T
represents temperature [K]; n is the cycle numbers and z is the power law factor.
Battery aging studies encompass not only the examination of capacity and resistance
changes over time but also the analysis of equivalent circuit parameters in both
cycling and calendar part. A method for estimating State of Health (SOH) has been
developed in [162]. This method exploits a simplified equivalent circuit model to
parameterize a single-variable and time-based SOH inference model. Furthermore,
additional model-based techniques consider the rise in internal resistance when
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analyzing the status of battery aging. The precise quantification of this can be
achieved through the utilization of electrochemical impedance spectroscopy (EIS)
technology, as evidenced by previous studies [163–165]. From analytical methods
view point, one commonly used approach for estimating battery ageing level is
known as "coulomb counting." This method involves estimating the state of health
(SOH) of the battery by integrating the current over time [166]. Regular calibration
is necessary for this process, and it is not feasible to perform it in real-time [167]. A
state observations-based model faced the aging estimation considering an input u
state vector and an output voltage y and reported in Equation 4.4x̂ = Ax+Bu

y =Cx
(4.4)

The objective is thus to calibrate a model based on empirical data in order to mini-
mize the error between the estimated variable x̂ and y using a parameter known as
the gain K. Presently, the utilization of this application for online purposes is rare
and it is also a high-cost application. Several empirical data-driven models have
been developed for the purpose of estimating SOH under complex aging conditions.
These models, including NNs, have been identified as research hotspots due to their
potential in accurately estimating SOH when sufficient data is available. The advan-
tages of approximation and learning speed make NNs particularly effective in this
regard [168, 169]. According to existing literature [170], the feed-forward neural
networks (FFNN) [171–173], convolutional neural networks (CNNs) [174, 175],
and recurrent long short-term memory (LSTM) [176, 177] are the most effective
neural networks. Sungwoo Jo et al. (2021) [178] conducted a comparative analysis,
revealing that LSTM outperformed the other two types in terms of performance.
LSTM models may incur significant computational expenses and memory utilization
owing to the memory cell’s size and intricate architecture.
The BMS is responsible for identifying the SOH of the battery, in addition to perform-
ing various other tasks such as safety control, failure prevention, and optimization of
energy consumption. In general, ARM processors with a 32-bit architecture (multi-
core) are commonly utilized in automotive boards and are capable of delivering
sufficient processing capabilities [179]. As technological advancements continue to
progress, it is anticipated that an increasing amount of data and tasks will require
more storage and fulfillment [180]. The utilization of external cloud devices has been
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suggested as a potential resolution for this matter. However, it is contingent upon
the presence of dependable and efficient internet connectivity [181]. The authors
of reference [182] have presented an LSTM model for estimating the remaining
useful life of a system. The model utilizes multichannel full charge profiles and
has demonstrated notable enhancements over the baseline LSTM. Additionally, the
model has significantly reduced the number of parameters required for its implemen-
tation. Nevertheless, the utilization of complete charge cycle information leads to
a substantial requirement of memory and processing capacity. Consequently, the
author in reference [183] proposes the utilization of a RNN-LSTM model for the
prediction of Remaining Useful Life (RUL) through the analysis of partial charge
information within the voltage domain range. The model is designed to establish
boundary constraints. Nonetheless, a comprehensive investigation of the entire SOC
domain has not been conducted, and the potential reduction in memory usage and
computational expenses resulting from the modification of SOC window lengths for
SOH assessment during charging remains uncertain. Hence, the primary focus of
this research pertains to the evaluation of the SOH of a battery through the utilization
of incomplete charging information and the modification of the SOC window length
via a Bi-LSTM approach. The aim is to decrease the computational burden and
memory consumption while preserving a high level of accuracy.

4.2 Material & Methods

The present investigation relies on the necessity to devise an algorithm for estimating
the remaining battery life, which is associated with SOH, to be integrated into a
forthcoming tool that simulates an entire BMS. The present study centers on the
creation of an artificial intelligence (AI) algorithm that is computationally efficient
and minimizes hardware memory usage. This is due to the limited computational
capacity and memory of contemporary battery management systems.

Numerous aging experiments have been conducted in laboratory settings. Con-
sequently, a substantial volume of literature exists that delineates the performance
features of various Li-ion cell chemistries [184]. The data chosen for the purpose of
cyclic aging analysis in the current study and in accordance with the stated objectives
were sourced from Sandia National Laboratories [185]. The study of long-term
degradation in cell operating conditions has prompted an investigation into the poten-
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tial use of lithium 18650 nickel-manganese-cobalt (NMC) cells. The estimation of
SOH in partial recharge conditions has been facilitated by the development of models
that utilize bidirectional LSTM networks. These networks are a type of recurrent
artificial neural network that can process both individual data points and entire data
sequences. In this instance, various time sequences associated with charge-discharge
experiments were inputted into these models. The accurate estimation of the state of
health (SOH) is an essential task of the BMS utilized in the control and management
of battery packs in electric vehicles. It is imperative that the SOH estimation be
efficient, reliable, and resilient. Presently, the quantity of in-vehicle functionalities is
consistently expanding, thereby augmenting the aggregate of necessary hardware
memory. Hence, various models have been devised to estimate SOH in partial
recharge scenarios, encompassing diverse SOC intervals, with the aim of achieving a
lightweight yet effective algorithm. The optimal range of SOC for accurately esti-
mating SOH has been determined. In this section, the proposed method composed
by sequential steps is discussed and shown in Figure 4.1.

Fig. 4.1 Main steps of the applied methodology workflow in the SOH estimation definition.

During the phase of data processing, the acquired cell signals from cycle ag-
ing tests were subjected to analysis, handling, and cleaning. During the second
step of training Bi-LSTM networks, the data was partitioned into separate training
and validation datasets. These datasets were subsequently utilized to facilitate the
learning process of multiple Bi-LSTM architectures. The utilization of the random
search algorithm as a powerful hyperparameter tuning methodology facilitated the
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identification of the optimal network architecture in terms of accuracy. Grid search
and random search are commonly employed hyperparameter optimization techniques
for this objective. From a computational perspective, the latter approach facilitates
the examination of a greater number of neural networks in order to select the optimal
hyperparameters, thereby reducing the time required to identify them [186]. In the
course of the learning process, the dataset is partitioned into training, validation, and
test sets through a random process. This is done to facilitate the training and vali-
dation of the chosen artificial intelligence algorithms. The utilization of Bi-LSTM
neural networks in this study was motivated by their remarkable proficiency and ef-
fectiveness in predicting time-series data and acquiring knowledge about the crucial
pathways involved in the aging events of the cell cycle, as previously reported [187].
The Bi-directional Long Short-Term Memory (Bi-LSTM) neural network represents
an expanded version of the conventional LSTM neural network. It comprises two
LSTM networks that operate in both forward and backward directions to process
data. The LSTM model incorporates a gate mechanism that facilitates the retention
of extended temporal sequences of information within the memory. The utilization
of Bi-LSTM models, which allow for bidirectional data processing during training,
has been shown to yield superior performance and predictive capabilities compared
to conventional LSTM-based models, as evidenced by prior research [188]. Similar
to other AI models, the Bi-LSTM architecture is characterized by a collection of
hyperparameters that necessitate specification to customize the model for the partic-
ular task at hand. In this study, the hyperparameters were tuned using the random
search optimization technique [189]. The ultimate stage involved the assessment of
the optimal Bi-LSTM network’s performance by analyzing a test dataset using two
distinct metrics, namely, RMSE and a customized regression accuracy (CRA) which
will be defined in the next sections. Subsequently, the aforementioned approach was
utilized to determine the optimal duration for partial charging, which enables precise
and computationally efficient evaluation of the state of health (SOH) of the battery.
The present study evaluated the optimal SOC window for accurately estimating the
state of health (SOH) of a battery during a vehicle charging event.

4.2.1 Cycle aging data preprocessing phase

The current study focused on analyzing a cell of the 18,650 variety, featuring NMC
chemistry on the cathode and graphite on the anode. The multi-channel battery
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testing system was utilized to conduct cycle aging tests. Additionally, the protocol
for cycle aging has been documented by Sandia National Laboratories [185]. Tables
4.1 and 4.2 provide a summary of the test equipment and test operating conditions,
respectively.

