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Abstract

The field of artificial intelligence has witnessed remarkable progress in the last
few years, but there still exists a disparity between the capabilities of intelligent
systems and those of humans in terms of accuracy and efficiency. Humans possess
the ability to perceive and interact with the world using multiple senses, enabling a
deeper understanding beyond what can be achieved with a single 2D representation.
Motivated by this, the focus of this thesis is on multi-modal learning to enhance
model performance in terms of accuracy, robustness, and adaptability.

The thesis explores two interrelated research domains: Object Recognition
(OR) and Egocentric Action Recognition (EAR). These domains present specific
challenges that conventional uni-modal approaches, usually image-based models,
struggle to address. The thesis explores two interconnected research domains: Object
Recognition (OR) and Egocentric Action Recognition (EAR). These domains pose
specific challenges that conventional uni-modal approaches, primarily image-based
models, struggle to address. Image-based models tend to exhibit a bias toward texture
and color information while encoding a limited amount of geometric and motion
cues. Additionally, they are sensitive to variations in lighting and other environmen-
tal conditions, which compromises their generalization capability. Consequently,
their performance may suffer when applied to diverse real-world scenarios. This
research explores the integration of both visual and non-visual modalities, with the
aim of leveraging their complementary characteristics and capturing the intricate
nature of real-world information. The thesis proposes techniques to enhance model
capabilities, enabling robustness and adaptability to different environments and tasks.
Our research in multi-modal learning also includes the exploration of alternative
modalities derived from innovative devices that go beyond traditional sensors, like
event-based cameras.



v

Overall, this thesis contributes to the advancement of multi-modal learning for
cross-domain analysis of EAR and OR, aiming to enhance the capabilities of AI
systems and reduce the gap between human and machine perception.

Keywords: deep learning, multi-modal learning, domain adaptation, domain
generalization, egocentric vision, event-based vision
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Chapter 1

Introduction

Artificial intelligence (AI) is a rapidly evolving field of computer science that aims
to develop algorithms and systems capable of emulating human intelligence. While
significant progress has been made in AI, particularly in areas like image generation
[38] and natural language processing [39], achieving true human-like understanding
remains a complex challenge. Human intelligence encompasses various cognitive
processes and is influenced by numerous factors, making it, even in the present day,
a fascinating and intricate phenomenon and area to explore.

One remarkable aspect of human intelligence is our ability to perceive and
interact with the world in a highly efficient and adaptive manner. A fundamental
distinction between humans and machine lies in the process of learning itself. In fact,
humans acquire their knowledge of the world through a multi-sensory perception, as
emphasized in the research conducted by Bertelson et al. [40]. Starting from early
childhood, our ability to recognize simple objects develops by integrating inputs
from various sensory modalities. For example, vision provides an extensive range
of information that goes beyond what a standard RGB camera can capture, while
the sense of touch, that rapidly evolves into the capability of object manipulation,
deepens our understanding of objects. This multi-sensory capacity extends to other
modalities as well, enabling us to comprehend and interpret objects in a more
comprehensive and contextual manner. In contrast, much of the progress in the field
of AI has primarily focused on unimodal research. It began with the early successes
in computer vision, where convolutional networks gained widespread adoption and
large-scale datasets like ImageNet played a crucial role in advancing the field. The
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trend has continued with the emergence of transformer-based models and the use of
web data for training, further pushing the boundaries of unimodal approaches [41].
This disparity between uni-modal and multi-modal learning approaches presents
significant challenges in AI. This has motivated researchers to seek solutions to
combine different modalities to enhance neural networks’ ability to understand and
represent the world in a more human-like manner.

The primary aim of this thesis is to explore multi-modal approaches for enhancing
the learning capabilities of neural networks, introducing novel models, data fusion
techniques, and domain adaptation strategies. In order to explore these concepts, the
thesis will focus on two main tasks. The first task is Object Recognition (OR), which
is a widely studied area in the field of robotics vision. OR serves as an interesting
case to highlight the limitation of two-dimensional information captured by RGB
cameras compared to the three-dimensional perception of humans. The second task
is Egocentric Action Recognition (EAR) or First Person Action Recognition (FPAR),
which is a more complex task. This involves recognizing actions based on egocentric
data captured by a camera worn directly by the user. This unique setup offers an
exceptional opportunity to gain deeper insights into the human learning process.

Fig. 1.1 These samples depict object and action frames extracted from the RGB-D Object
dataset (ROD) [1] and EPIC-Kitchens-55 (EK55) dataset [2], showcasing their complemen-
tarity in terms of modalities. The ROD dataset includes depth images that provide additional
geometric information, while the EK55 dataset incorporates optical flow information that
captures motion details. These samples showcase the diverse types of information encoded
by these modalities, highlighting their potential to complement standard RGB images and
provide a deeper understanding of the objects or actions.

From the interconnected yet distinct contexts of OR and FPAR, three main
research questions emerge. Firstly, we delve into the challenge of effectively lever-
aging multiple modalities to overcome the limitation of uni-modal approaches,
which usually tend to overfit on appearance information and struggle to encode
geometric or motion information (as shown in Figure 1.1) which are fundamental
cues for different recognition tasks.
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synthetic-to-real shift environmental bias

Fig. 1.2 These samples showcase object and action frames obtained from the RGB-D Object
dataset (ROD) [1] and its synthetic counterpart synROD [3], and two different kitchens
of the EPIC-Kitchens-55 (EK55) dataset [2]. On the left side, the samples highlight the
synthetic-to-real shift problem, illustrating the disparity in data distribution between the
synthetic data generated using Blender [4] and the real data captured with a camera. On the
right side, the samples demonstrate the environment bias, depicting the significant variation
in appearance between data recorded in different kitchen environments.

Secondly, despite the remarkable advancements in image-based recognition
models, they still struggle to handle the inherent variations in data distribution,
especially when the data originates from different domains. This phenomenon
is commonly referred to as domain shift and it has a significant impact on the
performance of recognition models. In Figure 1.2, two examples of domain shift
are presented, specifically in the context of OR and FPAR. These challenges are
referred to as the synthetic-to-real shift and environmental bias, respectively (more
detailed explanations will be provided in Sections 1.1 and 1.2). To address this
challenge, it is crucial to explore the research fields of Domain Generalization (DG)
and Unsupervised Domain Adaptation (UDA), which are fundamental to effectively
handling and minimizing the adverse effects of domain shift. In particular, in the
context of multi-modal learning, different modalities are influenced by domain shifts
in a unique manner, motivating our research to investigate approaches that leverage
the modalities to improve the generalization and adaptation abilities of existing
models.

Lastly, multi-modal learning extends beyond traditional modalities like RGB,
audio, and depth. It encompasses the exploration of alternative modalities derived
from novel devices that go beyond conventional sensors. By investigating and
incorporating novel modalities into our research, we aim to broaden the scope of
multi-modal learning and uncover its potential benefits in various domains. In the
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subsequent paragraphs, we will delve deeper into these research topics, providing the
reader with a more detailed understanding of the origins of these research questions.
We will also explore the distinct nature of these topics within the domains of object
recognition (OR) and first-person activity recognition (FPAR).

1.1 Recognize Objects using Multi-Modal data

Human-built environments are, ultimately, collections of objects. Every daily activity
requires understanding and operating a set of objects to accomplish a task. Robotic
systems that aim to assist the user in his own environment need to possess the
ability to recognize objects. In fact, OR is the foundation for higher-level tasks
that rely on an accurate description of the visual scene. Despite the interesting
results achieved in this context by operating on standard RGB images, there are
intrinsic limitations to recognizing objects using solely visual information, especially
in scenarios where the objects are occluded or partially visible. Indeed, RGB data
are extremely biased toward the texture and color of the objects, encoding only a
limited amount of geometry information. Moreover, it is sensitive to variations in
lighting and other environmental conditions. For instance, if the lighting conditions
change significantly it can cause a notable shift in the appearance of an object within
an RGB image, making it more challenging for the model to accurately recognize the
object. Using additional modalities, such as depth data or data from other sensors,
can help to overcome these limitations and improve the accuracy and robustness of
OR systems.

Challenges description. RGB-D (Kinect-style) cameras quickly became wide-
spread in robotics vision due to their low cost and the wealth of visual data they
provide. This sensor is composed of an RGB (red, green, blue) camera and a depth
sensor, allowing it to capture both color and depth information about an object. The
use of depth images provides complementary geometric information to the standard
vision system. Moreover, it is the ideal workaround for the inherent limitations
caused by the loss of data produced by projecting the three-dimensional world onto
a two-dimensional image plane. In the field of RGB-D OR, the common pipeline
involves two convolutional neural network (CNN) streams, operating on RGB and
depth images respectively, as feature extractors.
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However, the need for a large-scale dataset of depth images forced the vision
community to find practical workarounds. Indeed, considerable effort has been spent
on methods to colorize depth images in order to reuse the existing RGB pre-trained
CNNs [42], while research into appropriate strategies to extract and combine features
from the two modalities has been neglected. Indeed, several methods simply extract
features from a specific layer of the two CNNs and combine them through a fully
connected or a max pooling layer. We argue that these strategies are sub-optimal
because (a) they assume that the selected layer always represents the best abstraction
level to combine RGB and depth information and (b) they do not exploit the full
range of information from the two modalities during the fusion process.

While the lack of an appropriate RGB-D fusion strategy may be a challenge
for deploying RGB-D OR systems in robotics vision applications, it is not the
main limiting factor. A larger concern is the amount of annotated data that is
required to train CNNs for each new task, which can be costly and time-consuming,
representing the main bottleneck. An appealing workaround that does not require
manual annotation is to generate a large synthetic training set by rendering 3D object
models with computer graphics software like Blender [4]. However, the difference
between the synthetic (source) training data and the real (target) test data severely
undermines the recognition performance of the network. This problem, known as
the synthetic-to-real shift is an example of the broader domain shift issue introduced
earlier in this section. This particular shift is well explored in the context of RGB
data, by the research field called Unsupervised Domain Adaptation (UDA). This
field has seen significant growth in recent years [43] and has produced numerous
strategies for reducing the gap between source and target. However, these existing
DA strategies often make the assumption that the data come from a single modality,
which can lead to sub-optimal results when working with multi-modal data, as it
ignores the natural relationships between different modalities.

Furthermore, it is important to recognize that multi-modal research is not limited
to the use of RGB-D data, and can be easily extended to incorporate a wide range
of innovative sensors. Indeed the event-based camera, or Dynamic Vision Sensor
(DVS), presents several characteristics that make it ideal for the robotics context.
This type of sensor belongs to the family of bio-inspired devices, where each pixel
asynchronously emits an output, called event when it detects a local brightness
change. This mechanism allows event-based cameras to operate at a very high
dynamic range, high temporal resolution, and low latency, with minimal power
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consumption (more details in Section 2.3). As previously mentioned, the adoption of
new sensors often comes with the challenge of limited data availability, hindering the
full potential of deep learning algorithms for various tasks. This is particularly true
for neuromorphic cameras, which are still relatively new and expensive, thus limiting
the amount of available data. To overcome this issue, event camera simulators such
as ESIM [44] provide an alternative solution by generating simulated event data.
However, a crucial question remains unanswered: how effectively does simulated
data generalize to real-world scenarios?

1.2 Recognize Actions in First Person videos

Since the infancy of computer vision, recognizing human actions from videos has
been one of the most critical challenges. The ability to accurately and automatically
recognize the actions performed by an individual or group of people has a signifi-
cant impact on a wide variety of applications, including security, surveillance, and
autonomous driving. Historically, the majority of research has focused on third-
person action recognition, an area where significant progress has been made and
where commercial products are now being released. In recent years, advances in
wearable technology have sparked interest of the computer vision community in
FPAR [10, 34, 45–53], both due to the challenges it presents and its potential for
real-world egocentric vision applications, such as wearable sports cameras, human-
robot interaction, and human assistance. This research area allows for a more direct
study of human behavior, providing an opportunity to learn how humans perceive
the world and interact with the environment.

Challenges description. Despite the wealth of visual information captured by
wearable cameras, the transition from a third-person, fixed camera perspective to a
first-person perspective introduces significant challenges. Specifically, the camera’s
motion during the recording of a first-person video, known as egomotion, can greatly
alter the appearance of actions, making it difficult for the action recognition models
to accurately classify them. Moreover, the presence of strong occlusion caused by the
user’s hand or arm during object manipulation, along with the existence of multiple
and repetitive objects in the scene, further impedes the efficient localization and
classification of the object of interest.
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In addition to the aforementioned challenges, another significant limitation in this
context is the presence of environmental bias [37, 54–57]. It refers to the tendency of
RGB-based networks to heavily rely on the specific environment in which activities
are recorded. Consequently, when actions are performed in unfamiliar or unseen
surroundings, where the training and test data do not share the same distribution
[58], RGB-based models struggle to recognize these actions effectively. This is
mainly caused by the propensity of appearance-based networks to focus primarily on
background cues and objects’ texture, which are often uncorrelated with the action
being performed and therefore vary significantly across different environments. As a
result, appearance-free modalities, such as motion, have become the favored choice
in current egocentric vision systems. However, the optical flow used in this setting
is computed from RGB frames by solving expensive optimization problems (TV-
L1 algorithm [59]), introducing significant test-time computations [60], making
this modality totally impractical in online scenarios and preventing state-of-the-art
performance from being achieved in real-world settings.
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1.3 Contributions

The main contributions of this work are in the field of multi-modal object recognition
and multi-modal egocentric action recognition. The specific contributions of this
research are as follows:

• a novel end-to-end architecture for RGB-D object recognition called re-
current convolutional fusion (RCFusion) [61], it uses two streams of convo-
lutional networks to extract RGB and depth features from multiple levels of
abstraction. These features are then combined through a recurrent neural net-
work (RNN), resulting in the generation of compact and highly discriminative
multi-modal features.

• a novel RGB-D DA method that reduces the synthetic-to-real domain shift
[3] by exploiting the inter-modal relation between the RGB and depth image.
It consists of training a convolutional neural network to solve, in addition to
the main recognition task, the pretext task of predicting the relative rotation
between the RGB and depth image.

• an alternative way of answering a very recent research problem regarding
how to bridge Sim-to-Real gap arising from event generation [62]. We
show that Unsupervised Domain Adaptation (UDA) techniques working at
feature level are an effective way of tackling this issue, w.r.t. previous work
that act on the input level. Moreover we propose a multi-view approach to deal
with event representations, which outperforms existing methods and proved to
work well in conjunction with other UDA strategies.

• a single stream architecture for FPAR, called SparNet [63]. One of its key
features is the integration of appearance and motion features through a set of
self-supervised pretext tasks. These pretext tasks allow SparNet to estimate
the motion information associated with a single static input image, enabling
joint learning of appearance and motion features. This unique approach results
in a lightweight architecture that can be trained in a single stage.

• a new cross-modal loss called Relative Norm Alignment (RNA) loss [64].
We address the issue of differences in the marginal distributions of modalities
that can hinder the training process and lead to suboptimal performance. We
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introduce the RNA loss, which effectively tackles this problem by aligning
feature norms across modalities in the Domain Generalization (DG) setting
and across domains in the UDA setting. By ensuring balanced feature norms,
the RNA loss enables models to better exploit the synergies and complemen-
tarities between different modalities, resulting in improved performance and
adaptation capabilities.

• the first event-based egocentric action recognition dataset, called N-EPIC-
Kitchens [65]. We conducted a comprehensive comparative analysis to
investigate the significance of motion information in the context of action
recognition. To this end, we introduced and evaluated two novel approaches,
namely E2(GO) and E2(GO)MO, specifically designed for event data. These
approaches emphasize motion information and yielded competitive results
compared to the computationally expensive optical flow modality.

1.4 Outline

In Chapter 2, we present a comprehensive survey of multi-modal learning, focusing
on object recognition and first-person action recognition. In Section 2.2, we delve
into the literature on Unsupervised Domain Adaptation (UDA) and Domain General-
ization (DG) techniques and examine their applications in these tasks. Furthermore,
in Section 2.3, we introduce a novel camera technology that has garnered significant
attention in the robotics and computer vision communities due to its promising
capabilities. Lastly, Section 2.4 provides an overview of the datasets that will be
used for the experimental evaluation.

Chapter 3 describes the thesis contribution in the field of multi-modal object
recognition. Section 3.1 presents RCFusion, a novel method for multi-modal fusion
that exploits features from multiple hidden layers of CNNs for both modalities and
fuses them using a recurrent neural network. In Section 3.2, we present Relative
Rotation, a method for multi-modal unsupervised domain adaptation, based on
self-supervised pretext task, and jointly we introduce a new synthetic dataset, called
synROD. Lastly, in Section 3.3, we present MV-DA4Event, a solution that ad-
dresses the challenges arising from the simulated to real shift. We demonstrate the
effectiveness of unsupervised domain adaptation in overcoming these challenges
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and highlight the significance of modalities in the context of multi-modal object
recognition.

Chapter 4 showcases our contributions in the context of first-person action
recognition. In Section 4.1, we present SparNet, a novel technique that enhances
the ability of existing models to extract motion information. This is achieved by
introducing an ad-hoc self-supervised pretext task. Next, in Section 4.2, we introduce
RNA, a new loss function that effectively improves the overall generalization and
adaptability of networks for fine-grained action recognition tasks. Furthermore, in
Section 4.3, we propose N-EPIC-Kitchens, an extension of the existing first-person
dataset [12] that includes event data. We also propose a strategy to adapt and reuse
the existing model to leverage this new modality, providing a viable alternative to
optical flow.

The thesis concludes with a summary discussion and remarks on possible future
directions of research in Chapter 5.

1.5 Publications

Here is a list of publications categorized into the two main topics of OR and FPAR.
The publications are further classified into journal and conference publications.
Please note that a few of these published papers, marked with the symbol (†), are
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Chapter 2

Background and Related Work

The objective of this chapter is to offer a comprehensive survey of the literature on
multi-modal learning, with a specific emphasis on object recognition and first-person
action recognition tasks. Specifically, we delve into an overview of the commonly
employed techniques that facilitate the practical implementation of these algorithms
in real-world scenarios, highlighting the crucial role played by a model’s ability to
generalize and adapt. Moreover, this chapter provides an introduction to a novel
camera technology known as event camera, which has recently attracted attention
from the robotics and computer vision communities due to its promising capabilities
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2.1 Learning to recognize: From Object to Action

Object recognition is a crucial aspect of robotics, as it enables robots to interact with
their surroundings and perform various tasks. However, recognizing objects is just
the starting point toward achieving more advanced robotic capabilities. To operate
effectively in human environments, robots need to not only recognize objects but also
understand human actions and intentions. This understanding allows robots to learn
from humans and collaborate with them to efficiently and safely accomplish tasks. In
this regard, the task of human action understanding plays a fundamental role. With
the recent proliferation of wearable devices, the task of action recognition (EAR) has
become particularly interesting and relevant for various computer vision and robotics
applications. Wearable devices provide a unique perspective for capturing first-
person visual data, enabling a more immersive and natural understanding of human
actions. In this section, we will explore the literature related to object recognition,
particularly from RGB-D data, and action recognition from both third and first-
person perspectives. Additionally, we will provide an overview of the literature on
event cameras, which offer distinct characteristics and have gained interest in the
field of computer vision.

2.1.1 Robotics Vision: Object Recognition from RGB-D data

The literature on RGB-D object recognition can be broadly classified into three macro
groups. The first group, referred to as the "traditional" group, primarily encompasses
methods that emphasize the utilization of hand-crafted features. These methods
involve the manual design and selection of specific characteristics to enhance the
object recognition process, allowing for a detailed analysis of RGB-D data. The
second group focuses on exploring methods that effectively leverage the multi-modal
relationship between RGB and depth data. This group primarily consists of methods
based on CNNs, which aim to exploit the complementary information provided by
both RGB and depth modalities. Lastly, colorization techniques are employed in the
third group to maximize the utilization of image-based pretraining for depth data.
This group acknowledges the challenges posed by the absence of a robust pretraining
model specifically tailored for depth data. The colorization techniques aim to bridge
this gap by leveraging existing pretraining models primarily developed for RGB data,
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thereby enhancing the representation and understanding of depth data for improved
object recognition.

Regarding the first group, Lai et al. [1] proposed a benchmark on a new RGB-D
object recognition dataset, by combining spin image and SIFT. Browatzki et al. [66]
introduce a 2D/3D dataset with a time of flight camera and then fused 2D features
(SUFT, PHOG, Self-Similarity, and Color Histograms) and 3D features (SC3D,
Depth Buffer, Shape-Index Histograms, and MD2 Shape Distributions) to predict the
object classes. A set of kernel features to capture diverse yet complementary cues,
resulting in a significant improvement in the performance of RGB-D object recogni-
tion, is introduced in [67]. However, these methods heavily rely on expert knowledge
and lack fine generalization. Therefore, some researchers explore learning-based
RGB-D object recognition methods. Blum et al. [68] designed a learning-based
feature descriptor that integrates RGB and depth information into one consensus
descriptor vector. Bo et al. [69] introduced hierarchical matching pursuit (HMP)
to encode the feature representations of RGB-D inputs in an unsupervised manner.
Asif et al. [70] calculated classification probabilities at pixel-level, surfel-level, and
object-level from RGB-D data using the random forest method, and fused these
probabilities to predict the classification results.