Table 4.1 Sandia National Laboratories equipment for cycle aging experiments.

Cell Type Cathode Anode Capacity
(Ah)

Test
Equipment

18,650 NMC NMC graphite 3.00 High-
precision Arbin

Table 4.2 Test operating conditions of cycle aging experiments.

Charge
C-Rate

Discharge C
Rate

SOC Range Environmental
Temperature

(°C)

N° Cycles

0.50 2.00 0–100 25 661

In the Table 4.2 the NCycles is the number of charge and discharge cycles that
a cell can process before it reaches its end-of-life condition corresponding to 20%
capacity loss of a fresh cell capacity. The cell has been charged through a constant
current constant voltage (CCCV) protocol, with 0.5 C current during CC phase and
current taper to 0.05 A on CV. The NMC cell has been cycled from 2 to 4.2 V during
all cycling tests for the whole SOC domain. A portion of the experimental test
acquisition and the exploited CCCV protocol are reported in Figure 4.2.

The data acquisition system collected the following signals over time:

• Cycle index, number of charge–discharge cycle;

• Cell current [A];

• Cell voltage [V];

• Charge and discharge capacity [Ah];
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• Charge and discharge energy [Wh];

• Cell temperature [°C];

• Environmental temperature [°C].

The SOH parameter was computed after the cell residual capacity has been
determined at the end of each ith cycle by using Equation 4.5 [190],

SOHi =
Qactual,i

Qrated
, (4.5)

where Qactual,i is the capacity computed at the ith charge–discharge cycle and Qrated

is the cell nominal capacity. Figure 4.3 depicts the trend of State of Health (SOH) as
defined by residual capacity in accordance with the aforementioned equation, and
pertains to the entirety of the aging test, encompassing all cycles.

Fig. 4.2 Example of constant current constant voltage charge profiles measured by Sandia
National Laboratories during the performed experimental cell aging campaign. The cell
operating parameters measured during the tests are (a) cell voltge (V), (b) current (A), (c)
charged and discharged capacity (Ah), and (d) cell and environmental temperature (°C).
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Fig. 4.3 SOH trend along entire aging cycle experimental campaign conducted by Sandia
National Lab. The theoretical and smoothed SOH curves are reported.

The graphical representation illustrates that the SOH exhibits a declining pattern
until it attains the end-of-life magnitude. In the automotive domain, this magnitude
corresponds to approximately 75-80% of the initial cell state. Additionally, it
is evident that a smoothed SOH curve was computed, as there were some rises
in the capacity over the duration of the aging campaign. In the context of an
automotive application, it is possible that the aforementioned statement may not
hold true, as a battery pack is likely to undergo discharge-charge cycles within a
comparatively brief period. Prior to utilization in AI algorithm training, the obtained
data underwent preprocessing procedures to assess their robustness and quality.
Illustrative instances encompass the detection and elimination of atypical traces,
detected null values, and outliers values of output signals. Anomalous behaviors
were observed in the current signal during the experimental tests when applying
the CCCV charge-discharge protocol, as reported in the Figure A.2 and A.3 of A.
The figure illustrates that sudden peaks were observed, resulting in the exclusion of
reference cycles from the algorithm development analysis. Furthermore, the signals
were intentionally truncated to enable the selective analysis of relevant data over
time, thereby expediting the training process of the neural network for the respective
case studies. Subsequently, the collected data underwent a process of resampling,
whereby the frequency was standardized from a variable to a constant rate throughout
the duration of the study. The data under consideration is interpolated using a sample
time of 5 seconds. Ultimately, the acquired dataset encompassed a range of charging
cycles spanning from initial cell conditions to their end-of-life state. Every iteration
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consisted of temporal signals for cell temperature, voltage, current, charged capacity,
and the corresponding SOH value.

4.2.2 BiLSTM networks training for partial charging SOH Pre-
diction

At the very beginning, the dataset was partitioned into training, validation, and test
sets to facilitate the development of the AI algorithm. As previously expounded in
Chapter 2, this partitioning is imperative during the data preprocessing stage for the
purposes of learning and validation.

Figure 4.4 depicts the Bi-LSTM architectures utilized in the developed AI model,
along with the corresponding hyperparameters investigated by the random-search
optimization technique.

Fig. 4.4 AI model graph based on Bi-LSTM network and hyperparameters investigated by
the random-search optimization technique.

The Bi-LSTM model was composed of an input layer which normalizes data with
the z-score method and with the dimension of the input data, a batch normalization



102
Performance Optimization for Bi-LSTM Neural Network-Based Battery SOH

Estimation in Li-ion Batteries

layer which normalizes a batch of data across all observations, and a Bi-LSTM layer
for capturing long-term dependencies between cell parameters, and the predicted
SOH value. The Bi-LSTM layer has been defined by the number of hidden units
(hidden state, correspondent to the number of information remembered between
time steps), the activation function to update the cell and hidden state, and the
weights initialization. Moreover, dropout layer randomly drops out input elements
and was included to mitigate overfitting [191]. The model also featured a fully
connected layer for forecasting the SOH output of single dimension and an output
layer, which was a regression layer responsible for computing the half-mean-squared-
error loss function for the regression task [192]. Regarding the training process,
it is noteworthy that the algorithm employed for optimization, as depicted in the
box of Figure 4.4, is widely recognized as the predominant approach for optimizing
neural networks.The publication [193] provides a comprehensive survey of various
optimization techniques. The duration of the learning phase is determined by a finite
number of epochs, indicating the number of complete iterations through the entire
dataset.

The present investigation centered on the evaluation of SOH predicted on charge
cycles, which represent instances of temporal sequences. The issue at hand pertains
to sequence-to-one regression networks, with the corresponding loss function being
the half-mean-squared-error as depicted in Equation 4.6,

Loss =
1
2

N

∑
i=1

(ŷi − yi)
2

N
, (4.6)

where N is the number of responses, yi is the target output, and ŷi is the network’s
prediction for response i. Finally, an early stopping technique was applied when the
performance of the validation phase started to degrade in order to avoid overfitting
on training dataset [194].
Finally, for the sake of comprehensiveness, Table 4.3 displays the search space
encompassing the optimal combination of hyperparameters. A total of 3000 combi-
nations were examined, from which the optimal one was selected.
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Table 4.3 The investigated domain values of Bi-LSTM hyperparameters.

Hyperparameters Domain values

Train Method ”adam”, ”rmsprop”, ”sgdm”

Batch Size [4,16,32,64,128,256]

Dropout from 0.1 to 0.5 with step 0.1

Activation Function ”tanh”, ”so f tsign”

Input Initialization Weights ”glorot”, ”he”, ”orthogonal”,
”narrow−normal”, ”zeros”, ”ones”

Recurrent Initialization Weight ”glorot”, ”he”, ”orthogonal”,
”narrow−normal”, ”zeros”, ”ones”

Fully Connected Initialization
Weight

”glorot”, ”he”, ”orthogonal”,
”narrow−normal”, ”zeros”, ”ones”

Hidden Units from 5 to 80

Initial Learning Rate from 0.0001 to 0.01 with step 0.0001

A complete explanation of involved hyperparameters’ values is provided in
the [195], where some added papers as reference are listed and the tool has been
exploited for the current work. For batch size, dropout and learning rate typical
values, a deeper insight can be given to [196–198].

4.2.3 Model Performance Evaluation

The assessment of a model is a crucial stage in its development process. Certain tech-
niques, such as the ANN, LSTM and Bi-LSTM models, conduct assessments during
the execution of back-propagation. Nevertheless, the assessment of a model is still
carried out manually using diverse techniques. It is noteworthy that the successful
evaluation of models is a crucial aspect. Particularly in a supervised learning environ-
ment where the true values are accessible. These values facilitate the functioning of
evaluation methods. Supervised learning models can be broadly categorized into two
types: regression problems and classification problems. Furthermore, the techniques
employed for assessing these models can be classified into the aforementioned two
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categories exclusively. The process of evaluating a model is a crucial component
in the development of said model. Identifying the optimal model that accurately
represents the data is a crucial step in data analysis. The analysis also centers on the
future performance of the selected model. Assessing the efficacy of a model using
training data is deemed inappropriate in the field of data science. The generation of
overoptimistic and overfit models can occur with ease.

Hence, in the present work the selection of each model was based on the con-
sideration of various performance metrics pertaining to the prediction outcomes of
SOH in a regression environment. The performance of all Bi-LSTM architectures
that were trained was analyzed based on test data and the following metrics:

• the RMSE considering the test dataset,

RMSE =

√
∑

n
i=1 xi − x̂i

2

n
(4.7)

• the coefficient of determination R2,

R2 = 1− ∑
n
i=1(xi − x̂i)

2

∑
n
i=1(xi − x̄i)2 (4.8)

• the customized regression accuracy (CRA) coefficient, which compared the
predicted SOH, ˆSOH, with the corresponding measured value, SOH through
an identified threshold thr. The CRA details are provided in the next section.

The Results and Discussion section extensively examines and analyzes the per-
formance of each neural networks model and the relative optimal selection of hyper-
parameter values.

4.2.4 Different SOC windows identification during partial charg-
ing events

The duration necessary to completely or partially recharge the battery unit of an
electric vehicle is a pivotal concern for the majority of drivers. The duration of the
battery pack charging process may vary depending on the charging power provided
by the grid, potentially lasting for several hours. Consequently, the present endeavor
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is centered on ascertaining the optimal length of partial charging that strikes a balance
between precision and computational expenditure for the purpose of on-board state
of health estimation. Limitations in memory usage and data storage capacity are a
commonly acknowledged challenge in contemporary on-board control units utilized
in passenger vehicles. Thus, a potential solution to this issue could be to decrease
the amount of data recorded on the BMS. The memory and computational cost
for on-board data processing can be reduced by minimizing the length of partial
charging data logged over time. Moreover, the sampling rate of the dataset is a
significant factor in reducing memory usage. The sample rate for this activity has
been established at 0.2 Hz owing to the signal of interest’s limited dynamic range.

The methodology expounded in the preceding section was devised to compute the
state of health (SOH) of the cell by exclusively utilizing a subset of the information
pertaining to the complete battery charging procedure. Prior to executing the train-
test split procedure on the data, the preprocessing stage involved the consideration of
different durations of partial charging segments over time in the initial test scenario.
To account for fixed segments within the 0-100% state of charge (SOC) range, the
duration of time under investigation was established as a percentage. It is important to
acknowledge that as a cell ages, the duration of data logging for a specific percentage
of the state of charge (SOC) window decreases due to capacity degradation, as
illustrated in the accompanying figure 4.5.

Fig. 4.5 The acquired (a) current (A) and (b) voltage (V) are plotted as time series for each
independent charging cycle with SOH reference values. The lower the SOH value, the faster
the maximum voltage value is reached. This translates into a smaller amount of energy
injected into the cell, as the charging current is constant.
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It is evident that a decrease in the state of health (SOH) of a single cell results
in shorter recharge curves. This is attributed to the reduced capacity of the cell to
undergo recharging.

In addition to complete recharge data, multiple time series of partial recharge
data were acquired as proportions of the entire SOC domain. The SOC intervals that
were taken into account had the dimensions of:

• 80%

• 60%

• 40%

• 20%.

Partial charge segments were gathered for each individual cycle over a period of
time, with a starting point chosen at random. To ensure that the segments aligned
with the entire length of the data, a specific area of points was randomly selected
as the cut point. If we denote by nk the length of the k-th cycle in terms of sample
data over the entire state of charge (SOC) domain, and by L the selected length as
the partial charging size related to the specific SOC window, then the cut space S
from which the segment starting point was randomly selected can be defined by the
Equation 4.9.

0 ≤ S ≤ nk −L. (4.9)

Figure 4.6 showcases instances of partial charging segments that have been
retained, corresponding to SOC ranges of 80%, 60%, 40%, and 20% in relation to
the complete SOC window.
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Fig. 4.6 Operating current and voltage of few partial charging segments. (a,b) are operating
current and voltage of the partial charging length equal to 80%. (c,d) are operating current
and voltage of the partial charging length equal to 60%. (e,f) are operating current and
voltage of the partial charging length equal to 40%. (g,h) are operating current and voltage
of the partial charging length equal to 20%. In the graphs, the black lines is the full size of
data (equal to 100% of length).

To facilitate the development of knowledge pertaining to Bi-LSTM neural net-
works, the dataset corresponding to each partial charge segment was partitioned
into training, validation, and test data in a randomized manner, as documented in
reference [199]. The study utilized an 80-20% partitioning scheme, whereby the
training and validation dataset were allocated 80% of the data, while the remaining
20% was assigned to the test dataset. The features encompassed the operational
parameters of the cell, including voltage (V), current (A), charged capacity over time
(Ah), and temperature (°C). The objective of the study was to predict the SOH values
using the developed model.
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4.2.5 Optimal partial charging SOC length and optimal SOC
Window identification for SOH estimation

This section trained Bi-LSTM networks and determined the best network architec-
tures for each charge length under consideration. The investigation’s goal was to
identify the ideal SOC range for calculating a cell’s remaining life while it was
being charged. In order to analyze the ideal SOC window for the SOH estimation,
the ideal partial charging length Lopt has to be determined. For the on-board SOH
estimation by control units of Li-ion battery packs, a trade-off between prediction
accuracy (RMSE, CRA), computational cost, and memory consumption was actually
examined.

The top 1, 5, and 10 Bi-LSTM networks have generated a sensitivity analysis
that takes into account the RMSE and CRA for each charge length. While keeping
in mind the time needed to execute the numerical models for the cell SOH estimate,
the computational expenses for each charging length taken into consideration were
examined. Additionally, the memory storage capacity was examined in light of the
data logged and the memory consumed by the models. Finally, the ideal input length
based on trade-offs was identified and used for the best SOC window analysis. In
the Results and Discussion section, sensitivity and trade-off analyses will be fully
explained.

After determining the ideal partial length Lopt , data was cut from the full-size data
of cycles at various starting points to create a new dataset. To assure the contiguous
size of the data, the cut points were specified at each 10% step in the SOC window
until reaching the last point, while adhering to the 0% and 100% SOC limits. Hence,
the SOC windows SOCwin among the entire domain are shown in Equation 4.10) and
expressed as a percentage of size data of a single charging cycle:

SOCLopt = [0;Lopt ], [10;Lopt +10], ..., [100−Lopt ;100]. (4.10)

For instance, if the optimal length Lopt was observed to be 40%, then the SOCLopt

is reported in Equation 4.11:

SOC40 = [0;40], [10;50], [20;60], [30;70], [40;80], [50;90], [60;100]. (4.11)
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Considering the example of dataset shown in Figure 4.6 for Lopt equal to 40%, the
related charging data are illustrated in Figure 4.7.

Fig. 4.7 Fixed SOC window equal to 40% moving over the entire domain, for the generation
of datasets. (a.1,a.2) are, respectively, current and voltage of SOC window [0,40]. (b.1,b.2)
are, respectively, current and voltage of SOC window [10,50]. (c.1,c.2) are, respectively,
current and voltage of SOC window [20,60]. (d.1,d.2) are, respectively, current and voltage
of SOC window [30,70]. (e.1,e.2) are, respectively, current and voltage of SOC window
[40,80]. (f.1,f.2) are, respectively, current and voltage of the SOC window [50,90]. (g.1,g.2)
are, respectively, current and voltage of SOC window [60,100]. In the graph, curves for the
entire cycles are plotted in black.

Once Lopt was identified in this study, the same data split between training,
validation, and test was maintained. As indicated in the Results and Discussion
section, this made it possible to carefully analyze the conclusions of the choice of the
threshold value thr used in the definition of the CRA. The top 30 Bi-LSTM-trained
networks from the previous section were employed for a new learning process in
terms of neural network learning. The target variable, the feature definitions, and
the regression task, however, were all the same. The best SOC range for estimating
capacity degradation during charging events was then established.
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4.3 Results & Discussions

Prior to delving deeper into the numerical results, it is necessary to present a com-
prehensive overview of the performance metrics that were utilized to analyze the
outcomes. The evaluation of the trained models was conducted by considering
their ability to accurately estimate values on the test dataset. The evaluation of the
model outputs was conducted through a comparison with actual targets, utilizing the
absolute error metric as defined in Equation 4.12.