The second group primarily consists of approaches that repurpose deep learn-
ing architectures [71] trained on large RGB image databases, such as ImageNet.
Specifically, certain studies [72, 71] have proposed the utilization of two-stream
convolutional neural networks (CNNs) to learn features separately from RGB and
depth modalities. Subsequently, the two embeddings are combined for the final
prediction. Following these solutions, RGB and depth features are learned indepen-
dently and connected only at the final stage through a fully connected layer classifier.
However, while this approach is straightforward to implement, it fails to fully exploit
the complementarity between different modalities. In contrast, Wang et al. [73]
introduced a multi-modal layer into a CNN-based multi-modal learning network to
discover discriminative features for each modality and exploit the complementary
relationship between the two modalities. Additionally, Wang et al. [74] obtained
multi-modal features by employing a pair of deep neural networks to separate the
shareable and model-specific information from the extracted RGB and depth features.
These methods combine the two modalities by processing features extracted from a
single convolutional neural network and rely on a multi-stage optimization process
to obtain individual and contextual information from both modalities. In contrast,
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more sophisticated approaches [73, 74] aim to enhance the network’s capability to
jointly learn and utilize the most discriminative features for each modality, while
also leveraging the complementary relationship between the two. More recently,
Zhang et al. [75] proposed a multi-modal fusion and projection (MMFP) module to
address the issue of poor-quality depth images. The MMFP module reweights the
contribution of each modality and combines the RGB and depth modalities using
an attention mechanism, eliminating interference from irrelevant information while
integrating the relevant information effectively. Differently [76] proposes ad-hoc
regularization strategies for RGB-D data. These various approaches demonstrate
ongoing efforts to enhance the integration of RGB and depth modalities for object
recognition, leveraging new techniques to improve feature extraction and exploit the
complementarity between different modalities.

The last macro group focuses on identifying optimal colorization strategies to
effectively leverage the transfer of knowledge from RGB image pre-training to depth
images. Various hand-crafted colorization techniques have been proposed to map the
raw depth value of each pixel [72], derived physical quantities such as position and
orientation [77], or local surface normals [69] to corresponding colors. In contrast,
Carlucci et al. [78] introduced a learning-based approach to colorize depth images
by training a colorization network. However, it is worth noting that some of these
colorization schemes may be computationally expensive.

In addition to object recognition, the utilization of RGB-D data has been em-
ployed in various other contexts and tasks, such as scene recognition [79], object
detection [80], pose estimation [81, 71, 82], activity recognition [83, 84], and hand
gesture analysis [85, 86], requiring solutions that are sometimes distinct from those
presented thus far.

2.1.2 Action Recognition

Action recognition (AR) is a type of computer vision task that involves analyzing
videos and identifying the actions that are being performed in them. It is similar to
image classification, in that it involves associating samples (in this case, video clips)
with labels (in this case, actions). However, action recognition is a more complex
task because it involves analyzing the motion and changes that occur over time in
the video, rather than just the static content of an image.
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AR approaches may be classified into four broad categories: 2D convolution-
based [87–91, 47, 92, 93] and 3D convolution-based [94, 95, 49, 36, 96, 97, 87, 37,
98], transformer-based architectures and hybrid solutions that involve approaches
that combine elements from different categories, such as using a combination of
2D and 3D convolutions or combining transformer architecture with convolutional
layers.

The first group of AR approaches uses 2D convolutional neural networks (CNNs)
to analyze the spatial features of the video frames. It is generally complemented
with other modules enabling the possibility to learn temporal information. Recurrent
neural networks, such as long short-term memory (LSTM) networks and their
variations, are commonly used to capture temporal dependencies in video data
[99, 34, 45, 46]. Differently, the authors of [91] proposed the Temporal Relation
Network (TRN) a module designed to learn and reason about temporal dependencies
between video frames at multiple time scales. Other approaches like Temporal Shift
Module (TSM) [90] or its variant Gate-shift Module (GSM) [93, 100] use a temporal
shift operator enabling a simple 2D convolution-based architecture to learn temporal
features. The use of 3D convolutions was proposed as an alternative in [94, 96]
to learn spatial and temporal relations simultaneously, even if they often introduce
more parameters, requiring pre-training on large-scale video datasets [94]. The
transformer architecture originally introduced for natural language processing tasks
[101] is a model designed to capture long-range dependencies between words in a
sentence by using a sequence of self-attention blocks. In recent years, researchers
have attempted to extend the transformer architecture to the vision and video domains
by adapting it to work with images and videos, respectively [102–107]. To do this,
they have proposed various approaches such as tokenizing non-overlapping patches
of the image and using data augmentations and a student-teacher training scheme to
improve data efficiency. In the video domain, various methods have been proposed
to incorporate temporal information, such as TimeSformer [108], ViViT [109], and
VideoSwin [110], which use temporal attention schemes to compare patches in
different frames. Another approach, MViT [111], aims to reduce the computational
cost of video transformers by using a local pooling operation to progressively reduce
the number of tokens while increasing the channel dimension.

The last group of AR approaches consists of hybrid solutions, which are ap-
proaches that combine elements from the first three groups. For example, in Girdhar
et al.’s work [112], the authors propose an architecture that combines 3D CNNs with
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a self-attention mechanism for final prediction. In contrast, Tai et al. [113] integrate
transformer architecture with recurrent mechanisms in a unified model.

Another area of research in AR focuses on the efficiency of action recognition
models, aiming to find architectures that can achieve good performance while using
fewer parameters. This can be achieved through the use of techniques such as Neural
Architecture Search (NAS), as demonstrated by the work of Kondratyuk et al. [114],
who present Mobile Video Networks (MoViNets), a family of computation- and
memory-efficient video networks that are optimized using NAS and are capable of
operating on streaming video in real-time. There are also other previous approaches
such as [115–120], which aim to find more efficient architectures that can perform
well with fewer parameters. Although all these architectures aim at implicitly
modeling motion, most of them still mix video frames with the externally estimated
optical flow. While this improves the overall performance, it also requires pre-
computing the flow, making these approaches impracticable in online settings. In
addition, two-stream approaches come at the cost of increased model complexity
and the number of parameters.

2.1.3 First Person Action Recognition

In the field of FPAR, many of the networks used are inherited from the third-person
action recognition field [94, 90, 88, 121]. However, the unique challenges of the ego-
centric point of view have led researchers to investigate solutions specifically tailored
to this task. Several approaches make use of object or hand detection mechanisms
to guide the action recognition task [122, 122–124, 89, 125–128]. However, these
methods require specific annotation of the hand or object and can introduce latency
during the inference process. Recently, Shan et al. [129] developed a hand-object
detector to locate the active object. However, this solution is also not lightweight
and fast, limiting its use in online scenarios. Alternative approaches that have been
gaining traction include the use of attention mechanisms guided by elements such as
gaze information, active objects, and/or the user’s hands [10, 130, 45, 34, 131–133].
These mechanisms have been shown to greatly enhance the performance of FPAR
systems.

In addition to this, multi-modal analysis plays a crucial role in the field of FPAR.
The use of a two-stream solution, in which visual information is combined with
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optical flow, is a common practice in many studies [37, 45, 47, 46]. Additionally, a
particular focus on the utilization of alternative modalities to improve the robustness
and accuracy of predictions. One such alternative modality that has been explored in
this context is audio signals. Studies such as Kazakos et al. [47] have demonstrated
the effectiveness of incorporating audio information in action recognition tasks,
owing to the rich sound information present in hand-object interactions and the
proximity of sensors to the sound source. Other modalities such as Electromyography
(EGM) signal, Inertial Measurement Unit (IMU), depth, and tactile data are also
being explored in this field [134–139].

More generally, the egocentric vision has introduced a range of new challenges
for the computer vision community, including human-object interaction [140, 141],
action anticipation [142, 46, 143, 130], action recognition [47], and video summa-
rization [144–146]. With the availability of large-scale datasets [12, 13], new tasks
have been proposed, such as wearer’s pose estimation [147] and egocentric video
anonymization [148]. This trend is expected to continue with the recent release
of Ego4D [139], a massive egocentric video dataset featuring over 3,000 hours of
daily-life activity videos with accompanying audio, 3D meshes of the environment,
eye gaze, stereo, and multi-view videos.

2.2 Learning to see across Domains and Modalities

The standard assumption in machine learning is that the distribution of training
data is representative of the distribution encountered during testing. However, in
practical scenarios, this assumption is often challenging to fulfill, leading to a
phenomenon known as domain shift [58]. Domain shift refers to the situation where
the underlying data distributions in the training and testing phases differ significantly,
resulting in a discrepancy between their statistical properties. Maintaining the
assumption of matching distributions between training and testing data is difficult due
to various factors. For instance, in computer vision, changes in lighting conditions,
viewpoints, weather, or the presence of occlusions can cause a shift in the data
distribution. Other examples include variations in data collection setups, such as
different sensors or modalities, which introduce discrepancies between training
and testing domains. These discrepancies can lead to performance degradation
when models trained on one domain are applied to another.While this problem has
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been extensively investigated in the context of image classification, its relevance
transcends visual data alone. The challenge of domain shift extends to various data
modalities, encompassing audio, depth, text, and even temporal domains. Adapting
models to operate effectively across different modalities and diverse data domains is
crucial for achieving generalization and robustness in various application domains.
In the subsequent sections, we will first provide a formal definition of this problem,
considering its implications across different domains and modalities. We will then
offer a comprehensive overview of the existing literature, highlighting the various
approaches and techniques proposed to mitigate the challenges posed by domain
shift.

2.2.1 Problem Formulation

Domain adaptation is a subfield of machine learning that addresses the challenge of
learning from a source domain and applying the acquired knowledge to a different
target domain. The main objective is to leverage the knowledge gained from the
source domain in order to improve the performance of a model when faced with data
from different distribution. More specifically, a domain can be defined as a tuple
D = {c,g, p(x | y)}, where c represents the input or feature space, g is the label
space, and p(x|y) represents the joint probability distribution over the input-label
space pair c ⇥g . The source domain S is composed by input-label pairs {(xs

i ,y
s
i )}

n
i=1,

where n is the number of samples in the source. Similarly, the target domain T
is composed by {(xt

i,y
t
i)}

m
i=1, where m is the total number of samples. Notably, in

unsupervised domain adaptation, the labels yt
i are not available during training.

The primary objective of unsupervised domain adaptation is to reduce the distri-
bution discrepancy between the source and target domains. This discrepancy refers
to the differences in data distributions between the two domains. By reducing this
discrepancy, we aim to enable the training of a model that performs well on the target
samples. In essence, domain adaptation seeks to learn a generalized classifier that
can effectively classify samples from the target domain, despite the presence of a
shift between the distributions of the source and target domains. One key assumption
in this context is that the label space remains consistent between the source and
target distributions. This assumption implies that the same set of labels or classes
exists in both domains, facilitating the transfer of knowledge from the source to
the target domain. By leveraging this shared label space, unsupervised domain
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adaptation techniques aim to bridge the gap between domains and enable effective
generalization to unseen target samples.

Domain Generalization (DG), is another research area with a similar objective to
domain adaptation. However, in this setting, the target data is not available during
training. DG leverages the availability of multiple source domains for training.
More formally, during training, the model has access to one or more fully labeled
source datasets S1, . . . ,Sm, but no information is available about the target domain T.
The goal of domain generalization is to develop models that can generalize well to
unseen target domains by learning robust representations that capture the common
knowledge across the source domains while being invariant to domain-specific
variations.

Multi-Modal Adaptation. Our objective is to explore the impact of leveraging
multi-modal signals from both source and target data on the ability to bridge the gap
between different domains. In our setting, each input xd

i , where d denotes the domain
(either source or target) and i represents the i-th sample in the dataset, consists of
multiple modalities. Specifically, xd

i can be expressed as a collection of modalities:
xd

i = xd
i,m1

, ...,xd
i,mp

, where p denotes the number of modalities present in the input. To
handle these multi-modal inputs effectively, we employ separate feature extractors,
denoted as F1, ...,Fp, where each extractor corresponds to a specific modality. The
multi-modal approach allows us to leverage the strengths of different modalities and
promote cross-modal knowledge transfer, ultimately facilitating the adaptation and
generalization across domains.

2.2.2 Unsupervised Domain Adaptation

UDA is a thoroughly investigated research domain in the field of image classification.
The existing literature on UDA encompasses a diverse set of methodologies, which
can be categorized into five primary groups for better organization and understanding.
The first group consists of discrepancy-based methods [149–151] that aim to quantify
the discrepancy between source and target data in the feature space. One widely
employed metric in this group is Maximum Mean Discrepancy (MMD), which is
minimized during network training to address the domain shift. Some approaches
extend the use of MMD to multiple layers of the network [152], facilitating a
comprehensive alignment of features across different domains. Researchers have
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proposed various variations of the MMD metric to enhance its effectiveness. For
instance, Long et al. [149] introduced a multiple-kernel variant of MMD, while
[153] suggested Central Moment Discrepancy (CMD) that emphasizes aligning the
central moments of the first k orders, thereby further improving domain adaptation
performance.

The second group of methods focuses on adversarial learning [154–159]. These
methods employ an adversarial training framework to encourage the network to
generate representations that are indistinguishable between the source and target
domains, thus achieving domain-invariant representations. One popular technique
used in adversarial-based unsupervised domain adaptation is the Gradient Reversal
Layer (GRL). It involves adding a second discriminator head to the standard network
architecture, which is trained to distinguish between source and target features.
During training, the gradient of the discriminator branch is reversed, meaning that
the feature extractor is encouraged to produce domain-invariant representations
that cannot be easily distinguished by the discriminator. Furthermore, variations of
this approach have been proposed, as discussed in [160], where multiple domain
discriminators, one for each class, are utilized to align the conditional distributions.
In the case of unlabeled target data, the probability of the classifier for the k-th class
is used to weight the target features used as input for the k-th domain discriminator.
Similarly, the metric discrepancy approach is also utilized at various levels, as
explored in [161]. The second category of methods also includes the generative
approach, which involves translating the source images into the style of the target
domain. Several studies [162–166] fall under this category. In the initial works [162,
166], a Generative Adversarial Network (GAN) architecture was employed. The
generator was trained to reconstruct the original source image, while the discriminator
was trained to differentiate between the reconstructed source image and the target
images. By maximizing the discriminator’s loss with respect to the generator, the
GAN produced images that closely resembled the style of the target domain, while
still preserving the task-specific information from the source domain. To address the
issue of features collapsing into uni-modal solutions, cycle consistency constraints
were introduced [163, 164]. These constraints ensure that the generated source
images, which have been transformed to match the style of the target domain, are
translated back to the original style of the source domain.

The third group includes methods that show how to properly reuse the batch nor-
malization layers to normalize source and target statistics [167–169]. One approach,
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called AdaBN [167], involves updating the population statistics of all BN layers with
the statistics of the target domain as a post-processing step after training. In some
studies [170–173], separate BN layers have been employed for the source and target
distributions to align the domains during training. A variation of this approach is
presented in [172], where the authors argue that deeper layers learn more abstract
and ideally domain-invariant concepts, and thus should share BN layers. However,
the lower-level layers, which are domain-specific, should still have separate BN
layers. Their method, AutoDIAL, utilizes a mixing parameter to control the extent to
which the distribution statistics of each BN layer should be shared across domains.
This mixing parameter is learned as the training progresses. When the distribution
statistics are completely shared, AutoDIAL functions as a single BN layer, whereas
if the statistics are not shared, AutoDIAL acts as two separate BN layers.

The next group of methods focuses on leveraging self-supervised learning tech-
niques to mitigate the domain shift [174–176]. More precisely, a network is trained
to solve an auxiliary self-supervised task on the target (and source) data, in addition
to the main task, to learn robust cross-domain representations. One commonly used
self-supervised task is predicting the transformations applied to input images. Studies
such as [176, 175, 177] employ tasks like jigsaw puzzle solving, rotation prediction,
and patch location estimation in conjunction with the main task to facilitate learning.
Furthermore, the recent success of the contrastive learning approach in representa-
tion learning has led the computer vision community to explore its application in
unsupervised domain adaptation [178–180]. Contrastive learning aims to learn an
embedding space where positive pairs are pulled closer together, while negative pairs
are pushed apart. However, one challenge in applying this approach to unsupervised
domain adaptation is finding positive samples for the target domain, considering that
the target data are unlabeled. In [179], the authors propose using clustering on the
target data and selecting samples that are closer to the centroids as positive pairs.

The final group of methodologies is dedicated to reducing classifier uncertainty
by minimizing entropy. Within this category, several adaptation methods have
been proposed [172, 181–184]. For instance, Information Maximization (IM) [185]
combines entropy minimization with the maximization of source mutual information
between the classifier outputs and feature representations. Another notable approach
is Minimum Class Confusion (MCC) [186], which introduces a novel loss function
that effectively reduces classifier uncertainties, particularly in scenarios involving
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pairwise class confusion. This improvement leads to substantial gains in transfer
performance.

The approaches mentioned above, originally developed for standard image clas-
sification tasks, have also been extended to various video-related applications. These
applications include action detection [187], segmentation [188], and classification
[189, 37, 190–193]. Specifically, concerning unsupervised domain adaptation (UDA)
for action recognition, a multi-level adversarial framework named TA3N is proposed
in [189]. TA3N incorporates temporal relation and attention mechanisms to align
the temporal dynamics of the video feature space. TCoN [192] employs a cross-
domain co-attention mechanism to align feature distributions between the source
and target domains. Additionally, [190] presents an approach that trains the network
on an auxiliary self-supervised task. CoMix [57] introduces a contrastive learning
framework for discriminative feature representation, while SAVA [194] addresses
domain adaptation through clip order prediction as an auxiliary task. It is worth
noting that these proposed methods primarily aim to extend existing image-based
UDA solutions to the temporal dimension, often incorporating a combination of
different approaches.

2.2.3 Domain Generalization

In the field of DG, the focus is on building models that can perform well on target
domains without the availability of target domain data. This is achieved by utilizing
knowledge from one or multiple source domains. The majority of the existing liter-
ature in this area, as for the UDA, focuses on image data methods [176, 195–200]
and can be broadly classified into three main groups: aligning source domain distri-
butions for domain-invariant representation learning [196, 198, 176], exposing the
model to domain shift during training via meta-learning [201, 202], and augmenting
data with domain synthesis [203].

Several works have explored the task of DG in the context of videos as well.
For instance, in [204], a simple episodic training strategy is proposed to mimic
the train-test domain shift during training. This strategy enhances the model’s
robustness to novel domains. In contrast, the authors of [196] extend adversarial
autoencoders by incorporating Maximum Mean Discrepancy (MMD) measures.
These measures are used to align the distributions among different video domains,
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while adversarial feature learning matches the aligned distribution to an arbitrary
prior distribution. In [205], a causal approach is introduced to generalize between
video domains. The method achieves this by training the model to recognize the same
action performed in different backgrounds, thereby promoting domain generalization.
More recently, the work presented in [206] introduces VideoDG, an Adversarial
Pyramid Network specifically designed for video generalization. VideoDG captures
local-relation, global-relation, and cross-relation features progressively, enabling
effective generalization of video features. Furthermore, in the context of domain
generalization using egocentric data, it’s important to highlight a recent development
– the creation of the Action Recognition Generalisation Over scenarios and locations
dataset, or ARGO1M [207]. This dataset contains an extensive 1.1 million video
clips gathered from the comprehensive Ego4D dataset, covering 10 scenarios and
13 locations. Research findings have demonstrated that recognition models face
significant challenges when attempting to generalize across the 10 proposed test
splits, each presenting an unseen scenario in a completely new location. This
underscores the continuously evolving landscape and complexities within domain
generalization involving egocentric data.

2.2.4 Multi-Modal Adaptation

The previously discussed methods have predominantly focused on single-modal data.
However, the combination of multiple modalities in multi-modal data introduces
new challenges. The nature of domain shift may affect different modalities in
distinct ways, particularly when they are heterogeneous. Additionally, multi-modal
approaches often take into account the temporal dimension alongside the various
modalities. Therefore, there is a need to explore techniques that can effectively adapt
to multi-modal data.

Despite the wide range of techniques for multi-modal unsupervised domain
adaptation (UDA), there are common underlying principles. Firstly, many studies
adapt existing UDA techniques developed for single-modal images to handle multi-
modal scenarios [208, 209]. This approach leverages the knowledge and insights
gained from UDA research to achieve similar results in multi-modal applications.
Adversarial-based approaches, such as MDANN [210] and AUDA [211], focus on
learning discriminative and domain adaptive features using an adversarial objective.
These approaches have demonstrated effectiveness in cross-domain emotion recogni-
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tion using audio-visual data and cross-media retrieval using images and text from
different domains.

Secondly, these approaches aim to leverage the multi-modal nature of the data
to enhance the inter-correlation between different modalities and achieve a more
robust data representation. The objective is to construct a shared representation space
that captures significant inter-modal relationships, facilitating seamless adaptation
to the target domain without relying on labeled data. Often, this second group
combines the proposed solutions with techniques from the first group, as referenced
in [37, 212, 213]. For instance, in MM-SADA [37], they extend adversarial alignment
to a self-supervised task based on modality correspondence. Co-training methods,
such as DLMM [214] and XM-UDA [215], exploit the diverse properties of different
modalities by treating the classifiers of various modalities as a set of teacher/student
models trained with a curriculum learning approach. These methods have been
applied to tasks such as event recognition using audio-visual data, fatigue detection
using EEG signals and facial keypoints, and action recognition using RGB images
and optical flow. Contrastive learning-based methods, such as STCDA [55] and
the approach described in [56], utilize the complementarity of different modalities
to regularize both cross-modal and cross-domain feature representations. They
treat each modality as a view and perform contrastive learning across modalities
and domains to align representations between source and target domains in each
modality. CIA [212] employs cross-modal interaction and generative modeling to
align cross-domain representations. Despite the ongoing research in this field, the
methods often become highly specific to particular tasks and/or modalities, lacking a
true comparison of a method designed for universal modalities (not only visual).