Ei = xi − x̂i (4.12)

The primary parameters taken into account for assessing the caliber of the model
forecasts were the RMSE as stated in Equation 4.7 and the coefficient of determi-
nation R2, shown in Equation 4.8. Additionally, the efficacy of the forecasts was
assessed using a precision measure specifically developed for evaluating outcomes in
the domain of regression and named in the present work as Customized Regression
Accuracy (CRA). The final parameter was designed to assess accuracy by treating the
problem as a classification task, wherein the algorithm’s output is deemed correct if
the absolute error value is less than a predetermined threshold. The aforementioned
expression is presented as Equation 4.13

CRA =
∑

n
i=1 Ti

n
× 100 with :

Ti = 1 i f |Ei| < threshold

Ti = 0 i f |Ei| > threshold
(4.13)

xi was the target value, x̂i was the model output, x̄i was the mean of the dataset
label considering that each experimental test in the dataset had a number of samples
equal to n, and Ei is the residual between target and predicted values. The equation
demonstrates that the predicted SOH values were accurately classified by establishing
a threshold value, thr. Specifically, if the prediction error was below the threshold
value, the SOH values were classified as correct (Ti = 1); otherwise, they were
classified as incorrect (Ti = 0). All the results shown in this section are derived from
the validation of the model on the testing data.

A sensitivity analysis was performed on the parameter "thr" to assess the precision
of the prediction model, as illustrated in Figure 4.8.
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Fig. 4.8 Sensitivity analysis of the neural network’s accuracy depending on the threshold
value and for each SOC window data length.

In order to perform sensitivity analysis, the optimal neural network was identified
for each charging data length through the minimization of the RMSE metric. Upon
examining Figure 4.8, it is evident that the charging length equivalent to 40% exhibits
the most rapid growth and is the sole length that attains 100% accuracy among
the partial charging data lengths, within the threshold variability range of 0.1% -
2%. The threshold in this context denotes the degree of tolerance pertaining to the
estimated state of health of the cell in comparison to the corresponding measurements.
Regarding the sensitivity analysis, a threshold of approximately 1% was selected.
The consistency of the 1% tolerance value with the literature [200] is evidenced
by its ability to restrict the error in cell SOH estimation to a maximum of 2.2%.
At the chosen threshold level and with a partial length of 40%, the CRA achieves
a nearly 80% success rate. The findings depicted in Figure 4.8 were obtained
through analysis #1 of 4.3.1, wherein the Bi-LSTM training dataset was generated
by randomly selecting multiple segments across the SOC spectrum. The aim was
to explore the minimum charging duration that ensures satisfactory precision in
estimating the cell SOH. The comparative study reveals that analysis #1 of 4.3.1
exhibits a significantly lower level of accuracy in contrast to analysis #3 of 4.3.3. The
latter approach involves training each network with data from a specific SOC window,
as a means of determining the optimal SOC charging window for SOH estimation.
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Therefore, in the subsequent analysis, the predictive outcomes exhibit a significant
improvement, and the threshold value can be substantially reduced. The accuracy
values presented in this section are reported solely for the purpose of analyzing the
sensitivity of the thr value and justifying the choices made. Subsequent sections
contain additional information and evaluations regarding the obtained predictive
performances, along with corresponding analyses.

4.3.1 Analysis #1 : SOC windows length identification for partial
charging events

Following the explication of the metrics implicated in the evaluation of the accuracy
of SOH estimation, this section centers on examining the impact of individual partial
charging lengths on the prediction of cell SOH. Figure 4.9 displays the prediction
outcomes of the trained model as measured by CRA and RMSE. To determine the
most effective combination of hyperparameters for the various Bi-LSTM models,
the random-search algorithm was utilized. This involved exploring a broad range of
parameters, resulting in the examination of 3000 models with varying hyperparameter
combinations.

Fig. 4.9 (a) CRA and (b) RMSE results of the best one, five and 10 trained neural networks
according to the RMSE on testing dataset. For partial charging lengths, the minimum RMSE
is equal to 0.0068 corresponding to 40% data length.

The study presents the Bi-LSTM networks that were trained at the top one, five,
and 10 positions for each analyzed percentage of charging length, based on their
performance standard deviations. The general tendency CRA exhibits a positive



4.3 Results & Discussions 113

correlation with the extent of the partial charge taken into account. By extending the
charging duration from 20% to 40%, there is an observed increase of approximately
7% in the test CRA of the top five networks. In terms of RMSE, it can be observed
that while the boundary cases of 20% and 100% represent the worst and best options,
respectively, the trend of the top five networks undergoes a change. As an AI model
that relies on data, a substantial quantity of observations is necessary to identify
and discern particular patterns, particularly when utilizing random processes for
the purpose of generalization. The analysis of Figure 4.9 reveals that a network
configuration utilizing 40% of the SOC window as input during the charge phase can
achieve an accuracy level of approximately 77%. The term "accuracy" is defined in
relation to the CRA, where a threshold parameter value of 1% is utilized. Considering
the customized characteristic of this metric and the stochasticity linked to the choice
of hyperparameters and training data for Analysis #1, a CRA score of 77% is sub-
optimal (superior values are attained for Analysis #3). Nevertheless, the utilization
of a 40% data length yields highly favorable RMSE and R2 scores in comparison
to existing literature. In addition, it is noteworthy that the 40% data length scenario
exhibits the lowest RMSE among all cases, except for the 100% length scenario
which pertains to the entire SOC domain. It can be observed that the random process
approach did not yield an optimal Bi-LSTM configuration for each charging length
case. However, it is plausible that such an optimal configuration could be achieved
through multiple additional iterations. The analysis yielded a noteworthy finding
indicating that the SOH of a cell can be accurately detected by monitoring only 40%
of the entire 0-100% SOC charging process.

Figure 4.10 displays the performance outcomes of the regression analysis con-
ducted on the estimation of state of health for each case study, which corresponds
to the percentage length of the SOC window. The results are associated with the
optimal Bi-LSTM network found by the random search approach.
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Fig. 4.10 Best neural network regression performance. (a) refers to the full charging length
equal to 100%, (b) refers to the partial charging length equal to 80%, (c) refers to the partial
charging length equal to 60%, (d) refers to the partial charging length equal to 40%, (e)
refers to the partial charging length equal to 20%.

The correlation points between predicted and target values are represented by
the black points in the figure. The bisector, denoted by a green dashed line, and the
fitting regression line, represented by a red dashed line, are both present in the given
context. Table 4.4 presents the findings pertaining to the RMSE and R2, as well as
the regression line parameters, for the optimal neural networks, in conjunction with
the two preceding figures. The predicted SOH data points throughout the complete
cycle aging examination are representative of the test set utilized for validating
performance.
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Table 4.4 Analysis #1: Best neural network regression statistics.

Data
Length [%

of SOC]

100 80 60 40 20

m 2.67 5.82 9.92 8.81 3.68

q 0.97 0.93 0.88 0.89 0.96

Test
RMSE ×

1000

5.65 8.04 7.33 6.80 8.93

Test R2 0.99 0.97 0.96 0.96 0.96

The R2 metric results are similar across all case studies. However, the SOC
percentages pertaining to partial recharges indicate that the 40% scenario yields
the lowest RMSE value. This suggests that it is feasible to achieve exceptional
performance even with limited data availability. Table 4.5 presents the optimal neural
networks identified by the optimization technique in the context of the learning
process of Bi-LSTM models. The table presents a comprehensive summary of the
Bi-LSTM architecture configurations achieved in different scenarios of partial and
full recharge. This enables the replication of the achieved performances with clarity.
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Table 4.5 Analysis #1: Best trained neural network and relative architecture hyperparameters.