2.3 Learning to see from Event data

Event-based cameras, known as Dynamic Vision Sensors (DVS) [216–220], employ
a bio-inspired sensing approach that closely mimics the operations of biological
retinas. Unlike conventional cameras, which capture complete images at a fixed
rate determined by an external clock (e.g., 30 frames per second), event cameras
detect asynchronous and independent brightness changes for each pixel in the scene.
These cameras exclusively generate data when there is a change in brightness.
Consequently, the output of an event camera consists of a variable data sequence of
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digital "events" or "spikes." Each event represents a predefined magnitude change
in brightness (log intensity) occurring at a specific time t and pixel location (x,y).
Mathematically, an event tuple can be represented as E = (x,y, t, p), where x, y, t,
and p denote the pixel location, time, and polarity (1-bit) indicating a brightness
increase ("ON") or decrease ("OFF"). Each pixel stores the log intensity each time it
emits an event and continuously monitors for a significant change from this stored
value. When the change exceeds a threshold, the camera identifies an event. Event
cameras are data-driven sensors, meaning that their output depends on the amount
of motion or brightness change in the scene. As motion increases, more events are
generated per second, as each pixel adjusts its sampling rate based on the rate of
change in the monitored log intensity signal. These events are precisely timestamped
with microsecond resolution and transmitted with sub-millisecond latency, enabling
these sensors to respond quickly to visual stimuli.

Furthermore, event cameras offer several distinct advantages over standard cam-
eras. Firstly, they provide high temporal resolution by swiftly monitoring brightness
changes through analog circuitry. The read-out of events is digital, employing a 1
MHz clock, which enables the detection and timestamping of events with microsec-
ond precision. This high temporal resolution allows event cameras to capture fast
motions without suffering from motion blur, a common issue with frame-based
cameras. Moreover, event cameras exhibit low latency as each pixel operates inde-
pendently, eliminating the need for a global exposure time for the entire frame. As
soon as a change in brightness is detected, it is immediately transmitted, resulting in
minimal latency. In laboratory settings, event cameras have demonstrated latency of
around 10 µs, and in real-world applications, the latency is typically sub-millisecond.
Additionally, event cameras excel in terms of power efficiency. They transmit only
the relevant brightness changes, eliminating the transmission of redundant data. This
significantly reduces power consumption, as energy is only used to process pixels
that undergo changes. At the die level, most event cameras consume around 10 mW
of power, and there are even prototypes that achieve power consumption below 10
µW. Embedded event-camera systems, where the sensor is directly connected to a
processor, have exhibited system-level power consumption (including sensing and
processing) of 100 mW or less [31, 221, 222]. Moreover, event cameras offer a high
dynamic range (HDR) that surpasses that of high-quality frame-based cameras. With
a dynamic range exceeding 120 dB, event cameras can capture information across
a wide range of lighting conditions, from moonlight to daylight. This exceptional
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dynamic range is achieved because the photoreceptors of event camera pixels operate
on a logarithmic scale, and each pixel operates independently without the need for a
global shutter. Similar to biological retinas, event camera pixels can adapt to both
very dark and very bright stimuli, providing superior HDR capabilities.

These unique characteristics have garnered significant attention, initially within
the robotics community and subsequently in the field of computer vision. The
potential applications of event cameras are extensive, spanning various domains such
as real-time interaction systems, robotics, and wearable electronics [223], where
operating under uncontrolled lighting conditions, minimizing latency, and optimizing
power consumption are critical considerations [224]. Event cameras offer distinct
advantages over other sensing modalities in numerous scenarios. They excel in
object tracking [225, 226], surveillance and monitoring [227], and object/gesture
recognition [228, 229, 31]. Additionally, they prove beneficial for depth estimation
[230, 231], structured light 3D scanning [232], optical flow estimation [233, 234],
HDR image reconstruction [235, 236], and Simultaneous Localization and Mapping
(SLAM) [237–239]. The field of event-based vision is continuously expanding, and
as event cameras become more widely accessible, we can anticipate the emergence
of new applications, such as image deblurring [240][28] and star tracking [241, 242]
[243].

Events captured by neuromorphic cameras possess limited information when
examined in isolation. They primarily signal changes in brightness at specific spatio-
temporal coordinates. To derive meaningful predictions, computer vision algorithms
necessitate an aggregation mechanism that correlates events within a neighborhood in
space and time. Consequently, the research community has identified two prevailing
paradigms for event processing, which diverge based on their approaches to event
consumption during computation.

The first paradigm, known as event-by-event computation, involves processing
each event as it occurs. This incremental and asynchronous approach enables
the algorithm to update its output in real-time, achieving minimal reaction times.
Such algorithms often rely on an internal state that is continuously updated upon
the arrival of each event. This state represents the algorithm’s understanding of
the scene’s content and its temporal evolution. Spiking Neural Networks (SNNs)
[244] are the leading approach for neural systems that perform asynchronous spike-
based computation. These networks consist of individual neuron-like units that
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respond asynchronously to incoming spike events. They accumulate spikes from
other neurons and fire when a sufficient amount of relevant information is gathered.
The SNN’s internal memory is represented by the neurons’ membrane potential,
which is updated event-by-event as each event arrives asynchronously. SNNs have
been applied in various event-based processing tasks, such as edge detection [245,
246] and object and hand-gesture recognition [247–249]. Due to their biological
inspiration, SNNs are typically trained using unsupervised, biologically inspired
learning rules [250, 251]. However, recent studies [248, 252–254] demonstrate
that adopting hybrid approaches that combine traditional gradient-based learning
methods can lead to superior performance in SNNs.

Filtering algorithms represent another prevalent category of approaches within
the event-by-event paradigm. They are specifically designed to handle incomplete
and potentially noisy sets of observations, incorporating the concept of a continuously
updated state as new observations are received. These algorithms find applications
in various fields, including Simultaneous Localization and Mapping (SLAM) algo-
rithms [236, 255, 256], widely used in conventional computer vision approaches.
They are also utilized in noise filtering mechanisms [257, 258] and image and video
reconstruction algorithms [259, 260], particularly in converting event camera output
to grayscale. Deterministic filters have been employed for event-based artificial
neural networks [252, 261, 221, 262] to implement asynchronous convolution and
feature extraction [263, 264]. These filters take advantage of the sparse encoding
capabilities of event cameras, enabling fast operations with minimal computational
cost. Instead of processing the entire image, they focus on the local neighborhoods
surrounding incoming events.

The batch-based paradigm is the second approach, where algorithms wait for a
batch of events to arrive and process them all together, prioritizing performance over
response time. Offline processing of the event stream often involves a sliding window
approach, where the batch is constructed based on either a fixed number of events
or a specific time period for each window. Similar to the event-by-event approach,
batch-based methods may employ an internal state to extend the context beyond
the batch and integrate information from previous computations. In batch-based
approaches, the input stream is typically converted into structured representations
that provide richer information by enabling the correlation of events in space and
time. While some pre-processing mechanisms retain the asynchronous and sparse
encoding [265–268], others convert the event stream into densified representations
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[269–271]. The concept of time surfaces [263, 264] is employed by several batch-
based algorithms to extract dense representations that capture local spatio-temporal
motion footprints from each event. These time surfaces find diverse applications,
including 3D stereo reconstruction [272, 273], stereo depth estimation [274], SLAM
[265], corner detection and tracking [275–277], as well as object classification
[263, 264].

Some batch-based methods take a different approach by avoiding the creation
of dense intermediate representations and instead leveraging the sparse encoding
capabilities of event cameras. These methods treat events as vertices in a graph
that is interconnected based on local spatio-temporal neighborhoods. Graph-based
techniques have recently been utilized in motion segmentation algorithms [265], and
graph neural networks have demonstrated success in tasks like object classification
[266, 267] and action recognition [267, 268]. Another similar approach treats
event streams as 3D point clouds, where the temporal dimension replaces the depth
dimension. Deep learning networks such as PointNet [278] and PointNet++ [278]
have shown promising results when applied to small temporal windows of events in
tasks like object recognition, semantic segmentation [279], and gesture recognition
[280].

The most popular methods involve converting the event stream into dense rep-
resentations known as event frames. These representations resemble conventional
frames and can be easily integrated into conventional computer vision pipelines.
Deep learning approaches based on these grid-like encodings have been applied
to various tasks, including object classification [281, 269] and detection [282], se-
mantic segmentation [283], depth and optical flow estimation [234, 284, 285], as
well as image reconstruction [286–288]. As this thesis places a particular emphasis
on grid-like event representations, the following section will provide an in-depth
exploration of this area. Detailed information and insights will be presented to offer
a comprehensive understanding of grid-based event representations.

2.3.1 Grid-Like Event Representations

Given a stream of asynchronous events E = ei = (xi,yi, ti, pi)i = 1N , the process
of extracting a grid-like representation can be described as converting E into a
volume RE 2 RH⇥W⇥F with F features. Various representations have been proposed
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for grid-like event representations, offering different approaches to computing and
aggregating pixel features. Traditionally, grid-like representations are hand-crafted,
meaning the transformation mapping the event stream to RE is fixed and independent
of the task. However, recent works [269, 271] propose training them with the rest of
the network to learn task-specific representations.

Within the hand-crafted representation group, several methods have been devel-
oped for grid-like event representations. The event counts representation [234, 289]
focuses on aggregating event sequences based on their cardinality, without consider-
ing temporal information. On the other hand, the Surface of Active Events (SAE)
[290, 233] method preserves recent temporal information by tracking the timestamp
of the last event received at each pixel. An extension of SAE, known as time surfaces,
incorporates time-modulated kernel functions into the SAE representation. In the
Brightness Increment Image (BII) [291], polarity information is utilized, where the
pixel feature is computed by summing the polarity values of all events that occurred
at the same location. Another recent extension of SAE, proposed by Kim et al.
[292], exploits the spatial neighborhood around each pixel to suppress noisy event
contributions and quantize temporal features, effectively removing the time scale
from temporal delays. In [264] the authors propose the Histograms of Time Surfaces
(HATS), a two-channel representation format. To construct HATS, the initial event
stream grid is divided into C cells, each with dimensions K ⇥K pixels. For each
polarity p and each cell c, a grid of (2r + 1)⇥ (2r + 1) time surface histograms
hc,p is computed based on the events generated by the pixels within the cell. These
histograms are then normalized and rearranged according to their originating cell
position, resulting in two channels—one for each polarity. It is important to note
that HATS typically sacrifice temporal resolution, as the entire temporal window
is condensed into a single frame, thereby losing fine-grained temporal information.
Voxel grid representations [8] have gained substantial popularity in deep learning
applications. They serve as inputs to deep architectures for various tasks, including
optical flow, depth estimation, egomotion prediction [234, 284], object detection
[282], classification [269], and image reconstruction [287, 288, 293]. This represen-
tation, also referred to as event volume, discretizes the time domain into a traditional
image format. The voxel grid consists of a fixed number of channels, denoted by
B (where F = B), and events from the event stream are inserted into the grid using
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temporal interpolation. The resulting voxel grid can be mathematically expressed as:

RvoxE(x,y,b) = Â i = 1N pikb(x− xi)kb(y− yi)kb(b− t⇤i ), (2.1)

where b represents the channel number, t⇤i denotes the timestamps scaled into the
range [0,B−1], and kb(a) = max(0,1− |a|). zhu2019unsupervised In the second
group, which pertains to learnable representations, we find the Event Spike Tensor
(EST) [269]. This representation is designed to be end-to-end trainable and operates
similarly to a voxel grid. However, the key distinction lies in the use of a learned
kernel function K to compute the contribution of each event. The kernel function
is determined by a multi-layer perceptron (MLP) network. The computation of the
final representation is given by:

RESTE(x,y,b, p) = Âei 2 E(x,y,p)t̂i ·K
✓

t̂i −
b

B−1

◆
, (2.2)

Here, E(x,y,p) represents the set of all events with polarity p received at the specific
pixel (x,y), and t̂i = ti

tN denotes the normalized event timestamp. A more recent
contribution in this category is the MatrixLSTM representation proposed by the
authors of [281]. MatrixLSTM shares similarities with EST but introduces a novel
approach to compute task-dependent event surfaces. It employs a matrix of LSTM
cells with shared parameters. Each cell processes the temporal sequence of events
generated by a pixel (x,y), and the last output of the LSTM is utilized as the pixel
feature. Optionally, the time window can be divided into bins to increase the number
of output channels.

2.3.2 Data Scarcity Challenge in Event-Based Vision

In recent years, novel learning approaches based on standard computer vision algo-
rithms operating on event data have emerged as competitive alternatives to traditional
methods [289, 269]. However, training off-the-shelf deep learning algorithms typi-
cally relies on large amounts of data, which is still limited due to the novelty and
high cost of neuromorphic cameras. To overcome this challenge, researchers have
explored the use of event camera simulators [44], which generate reliable simulated
event data. Nevertheless, a critical research question arises from this approach: How
well do simulated data generalize to real data? Recent efforts have partially addressed
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this question in [294] and [295], where authors proposed techniques to reduce the
"sim-to-real gap" by manipulating simulator parameters at the input level during the
data simulation phase. These endeavors highlight the potential of simulated data
to mitigate the data scarcity challenge. However, the generalizability of simulated
event data remains an open research question that warrants further investigation.

The scarcity of data is particularly limiting in exploring new tasks where event
data could offer significant benefits, both in terms of the information they encode
and the unique characteristics of the event camera devices. One such context where
event data holds immense potential is wearable computing, where the low-power,
high temporal resolution, and asynchronous nature of event cameras align well with
the requirements of wearable devices. However, collecting a comprehensive dataset
for such new tasks can be challenging and time-consuming.

Therefore, addressing the lack of data is crucial not only for training deep learning
models but also for exploring new applications where event data can have a significant
impact. This limitation motivates the development of innovative techniques, such as
data augmentation methods [296–299], transfer learning strategies [294, 292], and
domain adaptation approaches [300, 301, 62], to effectively utilize limited event data
and unlock the full potential of event-based vision in various domains, including
wearable computing.

2.4 Dataset

We introduce two distinct sets of datasets: one dedicated to object recognition within
the field of robotics, and another specifically designed for action recognition tasks,
with a strong emphasis on egocentric vision. Although these groups vary in the
modalities they encompass, they both offer valuable resources for validating and
evaluating our multi-modal solutions. In the following sections, we offer comprehen-
sive descriptions of each dataset, emphasizing the included modalities, annotations,
and the specific tasks they cater to.
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Fig. 2.1 Samples from the RGB-D Object dataset [1], showcasing two modalities: RGB
(top) and depth images (bottom). The data has been processed according to the procedure
outlined in [5]. The depth information is represented using surface normals, employing the
best non-learned colorization method currently available.

2.4.1 Robotics Vision Datasets

We provide a detailed description of the robotic vision datasets employed in our
validation process. These datasets serve as valuable resources for training, testing,
and benchmarking the performance of algorithms in real-world robotic scenarios.
By utilizing these datasets, we can quantitatively evaluate the performance of our
proposed approaches in terms of accuracy and robustness. Additionally, the use
of standardized datasets allows for fair comparisons with existing state-of-the-art
methods in the field. This ensures that our evaluation results are reliable, reproducible,
and relevant to the broader research community.

ROD. The RGB-D Object dataset [1] consists of 41,877 images representing 300
objects from 51 categories, including fruit, vegetables, tools, and containers as
shown in Figure 2.1. Each object is recorded on a turn-table with the RGB-D camera
placed at an approximately one-meter distance at 30◦, 45◦, and 60◦ angle above the
horizon. This dataset has become a widely used benchmark for analyzing methods
of RGB-D object recognition. For the evaluation, we use the standard experimental
protocol defined in [67], where ten training/test splits are designed such that one
object instance per class is excluded from the training set. The reported results show
the average accuracy across all splits.

JHUIT-50. The RGB-D image dataset [6] used in this study comprises 14,698
images of 50 common workshop tools, including clamps and screw drivers, as shown
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Fig. 2.2 Samples from the RGB-D image dataset [6] used in this study. The dataset comprises
images of workshop tools, including clamps and screwdrivers.

in Figure 2.2. Despite its small number of object classes, this dataset presents a
challenging task for instance recognition, as the objects are highly similar to each
other. For the evaluation, we adopt the experimental protocol defined in [6], where
the training data are collected from fixed viewing angles, while the test data are
collected by freely moving the camera around the object.

Fig. 2.3 Samples from the Object Clutter Indoor (OCID) dataset, showcasing two modalities:
RGB (top) and depth images (bottom). The data has been processed according to the
procedure outlined in [5]. The depth information is represented using surface normals,
employing the best non-learned colorization method currently available.

OCID. The Object Clutter Indoor (OCID) dataset consists of 96 cluttered scenes
that depict a variety of common objects, organized into three subsets: ARID20,
ARID10, and YCB10. The ARID20 and ARID10 subsets contain scenes with up to
20 and 10 objects, respectively, from the Autonomous Robot Indoor Dataset [302],
while the YCB10 subset contains scenes with up to 10 objects from the Yale-CMU-
Berkeley object and model set [303]. Each scene is created by adding one object
at a time and capturing new frames with two ASUS-PRO cameras positioned at
different heights. Scene variation is further introduced by changing the support plane
and background texture. Since OCID was originally designed to evaluate object
segmentation methods in cluttered scenes, semantic labels are not provided by the
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authors. Therefore, we adapt the dataset for a classification task by cropping out the
objects from each frame, annotating them with semantic labels similar to the RGB-D
Object Dataset, as we can see in Figure 2.3, and filtering out classes with fewer than
20 images. We use the crops from the ARID20 subset for training and the crops from
the ARID10 subset for testing, resulting in a total of 3,939 RGB-D images capturing
49 unique objects. The original datasets, as well as the crops and annotations used
in this paper, are available at https://www.acin.tuwien.ac.at/en/vision-for-robotics/
software-tools/object-clutter-indoor-dataset/.

Fig. 2.4 Samples from the synthetic dataset synROD [3] and its real counterpart RGB-D
Object dataset (ROD) [1]. The top two lines depict RGB and depth images from synROD,
while the bottom two lines showcase the corresponding RGB and depth images from ROD,
emphasizing the domain shift from synthetic to real data. The data has been processed
according to the procedure outlined in [5]. The depth information is represented using
surface normals, employing the best non-learned colorization method currently available.

synROD. The synROD dataset is a synthetic dataset that was created using object
models from the same categories as the ROD dataset, some samples are shown in
Figure 2.4. To enable comparison between the two datasets, we randomly select and
extract approximately 40,000 object crops from synROD to match the dimensions of
ROD. In our experiments, we evaluate domain adaptation methods by considering
synROD as the synthetic source dataset and ROD as the real target dataset.

https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/object-clutter-indoor-dataset/
https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/object-clutter-indoor-dataset/
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Fig. 2.5 Samples from the Homebrewed dataset [7], synthetic (synHB) and real counterpart
(realHB). The top two lines display RGB and depth images from synHB, while the bottom
two lines show the corresponding RGB and depth images from realHB. The data has been
processed following the procedure described in [5]. Depth information is encoded using
surface normals, utilizing the state-of-the-art non-learned colorization method for enhanced
visualization.

HomebrewedDB. The Homebrewed (HB) dataset [7]includes 17 toy, 8 household,
and 8 industry-relevant objects, for a total of 33 instances. It provides high-quality
object models reconstructed using a 3D scanner and 13 validation sequences, each
of which consists of three to eight objects placed on a large turntable and recorded
with two RGB-D cameras at 30◦ and 45◦ angles above the horizon. To adapt the
HB dataset for the instance recognition task, we extract object crops from all the
validation sequences, resulting in 22,935 RGB-D samples, which we refer to as
realHB. We also create a synthetic version of the HB dataset, synHB, by rendering
the reconstructed object models using the same procedure as for synROD (described
above), some samples are depicted in Figure 2.5. To ensure comparability between
the two datasets, we randomly select and extract approximately 25,000 object crops
from synHB to match the dimensions of realHB. In our experiments, we evaluate
unsupervised domain adaptation (UDA) methods by considering synHB as the
synthetic source dataset and realHB as the real target dataset.
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(a) RGB image (b) Real events (c) Simulated events

Fig. 2.6 Real and simulated events (voxel grid [8]) on a Caltech101 sample.

N-Caltech101. The Neuromorphic Caltech101 (N-Caltech101) dataset [23] is an
event-based conversion of the Caltech-101 dataset [304].Figure 2.6 showcases a
few examples from this dataset. Samples from N-Caltech101 were obtained by
recording the original RGB images using an event-based camera placed in front of a
still monitor displaying the images. An extension of N-Caltech101, known as the
simulated N-Caltech101, was recently proposed in [294]. It was created using the
ESIM simulator [44] and replicates the setup used to record the real samples. We
use the simulated N-Caltech101 as the source data and the real N-Caltech101 as the
target data, and follow the train and test splits provided in the EST codebase [269],
and we report in our experiments the top-1 accuracy as in [294].

(a) RGB (b) Events (c) Syn RGB (d) Syn Events

Fig. 2.7 Samples from the ROD [1] dataset (a)-(b), and from the synthetic version synROD
[3] (c)-(d). Event sequences are displayed using a voxel-grid [8] representation.

N-ROD. The N-ROD dataset is proposed in this work [305] and it is an extension
of the popular RGB-D Object Dataset (ROD) [1]. It extends the real part (ROD) as
well as the synthetic part presented above (synROD). The N-ROD dataset builds upon
these components by incorporating real and simulated event recordings extracted
from ROD samples, along with simulated events derived from synROD’s synthetic
images, few samples are reported in Figure 2.7. In this thesis, we specifically focus
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on the simulated part of ROD. By isolating the experiments to analyze only the
simulated data, we concentrate on the problem of transferring knowledge from
synthetic data to real data.

2.4.2 Action Recognition Datasets

Fig. 2.8 Samples from the Georgia Tech Egocentric Activities (GTEA) dataset [9]. The
videos are captured using a GoPro camera mounted on a baseball cap, which is worn by the
subject. The camera is positioned to record the visual field in front of the subject’s eyes,
providing a first-person perspective.

In this subsection, we present details about the second group of datasets, which
are specifically designed for action recognition tasks with a focus on egocentric
vision. These datasets aim to capture human actions, and while not all of them are
exclusively first-person, the majority incorporate egocentric videos. The modalities
included in these datasets typically consist of RGB images, and additional modalities
such as optical flow or audio may also be available. The availability of these datasets
allows us to effectively evaluate and validate our multi-modal solutions for accurate
action recognition, particularly in the context of egocentric vision.

GTEA-61. The Georgia Tech Egocentric Activities (GTEA) dataset [9] comprises
28 videos of four individuals performing seven daily activities, such as preparing
sandwiches, tea, or coffee, some examples are depicted in Figure 2.8. Each video
spans a one-minute recording and features approximately 20 actions. The videos
were captured using a GoPro camera fixed to a baseball cap, positioned to record the
area in front of the subject’s eyes, resulting in a sequence of high-definition frames
with a resolution of 1280x720, recorded at 30 FPS and extracted at a rate of 15 FPS,
totaling 31,222 frames. To ensure comparability, we report results obtained using
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a fixed split (with subject S2 as the evaluation subject) and a leave-one-subject-out
cross-validation setting.

Fig. 2.9 Samples from the extended GTEA Gaze+ dataset [10]. The dataset comprises 28
hours of cooking activities including 106 fine-grained action classes with an average duration
of 3.2 seconds.

EGTEA Gaze+. The Extended GTEA Gaze+ dataset [10] is a comprehensive
collection of first-person view (FPV) actions and gaze tracking data, which has been
collected through high-definition videos accompanied by audio recordings. The
dataset comprises 28 hours of cooking activities from 86 unique sessions performed
by 32 subjects and includes 106 fine-grained action classes with an average duration
of 3.2 seconds. The dataset provides frame-level action annotations, pixel-level hand
masks at sampled frames, and gaze tracking data captured at 30Hz. With a total of
10325 instances of fine-grained actions, such as "Cutting bell pepper" and "Pouring
condiment into salad," and 15,176 hand masks from 13,847 frames. Figure 2.9
showcases a few examples from this dataset. In our experiments, we present results
for each of the three provided train-test splits as well as the average performance
across all splits.

Fig. 2.10 Samples from the First-Person Hand Action (FPHA) benchmark dataset [11].
Frames capturing hand actions recorded in three distinct scenarios are shown.

FPHA. The First-Person Hand Action (FPHA) benchmark dataset [11] contains
1,175 action videos divided into 45 distinct action categories, which have been
grouped into three scenarios: kitchen (25), office (12), and social (8). The examples
shown in the Figure 2.10 provide a visual representation of the actions performed
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in these different scenarios. The videos were captured by 6 actors and comprise
a total of 105,459 RGB-D frames that are annotated with precise hand pose and
action category information. The action sequences in the dataset exhibit substantial
inter-subject and intra-subject variability with regard to style, speed, scale, and
viewpoint. The action categories in the dataset demonstrate a broad range of hand
configurations, displaying diversity in both hand pose and action space, in line with
the taxonomy presented in [306]. Each object in the dataset is associated with at least
one action (e.g., ‘pen-write’) and a maximum of four (e.g., ‘sponge-wash’, ‘scratch’,
‘squeeze’, and ‘flip’). These 45 hand actions were recorded in diverse settings and are
representative of a broad spectrum of activities performed in daily life. To evaluate
the dataset, we adopt the train/test splits proposed in [11], ensuring the consistency
and comparability of the results to those obtained by other researchers.

Fig. 2.11 Samples from the EPIC-Kitchens-55 (EK55) dataset [2]. This dataset is a com-
prehensive and diverse collection of egocentric videos of fine-grained actions captured in
the kitchens of 32 participants from 10 different countries. The videos are recorded using
head-mounted cameras and are of Full HD quality.

EPIC-Kitchens-55. The EPIC-Kitchens-55 (EK55) dataset [2] is a comprehensive
and varied collection of egocentric video recordings collected in the kitchens of 32
participants from 10 different countries. Figure 2.11 provides a glimpse of a few
frames showcasing various actions within the dataset. The footage was captured using
a head-mounted camera and is of Full HD quality, with a frame rate of 60 frames
per second, yielding a total of 55 hours of recording time and 11.5 million frames.
The dataset includes 39,594 annotated action segments and 454,255 object-bounding
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boxes around objects of interaction, along with annotations of 125 verb classes
and 331 noun classes. The EK55 dataset has been evaluated using two different
protocols. The first protocol follows the experimental protocol proposed in [36] by
defining a custom training set (participants 1-29) and validation set (participants
30-31) to mirror the "unseen" kitchen split of the EK challenge. The second protocol,
proposed in [37], involves selecting the three largest kitchens (based on the number
of training action instances) to form separate domains referred to as D1, D2, and
D3, corresponding to P01, P22, and P08, respectively. In this analysis, we focus on
the performance of the 8 largest action classes, namely ‘put’, ‘take’, ‘open’, ‘close’,
‘wash’, ‘cut’, ‘mix’, and ‘pour’, which constitute 80% of the training action segments
in these domains. This approach ensures a sufficient number of examples per domain
and class without balancing the training set.

Fig. 2.12 The first row showcases samples from the EPIC-Kitchen-55 (EK55) dataset [12],
while the second row features samples from the extended version, EPIC-Kitchen-100 (EK100)
dataset [13]. EK100 expands upon EK55 with 100 hours of video, 20 million frames,
and 90,000 actions across 700 videos. In our study, we focus on the challenging task of
unsupervised domain adaptation, which involves adapting from a labeled source domain
(videos recorded in 2018) to an unlabeled target domain (newly collected videos). The
domain shift arises from changes in location, hardware, and temporal offsets.

EPIC-Kitchens-100. The EPIC-Kitchen-100 (EK100) dataset [13] is an extended
version of the EK55 dataset, which consists of 100 hours of video, 20 million frames,
and 90,000 actions across 700 videos. The videos were recorded using head-mounted
cameras and depict unscripted activities in 45 environments. The new version of
the dataset, EK100, is characterized by dense and comprehensive annotations of
fine-grained actions, which were obtained through a new annotation pipeline. The
dataset presents six challenges in the field of action recognition and action detection,
including full and weak supervision, action anticipation, cross-modal retrieval from
captions, and unsupervised domain adaptation. In our work, we focus on the last
challenge, unsupervised domain adaptation, which involves utilizing a labeled source
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domain and adapting to an unlabeled target domain. The source domain consists of
videos recorded in 2018, while the target domain consists of newly collected videos
recorded two years later. The main causes of the domain shift include changes in
location, hardware, and temporal offsets (as shown in Figure 2.12, which make this
task particularly challenging.

Fig. 2.13 Samples from the HMDB51 and UCF101 datasets [14, 15] . The first row showcases
examples of different actions from the HMDB51 dataset, while the second row displays the
corresponding action samples from the UCF101 dataset.

UCF and HMDB. The UCF101 [14] and HMDB51 [15] datasets are widely used
benchmarks for human action recognition tasks. UCF101 consists of 101 action
classes, containing over 13,000 video clips and 27 hours of video data. The dataset
consists of user-uploaded videos with realistic conditions, including camera motion
and cluttered backgrounds. It is an extension of the UCF50 dataset [307], which
included 50 action classes. On the other hand, HMDB51 comprises 51 distinct action
categories, with each category containing at least 101 video clips, resulting in a total
of 6,766 clips. The dataset covers a wide range of sources and provides additional
information such as camera viewpoint, camera motion, video quality, and the number
of actors involved in the action. In the context of cross-domain analysis, a protocol
described in [189] is followed. This protocol focuses on the relevant and overlapping
categories between UCF101 and HMDB51, resulting in a subset of 12 common
categories that are used for analysis and evaluation process.



Chapter 3

Multi-Modal Learning for Robotics
Vision: Object Recognition

This chapter explores the field of object recognition in robotic vision. We thoroughly
examine three key aspects of this task. Firstly, we introduce a novel method for
multi-modal fusion that effectively leverages the complementary nature of different
modalities, resulting in robust object recognition. In the second part, we address the
challenge of data scarcity. We propose a unique technique for multi-modal adaptation
that mitigates the limited availability of labeled data by allowing the utilization of
synthetic data to train a model. This approach enhances the model’s generalization
capabilities and reduces its reliance on real annotated data. Lastly, we explore the
cutting-edge sensor known as an event camera. We investigate its potential in object
recognition tasks and evaluate its performance compared to traditional visual sensors.
By exploring these areas, this chapter aims to contribute to the advancement of
robotic vision by introducing multi-modal object recognition techniques.
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3.1 Multi-Modal Fusion − RCFusion

Despite the significant progress made in the field of robotics vision, there is still
a challenge in effectively leveraging both RGB and depth data in a synergistic
manner to enhance object recognition. In this section, we describe a novel end-
to-end architecture for RGB-D object recognition, which we refer to as Recurrent
Convolutional Fusion (RCFusion). Our architecture combines RGB and depth
information at various abstraction levels to create concise, highly discriminatory
multi-modal features. This distinguishes our approach from prior research that
primarily focuses on adapting depth images to reuse pre-trained RGB CNNs, utilizing
colorization techniques. Experimental results were obtained using two widely used
datasets, the RGB-D Object Dataset and JHUIT-50. These results demonstrate that
RCFusion outperforms state-of-the-art techniques in both object categorization and
instance recognition tasks. Further experiments on the more challenging Object
Clutter Indoor Dataset confirm the validity of our method in cluttered and occluded
environments.

Human environments are comprised of objects, and the successful completion
of daily activities necessitates a comprehensive understanding and manipulation of
these objects. Robotic systems designed to assist in such environments must exhibit
exceptional object recognition capabilities. This recognition represents the founda-
tion for higher-level tasks that critically depend on an accurate visual representation
of the environment. While object recognition techniques utilizing standard RGB
images have produced noteworthy results, these methods suffer from the limitations
arising from projecting the three-dimensional world into a two-dimensional image
plane. The integration of range imaging technologies in RGB-D (Kinect-style)
cameras has the potential to address these limitations by providing a depth image
that conveys information regarding the distance between the camera and the scene.
The widespread adoption of RGB-D cameras in robotics is attributed to their af-
fordability and the richness of visual information they provide. The RGB image
holds information related to color, texture, and appearance, while the depth image
comprises additional geometric information and demonstrates greater resilience to
lighting and color variations. Since RGB-D cameras are already deployed in most
service robots, improving the performance of robot perceptual systems through better
integration of RGB and depth information would constitute a “free lunch". Follow-
ing the groundbreaking work of Krizhevsky et al. [308], deep convolutional neural
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Fig. 3.1 High-level scheme of RCFusion. The blue boxes are instantiated with convolutional
neural networks and the thick arrows represent multiple feature vectors extracted from
different layers of a CNN.

networks (CNNs) rapidly became the dominant approach in the field of computer
vision, surpassing previous state-of-the-art results across a broad range of tasks. The
trend of utilizing CNNs in RGB-D object recognition was similarly observed, with
several algorithms (e.g. [309, 5, 310]) relying on features learned from CNNs rather
than the conventional hand-crafted features. The typical approach consists of two
separate CNN streams, one operating on the RGB image and the other on the depth
image, serving as feature extractors. However, the absence of a large-scale depth
image dataset for training the depth CNN necessitated the development of alterna-
tive methods. A significant amount of effort has been invested in coloring depth
images to enable the use of CNNs pre-trained on RGB images [42]. Nonetheless,
the strategies for combining the features extracted from both modalities have been
neglected. Many methods simply extract features from a specific layer of both CNNs
and combine them through a fully connected or max pooling layer. Our contribution
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sheds light on the suboptimality of existing strategies in fusing RGB and depth
information due to two underlying assumptions. Firstly, the assumption is that the
selected layer always represents the optimal abstraction level for the fusion process.
Secondly, the assumption that the full range of information from both modalities is
not exploited during the fusion process.

In this section, we introduce the novel end-to-end architecture for RGB-D object
recognition called recurrent convolutional fusion (RCFusion). Our method involves
the extraction of features from multiple hidden layers of CNNs for both the RGB
and depth modalities. Subsequently, the extracted features are fused via a Recurrent
Neural Network (RNN), as depicted in Figure 3.1. Our hypothesis is that the fusion
of features from multiple levels of abstraction from both modalities will provide
more robust and discriminative information for object recognition. Although RNNs
are commonly used for processing sequential data, they have also been demonstrated
to be highly effective information compression mechanisms [311]. Additionally,
RNNs are able to effectively scale in terms of parameters with regard to the number
of extracted features.

The results of our experiments demonstrate that the proposed RCFusion archi-
tecture outperforms the baseline approach, which uses a fully connected layer to
combine the features from both modalities. The proposed method establishes new
state-of-the-art results on two standard object recognition benchmarks: the RGB-D
Object Dataset [16] and JHUIT-50 [6]. In addition, to further consolidate the effec-
tiveness of our method, we modify the Object Clutter Indoor Dataset (OCID)[17],
an object segmentation dataset, for the instance recognition task. OCID was recently
introduced to provide scenes with high levels of clutter and occlusion, which pose
significant challenges for robotic visual perception systems[302]. Despite the limited
amount of training data, our method proves to be effective even on this challenging
dataset.

In summary, our contributions are:

• A new architecture for RGB-D object recognition that fuses RGB and depth
features from multiple levels of abstraction in a sequential manner.

• State-of-the-art performance on two popular RGB-D object recognition bench-
mark datasets.

• Introduction of a new benchmark with robotic-oriented challenges.
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Fig. 3.2 The architecture of Recurrent Convolutional Fusion (RCFusion). It consists of two
parallel streams of Convolutional Neural Networks (CNNs) that process RGB and depth
images respectively. The features extracted from the corresponding hidden layers of the two
CNNs are then projected into a shared representation space, concatenated, and sequentially
fed into a Recurrent Neural Network (RNN) for synthesis. The final multi-modal features
produced by the RNN are then utilized by a classifier to predict the label of the input data.

The rest of the section is organized as follows. Section 3.1.1 describes the
proposed RCFusion method in detail. Section 3.1.2 provides the experimental results
to support the effectiveness of RCFusion, and Section 3.1.3 summarizes the findings
and highlights the implications of the study.

3.1.1 Recurrent Convolutional Fusion

The proposed RGB-D Object Recognition approach, referred to as RCFusion, is
depicted in Figure 3.2. This multi-modal architecture consists of three key stages:

1. multi-Level feature extraction: the system comprises two convolutional neural
networks - RGB-CNN and Depth-CNN, which are used to process RGB and
depth data, respectively. Both of these networks share the same underlying
architecture and are employed to extract features from different levels of the
network.

2. feature projection and concatenation: the features extracted from each level
of RGB-CNN and Depth-CNN are transformed using projection blocks and
concatenated to generate the corresponding RGB-D feature.
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3. recurrent multi-modal fusion: the RGB-D features obtained from the previous
stage are fed sequentially to an RNN that generates a compact and descriptive
multi-modal feature.

Finally, the output of the RNN is utilized by a softmax classifier to predict the
object label. The network can be trained in an end-to-end manner using standard
backpropagation algorithms and cross-entropy loss based on stochastic gradient
descent. The following sections will provide a more in-depth explanation of the
aforementioned aspects of RCFusion.

Multi-level Feature Extraction CNNs are often used in computer vision to pro-
cess input data using sets of filters learned from large amounts of data. These filters
represent progressively higher levels of abstraction, from edges and textures to pat-
terns, parts, and objects [312]. In RGB-D object recognition, it is common practice
to combine the output of one of the last layers of the RGB-CNN and Depth-CNN,
typically the last layer before the classifier, and assume that this layer represents
the appropriate level of abstraction to combine the two modalities. However, we
argue that it is possible to remove this assumption by combining RGB and depth
information at multiple layers across the CNNs, and use them all to generate a highly
discriminative RGB-D feature.

Let xrgb 2 Xrgb denote the RGB input images, xd 2 Xd the depth input images,
and y 2 Y the labels, where Xrgb, Xd , and Y are the RGB/depth input and label spaces.
We also denote the output of layer i of RGB-CNN and Depth-CNN as f rgb

i and f d
i ,

respectively, with i = 1, ...,L and L being the total number of layers in each CNN.
Notably, visualization of learned filters has shown that for a given task, a chosen
CNN architecture consistently generates features with the same level of abstraction
from a reference layer [312]. For example, the AlexNet architecture [308] learns
various types of Gabor filters in the first convolutional layer. To ensure the same level
of abstraction at corresponding layers, we, therefore, employ the same architecture
for both RGB- and Depth-CNNs.

Feature Projection and Concatenation Combining features from different hidden
layers of a network presents a significant challenge due to the lack of a one-to-one
correspondence between elements of the different feature vectors. Specifically, the
feature vectors f ⇤i and f ⇤j , where i 6= j and ⇤ represents either rgb or d, generally have
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Fig. 3.3 Projection block. It converts the input feature f ⇤i into a projected feature p⇤i . The
block consists of a convolutional layer conv(k⇥k)⇥D with D filters of size (k⇥k), followed
by a batch normalization layer (BN) and an activation layer with ReLU non-linearity (ReLU).

different dimensions and belong to distinct feature spaces, Fi and F j, respectively.
In order to enable comparison between features obtained from different levels of
abstraction, we project them into a common space F̄ using the projection block Gi(.)

defined by

p⇤i = G⇤
i ( f ⇤i ) s.t. p⇤i 2 F̄ (3.1)

Here, Gi(.) is a non-linear transformation that maps a volumetric input into a
vector of dimensions (1⇥D) using two convolutional layers with batch normalization
and ReLU non-linearity, as well as a global max pooling layer, as illustrated in Figure
3.3. The projected RGB and depth features of each layer i are concatenated to form
pi =

⇥
prgb

i ; pd
i
⇤
.

Recurrent Multi-Modal Fusion In order to create a compact multi-modal repre-
sentation, the set of projected features

%
p1, . . . , pL

 
is sequentially fed to an RNN,

which aligns the positions of the sequence elements to steps in computation time and
generates a sequence of hidden states hi as a function of the previous hidden state hi−1

and the current input pi. Specifically, we adopt the gated recurrent unit (GRU)[313]
as the RNN, which is a variation of the long-short term memory (LSTM)[314] that
requires 25% fewer parameters. GRU has been shown to retain information even in
extremely long sequences with thousands of elements [311].

GRU computes the nth element of the hidden state at step i as an adaptive linear
interpolation:

hn
i = (1− zn

i )h
n
i−1 + zn

i h̃n
i , (3.2)
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where zn
i is called update gate and is computed as

zn
i = sigmoid(qz pi + gzhi)

n, (3.3)

where sigmoid(.) is the sigmoid function and qz and gz are the trainable parameters
of the gate. Essentially, the update gate determines how much the unit updates its
content. The candidate activation h̃i in Equation 3.2 is computed as

h̃n
i = tanh(qh pi + gh(ri (hi−1))

n, (3.4)

where ri is the reset gate, qh and gh are trainable parameters and ( is the element-wise
multiplication operation. Similarly to zn

i , the reset gate rn
i is computed as

rn
i = sigmoid(qr pi + grhi)

n, (3.5)

where qr and gr are the trainable parameters of the gate. The purpose of the reset
gate is to reset the hidden state of the network to the current input pi when rn

i
assumes values close to zero. This double-gate mechanism is designed to ensure
that the hidden state captures the most relevant information of the input sequence%

p1, . . . , pL
 

. in a progressive manner.

The RNN, together with a softmax classifier, serves as a parametric function
that models a probability distribution over a given sequence, by learning to predict
the class label given the sequence of projected RGB-D features. Specifically, the
prediction of the jth class of the multinomial distribution of K object categories can
be obtained as follows

ŷ j = Pr(y j = 1|p1, ..., p1) =
exp(hT

L q j
c )

ÂK
k=1 exp(hT

L q k
c )
, (3.6)

where q indicates the matrix of trainable parameters of the classifier and q j(/k)

represents its jth(/kth) row, and T represents the transpose operation.