Data
Length [%

of SOC]

100 80 60 40 20

Hidden
Layers

1 1 1 1 1

Hidden
Neurons

59 30 29 47 52

State
Activation
Function

tanh tanh tanh tanh softsign

DropOut 0.2 0.3 0.2 0.1 0.1

Batch Size 128 32 64 32 64

Learning
Rate

0.0090 0.0089 0.0060 0.0069 0.0044

Optimization
Algorithm

sgdm sgdm adam sgdm adam

Training
Epochs

190 84 108 264 186

As a result of optimization approaches that aim to minimize a loss function,
the process of determining an optimal (or optimal-like) set of hyperparameters that
defines the network architecture is derived from these techniques. As a consequence,
we have obtained values for each architecture of the Bi-LSTM that are sometimes
even significantly different because of the broad defining space domain for each
hyperparameter. In practical terms, as far as the training epochs are concerned, the
optimization method has stopped after just 84 or even more than 250 epochs. This is
because the process was terminated during the learning phase when the loss function
did not continue to show significant improvements, allowing the computing time to
be significantly decreased. Figure A.4 in the Appendix A summarizes the learning
phases of each example studied in terms of loss function trend.
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4.3.2 Analysis #2: Computational cost and memory occupancy
for the best SOC window length identification

The on-board implementation of a SOH estimator for lithium-ion cells in automotive
applications poses significant challenges with respect to computational power, cost,
and memory occupancy. These challenges are attributed to various factors. The
automotive industry necessitates swift and effective real-time processing capabilities
in its control units to manage time-sensitive duties, including the supervision and
regulation of diverse vehicular systems. The accurate and timely estimation of battery
health is a crucial aspect of the SOH estimator, which necessitates the use of intricate
calculations and analysis of battery data. Hence, it is imperative to possess adequate
computational capacity to execute these computations within the stipulated time
limitations. Automotive control units are subject to resource constraints, which result
in limited computational capabilities when compared to those of desktop computers
or servers. The constraint in question arises from considerations pertaining to
expenses, dimensions, energy usage, and thermal dissipation. The aforementioned
limitations necessitate the optimization of computational algorithms and models
employed in the SOH estimator to reduce computational load while upholding
satisfactory precision. Additionally, the SOH estimator mandates data storage for
past battery measurements and memory allocation for trained models or algorithms.
The memory capacity of automotive control units is frequently constrained, and
the acquisition of supplementary memory may prove to be costly or subject to
limitations. Hence, it is imperative to devise effective methodologies for storing data
and creating concise models that can be contained within the confines of restricted
memory capacity.

This study aimed to evaluate the effectiveness of profiling analysis as a perfor-
mance metric in conjunction with CRA and RMSE for determining the optimal SOC
window length for monitoring capacity fade. Therefore, a profiling methodology was
devised to measure the advantages of the suggested technique in relation to computa-
tional expenses and memory consumption. Figure 4.11 illustrates the computational
performance necessary for the processing phase of the electronic control unit. The
computation of the elapsed time depicted in Figure 4.11 involved the consideration
of the mean duration for 10 iterations across the top 30 neural networks for every
input length of the charging dataset. The observed trend in the duration appears to
follow a nearly linear pattern. The processing time was computed using a laptop



118
Performance Optimization for Bi-LSTM Neural Network-Based Battery SOH

Estimation in Li-ion Batteries

equipped with an Intel(R) Core (TM) i7-10510U CPU @ 1.80 GHz and 16 GB of
RAM. A linear relationship between input charging length and memory occupancy
of stored data is evident from the plotted figure. As the duration of the time series
analyzed during the processing phase increases, there is a corresponding increase
in the amount of memory space required. The memory allocation for the Bi-LSTM
network size was determined by calculating the necessary storage capacity for the
top 10 neural network architectures for each data length.

Fig. 4.11 The plotted values are referred to the results shown in Analysis #1. (a) Computa-
tional cost of Bi-LSTM prediction on different dataset length. (b) Memory occupancy by
logging different SOC window length data. (c) Memory occupancy by Bi-LSTM network
architectures.

The primary contributor to the decrease in memory usage is attributed to the
reduction in dataset size, which exhibits a clear linear relationship. Conversely, the
dimensions of the Bi-LSTM model exhibit fluctuations within the identical spectrum
(ranging from 20 kB to 230 kB) across all input data lengths. The memory utilization
of Bi-LSTM networks in Matlab is subject to variability based on multiple factors
such as network dimensions, parameter count, and implementation particulars. In a
broad sense, it is expected that the memory utilization would increase proportionally
with the magnitude of the networks. The predominant factor that influences the
memory consumption of a neural network is its parameter count, encompassing the
network’s weights and biases. The memory usage of a network is contingent upon
the specific parameters associated with that network, thereby rendering it variable
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depending on the size of the network in question. If the architectures and dimensions
of the networks exhibit similarity, the memory utilization may not demonstrate
substantial variation among them. By conducting a cursory examination of the
architectures of the top-performing networks presented in Table 4.4, it is evident
that each network comprises a single hidden layer and a similar number of neurons.
Consequently, the selection of an appropriate SOC window length is independent of
the model dimension in this scenario.

4.3.3 Analysis #3 : Best SOC window identification for optimal
SOH estimation

Based on the findings of Analysis #1 and Analysis #2, it can be inferred that the SOC
window length Lopt that offers the optimal balance between computational efficiency
and accurate estimation of cell SOH is the configuration that utilizes 40% of the
input SOC data length. Thus, the current section is centered on the aforementioned
charging length parameter. This section of the study explores the aspect of the
charging process that provides more comprehensive insights into the SOH of the
battery, thereby enabling a more accurate prediction of the battery’s residual lifespan.
Figure 4.12 displays the analysis outcomes for Lopt = 40%. As shown in figure,
higher performance in terms of CRA and RMSE are obtained due to an accurate
reporting of the partial charging start points. The analyses presented indicate that the
final charging state of charge (SOC) interval, spanning from 60% to 100%, yields
the maximum CRA and the minimum RMSE in estimating the state of health of the
cell. Therefore, the aforementioned range is deemed as the optimal SOC window for
estimating the state of health of the cell. With reference to the data representation
depicted in Figure 4.7, it can be inferred that the charging process’s constant voltage
(CV) phase aligns with the optimal state of charge (SOC) charge range between 60%
and 100%. The CCCV tests are commonly utilized in the estimation of cell state
of health and evaluation of battery performance during the process of aging [201].
Empirical evidence suggests that the partial CV charging phase is the optimal method
for estimating SOH due to its ability to provide a greater amount of information and
robustness in relation to capacity degradation [202]. In contrast to examining a single
CV trace, the current study undertook a comparison and analysis of various partial
charging lengths across the complete charging process spectrum. Regarding the
optimal Bi-LSTM neural network, it is noteworthy to emphasize that the remaining
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sectors of the domain exhibit noteworthy outcomes, as evidenced by a CRA precision
that consistently approximates 90%. Additionally, it is notable that the RMSE of the
0-40% trace exhibits a modest rise of 0.0054 in comparison to the optimal value of
0.0012 observed in the 60-100% trace.

Fig. 4.12 Sensitivity analysis of the best 15 and 25 neural networks according to the RMSE
on the testing dataset for Lopt = 40%. (a) CRA trend depending on the input SOC window
selected. (b) Test RMSE ×1000 depending on the input SOC window selected.

The regression outcomes for the optimal Bi-LSTM network for each SOC charge
range were depicted in Figure 4.13. It is evident that the range of 60–100% exhibits
the least deviation in the regression line by bisector, and the predicted points are
closely clustered on the bisector.
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Fig. 4.13 Best neural network regression performance. (a) refers to the SOC window [0,40],
(b) refers to the SOC window [10,50], (c) refers to the SOC window [20,60], (d) refers to the
SOC window [30,70], (e) refers to the SOC window [40,80], (f) refers to the SOC window
[50,90], (g) refers to the SOC window [60,100].

The diagram illustrates the correlation points between predicted and target values,
with the black points serving as the visual representation of this relationship. The
bisector, denoted by a green dashed line, and the fitting regression line, indicated by
a red dashed line, are present in the given context. In a nutshell Tables 4.6 and 4.7
displays the effectiveness of the proposed models’ validation through the achieved
fitting regression parameters. The estimated SOH points during the course of the
cycle aging test correspond to the tests used to validate performance.
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Table 4.6 Analysis #3: Best neural networks regression parameters statistic of first four fixed
SOC length windows over the entire SOC domain.