The use of a recurrent neural network for this task serves two purposes in our
approach. Firstly, the hidden state of the network acts as a memory unit and ef-
fectively summarizes the most relevant information from the different levels of
abstraction. Secondly, the number of trainable parameters in the network is inde-
pendent of the length of the input sequence, unlike a more traditional choice, such
as a fully connected layer, where the number of parameters grows linearly with the
sequence length. While RNNs are commonly used for processing time series data,
previous works [315, 316] have demonstrated their effectiveness in compressing and
combining information from various sources.
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3.1.2 Experiments

In this section, we present an evaluation of RCFusion using three datasets: RGB-D
Object Dataset, JHUIT-50, and OCID, which were previously introduced in section
2.4.1. We begin by disclosing the experimental protocol that was employed and
subsequently describing the network training settings. We then proceed to compare
the performance of our method with that of existing approaches. Finally, an ablation
study is conducted to ascertain the contributions of individual components of our
method.

Architecture The architecture of RCFusion comprises three principal components:
RGB-/Depth-CNN, projection blocks, and RNN, each with unique design choices.

RGB-/Depth-CNN: To ensure computational and memory efficiency, we employ
a CNN architecture with a relatively small number of parameters. We adopt ResNet-
18, which is the most compact version proposed by He et al. [317], in accordance
with the commonly used residual network architecture. ResNet-18 comprises 18
convolutional layers organized into five residual blocks, with approximately 40,000
parameters. We extract features after each of the network’s two skip connections
per residual block, beginning from the second block, resulting in L = 8 extracted
features per network. An implementation of pre-trained ResNet-18 on ImageNet is
available in [318].

Projection blocks: The projection blocks, illustrated in Figure 3.3, are designed
to exploit firstly the spatial dimensions of the input, width and height, using the
first convolutional layer with D = 512 filters of size (7⇥7). Then, with the second
convolutional layer with D = 512 filters of size (1⇥1) focuses on the depth. Finally,
using global max pooling, the maximum of each depth slice is computed. Among the
various configurations we attempted, this particular instantiation of the projection
blocks yielded the best performance.

RNN: To balance the capacity of the network with the limited number of
parameters, we adopt the commonly used GRU [313]. In our experiments, we
employ a single GRU layer with M = 50 memory neurons to process the sequence
of projected vectors. GRU can be implemented using various deep learning libraries,
including TensorFlow.
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Fig. 3.4 Per class accuracy (%) of RCFusion on RGB-D Object Dataset [16].

Training RCFusion model is trained using the RMSprop optimizer with a batch
size of 64, a learning rate of 0.001, momentum of 0.9, weight decay of 0.0002, and
a maximum norm of 4. We set the projection depth parameter to D = 512 and the
number of memory neurons to M = 50 through a grid search. The weights of the two
ResNet-18 networks used for the RGB- and Depth-CNN are initialized with values
obtained through pre-training on ImageNet, while the rest of the network is initialized
using the Xavier initialization method in a multi-start fashion. During training, all
parameters of the network, including those that define the RGB- and Depth-CNN,
are updated. The input to the network is synchronized RGB and depth images, pre-
processed according to the procedure described in [5]. Depth information is encoded
using surface normals, which is currently the best non-learned colorization method
available. To compensate for the small training set sizes of JHUIT-50 and OCID,
we employ simple data augmentation techniques, including scaling, horizontal and
vertical flipping, and 90 degree rotation.

Results To demonstrate the effectiveness of our method, we conduct a thorough
evaluation on multiple benchmark datasets. Specifically, we first compare the perfor-
mance of RCFusion with state-of-the-art methods on two commonly used datasets,
RGB-D Object Dataset and JHUIT-50 We then challenge the robustness of our
method on a more difficult dataset, OCID, and conduct an ablation study to highlight
the contribution of each component of our approach.
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RGB-D OBJECT DATASET

Method RGB Depth RGB-D

LMMMDL [319] 74.6±2.9 75.5.8±2.7 86.9±2.6
FusionNet [309] 84.1±2.7 83.8±2.7 91.3±1.4
CNN w/ FV [320] 90.8±1.6 81.8±2.4 93.8±0.9
DepthNet [310] 88.4±1.8 83.8±2.0 92.2±1.3
CIMDL [321] 87.3±1.6 84.2±1.7 92.4±1.8
FusionNet enhenced [5] 89.5±1.9 84.5±2.9 93.5±1.1
DECO [33] 89.5±1.6 84.0±2.3 93.6±0.9
RCFusion 89.6±2.2 85.9±2.7 94.4±1.4

Table 3.1 Top-1 accuracy (%) achieved by various object recognition methods on RGB-D
Object Dataset [16]. The highest result is highlighted in bold, while other notable results are
underlined.

JHUIT-50

Method RGB Depth RGB-D
DepthNet [310] 88.0 55.0 90.3
FusionNet enhanced [5] 94.7 56.0 95.3
DECO [33] 94.7 61.8 95.7
RCFusion 95.1 59.8 97.7

Table 3.2 Top-1 accuracy (%) achieved by various object recognition methods on the JHUIT-
50 dataset [6]. The highest result is highlighted in bold, while other notable results are
underlined.

Benchmark: In Table 3.1, we present the results on RGB-D Object Dataset for
the object categorization task, where we train a classifier on the final features of the
RGB- and Depth-CNN for each modality. Our method achieves the best multi-modal
RGB-D results, outperforming all the competing approaches. Notably, the single
modality predictions demonstrate that ResNet-18 is a valid trade-off between a small
number of parameters and high accuracy. On the RGB modality, ResNet-18 achieves
the second-highest accuracy, only behind [320], who use a VGG network [322] with
considerably more parameters. For the depth modality, ResNet-18 provides higher
accuracy than all the competing methods, demonstrating the effectiveness of our
approach.
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MISCLASSIFICATION CASES

Reference class RGB Depth RGB-D
calculator keyboard hand towel hand towel
keyboard calculator binder calculator
pear apple apple apple
potato lime lime lime

Table 3.3 Analysis of the most frequently misclassified classes in RGB, depth, and RGB-D
modalities with respect to selected reference classes.

To gain a deeper understanding of the performance of RCFusion, we examine the
accuracy of the model on individual categories in RGB-D Object Dataset. Figure 3.4
reveals that our multi-modal approach either matches or outperforms the results of
single modalities for nearly all categories. For categories where the accuracy of one
modality is extremely low, such as "lightbulb," "orange," or "bowl," RCFusion learns
to rely on the other modality. An insightful analysis of the method’s operation is
given by comparing, for each category, which other categories cause misclassification.
Table 3.3 displays, for a few sample classes, the most frequently misclassified class in
the RGB, depth, and RGB-D cases. When an object class is confused with different
classes in the individual modalities, as in the case of "keyboard" and "calculator," the
RGB-D modality can perform better. However, when an object class is confused with
the same classes in both RGB and depth modalities, such as "pear" and "potato," the
RGB-D modality’s performance may be slightly worse than that of single modalities.
This finding reveals a weakness of the method that we plan to investigate further in
the future.

Table 3.2 presents the results of RCFusion compared to other approaches on the
JHUIT-50 dataset for the instance recognition task. The performance of ResNet-18
is again remarkable for the individual modalities. For the multi-modal RGB-D
classification, our method significantly outperforms all the existing approaches,
including the best performing method, DECO [33], by a margin of 2%. In conclusion,
RCFusion sets new state-of-the-art results on the two most popular datasets for RGB-
D object recognition, demonstrating its ability to perform well across different
datasets and tasks.
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Fig. 3.5 The figure presents a t-SNE visualization of features extracted from three modalities
(RGB, Depth, and RGB-D) in object recognition.

Challenge: To assess the effectiveness of our approach in challenging scenarios,
we present experiments on the OCID dataset. This dataset was specifically designed
to include heavily cluttered and occluded object scenes (as shown in Figure 3.6),
making it particularly relevant to evaluate algorithms for RGB-D object recognition.
Due to the ambiguous views presented in clutter, using multiple modalities is essential
to improve recognition performance. In addition, the small training set size of 2,428
cropped images poses an additional challenge. For the instance recognition task,
we report the results on OCID in Table 3.4, alongside the performance of DECO,
a method that demonstrated competitive performance on RGB-D Object Dataset
and JHUIT-50. The results on the single modalities reveal that depth data alone
is not informative enough for this task, with an accuracy gap of 50% compared
to the RGB modality. However, our proposed method effectively leverages both
modalities, achieving a 6.1% improvement in accuracy over the RGB modality alone.
In contrast, DECO’s performance remains the same as the RGB modality, even in
the multi-modal case, due to its simplistic modality fusion strategy, which selects the
class with the highest probability among the RGB and depth predictions. Our more
complex fusion strategy in RCFusion leads to a significant improvement of over
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Fig. 3.6 Object crops with their respective instance labels obtained from the Object Cluttered
Indoor Dataset [17]. The figure shows a selection of examples from the dataset, highlighting
the diversity of objects and scenes included in the dataset.

10% in accuracy compared to DECO, highlighting the superiority of our approach in
challenging scenarios.

Feature analysis: The effectiveness of RCFusion can be intuitively understood
through feature analysis of the OCID dataset. Figure 3.5 presents a two-dimensional
t-SNE embedding of the final features obtained from different modalities. The depth
features tend to cluster together objects with similar shapes, such as those with near-
spherical shapes like “orange_1", “pear_1", and “ball_2(/3)". As expected, the RGB
modality offers more discriminative features, but it fails to distinguish similar pairs
of objects, such as (“orange_1"-“peach_1") and (“cereal_box_1"-“cereal_box_2")
that are located very close to each other. In contrast, the RGB-D features effectively
separate each object into distinct clusters.

Ablation study: In order to evaluate the individual contributions of the multi-level
feature extraction and recurrent fusion elements of RCFusion, we conducted an
ablation study by removing each of these elements and comparing the resulting
performance with the full version of the method. Table 3.4 presents the results of
these variations on the OCID dataset. We observed that using only the features from
the last layer of the RGB-/Depth-CNN (RCFusion - res5) caused a drop in accuracy
of 2%. This confirms that utilizing features from multiple levels of abstraction leads
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OBJECT CLUTTER INDOOR DATASET

Method RGB Depth RGB-D
DECO [33] 80.7 36.8 80.7

RCFusion 85.5 35.0 91.6
RCFusion - res5 - - 89.6
RCFusion - fc - - 88.5

Table 3.4 Top-1 accuracy (%) obtained by DECO [33] and variations of the RCFusion method
on the Object Clutter Indoor Dataset [17]. The RCFusion method is modified in two ways,
with “RCFusion - res5" referring to the variation that only uses features from the last residual
layer (res5) for classification and “RCFusion - fc" referring to the variation that uses a fully
connected layer instead of a recurrent neural network to combine RGB and depth features.
The highest result is highlighted in bold, while other notable results are underlined.

to better multi-modal recognition compared to relying solely on the final features
of individual modalities. Similarly, when we concatenated the multi-modal features
from the projection blocks and fused them with a fully connected layer instead of
using the RNN, the performance dropped by 3.1% in accuracy. This highlights the
importance of employing a more sophisticated fusion mechanism that effectively
combines the modalities while preserving the crucial information from different
levels of abstraction to obtain a discriminative RGB-D feature.

3.1.3 Discussion and Conclusion

In this section, we introduce RCFusion: a multi-modal deep neural network for
RGB-D object recognition. The method comprises two streams of convolutional
networks that extract RGB and depth features from multiple levels of abstraction.
These features are concatenated and sequentially fed to a recurrent neural network
(RNN) to obtain a compact RGB-D feature used by a softmax classifier for final
classification. Our approach outperforms existing methods for RGB-D recognition
on two standard benchmarks, RGB-D Object Dataset and JHUIT-50, demonstrating
the validity of our approach. We also evaluate RCFusion on OCID, a challenging
dataset with highly cluttered and occluded scenes and few training samples. Despite
these challenges, our approach achieves compelling results and demonstrates the
superiority of our multi-modal fusion.
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A potential avenue for future research could be to investigate the weakness of
RCFusion that was identified in our experiments. Specifically, when an object class
is confused with the same classes in both RGB and depth modalities (e.g., "pear"
and "potato"), the performance of the RGB-D modality may be slightly worse than
that of the individual modalities. To address this limitation, we will explore the use
of an ensemble of different fusion mechanisms to improve recognition accuracy for
such cases.

Other interesting research in future work, we plan to explore more complex
configurations of recurrent networks for multi-level sequential fusion and investigate
the potential of extending the proposed approach to more complex architectures such
as transformer-based models. The implementation-agnostic nature of our approach
also opens up possibilities for adaptation to different tasks. The promising results
obtained on object categorization further encourage the extension of this approach to
higher-level tasks, such as object detection and semantic segmentation.



3.2 Multi-Modal Alignment − RR 61

3.2 Multi-Modal Alignment − RR

In this section, we explore a solution to address the challenges of applying multi-
modal algorithms in real-world scenarios by mitigating the issues that can arise due
to the use of synthetic datasets. Specifically, this study focuses on the Unsupervised
Domain Adaptation (DA) technique, which utilizes the supervision of a label-rich
source dataset to make predictions on an unlabeled real-target dataset by aligning
the two data distributions. Current DA methods are not well-suited to handle the
multi-modal nature of RGB-D data, which is extensively used in robotic vision. To
overcome this limitation, we present a novel RGB-D DA method that addresses the
synthetic-to-real domain shift by utilizing the inter-modal relationship between RGB
and depth images. The proposed method involves training a convolutional neural
network to solve the main recognition task as well as the pretext task of predicting
the relative rotation between the RGB and depth image. To assess the effectiveness
of this approach and promote further research in this area, two benchmark datasets
are introduced for object categorization and instance recognition. Through exten-
sive experiments, the study demonstrates the advantages of leveraging inter-modal
relations for RGB-D DA.

In section 3.1, we discussed the importance of using a multi-modal object recog-
nition model for robotic systems to be able to understand and interact with their
environment. However, a significant challenge in deploying such models in robotics
is the high cost of acquiring a large amount of annotated data needed for training.
To address this challenge, a promising approach that requires no manual annotation
involves generating a synthetic training dataset using computer graphics software
like Blender [4] to create 3D object models. However, the discrepancy between the
synthetic (source) training data and the real (target) test data significantly undermines
the recognition performance of the CNN.

Unsupervised Domain Adaptation (UDA) is a critical area of research in computer
vision that addresses the challenges associated with transferring knowledge from a
source domain to a target domain. This is accomplished by treating the source and
target data as originating from different marginal distributions. UDA methods enable
us to predict target samples using only annotated source samples, while unlabeled
target samples are used transductively. In recent years, significant progress has
been made in the development of UDA techniques aimed at reducing the domain
shift between the source and target distributions. These methods operate at both the
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180°

270°

?

Fig. 3.7 Q: “By how much should the RGB image (top) be rotated to align with the depth
image (bottom)?" A: “90◦". This question describes the self-supervised task of predicting
the relative rotation between the RGB and depth image (shown with surface normal coloriza-
tion [18]) of a sample after they have been independently rotated.

feature level [149, 154] and the pixel level [156, 323], improving the generalization
performance of the model on the target domain. Despite these advances, existing
DA strategies assume that the data arise from a single modality, and consequently,
may result in sub-optimal performance when confronted with multi-modal data. The
natural inter-modal relationships among the data are ignored in such cases, leading
to a loss of valuable information.

This section presents a novel domain adaptation (DA) method specifically de-
signed for RGB-D data. Our proposed approach involves solving a multi-task
learning problem, where a convolutional neural network (CNN) is trained to solve a
supervised main task, which is object recognition, and a self-supervised pretext (or
auxiliary) task from pairs of RGB and depth images. To encourage the network to
generate domain-invariant features, we create an artificial problem by rotating the
RGB and depth image of a sample and asking the network to predict the relative rota-
tion that re-aligns them, as shown in Figure 3.7. Due to the self-supervised nature of
this pretext task, we can use both source and target data to train the model, while the
supervision of the source data is used to train the model on the main task, as depicted
in Figure 3.8. To assess the performance of our method on object categorization
and instance recognition, we introduce two benchmark datasets, each consisting of a



3.2 Multi-Modal Alignment − RR 63

Source 

Target

Source 

D
e

p
th

R
G

B

Main 

Head M

Feature Extractor E

RGB feature extractor Ec

Depth feature extractor Ed
Target

Pretext 

Head P

Fig. 3.8 Overview of our method for RGB-D domain adaptation, which uses a convolutional
neural network (blue squares) consisting of a two-stream feature extractor E and two network
heads. The main head M is trained for object recognition using the labeled source data (red
arrow), while the pretext head P is trained using both source and target data (orange+red
arrow), with independent rotation of RGB and depth images .

synthetic and a real part. Our proposed approach demonstrates promising results,
highlighting its potential for effective DA in the context of RGB-D data. For instance
recognition, we utilize the HomeBrewedDB (HB)[7] models as the source dataset
and real RGB-D sequences of the same dataset as the target dataset. For object
categorization, no dataset comprises both synthetic and real data. Therefore, we
use the popular RGB-D Object Dataset (ROD)[324] for the real data and create
the synthetic counterpart ourselves. To this end, we introduce synROD: a dataset
generated by collecting and rendering 3D object models from the same categories as
ROD using publicly available Web resources. Our extensive experiments on these
datasets demonstrate that our proposed pretext task effectively reduces the synthetic-
to-real domain gap and outperforms existing DA methods that do not leverage the
inter-modal relations of RGB-D data.

In summary the contribution of this section are:

• a novel multi-modal DA algorithm for RGB-D object recognition that reduces
the domain gap by leveraging the relation between RGB and depth data,

• two benchmark datasets for evaluating RGB-D DA methods on object cate-
gorization and instance recognition (including the newly collected synROD),
and
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• quantitative and qualitative experiments demonstrating the superior perfor-
mance of our method compared to existing DA approaches.

The rest of the paper is organized as follows: the next section 3.2.1 describes synROD,
section 3.2.2 introduces the proposed method, section 3.2.3 presents the experimental
results and section 3.2.4 draws the conclusions.

3.2.1 Dataset

In this section, we describe synROD and the protocol followed for its creation. More
specifically, the next section describes the criteria used to define the scope of the
dataset and collect the 3D object models from Web resources; and then we illustrate
the procedure used to render 2.5D scenes from the 3D object models. All the
collected data, together with the information needed to replicate the experiments is
publicly available at “https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-
tools/synthetic-to-real-rgbd-datasets/".

Selecting 3D Object Models RGB-D DA has not been thoroughly explored in the
literature, resulting in the absence of standardized benchmark datasets to evaluate
newly developed methods. A major challenge in creating a suitable dataset for
evaluating DA techniques is to identify two distinct sets of data that share the same
annotated classes but have been acquired under different conditions. In particular, we
are interested in the synthetic-to-real domain shift, where the source domain presents
RGB-D synthetic data, while the target domain presents RGB-D real data. Existing
3D object datasets, such as ModelNet [325] and ShapeNet [326], do not have a
corresponding real dataset that shares the same classes. Moreover, some models lack
texture, making them unsuitable for the study’s purpose, which requires both object
shape (depth) and texture (color). On the other hand, other available datasets, such
as LineMOD [327] and HB, offer both real object data and reconstructed 3D models.
However, these datasets lack category-level annotation, making them appropriate
only for instance recognition, not object categorization.

To overcome this problem, we collect a new synthetic dataset called synROD. We
selected the object models for synROD in such a way that each one belongs to one
of the 51 categories defined by ROD, the most used RGB-D dataset in robotics for
object categorization [61, 18]. We query the objects from the free catalogs of public
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Fig. 3.9 Examples of rendered scenes from synROD dataset. For each, we showcase the
RGB, raw depth and segmentation mask image, with increasing level of clutter from top to
bottom.

3D model repositories, such as 3D Warehouse and Sketchfab, and retained only
models that present texture information to be able to render the RGB modality in
addition to the depth. We processed all models to normalize their scale and canonical
pose prior to the rendering phase. The final result of the selection stage is a set of
303 textured 3D models from the 51 object categories of ROD, for an average of
about 6 models per category.

Rendering 2.5D scenes We render 2.5D scenes using a ray-tracing engine in
Blender to simulate photorealistic lighting. Each scene consists of a rendered view
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of a randomly selected subset of the models placed on a 1.2⇥ 1.2 meter virtual
plane. The camera and light source locations are sampled from an upper hemisphere
to ensure a uniform distribution of viewpoints. To achieve this, we followed the
recursive division of an icosahedron technique proposed in [327]. The camera and
light source distances to the center of the plane varied from 0.7 to 1.5 meters and 2 to
5 meters, respectively. To attain natural and realistic object poses, we dropped each
model on the virtual plane using the rigid body physics simulator included in Blender,
with a convex hull of the model serving as a collision boundary. The number of
objects in each scene ranged from five to 20, resulting in varying levels of clutter. To
ensure a balanced dataset, we condition the selection of the models to insert in every
scene to the number of past appearances. Finally, we randomized the background of
the virtual space containing the objects using MS-COCO [328] images. We produced
approximately 30,000 RGB-D scenes with semantic annotation at the pixel level, as
shown in Figure 3.9.

3.2.2 Method

In this section, we present our method for RGB-D DA. More specifically, we provide
a high-level overview of the method before delving into the relative rotation task.
Finally, we specify CNN’s architecture and training/testing protocol.

Overview In this work, we aim to address the problem of domain adaptation (DA)
in the context of object recognition, where we have access to labeled source data and
unlabelled target data. Our approach consists of formulating the problem as a multi-
task classification, where we train a neural network to perform a main supervised
task and a pretext self-supervised task. Specifically, the main task involves using the
supervision of the source data to learn to predict object labels, while the pretext task
involves predicting the relative rotation between a pair of RGB and depth images that
have been independently rotated. Since the ground truth for this simple pretext task
can be generated automatically from the data, we can train the network to predict
the relative rotation using both source and target data in a self-supervised fashion.
Solving the same task simultaneously on both domains. This allows us to learn
inter-modal relations on both domains simultaneously, reducing the distribution
discrepancy and yielding domain-invariant features. Furthermore, since rotation
prediction is shown to generate semantically-relevant features [20], this pretext task
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is particularly effective in improving the object class prediction on the target data
without the need for direct supervision.

Pretext Task Recognizing the correct orientation of rotating images is a simple
yet effective pretext task to learn robust visual representations [20, 329, 175]. This
self-supervised task consists in rotating a given image by a multiple of 90◦ and
training a CNN to predict the rotation that has been applied. However, predicting
the rotation of an individual image is only possible with datasets such as PACS [19]
where the pose of the subject is consistent across samples. For example, the giraffe
images in PACS always represent the animal in an upright position. For datasets
where the object appears in a variety of poses, predicting the image rotation is an
ill-posed problem (see Fig. 3.10). To address this issue, we propose a new task for
RGB-D data, where we predict the relative rotation between the RGB xc and depth
xd images. Let us denote with rot90(x, i), i 2 [0,3] the function that rotates clockwise
a 2D image x by i ⇤ 90◦. Given an RGB-D sample (xc,xd), we select j,k 2 [0,3]
at random to compute x̃c = rot90(xc, j) and x̃d = rot90(xd,k), and indicate with
z the one-hot encoded label indicating the relative rotation between them. More
precisely, the relative rotation label is computed as z = one_hot((k − j) mod 4),
where one_hot(.) is the function that generates the one-hot encoding and mod is
the modulo operator. The pretext task consists of predicting z given (x̃c, x̃d), or in
other words: “how many times should the RGB image be rotated by 90◦ clockwise
to align with the depth image?". Figure 3.11 depicts all of the possible combinations
for which a pair of RGB and depth images can be rotated, as well as their relative
rotation.

Network architecture Fig. 3.8 shows the structure of the CNN we use for our
method.The architecture comprises a feature extractor denoted as E. This module
generates RGB-D features, which are then fed as input to both the main head (M)
and the pretext head (P). Each of these modules is a neural network defined with
differentiable operations, allowing the entire network to be trained end-to-end using
standard backpropagation. This design ensures efficient feature extraction and
enables effective learning of both the main and pretext tasks simultaneously.

Feature extractor: Following the literature of RGB-D object recognition [72, 18],
we use a two-stream CNN with a late fusion approach to generate RGB-D features.
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Algorithm 1 RGB-D Domain Adaptation
Input:

Labeled source dataset S = {((xsc
i ,x

sd
i ),ys

i )}
Ns
i=1

Unlabeled target dataset T = {((xtc
i ,x

td
i )}Nt

i=1
Output:

Object class prediction for the target data {ŷt
i}

Nt
i=1

procedure TRAINING(S,T)
Get transformed set eS = {((x̃sc

i , x̃
sd
i ),zs

i )}
eNs
i=1

Get transformed set eT = {((x̃tc
i , x̃

td
i ),zt

i)}
eNt
i=1

for each iteration do
Load mini-batch from S
Compute main loss Lm
Load mini-batches from eS and eT
Compute pretext loss Lp
Update weights of M from —Lm
Update weights of P from —Lp
Update weights of E from —Lm and —Lp

procedure TEST(T)
for each (xtc

i ,x
td
i ) in T do

Compute ŷt
i = M(E(xct

i ,x
dt
i ))
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Fig. 3.10 Examples images from PACS [19] (top row) and HomebrewedDB [7] (bottom row)
that are rotated by 0◦, 90◦, 180◦, and 270◦. While it is possible to infer the rotation of the
PACS samples based on the contextual background and prior knowledge of the subject matter,
the same cannot be said for the HomebrewedDB samples. This observation highlights the
inadequacy of predicting image rotation by analyzing each image in isolation, as proposed
in [20]. Hence, this approach is deemed ill-posed.

Specifically, we adopt two identical CNNs, denoted as Ec and Ed , to process the
RGB and depth images, respectively. The outputs of these two networks are then
concatenated along the channel dimension to compose the final RGB-D feature. For
our experiments, We opted for the ResNet-18 architecture for Ec and Ed , without
the final fully connected and global average pooling layers. This choice was based
on the successful use of ResNet architectures in various computer vision tasks and
the availability of pre-trained models for these architectures.

Main head: The network M solves a C-way classification problem, where C

indicates the number of object classes we want to predict. M is composed of three
layers: global average pooling (gap), a fully connected layer with 1000 neurons
(fc(1000)), and a fully connected layer with C neurons (fc(C)). The fc(1000) layer
employs batch normalization and ReLU activation, while the fc(C) layer employs
softmax activation.

Pretext head: The network P is responsible for solving the 4-way classification
problem of predicting the rotation between the RGB and depth image. It is defined as
[conv(1 ⇥ 1,100), conv(3 ⇥ 3, 100), fc(100), fc(4)], where conv(k ⇥ k, n) indicates a
2D convolutional layer with kernel size k⇥ k and n neurons. All convolutional and
fully connected layers employ batch normalization and ReLU activation, except for



70 Multi-Modal Learning for Robotics Vision: Object Recognition

180° 270°0° 90°

Fig. 3.11 All the possible combinations of RGB and depth rotation for a given relative
rotation {0◦,90◦,180◦,270◦}.

the fc(4) layer that uses softmax activation. It is worth noting that, unlike M, we use
convolutional layers in P to better preserve spatial information. In section 3.2.3, we
demonstrate that this approach yields superior performance compared to adopting
the architecture of M for both heads.

Optimization We define with S = {((xsc
i ,x

sd
i ),ys

i )}
Ns
i=1 the set of labeled source

data and T = {((xtc
i ,x

td
i )}Nt

i=1 the set of unlabeled target data. (x⇤c,x⇤d) denotes the
pair of RGB and depth images of a sample and ys denotes the one-hot encoded
object class label. From S and T , we can generate a transformed set of source and
target data, denoted as eS = {((x̃sc

i , x̃
sd
i ),zs

i )}
eNs
i=1 and eT = {((x̃tc

i , x̃
td
i ),zt

i)}
eNt
i=1, that is

used to define the relative rotation task. The objective function of our model is
given by L= Lm(ys, ŷs)+lpLp(zs, ẑs,zt , ẑt), where Lm and Lp are respectively the
cross-entropy loss of the main and pretext task. lp is a hyperparameter that controls
the contribution of the relative rotation pretext loss term to the overall loss.

Lm =− 1
Ns

Ns

Â
i=1

ys
i · log(ŷs

i ), (3.7)

Lp =− 1
eNs

eNs

Â
i=1

zs
i · log(ẑs

i )−
1
eNt

eNt

Â
j=1

zt
j · log(ẑt

j), (3.8)
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where ŷs = M(E(xsc,xsd)) and ẑ⇤ = P(E(x̃⇤c, x̃⇤d)). At test time, the predictions of
the target data are computed as ŷt = M(E(xct ,xdt)), discarding the pretext head P.
The pseudo-code of the algorithm for this process is presented in Algorithm 1.

3.2.3 Experiments

This section covers the experimental protocol and evaluation results of our method.
Specifically, it includes the baseline methods that we used for comparison with our
method, the implementation details for CNN training, and the presentation of both
quantitative and qualitative outcomes obtained from the RGB-D DA analysis.

Baseline methods For our benchmark, we consider four different DA methods:
MMD [149], GRL [154], Rotation [175] and AFN [151]. The first two are arguably
the most widely used and well-established DA methods; AFN is chosen as the current
state of the art, while Rotation is the most relevant to our method.

MMD: The method proposes to minimize the empirical maximum mean dis-
crepancy, a metric that measures the discrepancy between two domain distributions,
encouraging the final layers of a neural network to generate domain-invariant fea-
tures.

GRL: The idea of GRL is to encourage the feature extractor to generate domain-
invariant features using adversarial learning. This objective is achieved by jointly
optimizing the label predictor and a domain classifier responsible for predicting
whether a sample comes from the source or the target domain [6]. Training is
performed with the aim of fooling the domain classifier, maximizing its loss through
a gradient reversal layer.

AFN: Xu et al. [151] pointed out that the main reason behind a difficult classifi-
cation in the target domain is due to target vectors having smaller feature norms if
compared to to that of the source domain. To tackle this issue, the authors proposed
to iteratively increase the feature norm of the one-to-last layer of the network for
both domains to achieve adaptation.

Rotation: Xu et al. [175] proposed a self-supervised task based on geometric im-
age transformations, encouraging the feature extractor to generate domain-invariant
features by predicting the absolute image rotation [20].
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Since the aforementioned methods are not originally designed for multi-modal
data, we use two strategies to evaluate their performance on RGB-D DA. We first
adapt each modality individually until convergence, then we freeze the feature ex-
tractors and train a fully connected layer on the concatenation of the adapted features
(RGB-D). Second, similarly to our method, we apply them to the concatenation
of the RGB and depth features generated by the feature extractor E and train the
network in an end-to-end fashion (RGB-D e2e). Finally, we report the results for
single modalities to see if using multi-modal data is beneficial.

Implementation details The CNN is trained using SGD optimizer with momentum
0.9, batch size 64, learning rate 3⇥10−4. Following [175, 151], we include entropy-
minimization with weight 0.1 as a DA-specific regularization, in addition to the
more general weight decay 0.05 and dropout 0.5. The two ResNet-18 weights,
Ec and Ed , are initialized with values obtained by pre-training the networks on
ImageNet [330], while the rest of the network is initialized with Xavier initialization.
All the parameters of the network, including the pre-trained parameters, are updated
during training. The input to the network is synchronized RGB and depth images pre-
processed according the procedure in [18], where the depth information is colorized
with surface normal encoding. This technique prevails as the best non-learned depth
colorization method to effectively exploit networks pre-trained on ImageNet and is
widely adopted by state-of-the-art methods for RGB-D object recognition [61].

Results Table 3.5 and 3.6 present the quantitative results of RGB-D DA on the two
benchmark datasets, synROD!ROD and synHB!realHB. Additionally, Fig. 3.12
provides qualitative insights into the functioning of our method. This empirical
evaluation enables us to answer significant research questions.

Are standard DA methods effective on multi-modal data? The results presented
in Table 3.5 demonstrate that applying a standard DA method on RGB-D data is not
always effective. Specifically, the results reveal that MMD and AFN perform worse
when applied on the concatenation of RGB and depth features (“RGB-D, RGB-D
e2e) than when applied on the RGB features alone on synROD!ROD. This inferior
performance is attributed to the fact that the depth modality is far less informative
than the RGB for object recognition when compared in isolation. Consequently,
in the absence of an effective strategy to exploit both modalities, the RGB-D case
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RGB-D DOMAIN ADAPTATION

Method synROD!ROD synHB!realHB

Source only

RGB 52.13 51.17
depth 7.56 15.50
RGB-D 50.57 49.71
RGB-D e2e 47.70 49.45

GRL [154]

RGB 57.12 74.74
depth 26.11 29.52
RGB-D 59.09 75.23
RGB-D e2e 59.51 74.95

MMD [149]

RGB 63.68 74.95
depth 29.34 28.24
RGB-D 62.10 77.96
RGB-D e2e 62.57 77.26

Rotation [175]

RGB 63.21 84.46
depth 6.70 5.62
RGB-D 63.33 83.99
RGB-D e2e 57.89 84.15

AFN [151]

RGB 64.63 84.04
depth 30.72 31.67
RGB-D 61.19 83.06
RGB-D e2e 62.40 86.49

Ours 66.68 87.28

Ours+GRL 75.11 87.81

Table 3.5 Target Top-1 accuracy (%) of several methods for RGB-D domain adaptation on
two datasets with synthetic-to-real shifts, synROD!ROD and synHB!realHB. The highest
results are highlighted in bold.

can provide lower accuracy than the RGB alone. By comparing the two strategies
for applying the baseline methods on multi-modal data (“RGB-D" and “RGB-D
e2e"), we observe that no strategy clearly outperforms the other, and the results
vary depending on the method and the dataset used. It is also interesting to notice
that AFN is not the best performing baseline on RGB-D data, despite being the
considered the current state-of-the-art in DA.
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ABLATION STUDY

Method synROD!ROD synHB!realHB avg. drop

Target rotation 63.60 86.32 2.03
FC classifier 64.20 86.49 1.64
Ours 66.68 87.28 -

Table 3.6 Target Top-1 accuracy (%) of variations of our method for RGB-D domain adap-
tation on two synthetic-to-real shifts, synROD!ROD and synHB!realHB. The highest
results are highlighted in bold.

Fig. 3.12 The figure presents a visualization of the significant pixels for predicting the relative
rotation. The input of the network is an RGB-D image, labeled as “original." The saliency
map of the input is generated using the last layer of the feature extractors Ec and Ed , denoted
as “guided backprop" [21]. The “binary backprop" is a binarized version of the “guided
backprop" map that highlights peak values in white to aid in visualization. The depth image
is utilized with surface normal colorization, following the technique proposed by [18].

Is the relative rotation an effective pretext task to perform RGB-D DA? The
results presented in Table 3.5 demonstrate that this method is an effective DA
strategy, significantly improving over the "Source only" method. Additionally, the
t-SNE [22] visualization of the features of the main head M in Fig. 3.13 confirms
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Non-adapted Adapted

Fig. 3.13 t-SNE [22] visualization of the HomebrewedDB [7]. Features extracted from the
last hidden layer of the main head M are used for the plot. Red dots: source samples; blue
dots: target samples. When adapting the two domains with our method (right), the two
distributions align much better compared to the non-adapted case (left).

that our method aligns the target and source distributions effectively. Moreover, our
method outperforms all considered baselines on both datasets, with an improvement
of +3.35% and +2.82% on synROD!ROD and synHB!realHB, respectively,
compared to the most related method, Rotation. This improvement is a consequence
of the design of our self-supervised task, which resolves the ill-posedness of Rotation,
as discussed in Section 3.2.2.

Is the relative rotation task complementary to existing DA strategies? To assess
the complementarity of our method to existing DA strategies, we conducted addi-
tional experiments by combining our method with the GRL method. To achieve
this, we added an extra head for domain discrimination and a domain adversarial
loss, as described in [154]. The results of this experiment are presented in Table
3.5 (Ours+GRL). The addition of GRL to our method significantly improved the
results on both domain pairs, demonstrating that the two methods are complementary
and can be used together to improve domain alignment. The reason behind this
improvement is that GRL effectively reduces the domain discrepancy but at the cost
of breaking the discriminative structures of the original representations. Our pretext
task, on the other hand, helps preserve this structure, as evidenced by the t-SNE
visualization in Fig. 3.13. Notably, the improvement was much more significant in
synROD!ROD (by +8.43%) than in synHB!realHB (by +0.53%), primarily due
to the larger domain gap in synROD!ROD, which provides more opportunities for
improvement.
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How are the different components of our method affecting the final performance?
To understand the influence of different components of our method on the overall
performance, we conducted an ablation study. Specifically, we investigated the
impact of using both domains to solve the pretext task versus using only the target
domain, as well as the effect of defining the pretext head P with the same architecture
as the main head M. As shown in Table 3.6, our method achieves significant
improvement over the "Source only" baseline when using both domains to solve the
pretext task. Predicting the relative rotation of target samples alone also provides
some improvement, but not as effective as using both domains, which is due to the
higher diversity in the data when using both domains. Moreover, when defining the
pretext head P with the same architecture as M, we observed an average drop of
−1.64% in accuracy, indicating that using convolutional layers instead of a pooling
layer is beneficial to retain the spatial information necessary to predict the relative
rotation.

What does the network learn to solve the relative rotation task? In Fig.3.12, we
visualize the most relevant pixels for predicting the relative rotation of two example
samples in the realHB domain using guided backpropagation[21]. Specifically, we
identify which pixels of the RGB and depth input image activate the last layer of Ec

and Ed to produce the correct prediction for the pretext task. The results reveal that
the most relevant pixels belong to the object itself, rather than the background or
other elements in the image. This observation suggests that the network relies on
the appearance of the object to make the prediction, rather than learning "trivial"
shortcuts [331]. Additionally, the network focuses on the same part of the object,
such as the head of the bunny, in both modalities. This finding indicates that the
prediction of the relative rotation is based on matching corresponding parts of the
object in both RGB and depth modalities..

3.2.4 Conclusion

The present section introduces a novel method tailored to address the challenging
task of RGB-D DA. Our proposed approach involves training a network to solve
a self-supervised task that predicts the relative rotation between RGB and depth
images, in addition to the main object recognition task. To assess the effectiveness
of our method, we define two synthetic-to-real benchmarks for object categorization
and instance recognition, leveraging the HB dataset and a newly collected dataset
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called synROD. Our experimental results demonstrate that our self-supervised task
effectively mitigates domain shift and outperforms all considered baselines. These re-
sults indicate that exploiting inter-modal relations is crucial for achieving successful
DA on RGB-D data.

Future research could extend the investigation of the potential of our approach to
higher-level tasks, such as egocentric action recognition. This challenging task can
greatly benefit from a multi-modal unsupervised domain adaptation technique, par-
ticularly by exploiting depth data, which can provide intrinsic attention information
to the model. This aspect is particularly relevant as the objects involved in egocentric
actions are typically located in close proximity to the user, and therefore their relative
position and distance can offer valuable cues for action recognition. Furthermore, a
promising direction for future research would be to explore the generalizability of our
approach to other visual modalities and foster further research into the demanding
problem of domain adaptation for not only RGB-D but also for other multi-modal
data.
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3.3 From Pixels to Events − DA4E

The last section of this chapter covers the introduction of a new modality i.e. event
data, in particular aims to resolve the problem related to the limited availability
of this data. To overcome this challenge, researchers often rely on simulated event
data as a workaround. However, the use of simulated data raises an open research
question regarding its ability to generalize on real data. To answer this, we propose
to exploit, in the event-based context, recent Domain Adaptation (DA) advances in
traditional computer vision, showing that DA techniques applied to event data helps
reduce the sim-to-real gap. To this purpose, we propose a novel architecture, which
we call Multi-View DA4E (MV-DA4E), that better exploits the peculiarities of frame-
based event representations while also promoting domain invariant characteristics in
features. Through extensive experiments, we prove the effectiveness of DA methods
and MV-DA4E on N-Caltech101. Moreover, with the motivation to analyze the
performance of event cameras in practical applications, we extend our earlier
analysis on the RGB-D Object Dataset (ROD) to include the event modality (RGB-E).
This allows us to compare the performance of event cameras with traditional RGB-D
cameras, providing valuable insights into the strengths and limitations of event-based
sensing in practical applications.

Novel bio-inspired devices like Dynamic Vision Sensors (DVS) represent a
new category of cameras that operate in a vastly different manner compared to
conventional cameras. Rather than capturing images at a fixed rate, event-based
cameras function through the asynchronous emission of an event by each pixel when
it detects a local change in brightness. As already described in 2.3, this innovative
approach enables these cameras to achieve exceptional levels of performance in
terms of high dynamic range, high temporal resolution, and low latency, all while
consuming minimal power. In recent years, novel learning approaches utilizing
standard computer vision algorithms on event data have demonstrated competitive
results compared to traditional approaches [289, 269]. However, training these off-
the-shelf deep learning algorithms requires a significant amount of data, which is still
limited due to the novelty and high cost of neuromorphic cameras. To overcome the
scarcity of data, event camera simulators [44] have emerged as a viable alternative
to generate reliable simulated event data. Despite their potential, a key research
question arises from this approach: How well do simulated data generalize to real
data?
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Fig. 3.14 How can we bridge the Sim-to-Real gap in event-based cameras? DA4Events
leverages unsupervised domain adaptation techniques at the feature level to mitigate this issue.
How else simulated events can be used? Our proposed approach involves utilizing event data
in real-world scenarios, thereby enhancing network robustness through the complementary
integration of RGB data.

Researchers have recently made some progress in addressing this issue, as
demonstrated in [294] and [295]. In the latter work, the authors proposed reducing
the sim-to-real gap by manipulating simulator parameters during the data simulation
phase. Specifically, they acted on the input level to adjust the parameters in order to
make the simulated data more realistic and better aligned with real-world data. Our
insight is that reducing the sim-to-real gap in neuromorphic vision by operating at
feature level, during training, leads to more transferable representations, enhancing
the generalization performance of deep networks. With this focus, we propose to
leverage Unsupervised Domain Adaptation (UDA) techniques [332, 149, 3, 333,
334], as they are specifically designed to align the distribution of features extracted
from the source (simulated) and target (real) domains.