Charge
Segment
SOC [%]

0–40 10–50 20–60 30–70

m 0.96 0.90 0.96 1.02

q 3.29 7.99 3.82 −1.59

Test RMSE
×1000

5.45 7.52 5.23 4.09

Test R2 0.98 0.95 0.98 0.99

Table 4.7 Analysis #3: Best neural networks regression parameters statistic of last three fixed
SOC length windows over the entire SOC domain.

Charge Segment
SOC [%]

40–80 50–90 60–100

m 0.98 0.98 0.99

q 1.34 1.35 0.30

Test RMSE
×1000

4.81 3.12 1.27

Test R2 0.98 0.99 0.99

Similar to the preceding section, the Table 4.8 presents the specifics of the optimal
BiLSTM structures for each individual segment of the SOC field. It is noteworthy to
state that the lengths under consideration are equivalent to 40% of the SOC and span
the entire domain with increments of 10 from the starting point.
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Table 4.8 Analysis #3: Best neural network architectures for the 40% SOC length across the
domain span.

Charge Seg-
ment SOC
[%]

0–40 10–50 20–60 30–70 40–80 50–90 60–
100

Hidden Lay-
ers

1 1 1 1 1 1 1

Hidden Neu-
rons

15 15 65 54 42 51 51

State Activa-
tion Function

tanh tanh softsign softsign tanh softsign softsign

DropOut 0.3 0.3 0.3 0.2 0.5 0.5 0.5

Batch Size 16 16 32 64 64 32 32

Learning
Rate

0.0098 0.0098 0.0055 0.0099 0.0086 0.0083 0.0083

Optimization
Algorithm

sgdm sgdm rmsprop sgdm sgdm sgdm sgdm

Training
Epochs

92 30 43 155 103 91 62

4.3.4 Optimal SOH estimation: performance analysis on the best
charge segment of SOC

This concluding section presents a detailed analysis of the training and validation
performance of the optimal Bi-LSTM network, with a focus on the most effective
SOC window, ranging from 60% to 100%. As already explained, the performance in
terms of CRA and RMSE of this trained network with the homogeneous dataset are
much more analytically compared with Figures 4.9 and 4.10 from Analysis #1. The
statistical metrics and Bi-LSTM architecture details are presented in Tables 4.6, 4.7
and 4.8. Figure 4.14 presents the training history across epochs, depicting a com-
parison of the loss function between the training dataset and validation dataset. The
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observed trend in the learning process appears to align with favorable fit outcomes,
thereby precluding the possibilities of overfitting or underfitting during the training
phase. Figure 4.15 depicts the predicted points of the SOH for the test set across all
aging cycles. The portrayed outcomes in the figure demonstrate a favorable level
of effectiveness in the estimation of SOH, with a maximum CRA of 100% and a
minimal residual error for each cycle projection, indicating a prediction uncertainty
of no more than 1%. Due to the robust predictive capabilities, it is possible to attain
a comparable level of precision, with an accuracy rating of 100%, in a region of
uncertainty (threshold) that has been reduced to 0.4% through an examination of the
residual depicted in the figure. The definition of the percentage by which a model
estimation may fall within a given uncertainty range of the target is provided by
the CRA for the purpose of enhancing clarity. The threshold parameter value is
indicative of the amplitude of the range.

Fig. 4.14 Loss function trend of the best SOC window-related Bi-LSTM architecture during
training process.
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Fig. 4.15 Performance of Bi-LSTM network-based SOH estimation on a testing dataset. #
Aging Cycles is the number of cycles that one cell has cycled.

In the Appendix A, Figure A.6 displays the learning performances in relation to
the loss function. Additionally, Figure A.7 exhibits the prediction performance of
SOH on aging cycles across all segments of the SOC domain, excluding the optimal
segment.



Chapter 5

Conclusions & future works

In this final Chapter, the main conclusions following from the previous chapters are
summarized and the possible indications for future works are given. The significance
of data-driven models in the automotive industry is noteworthy from a scientific
and academic research perspective due to various reasons. The utilization of data-
driven models facilitates the enhancement of vehicle performance by optimizing
various parameters, including fuel efficiency, reduction of polluting emissions, and
road safety. Through the analysis of extensive data gathered by vehicle sensors,
intricate patterns, correlations, and relationships can be discerned, which can be
leveraged to enhance vehicle design and efficacy. From the forecasting and diagnostic
capabilities point of view, utilizing data-driven models facilitates the ability to
anticipate forthcoming vehicle performance and states. As an illustration, these can
be employed to anticipate the decline of crucial components, such as the battery. The
utilization of this data can be employed for the purpose of preemptive maintenance,
mitigating the possibility of unforeseen malfunctions and enhancing overall safety
measures.
In the realm of virtual sensing, data-driven models are extensively employed for the
purpose of estimating or monitoring physical quantities. In practical applications,
the utilized models have the ability to acquire knowledge from the interrelationships
among the data obtained from the pre-existing sensors and the variables that require
estimation or measurement. Consequently, advantages can be derived in relation to
cost reduction by substituting costly physical sensors. Additionally, non-invasive
sensors can be utilized in situations where it may be arduous or unfeasible to install
physical sensors directly on specific vehicle components or under certain conditions.
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The implementation of virtual sensing techniques can facilitate the acquisition of
precise measurements or estimations of physical parameters, thereby enhancing the
management and optimization of vehicular performance.

In summary, the dissertation contributes by proposing:

• The development of a virtual sensor that can be utilized for real-time prediction
and monitoring of NOx emissions in diesel engine applications, particularly in
the context of dynamic road driving conditions, and implementable on-board
on ECU;

• A virtual environment for the simulation of an electric vehicle with the purpose
of performance estimation of an electrified two-wheeler, integrating a battery
model and a dynamic vehicle model into a global performance analysis;

• An optimal SOH estimation tool during charging partial phases that can be
integrated on-board on BMS. The optimal SOC window has been identified as
the most effective means of predicting battery cell lifetime.

This thesis work presents methodologies aimed at aiding OEMs in addressing the
challenges posed by stringent regulations on polluting emissions and the complexi-
ties of electrification. Specifically, the proposed approach involves the development
of advanced performance estimation tools that model the behaviour of vehicle sub-
systems in steady-state and dynamic operating conditions with the aim of achieving
computational cost savings, performance improvements, and enhanced monitoring
capabilities.

5.1 Conclusions

The present sub-section entails the derivation of conclusions for each topic expounded
in this dissertation, in accordance with the sequence of the chapters.
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5.1.1 Real-time pollutant emissions estimation in heavy-duty CI
engines using data-driven approach

This chapter presents the implementation of a virtual sensor for the purpose of
estimating and monitoring NOx emissions in diesel vehicular applications. The
utilization of AI algorithms, specifically the XGBoost machine learning model, has
demonstrated exceptional suitability and reliability in the execution of this task. The
model has exhibited remarkable flexibility, robustness, and outstanding performance
in predicting NOx engine-out. The results obtained exhibited a favorable predictive
performance in both steady-state and dynamic conditions. A campaign of experi-
mentation was conducted to gather data from the engine test bench and the ECU,
with the aim of developing and calibrating the virtual sensor. The virtual sensor was
subsequently subjected to testing under transient on-road driving conditions to assess
its predictive capabilities in dynamic scenarios, via real-world driving missions.
The creation of the virtual sensor was preceded by a data preprocessing procedure
that was deemed essential for the proper acquisition of knowledge and assessment
of the tool. The XGBoost architecture definition hyperparameters were optimized
using the GridSearchCV tool to identify the optimal combination from the analyzed
options. During the experimental tests, engine parameters were recorded and a
feature extraction process was conducted in order to identify the most influential
and weighted variables during the development of the predictors. The optimization
of model accuracy and reduction of computational load are both crucial factors in
enhancing the applicability of the model in practical scenarios.

Under steady-state conditions, the predictive accuracy was approximately 98%,
whereas it was 85% during transient conditions. The findings suggest that the virtual
sensor exhibits significant promise as a valuable instrument for monitoring and
regulating emissions in diesel engine applications in real-time. The integration of the
virtual sensor into the ECU presents a viable option for reducing NOx emissions. This
approach involves utilizing the ECU control system to make real-time adjustments
to the engine parameters, in collaboration with the virtual sensor.
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5.1.2 Modeling and on-Road Testing of an Electric Two-Wheeler
towards Range Prediction and BMS Integration

The research pertaining to Chapter 3 expounds upon a comprehensive, data-oriented
modeling methodology for prognosticating the performance during operation of a
two-wheeled electric vehicle. The study employed a comprehensive approach by
integrating a dynamic vehicle model with a second order Thevenin ECM model to
assess the predictive capabilities over real-world driving missions under dynamic
conditions. The present study has developed a global model that utilizes the current
discharged by the battery pack as an input parameter, and subsequently forecasts the
instantaneous velocity of the vehicle. The battery model characteristic parameters,
including the OCV, the cell static resistance R0, the resistance R1, R2, and the capaci-
tance C1 and C2 of each pair of RC circuit, as well as the parameters of the vehicle
model, such as coastdown coefficients A, B and C, the aerodynamic drag coefficient
Cx, the rolling resistance coefficient f , the equivalent mass associated to the rotating
components mr, and the overall battery-to-road efficiency ηb2r, were determined via
a calibration procedure that relied on data obtained from both acquisition and on-road
experimental measurements. The calibration procedure entailed an optimization
stage, whereby the model parameters were varied to minimize an objective function.

The model’s predictive capabilities have been validated via performance analysis
metrics applied to the estimation of vehicle speed. The R2 values consistently
exceeded 97% and the RMSE errors remained consistently below 1 m/s (with
the exception of a single dataset) for all road driving tracks. The outcomes of
the evaluated numerical model indicate that the forecaster tool has the potential
to be embedded in BMS-integrated systems for the purpose of devising diverse
management strategies for battery packs. The utilization of a sophisticated vehicle
model facilitates the subsequent implementation of control logic for the efficient
management of Li-ion batteries in both Software-in-the-Loop and Hardware-In-The-
Loop environments.
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5.1.3 Computational Cost Reduction for Artificial Intelligence-
based Battery SOH estimation in Li-ion Battery Cells

The final chapter presents the findings related to the creation of an AI-driven model
that is computationally efficient for predicting the remaining useful life of lithium-
ion cells utilized in electric vehicle batteries. The proposed methodology offers
an evaluation of state of health during incomplete recharging cycles, by selecting
the state of charge range that yields precise and efficient prognostic estimates. The
development of the estimator involved the utilization of multiple Bi-LSTM neural
networks. These networks were employed to leverage various datasets that contained
time series of charge data with varying lengths across the entire SOC domain. The
methodology that was proposed has determined the most suitable length of the
SOC window, which strikes a balance between the accuracy of predictions and the
computational cost for the purpose of estimating the SOH on-board. As a result,
we were able to identify the optimal SOC range that enables enhanced performance
in SOH estimation. The input model utilized during the training process comprised
of current, voltage, and charged capacity, whereas the output estimation was based on
the battery cell’s state-of-health. The aforementioned study pertains to an 18,650 cell
that possesses a 3 Ah capacity and employs nickel-manganese-cobalt chemistry. The
dataset in question is a constituent of a series of cycle aging experiments conducted
by the Sandia National Laboratories. The findings demonstrate a high level of
consistency and indicate that it is possible to forecast the SOH of a battery with a
maximum margin of error of ±0.4%. This can be accomplished by monitoring solely
the final 40% of the SOC window, specifically during the constant voltage (CV)
phase of the entire constant current constant voltage (CCCV) charging process. This
approach involves reducing the memory usage in the battery management system for
charge data logging and decreasing computational time by approximately 2.3 times.

The computational lightness exhibited by the model and the findings of the
current study render it highly appropriate for on-board implementation. This would
enable the BMS to ensure optimal performance and enhance the battery’s longevity.
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5.2 Future works

This subsection presents recommendations for future research pertaining to each
topic covered in the dissertation, as summarized in Figure 5.1.

Fig. 5.1 Recommendations for future work divided by each research topic.

The central focus that unites all research subjects in this dissertation pertains to
the creation of on-board implementable models utilizing data-driven techniques. The
ensuing recommendations will highlight enhancements to modeling features, thereby
augmenting the predictive capacity of the model through improved generalization
across specific applications.

As far as the development of a virtual sensor for estimating and monitoring NOx
emissions is concerned, a potential avenue for future research could involve expand-
ing the analysis to encompass various driving scenarios. In this case, conducting a
comprehensive experimental study involving varied controlled ambient temperatures
might result in a significant enhancement of the estimator. During its operational
lifespan, a land vehicle may experience fluctuating temperatures that can impact the
engine’s efficiency. This can result in the engine operating at significantly different
points, with consequent effects on polluting emissions, particularly during cold starts.
Regardless of the AI model employed, an increased diversity of operating condi-
tions utilized for training may potentially result in an enhancement in the precision
of predicted NOx level concentrations.
The increasing amount of data generated by on-board vehicle sensors due to tech-
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nological advancements has necessitated the development of algorithms that can
effectively process voluminous and time-sensitive data. The implementation of
deep learning algorithms, namely artificial neural networks (ANN), recurrent neu-
ral networks (RNN), convolutional neural networks (CNN), and generative neural
networks (GEN), has the potential to significantly enhance NOx estimation by ac-
quiring complex representations and detecting concealed patterns within the data. It
is noteworthy that the efficacy of said algorithms is contingent upon the sufficiency
of the training data and the accurate configuration of the models.
Our current research focuses on a significant advancement in NOx prediction through
the development of a deep learning model that utilizes an artificial neural network.
This model is designed to accurately predict NOx and soot emissions in the 11.0 L
Diesel engine seen in chapter 2. The model that has been developed comprises a
neural network for multi-output regression and can briefly observed in [203]. This
enables the estimation of both NOx and soot quantities simultaneously. The present
study utilized experimental data consisting of combustion parameters within the
cylinder, which were obtained under stationary conditions on the test bench. The
present application incorporates a defined parameter, denoted as sample weight α ,
that specifies the proportion of impact exerted by the output on the computation of the
loss function. The loss function is expressed as Loss=α · lossNOx+(1−α) · lossSoot .
The study determined that the optimal point for the simultaneously estimation of
the two pollutants is α = 0.5. This value was assigned to ensure that both outputs
have equal impact on the overall loss. MSE is employed as the loss function in this
particular instance. For the sake of clarity and completeness, Figure 5.2 provides a
comprehensive overview of the initial outcomes obtained with respect to loss and
R2, as the parameter α undergoes variation.

Fig. 5.2 Loss and R2 as functions of sample weight α parameter.
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Considering that the outcomes of the study were obtained from an experimental
campaign conducted in stationary engine bench conditions, a potential avenue for
further research might involve the validation of this model in transient conditions.
This would entail taking into account real-world driving missions and incorporating
the findings from Chapter 2. The aforementioned data-driven model exhibits potential
for comprehensive analysis and may be deemed suitable for prospective integration
into on-board ECUs to facilitate the real-time assessment of said pollutants.