Extensive experimentation on the object classification task using N-Caltech101
[23] and its simulated version Sim-N-Caltech101 [294] validates the efficacy of our
proposed method. Our results demonstrate that UDA techniques can effectively
bridge the gap between simulated and real event domains, achieving performance
on par with a model trained on real-world data. We believe this is a significant
step in unlocking event-cameras potential to new tasks, especially those requiring
fine-grained annotations, as it enables to exploit the ease of simulation as well as real
event sequences that are easy to gather when unlabeled. Our findings unlock novel
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potential uses of event-based modality, even in situations where it is infeasible to
collect it or when working datasets do not provide it. Thanks to the effectiveness of
UDA techniques on event-based data, we claim that RGB datasets can be augmented
with a simulated event modality without compromising performance due to sim-
to-real domain shift (Figure 3.14). As mentioned in the previous section, this
idea holds particular significance in real-world scenarios, particularly in robotics
applications where simulated data is often necessary to compensate the lack of
large-scale databases. To demonstrate the quality of simulated events extracted
from RGB images and their effectiveness in real-world scenarios, we concentrate
on the widely-used RGB-D Object Dataset (ROD)[1], which includes RGB and
depth modalities obtained using real sensors, alongside its synthetic counterpart,
SynROD[3], generated through digital rendering. We enrich both datasets with
simulated events and show that the event modality, even when simulated, produces
remarkable results when used in conjunction with RGB data.

In summary, our contributions are the following:

• We propose to bridge the sim-to-real gap for event cameras by leveraging UDA
techniques, which are currently underexplored in the event-based domain,
thereby reducing the problem to a domain shift issue;

• We demonstrate how the domain shift affects different event representations in
varying ways and to what extent different UDA techniques can mitigate these
issues;

• We propose to deal with event data through a multi-view approach, called
MV-DA4E;

• We extend the widely-used robotic dataset ROD (along with its synthetic
counterpart) by incorporating event data as a new modality, introducing a new
RGB-E benchmark for object classification.

3.3.1 DA4Event

As noted by Gehrig et al. [294] and Stoffregen et al. [295], the discrepancies between
simulated and real events, as depicted in Figure 3.15, result in decreased performance
across various applications, regardless of their representation. This phenomenon is



3.3 From Pixels to Events − DA4E 81

(a) RGB image (b) Real events (c) Simulated events

Fig. 3.15 Real and simulated events (voxel grid [8]) on a Caltech101 sample.

commonly referred to as the Sim-to-Real gap in events. While Gehrig et al. [294]
and Stoffregen et al. [295] suggest tackling the issue by addressing event generation,
we propose viewing it as a problem of domain shift. In this case, the domain shift
is not in the visual appearance, as in the well-known Synth-to-Real shift existing
between rendered RGB images [335] and real RGB ones. Indeed, the primary
gap arises from variations in event distribution that correspond to local changes in
brightness. Simulators do not account for certain non-idealities that are characteristic
of real cameras, such as the minimum threshold C required to trigger an event, or the
refractory period of event pixels, which can vary among event cameras.

In this section, we first show that by aligning the feature distribution of the
simulated source domain and a target real one, UDA methods effectively reduce the
Sim-to-Real gap for event cameras, enabling neural networks to take advantage of
both simulated data and real unlabeled events during training. Second, we extend
our analysis to the Synth-to-Real gap, combining both synthetic rendered images
and real ones with the corresponding simulated events, showing how the simulated
event modality is affected by this shift and how it can benefit from UDA techniques.
Additionally, we conduct a third analysis, described in the work [305], that studies
the combined effect of Sim-to-Real and Synth-to-Real shifts. Where we introduce an
ad-hoc dataset to study this shift by providing real event data recorded through an
event camera rather than obtained through simulation. However, we decided not to
include this analysis in this thesis, as it is highly specific to the field of event cameras
and strays from the primary focus of this study, which is on multi-modal learning.
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Real
Events
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Events
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(MVP)

Main Classifier (G)

Domain Adaptation
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Fig. 3.16 Overview of the DA4Event pipeline. Top shows the process of extracting an
event representation, using voxel grids [8] and three views as an example.Bottom details
the proposed multi-view architecture (MV-DA4E). During training, two unpaired random
batches from source and target domains are sampled and processed separately. When the
multi-view approach is not used (DA4E), event representations are fed as a single multi-
channel tensor to the feature extractor F , and multi-view pooling is removed. Notice that
only source (labeled) data are fed to the classifier G, while both target and source data are
fed to the DABlock.

3.3.2 MV-DA4Event: a Multi-View Approach

A common approach to deal with event data is to aggregate the event stream E= {ei =

(xi,yi, ti, pi)}N
i=1 describing the spatial-temporal content of the scene over a temporal

period T , into a frame-based representation RE 2 RH⇥W⇥F , thus making events
easily processable by off-the-shelf convolutional neural networks (CNNs). While
standard RGB images encode spatial (static) information only (R,G,B channels),
these frame-based representations additionally carry temporal information, resulting
in a variable number of temporal channels as the event sequence is typically divided
into several intervals (or bins) to retain temporal resolution, as in a video sequence.
For instance, in saccadic motion, commonly used to gather event data from still
planar images [23], these channels correspond to the camera response to different
move directions.

As a result of carrying temporal information, each temporal channel in a frame-
based representation represents a distinct observation of the recorded object, high-
lighting different aspects (features) of the same. A common practice in computer
vision, as well as in the event-based field, is to initialize CNNs with weights pre-
trained on ImageNet. However, when using a k-channels representation, where k 6= 3,
the standard approach is to substitute the first convolutional block with a new one
and train it from scratch. This practice not only restricts the exploitation of the
pre-trained model but may also be detrimental in a cross-domain scenario. In fact,
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the first layers of the network are known to be the most affected by the domain
shift [336], so, training them from scratch may lead the network to specialize on
the source domain, poorly generalizing on the target one. In contrast, transferring
pre-trained layers enables the network to benefit from robust low-level features.

Motivated by the aforementioned considerations, we propose to follow a multi-
view approach to leverage the first pre-trained convolutional layer. This approach
involves aggregating the multi-channel event representation into three-channels
images, or views, resulting in a representation eRE 2 RH⇥W⇥dF/3e⇥3. A multi-view
network (Fig. 3.16) has been specifically designed, in which each view is fed,
separately, to a feature extractor F . The features obtained from each view are then
combined using a late-fusion approach within a MVP module that performs average
pooling, producing a RFout feature vector that is subsequently used throughout the
remaining network layers. We believe that fusing the different views at the final layers
of the network, rather than at the earliest ones, is beneficial for better generalization.
This is because the initial layers of the network are more domain-specific, whereas
the later layers carry more task-specific information

Network architecture The proposed network structure is illustrated in Figure 3.16.
Events are first obtained using the ESIM [44] simulator in the source domain and
directly acquired from the event-based camera in the target domain. These events are
then split into B temporal bins, and a sequence of event representations is extracted to
obtain a multi-channel volume RE with a multiple of 3 channels. The representations
are then grouped into views, i.e., 3-channels frames that are treated as images and
processed in parallel through a shared ResNet feature extractor F . The set of output
features is then combined in the MVP module, which performs average pooling both
spatially and across the views within features from the same domain, resulting in two
feature vectors, one for each domain. Finally, the features from the source domain
are used in G for the final prediction and also in the DABlock, together with the target
features, to perform domain adaptation. It is worth mentioning that during training,
two completely random batches of source and target samples are selected with no
matching constraints between them.

UDA Algorithms The UDA techniques that we have selected for our analysis
encompass a range of different approaches, including adversarial (GRL [332]),
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discriminative-based (MMD [149] and AFN [333]), and self-supervised methods
[337]. For a comprehensive technical explanation of each approach, we refer the
reader to Section 3.2.3 (Baseline methods). Additionally, we include a technique
called Entropy Minimization (ENT) [334], which is based solely on minimizing
classifier uncertainty in the target domain. This involves using a function as a
regularization term for the classification loss to represent the uncertainty in the target
domain.

3.3.3 Experiments

In this section, we show experiments on object classification tasks in both single- and
multi-modal settings. Our assessment of Unsupervised Domain Adaptation (UDA)
focuses on event classification, utilizing the N-Caltech101 dataset [23], and we also
conduct experiments on multi-modal UDA using the RGB-D Object Dataset [1].
The section contains descriptions of the event representations used in our analysis,
along with details regarding the experimental protocol and evaluation results of our
method. We compare our findings to baseline methods, presenting both quantitative
and qualitative outcomes derived from the RGB-D DA analysis.

Event-Representations In this work we focus on grid-like event representations.
Given a stream of asynchronous events E = {ei = (xi,yi, ti, pi)}N

i=1, the process of
extracting a grid-like representation can be described as the conversion from E to
a volume RE 2 RH⇥W⇥F with features F . The methods used in our work for this
conversion are summarized in the following.

Voxel Grids. This representation, also known as event volume [8], discretizes
the time domain into a traditional image with a fixed number B of channels (where
F = B) and inserts events into RE using interpolation over time. The resulting voxel
grid can be expressed as:

Rvox
E (x,y,b) =

N

Â
i=1

pikb(x− xi)kb(y− yi)kb(b− t⇤i ), (3.9)

where b is the channel number, t⇤i are the timestamps scaled into [0,B− 1], and
kb(a) = max(0,1− |a|).
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HATS. The Histograms of Time Surfaces (HATS) [264] are a two channel
representation format. HATS are built by first dividing the initial event stream grid
into C cells of size K⇥K pixels each, and then computing, from the events generated
by the cell pixels, a grid of (2r + 1)⇥ (2r + 1) time surface histograms hc,p for
each polarity p and each cell c. The normalized hc,p are finally rearranged according
to the position of their originating cell and separated into two channels, one per
polarity. The r parameter is often such that 2r + 1 < K, thus reducing the initial
grid resolution. It should be highlighted that temporal resolution is usually lost since
the entire temporal window is condensed into a single frame that does not retain
temporal resolution.

EST. The Event Spike Tensor (EST) [269] is a trainable representation that can
be used end-to-end. It works in a manner similar to a voxel grid, except that it
uses the timestamp as the pixel feature and the kernel function used to weigh event
contributions is learned by a multi-layer perceptron network. By grouping events by
polarity, a two-channel representation can be extracted from each bin.

MatrixLSTM. A recent learnable representation, MatrixLSTM [281], exploits
Long Short-Term Memory (LSTM) [338] networks to learn the event accumulation
mechanism. In MatrixLSTM [281] the process is similar to EST, but with some
differences. The pixel features are computed using a matrix of LSTM cells with
shared parameters. Each cell processes the temporal-ordered sequence of events
generated by each pixel, and the final output of the LSTM is used as the pixel feature.
The number of features can be customized, and bins are optionally used to extract
multiple representations.

Implementation details Our proposed method was implemented using the Py-
Torch autodiff framework. In the N-Caltech101 experiments, we used a ResNet34 [339]
as the feature extractor F , while in the ROD experiments, we used a ResNet18 [339].
Both networks were pretrained on ImageNet. To ensure a fair comparison, we used
the same network configurations as in [3] for both the object recognition classifier
G and the network used in the pretext rotation task. To evaluate the effectiveness
of our proposed multi-view approach, we compared it against a baseline with the
same architecture that was pre-trained on ImageNet. However, in the baseline model,
event representations were directly fed as a single multi-channel tensor without view
grouping. To achieve this, the first convolutional layer was replaced with a new ran-
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domly initialized convolutional layer matching the number of input channels, and the
multi-view pooling stage was removed. During training, event representations and
RGB images going through the main backbone F were preprocessed and augmented
following the procedure outlined in [3]. The networks are trained using the stochastic
gradient descent (SGD) optimizer with a batch size of 32 for N-Caltech101 and 64
for ROD experiments, a weight decay of 0.003, and the domain adaptation (DA)
losses’ weights are fine-tuned for each event representation and DA method. We
report the accuracy scores for the best configurations only, which are averaged over
three runs with different random seeds. Input images are normalized using the same
mean and variance used for ImageNet pre-training. However, event representations
are kept un-normalized as this provides better performance. For voxel grids and EST
representations, we use nine bins, resulting in three and six views, respectively, as the
latter produces two channels from each bin. For MatrixLSTM, the number of output
channels can be customized, and we set the layer to directly produce three-channel
output representations and set the number of bins to three as this configuration
performs the best. Note that since HATS only provides two channels and does not
split temporal frames into bins by default, we cannot apply the proposed multi-view
approach.

Results on Sim ! Real. We first assess the effectiveness of the UDA algorithms
in reducing the domain-shift under the Sim-to-Real scenario using N-Caltech101.
Table 3.7 presents the performance of GRL [332], MMD [149], Rotation [337], AFN
[333], and Entropy [334] compared to the baseline Source Only. The Source Only
method involves training on labelled source data only (Sim), and testing directly on
unlabelled target data (Real), without performing any adaptation strategy. We also
report the upper-bound performance obtained by training on real training data and
testing directly on it in a supervised fashion (Supervised). We evaluate the effect of
UDA strategies on two non-learnable event representations (VoxelGrid and HATS)
and two learnable ones (EST and MatrixLSTM). For each method, we report both
the results obtained with (MV-DA4E) and without (DA4E) the proposed multi-view
approach. Our empirical evaluation helps answer the following research questions.

Are UDA methods useful in reducing Sim-to-Real gap?

It is noteworthy that the UDA methods outperform the baseline Source Only for all
event representations in almost all cases, as shown in Table 3.7. The UDA methods
surpass the baseline by up to 6% on VoxelGrid, 11% on HATS, 6% on EST, and
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N-CALTECH101 (SIM =) REAL)

Method Voxel
Grid HATS EST Matrix

LSTM

Source Only baseline 80.99 58.32 80.08 82.21
MV-baseline 84.59 - 83.07 84.89

GRL [332] DA4E 83.08 65.38 83.38 82.94
MV-DA4E 86.77 - 84.03 85.75

MMD [149] DA4E 86.37 69.86 83.61 84.04
MV-DA4E 88.23 - 85.36 88.05

Rotation [337] DA4E 79.13 61.52 80.69 83.57
MV-DA4E 86.63 - 84.49 85.7

AFN [333] DA4E 84.49 69.96 83.59 85.0
MV-DA4E 88.3 - 85.92 87.59

Entropy [334] DA4E 87.0 65.58 85.54 85.97
MV-DA4E 89.24 - 86.06 86.09
RealEvent 88.13 76.45 88.17 87.65Supervised MV-RealEvent 90.09 - 89.25 90.35

Table 3.7 Target Top-1 accuracy (%) of Unsupervised Domain Adaptation methods on
N-Caltech101. The highest results are highlighted in bold.

4% on MatrixLSTM. Only in one case, Rotation achieves a similar performance to
Source Only, which is for VoxelGrid without the multi-view approach. One possible
reason for this could be that Rotation mainly benefits the network by enforcing it
to focus on the geometric part of the input by solving the transformation. However,
event data already contains geometric information (such as movement direction), so
Rotation could potentially be unhelpful in certain situations. In fact, the network
could learn to find a trivial solution (shortcut) to solve the pretext task [340], such as
analyzing the movement direction over the edges.

It is interesting to note that not all event representations suffer equally from the
domain shift. For example, HATS seems to be the most affected by the Sim-to-Real
shift, with a performance decrease of up to 16% when testing directly on the target
domain (Source Only) instead of the source domain (Supervised). This could be due
to the fact that when events are represented using HATS, the temporal resolution is
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Fig. 3.17 Difference in terms of performance based on percentage (%) of target data used
during training, obtained with constant threshold C = 0.06.

(a) Source-only (b) DA4E

Fig. 3.18 t-SNE visualization of N-Caltech [23] features from the last hidden layer of the
main classifier. Red dots: source samples; blue dots: target samples. When adapting the two
domains with the proposed DA4E (b), the two distributions align much better compared to
the non-adapted case (a).

lost. This loss of temporal information may result in a degradation in performance
when testing data from a different distribution. Furthermore, in Figure 3.17, we
showcase the scalability of our approach when the availability of target data is
limited. The figure shows how the performance of the proposed methods changes
when only a certain percentage of target data is available during training (25%,
50%, 75%). Interestingly, even when only a small percentage of target samples is
available, an improvement of up to 4% over the source only baseline (0% of training
target data) is guaranteed. This demonstrates the robustness and effectiveness of
the proposed UDA methods in reducing domain-shift in event-based data. Figure
3.18 presents the qualitative results of our approach, including a t-SNE visualization
of the source and target samples with and without domain adaptation. Moreover,
we utilized the Gradient-weighted Class Activation Mapping (Grad-CAM [24]) to
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Source OnlyMV-DA4E MV-DA4ESource Only

Fig. 3.19 Grad-CAM [24] visualizations on several real N-Caltech101 samples. In each
triplet we show the input event representations (voxel grid [8]), the activation maps when the
network is trained on simulated data only, and those obtained by training with MV-DA4E.

highlight the regions of the input event representation that the network focuses on for
classification. As shown in Figure 3.19, our proposed MV-DA4E approach results in
the most discriminative regions for object classification.

Is the proposed multi-view approach MV-DA4E effective?

Table 3.7 displays the substantial performance gains achieved by the multi-view
approach MV-DA4E compared to the DA4E configuration across all experiments,
regardless of the DA strategies and representations employed. These results provide
compelling evidence supporting the validity of the proposed method, as discussed in
Section 3.3.2. What’s particularly noteworthy is that MV-DA4E not only enhances
performance in the cross-domain scenario (Sim-to-Real), but also in the intra-domain
(Supervised) setting. This finding suggests that the multi-view approach could serve
as a universal tool for handling event representations across various tasks.

How well our approach perform w.r.t. approaches acting on the contrast thresh-
old C?

Some existing methods, such as [294, 295], tackle the Sim-to-Real problem by ma-
nipulating the threshold value C used by the simulator to generate data. However,
since we work with a fixed threshold, one might question whether our approach’s
success stems from selecting an optimal value for C or from our choice to focus on
adaptation at the feature level. To address this question, we conduct experiments
using voxel grid as the representation and three different C values: C = 0.06 (the
starting value used in [294] for domain shift analysis), C = 0.15 (estimated fol-
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N-CALTECH101

Baselines C=0.06 C=0.15 [295] C⇠ U [294]

Source only baseline 76.81 80.99 82.29
MV-baseline 83.12 84.59 84.93

Our approach w/ C values: C=0.06 C=0.15 C⇠ U

GRL [332] DA4E 80.89 83.08 81.91
MV-DA4E 84.93 86.77 86.45

MMD [149] DA4E 83.84 86.37 84.38
MV-DA4E 86.94 88.23 87.31

ROT [337] DA4E 80.05 79.13 80.36
MV-DA4E 86.31 86.63 87.08

AFN [333] DA4E 84.38 84.49 84.3
MV-DA4E 87.71 88.3 88.17

Entropy [334] DA4E 85.26 87.0 85.16
MV-DA4E 88.38 89.24 88.61

Table 3.8 Target Top-1 accuracy (%) of Unsupervised Domain Adaptation methods w.r.t. to
methods that act on the contrast threshold C. The highest results are highlighted in bold.

lowing [295]), and C ⇠ U(0.05,0.5) (as proposed in [294]). The baselines are the
C-only-based methods, where C = 0.15 reproduces the settings of [295], and C ⇠ U

reproduces the approach of [294]. Table 3.8 shows that our approach consistently
and significantly outperforms the baselines for all C values, demonstrating the ef-
fectiveness of addressing DA at the feature level. Moreover, the results indicate
that multi-view approaches benefit from UDA techniques in all cases, and even the
C-only-based methods benefit from a multi-view approach since it helps to reduce
their sensitivity to C variations.

Results on synROD ! RealROD. As introduced in the previous section 3.2,
in the field of robotics, DA techniques are employed to exploit the automatically
generated synthetic data that comes with “free" annotations to make accurate predic-
tions on real-world data and overcome the limitations of small-scale datasets. Since
the RGB modality primarily encodes texture and appearance information, which
are highly affected by domain shifts, adaptation strategies are necessary to mitigate
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SYNROD =) ROD

Method RGB Depth Event RGB+E RGB+D

Source only 52.13 7.56 39.43 52.87 47.7
GRL [332] 57.12 26.11 46.15 55.11 59.51
MMD [149] 63.68 29.34 47.52 62.39 62.57
Rotation [337][3] 63.21 6.70 41.84 66.68 66.68
AFN [333] 64.63 30.72 52.38 66.87 62.4
Entropy [334] 61.53 16.79 49.23 66.23 63.12
Avg 62.03 21.93 47.42 63.46 62.86

Table 3.9 Target Top-1 accuracy (%) of the event, RGB and depth modalities, both in
single-modal and multi-modal (RGB+E). The highest result is highlighted in bold.

this issue. In fact, a recent line of research brought to light that “ImageNet-trained
CNNs are biased towards texture; increasing shape bias improves accuracy and
robustness" [341]. With this in mind, we believe that the event modality could be
more robust to domain shifts because it encodes additional geometric and temporal
information, making it less susceptible to lighting and color variations. Therefore,
to verify the effectiveness of using event data extracted from RGB images and
their potential in real-world applications, we analyze the performance of the event
modality (both single and multi-modal RGB+Event) in the synROD ! RealROD
scenario (introduced in section 3.2.1). To assess the benefits of the event modality,
we compare it to traditional modalities such as RGB and depth.