Likewise, in terms of enhancing prediction accuracy, the modeling methodology
employed in the research discussed in Chapter 3 could be refined to account for the
influence of temperature and the complete SOC range on battery model parameters.
In fact, the behavior of batteries is significantly influenced by their SOC and tempera-
ture. By taking into account the complete SOC domain, we can encompass the entire
spectrum of battery performance, thereby enabling the development of more precise
models. The properties of batteries, such as voltage, capacity, internal resistance,
and self-discharge rate, may exhibit notable fluctuations across distinct states of
charge. Through the process of modeling these variations, it is possible to precisely
capture the actual behavior of the battery in real-world scenarios. During operation,
batteries undergo dynamic changes in their SOC. The inclusion of parameters that
exhibit variability across the entire SOC domain facilitates the acquisition of the
battery’s behavior as it changes over time. This holds significant importance for
applications that entail recurrent cycles of charging and discharging or situations
where the SOC may exhibit considerable variation over a period of time. In terms
of on-board estimation, accurate SOC estimation is imperative for effective battery
management systems. Given that the model parameters are depending on distinct
SOC levels, it is feasible to derive a more precise estimation of current SOC by
utilizing the measured voltage, current, and temperature of the battery. Incorporating
temperature as a variable within the model parameters enables the consideration of
the temperature-sensitive characteristics of the battery. Temperature can cause sig-
nificant changes in battery capacity, internal resistance, and efficiency. In a nutshell,
a battery model that incorporates parameters as a function of the entire SOC range
and temperature offers a more robust and flexible representation. It allows for better
adaptation to different operating conditions and enhances the model’s generalization.
The model can be made applicable to diverse scenarios, including but not limited
to varying battery chemistries, cell designs, and operating environments, thereby
enabling the capture of a broader spectrum of battery behaviors.
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With regards to the estimation of SOC, the current investigation employs the Coulomb
Counting (CC) technique, which is extensively utilized and yields a highly precise
estimation, subject to certain boundary conditions that may frequently fluctuate or
remain unknown. The primary constraints of CC pertain to the accumulation of
errors resulting from imprecise measurements, calibration issues, or fluctuations in
battery efficiency. Additionally, CC exhibits limited capacity for real-time adaptation
and fails to capture non-linear behavior, as it is unable to account for variations
in the behavioral dynamics of the battery caused by temperature, aging, and dif-
ferent operating conditions at extreme SOC levels. Lastly, CC is susceptible to
measurement noise, which can introduce errors due to noise in the current and volt-
age readings. Hence, in order to address the constraints associated with CC in the
estimation of SOC, multiple techniques have been developed to effectively manage
the aforementioned complexities. The Kalman filter and Extended Kalman filter are
recursive estimation methods that consider measurement noise, model uncertainties,
and variations in battery characteristics. In addition, the utilization of data-driven
methodologies, such as artificial neural networks, can effectively utilize extensive
datasets to construct precise SOC estimation models by means of past data, which
can effectively manage diverse battery chemistries and the impacts of aging. These
approaches are particularly effective and suitable for on-board implementation on
BMS.
The utilisation of recursive estimation techniques, such as the Kalman filter, and
data-driven approaches, such as artificial neural networks, for the estimation of State-
of-Charge (SOC) in on-board Battery Management Systems (BMS) does present
enhanced precision. However, it is important to acknowledge the existence of dif-
ferent challenges that must be overcome in order to guarantee reliability and the
ability to adapt in real-time within practical vehicular contexts. Several prominent
challenges that have been identified, with the relative proposed solutions are here
briefly mentioned.

• Measurement accuracy and noise: the precision of SOC estimation is contin-
gent upon the accuracy of current and voltage measurements, which may be
subject to noise and sensor inaccuracies. In order to mitigate measurement
mistakes, it is possible to utilize sophisticated sensor calibration and filtering
methods.
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• Model complexity: the complexity of mathematical models tends to increase
when employing more advanced estimation approaches. It is of utmost im-
portance to ensure that these models exhibit both accuracy and computational
efficiency in order to facilitate their deployment in real-time applications. It
may be important to employ simplified models that strike a balance between
accuracy and computational load.

• Training data and Neural Network adaptability: ANNs necessitate a substantial
amount of training data and may exhibit limited adaptability in response to dy-
namic settings. The utilization of real-world driving data for continuous online
training or retraining of ANNs has the potential to enhance their adaptability.

• Fault tolerance: battery systems may encounter sensor failures or exhibit drift
phenomena as time progresses. The ability to effectively detect and handle
malfunctioning sensors, as well as the capacity to withstand sensor failures, is
of utmost importance in ensuring correct SOC assessment.

• Environmental variability, including temperature and other external conditions,
has the potential to exert a substantial influence on battery performance. It is
imperative for models and algorithms to consider these variances in order to
uphold accuracy throughout diverse operating situations.

• Integration with BMS: implementing these methods within existing BMS
hardware and software architectures can be a challenge. Careful system
integration and optimization are necessary to ensure compatibility and real-
time performance.

• Safety considerations are of utmost importance when it comes to estimating
SOC of batteries. This is due to the potential risks associated with overcharging
or deep discharging, which can lead to battery damage. It is crucial to priorities
safety and incorporate fail-safe features in these estimation approaches.

• Regulatory compliance: automotive systems are required to comply with
safety and regulatory standards in order to ensure regulatory compliance. SOC
estimation methods need to comply with relevant standards and certification
processes.

The present discourse outlines the key considerations that must be taken into account
with regards to the design and construction of the energy storage system, specifically
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in relation to its developmental and production phases. These factors have been
identified based on the requirements of the OEM. The positioning of lithium cells
can be varied to form modules, taking into account practical constraints such as
weight, size, costs, and performance for the intended use. These modules can be
arranged in series and parallel connections to compose the entire battery pack, while
considering both dimensional and operational constraints. For instance, a cooling
system can be provided to monitor and control the system temperature and keep it
within the optimal operating range. Hence, the provision of a Software-In-the-Loop
(SIL) virtual setting for examining and assessing diverse tracks and chemistry is
highly practical in enhancing drum efficiency. From this viewpoint, it is plausible
to integrate the battery model as a software constituent in a SIL for the purpose
of investigating vehicle performance. The utilization of virtual testing methods
for vehicle behavior, configurations, and chemistry might potentially yield several
advantages, including enhanced efficiency, reduced costs, and increased flexibility.
This approach eliminates the necessity for physical testing and enables the execution
of diverse driving simulations and scenarios, thereby facilitating the evaluation
of performance across various road and environmental conditions. An additional
benefit, which is not of lesser importance, pertains to the aspect of safety. The
integration of a battery model within a Software-in-the-Loop environment enables
the evaluation of diverse driving scenarios, encompassing hazardous or exceptional
scenarios, without exposing the system to potential safety hazards, such as abrupt
deceleration or collision simulations. The utilization of the SIL system can prove
to be highly advantageous in the examination of diverse battery configurations and
chemistry. The parameters of a battery model have the ability to be modified in order
to accommodate varying specifications, including but not limited to capacity, internal
resistance, voltage curve, and charge loss. The performance of the aforementioned
battery configurations can be assessed through the use of simulations within the
vehicular context. This approach allows for the observation of the impact on battery
longevity, power availability, and energy efficiency.

Regarding the previous research topic pertaining to the formulation of a method-
ology for assessing the SOH in lithium battery cells, a crucial initial advancement
might be to broaden the range of environmental temperatures under which the model
operates. The susceptibility of Li-ion cells to temperature makes them vulnerable
to thermal variations. Therefore, conducting tests on the model across a broader
spectrum of temperatures would enable us to assess its capacity to gauge SOH amidst



5.2 Future works 137

diverse thermal circumstances. In order to accommodate these enhancements, it
is imperative to obtain fresh data or employ alternative experimental procedures.
Additionally, it is necessary to modify the model to factor in the impact of thermal
effects on battery efficacy. Similarly, the assessment of the AI model’s performance
can be conducted by employing various charging protocol profiles. Within the battery
industry, it is customary to employ high-current charging or pulse charging protocols,
which can be analyzed under dynamic conditions. This would allow for evaluating
the model’s ability to generalize and provide accurate estimates of SOH under a
variety of charging conditions. Ultimately, a significant and subsequent advance
could pertain to the enhancement of the calibration of the model’s hyperparameters
in order to attain maximum efficacy. The optimization of hyperparameters for the
estimation model of SOH can be enhanced through various techniques, such as
refining the grid utilized in RandomSearchCV, combining it with GridSearchCV, or
utilizing Bayesian optimization. These methods can aid in the search for the optimal
hyperparameter combination that maximizes the precision of the estimation model.
This will aid in guaranteeing that the model is configured optimally and capable of
delivering dependable estimations of SOH.
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Appendix A

Figures

Chapter 3

Fig. A.1 Zoom of the operating battery pack voltage, current and power delivered during the
tests #1.
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Chapter 4

Fig. A.2 Cycle #223 deleted from the whole experimental dataset.
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Fig. A.3 Cycle #225 deleted from the whole experimental dataset.

Fig. A.4 Trend in the training loss function for each SOC window length.
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Fig. A.5 Simulated against the measured battery voltage with the puntual error.
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Fig. A.6 Loss function training for SOH prediction across all SOC domain span through
optimal SOC window length of 40%.
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(a) SOC segment [0,40]% (b) SOC segment [10,50]%

(c) SOC segment [20,60]% (d) SOC segment [30,70]%

(e) SOC segment [40,80]% (f) SOC segment [50,90]%

Fig. A.7 Prediction performance of SOH estimation across all SOC domain span.
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