To conduct our analysis, we selected the VoxelGrid representation and the multi-
view approach MV-DA4E as they showed superior performance across domains in
previous experiments on event data (Table 3.7). Results presented in Table 3.9 clearly
demonstrate that the event modality is more robust than the depth modality, and that
UDA techniques are effective in this setting. Specifically, we found that the event
modality is less sensitive to domain shifts compared to the depth modality, both
in single modal (7.56% vs 39.43%) and multi-modal RGB+E (47.7% vs 52.87%)
scenarios, without applying any DA techniques. Interestingly, when combined with
the RGB modality, event data slightly improves model accuracy, in contrast to the
depth modality, which causes performance degradation as the network struggles to
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exploit the complementarity of the two modalities. Additionally, we found that UDA
performance on RGB-E is generally better than that of RGB-D.

3.3.4 Conclusions

In this work, we propose an alternative way of answering a very recent research
problem regarding how to bridge Sim-to-Real gap for event cameras arising from
event generation. By seeing the problem under a new perspective, the domain shift,
we show that Unsupervised Domain Adaptation (UDA) techniques working at the
feature level are an effective way of tackling this issue, w.r.t. previous works that
act on the input level. Moreover, we propose a multi-view approach to deal with
event representations, which outperforms existing methods and proved to work well
in conjunction with other UDA strategies. Finally, with our analysis, we demonstrate
the potential of event data in robotics applications, particularly in the challenging Syn-
to-Real scenario. We show that event data, even if simulated, can effectively encode
geometric information and is less sensitive to domain shifts compared to traditional
modalities such as depth. Our experiments also highlight that the combination
of event data with RGB can improve model accuracy, enriching standard RGB
information with additional geometric information. We validate both approaches
through extensive experiments on the N-Caltech101 dataset and the popular RGB-D
Object Dataset (ROD).

Our analysis has also uncovered two critical findings that should capture the
attention of the research community. Firstly, our results demonstrated that using
multiple modalities as input to the network does not always lead to better results,
as evidenced by the limited improvement obtained by the RGB-Depth combination.
This finding raises questions about the optimal design of multi-modal architectures
and the importance of carefully selecting the modalities that complement each
other to achieve better performance. Secondly, our study has confirmed the event
modality as a new and promising source of information for robotics applications,
with its unique ability to encode geometric and temporal information. While we have
shown the potential of this modality, further research is necessary to fully exploit
its capabilities, particularly in tasks where temporal information plays a central
role. These insights provide exciting opportunities for future research into the event
modality’s role in robotics and other emerging fields.



Chapter 4

Multi-Modal Learning for Egocentric
Vision: First Person Action
Recognition

This chapter presents a comprehensive investigation into the field of multi-modal
learning for first-person action recognition. A significant challenge in this context
arises from the necessitating analysis of motion and the extraction of relevant in-
formation alongside visual cues to accurately identify actions. While conventional
approaches rely on optical flow to separate motion from the visual context and
enhance generalization, their applicability in real-world scenarios, particularly for
wearable devices, is limited. This chapter primarily investigates two key areas.
Firstly, we propose novel techniques to enhance existing models’ ability to extract
motion information, utilizing advanced self-supervised methods. Secondly, we intro-
duce a new training approach that effectively integrates both visual and non-visual
modalities, thereby improving the overall generalization and adaptability of networks
for action recognition tasks. Additionally, we explore the potential of event-based
cameras as a viable alternative to optical flow for capturing motion information.
We introduce a strategy to adapt existing action recognition models to effectively
utilize event-based data. By conducting a comprehensive investigation in these
areas, this chapter aims to contribute to the advancement of multi-modal learning
for egocentric vision, enabling more robust and practical approaches to first-person
action recognition.
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4.1 Single-stream Multi-Modal Fusion − SparNet

The complex nature of egocentric videos presents several challenges that can impact
the performance of the standard action recognition models, especially when relying
solely on RGB data. To overcome these limitations, state-of-the-art approaches
incorporate optical flow, that helps to capture motion information and improve
performance. However, obtaining high-quality optical flow is still a computationally
intensive operation, making it unfeasible for use in online applications. In this
section, we propose a novel approach for egocentric video understanding that
overcomes the limitations of existing two-stream approaches by leveraging a single-
stream architecture that jointly learns motion and appearance information. To this
end, we introduce a self-supervised block utilizing a pretext motion segmentation task
that interweaves motion and appearance knowledge. Unlike previous two-stream
methods that require optical flow during training and testing, our approach is able
to achieve comparable performance without the need for optical flow information
during testing. We evaluate our approach on several publicly available databases
and demonstrate its effectiveness in comparison to state-of-the-art methods.

Recent advances in wearable devices have sparked a growing interest in FPAR,
enabling the capture of activities while users are in motion, without the need for
external sensors. However, transitioning from third-person to first-person action
recognition presents unique challenges. Firstly, the presence of strong egomotions
introduces complexities as the cameras are mounted on the actor’s body. Secondly,
the limited availability of pose information in first-person videos hinders the analysis
of actions compared to third-person videos. Lastly, occlusion and partial visibility
of arm trajectories and hand gestures are common in first-person videos. Thus,
it is critical to extract as much information as possible from video frames about
the objects being manipulated, their position, and the motion data encoded in the
video (since, for instance, the correct interpretation of the actions of “opening” and
“closing” a bottle, Fig. 4.1, depends merely on the hand motion direction).

To address the last issue, a popular strategy is to combine two types of informa-
tion: the visual appearance of the object of interest, which is modeled by the spatial
stream that processes RGB images, and motion information, which is handled by
the temporal stream, which takes as input the optical flow extracted from adjacent
frames. Furthermore, attention modules are frequently integrated into the basic
two-stream architecture in order to identify the more informative frames and regions
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Fig. 4.1 By leveraging a self-supervised motion prediction task during training, at test time,
SparNet can jointly exploit motion and appearance information using a single RGB stream.
The result is a leaner architecture that better focuses on the relevant elements for action
recognition in egocentric vision, as can be seen from the comparison between the Class
Activation Maps when the auxiliary task is used (lower path) or not (upper path)

for the task [35, 34]. Despite their effectiveness, these methods have three significant
flaws. Firstly, as previously mentioned, they heavily rely on high computational cost
modalities like optical flow. Secondly, the spatial and temporal features that capture
the appearance and motion information of the object of interest are learned indepen-
dently, and their final predictions or feature embeddings are fused at the network’s
end using simple weighted sums or concatenation [342, 34, 35]. This approach
is suboptimal because it fails to effectively model the correlated spatial-temporal
relationships between the two features. Thirdly, as two-stream approaches strive to
improve performance, the overall architecture’s parameter count grows significantly,
which could be a limiting factor for wearable devices where memory is a scarce
resource.

In this section, we address these issues by moving beyond the two-stream
paradigm and proposing an architecture that couples the modeling of motion and
appearance information within a single RGB stream by leveraging one or more
motion-prediction (MP) self-supervised tasks. These tasks “force” the backbone to
learning an image embedding that focuses on object movements, a piece of informa-
tion that is beneficial for the main task of FPAR. Thanks to the use of the auxiliary
tasks, this information is directly encoded in the inner layers of the backbone, hence
leading to an intertwined learning of appearance and motion features. We demon-
strate the effectiveness of this idea not only through our results but also by the results
obtained from including these MP pretext tasks in other recent models, such as Ego-
RNN [34] and LSTA [35]. Our resulting architecture is relatively straightforward,
comprising a standard backbone (i.e., a ResNet-34 in our experiments), followed by
a standard ConvLSTM. The auxiliary task heads consist of shallow architectures.
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Fig. 4.2 SparNet architecture. The action recognition block computes image embeddings and
solves the classification task. The motion prediction block injects into the backbone motion
information that results in a richer embedding, jointly encoding motion and appearance infor-
mation. We compensate for egomotion effects with the use of stabilized dense optical flow
and an IDT module [25]. The OF quantizer block discretizes the input motion vectors into a
finite number of classes according to the values of the nd and nm parameters (respectively, 8
and 3 in this example, for a total of 17 classes).

Due to its simplicity, our architecture can be trained end-to-end in a single stage, in
contrast to various other two-stream methods [34, 35]. Moreover, it can utilize a
smaller number of frames than what was used in previous works without any adverse
effect on performance. We refer to our architecture as Self-supervised first Person
Action Recognition network - SparNet.

To summarize, the contributions of this section are as follows: (i) we introduce a
novel set of motion prediction self-supervised tasks specifically designed for egocen-
tric action recognition; (ii) we address the problem of how to effectively leverage
over a self-supervised branch to jointly encode spatial and motion information by
identifying the features that are most suited to solve this task; and (iii) we showcase
the effect of each component of SparNet with a quantitative and qualitative ablation
study.

4.1.1 Architecture Overview and Details

SparNet: Overview. In the proposed architecture’s basic version (as shown in
Figure 4.2, action recognition block), we initially extract a limited number of N
sparse representative RGB frames from each input video segment. These frames’
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appearance embeddings, obtained through a standard CNN backbone, are then
fed into a ConvLSTM network. The network’s output is passed through an average
pooling layer and subsequently through a fully connected (FC) layer for classification.
Although utilizing a small number of frames helps reduce the computational burden
of the model, the resulting features lack crucial motion information necessary for
accurate recognition, which is exploited by two-stream approaches that incorporate
explicit optical flow data.

To tackle this issue, we introduce a regularization technique for representation
learning in FPAR by extending the basic architecture to a multi-task network. This
network is required, at train time, to solve jointly two different problems: the action
recognition task and a motion-prediction (MP) auxiliary task. We formalize the latter
as a self-supervised problem that, given a single (and static) RGB frame as input,
tries to answer one (or both) of the following questions: which parts of the image are
going to move? And in which direction?

In our approach, we formulate the motion segmentation task (MS), which in-
volves identifying moving parts, as a labeling problem aimed at minimizing discrep-
ancies between a motion map that labels pixels as either moving or static, and the
object movements predicted by the network based on a single static RGB frame.
These unsupervised motion maps are obtained from the input video segment using
a technique inspired by [343] and leveraging Improved Dense Trajectories (IDT)
[25] for extracting “stabilized” motion information. The main idea of IDT is to
compensate for strong camera motion and shake typically observed in egocentric
videos by estimating the homography that relates adjacent frames. Subsequently,
keypoints that can be reliably tracked for at least eight frames and are not identified
as camera motion are labeled as moving.

The objective of the second sub-problem of MP is to estimate the “stabilized”
flow, which refers to the dense optical flow computed after compensating for camera
motion between consecutive frames, from a static RGB input image. As optical flow
is a continuous function, we initially formulate its estimation as a regression problem,
referred to as Optical Flow Regression (OFR). Alternatively, we also convert it into
a classification problem, termed Optical Flow Classification (OFC). For OFC, we
quantize the per-pixel motion vectors as follows: first, we extract the magnitude and
direction of each motion vector for every pixel. Then, we discretize the angle into
a set of nd directions uniformly distributed in the interval [0,2p]. The magnitude
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is discretized by clamping it to a maximal value vclamp, normalizing it to one, and
dividing the interval [0,1] into nm values (including the extremes), with the constraint
nm ≥ 2. Consequently, each pair (dm,dd) of discretized magnitude and direction
values is assigned a unique label, except for motion vectors with magnitudes close to
zero (whose orientations tend to be meaningless), which are assigned to the same
class. Hence, the total number of classes is nd · (nm −1)+1, and the self-supervised
task involves estimating the correct flow labels.

Both approaches, regression and classification, have their own strengths and
weaknesses. Regression has the potential for higher accuracy, but it can be challeng-
ing to solve and may result in sub-optimal solutions due to smoothing effects as noted
in [344]. On the other hand, classification tends to have more stable convergence, but
it introduces quantization errors. One possible solution is to combine the advantages
of both methods. Similar benefits can be expected by integrating motion segmen-
tation (MS) with optical flow estimation. MS identifies points that exhibit stable
and coherent motion over a longer temporal interval than just two adjacent frames,
thereby reducing the impact of noise on dense optical flow. In contrast, optical flow
estimation can provide robust identification of moving parts in an image, along with
information about the direction of their motion. By coupling MS and optical flow
estimation, we can potentially achieve a more robust and accurate motion analysis
approach that leverages the strengths of both regression and classification methods.

Regardless of the pretext task chosen for the MP module, whether it’s MS, OFR,
OFC, or a combination of them, its main objective is to facilitate the learning of
motion cues within the appearance stream. We posit that by processing inputs with
these characteristics, the ConvLSTM can extract a more meaningful global video
representation. This representation encompasses not only appearance information
but also short and long-term motion dependencies among frames. This is in con-
trast to the vanilla appearance embeddings, which may not fully capture the rich
motion information present in the video. By leveraging the MP module, we aim to
enhance the global video representation and enable the network to better understand
the complex interplay between appearance and motion cues, leading to improved
performance in video analysis tasks.

SparNet: Details. Let S be a training set consisting of samples Si = {Hi,yi}n
i=1,

where Hi is a set of N timestamped images {(hk
i , t

k
i )}N

k=1 uniformly sampled from the
video segment. Let also x= fM(H|q f ,qc) be the embedding of sample S computed by
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our model M, where parameters q f and qc define, respectively, the image embedding
and the classification spaces. Finally, let g(x) be a class probability estimator on the
embedding x.

The action recognition and the MP task share a common trunk that is completed
by two task-specific “heads”. The first objective of the learning step consists in
minimizing the categorical cross-entropy classification loss Lc:

Lc(x,y) =−
n

Â
i=1

yi · log(g(xi)) (4.1)

Together with the objective mentioned above, we ask the network to solve an
MP task, whose head can take different shapes according to the specific sub-problem
chosen (or combination of sub-problems) and whose input is always the output of
the backbone.

The MS task is characterized by a shallow head composed by a single convo-
lutional block, aimed at both adapting the features to the MS task and reducing
their channel number. This head ends with a fully connected layer of size s2 fol-
lowed by a softmax, and it is trained with a loss Lms based on the per-pixel cross
entropy between the computed label image lms and the ground truth m (which is first
downsampled to a size s⇥ s and then vectorized). The estimated motion map lms is
obtained as a function of both image embedding z, which depends only on q f , and
MS head parameters (qms). Thus, the Lms loss can be defined as:

Lms(z,m) =−
n

Â
i=1

N

Â
k=1

s2

Â
j=1

mk
i ( j) · log(lk

ms,i( j)) (4.2)

where m is the ground truth.

The OFR task aims at regressing the two separate horizontal and vertical compo-
nents of the optical flow. Its head is composed by a stack of two deconvolution layers
(and ReLU activation functions) that learn a nonlinear upsampling to a final size of
r⇥r⇥2. The head is trained by minimizing the Mean Squared Error (MSE) between
the predicted optical flow (which is a function of q f and OFR head parameters, qo f r)
and the ground truth (which is downsamples to a size r⇥ r⇥2). The Lo f r task loss
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can be defined as:

Lo f r(z,o f ) =
n

Â
i=1

N

Â
k=1

1
r2

r2

Â
j=1

||o f k
i ( j)− yk

i ( j)||22 (4.3)

where o f is the ground truth and y is the estimated optical flow.

Finally, the structure of the OFC head is identical to that of the MS task, with the
only exception that its ground truth is obtained by first downscaling the optical flow
to a size s⇥ s and then quantizing it. The OFC loss is then defined as:

Lo f c(z,o f ) =−
n

Â
i=1

N

Â
k=1

s2

Â
j=1

Q(o f k
i )( j) · log(lk

o f c,i( j)) (4.4)

where lo f c is the computed label image (depending from q f and the OFC head
parameters qo f c) and Q is the one-hot vector containing the result of the quantization
of the o f ground truth.

The optimal model of SparNet is achieved by simultaneously solving two separate
optimization problems: minimizing Lc (the classification loss) and the loss of the
chosen MP problem (MS, OFR, OFC, or a combination), each with an additional
L2 weight regularization term. The architecture is designed such that the weights
of the MP head are updated only through the backpropagation of its loss error,
while the classification parameters (qc) are updated only through the Lc error. Both
losses contribute to updating the weights of the backbone (q f ) through a weighted
combination of their gradients, with the weights being hyperparameters of the
method. In case of multiple auxiliary tasks, each task is optimized independently,
and their weighted gradients are combined with that of the action classification head
to optimize the backbone. The overall architecture is illustrated in Figure 4.2.

SparNet: Implementation. While SparNet network can leverage over many
possible backbones, we choose for our experiments a ResNet-34 model pre-trained
on ImageNet, which is both a lightweight and powerful backbone. The motion-
prediction heads receive in input the features extracted from the conv5_x block of
the ResNet (whose size is 7⇥7⇥512). The MS and OFC heads reduce the feature
channels to 100 and the size s2 of their resulting ground truth is, therefore, 49. Both
OFR deconvolutional blocks have a 3⇥3 kernel and a stride of 2. The first reduces
the input feature channels to 100 and the second to two (i.e., the estimated horizontal
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and vertical optical flow displacements). The final value of r is 35. As for the ground
truths, we compute the dense optical flow with the Gunnar-Farneback method [345].

4.1.2 Experiments

In this section, we provide details about the implementation used in our experiments.
We then perform an ablation study to demonstrate the effectiveness of the proposed
self-supervised MP tasks and our single-stream approach. We also analyze their
effects on different models. Finally, we discuss the results obtained on four standard
first-person action recognition datasets (described in Section 2.4.1), which highlight
the strength of SparNet in these benchmark datasets.

Implementation details SparNet is trained end-to-end on a single stage. The
ConvLSTM cell in our implementation has 512 hidden units for temporal encoding,
and it is initialized following the approach used in [34]. During training, we employ
different learning rates for different architectural blocks, including the backbone,
MS head, ConvLSTM, and the final classification layer. The number of training
epochs varies depending on the dataset, with 400 epochs for GTEA-61, 70 epochs
for EGTEA+, 100 epochs for FPHA and EK. We use the ADAM optimization
algorithm for training, and the batch size is set to 4 for GTEA-61 and 8 for the
remaining datasets. We decompose each input video segment into N = 7 frames
for GTEA-61 and FPHA, and N = 11 frames for EGTEA+ and EK. The frames are
uniformly sampled in time. We set vclamp = 15 and nm = 4, with a varying number
of angular subdivisions (nd 2 8,16,20). Input images are resized to a height of 256
pixels, while maintaining the aspect ratio to update the width accordingly. The actual
training input is a random crop of size 224⇥224 pixels. Ground truth for MP tasks
is computed by first scaling all videos to a fixed height of 540 pixels. During training,
we apply data augmentation techniques proposed in [346]. At test time, we feed the
network with the central crop of the frames. To ensure result reproducibility, we
conduct three runs for each experiment, with the same constant seed across different
datasets and parameters. Therefore, unless stated otherwise, the reported results for
SparNet are the average accuracy over these three runs.
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GTEA-61 EGTEA+ FPHA
EleAttG [347] 66.77 RULSTM [46] 60.20 H+O [348] 82.43
TSN [349] 69.93 Ego-RNN [34] 60.76 Gram Matrix [350] 85.39
Ma et al. [89] 73.02 LSTA [35] 61.86 ST-TS-HGR-NET [351] 93.22
Ego-RNN [34] 79.00 3DConv MTL [36] 65.70
LSTA [35] 80.01 Two-stream I3D + STAM [131] 65.97
Baseline 80.18 Baseline 63.96 Baseline 94.32
SparNet-MS 80.51 SparNet-MS 66.15 SparNet-MS 96.41
SparNet-OFR 80.14 SparNet-OFR 64.22 SparNet-OFR 95.07
SparNet-OFC 81.17 SparNet-OFC 67.36 SparNet-OFC 96.41
SparNet-OFR+OFC 80.51 SparNet-OFR+OFC 67.52 SparNet-OFR+OFC 96.35
SparNet-MS+OFC 81.39 SparNet-MS+OFC 67.44 SparNet-MS+OFC 96.70

Table 4.1 Top-1 accuracy (%) achieved by various state-of-the-art methods on GTEA-61,
EGTEA+, and FPHA datasets. The highest results are highlighted in bold.

Ablation Study In this section, we comprehensively evaluate SparNet on the
first split of the EGTEA+ dataset using as baseline the action recognition block in
Figure 4.2. Specifically, we study the following aspects.

EGTEA+

Method Accuracy (%)

SparNet-MS (7 frames) 67.05
SparNet-MS (11 frames) 68.43
SparNet-MS (16 frames) 67.48

SparNet-MS @ conv4_x 66.15
SparNet-MS @ conv5_x 68.43
SparNet-MS @ Output ConvLSTM 67.68

Table 4.2 Top-1 accuracy (%) achieved by our method using a different number of represen-
tative frames and input features. The highest results are highlighted in bold.

Sparse sampling. We start by analyzing the effect of the number N of input
frames used for action recognition (in both train and test). Using the MS task as
a reference and varying N in the range of [5,25], we observed that there were no
significant differences in performance for values between 9 and 11. However, the
error rate started to increase slightly for smaller and larger values of N, as shown
in Table 4.2 (only a selection of significant values are reported). This observation
is consistent with findings from other MP tasks, which we do not show here for
brevity. These results are in line with the findings in [349], suggesting that a dense
temporal sampling may result in highly redundant information that is unnecessary
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for capturing the temporal dynamics of the video, while too few frames can lead to
the loss of relevant cues for the current action. Therefore, in our main experiments,
we heuristically adapted the value of N based on the average segment length of the
analyzed dataset.

MP taks: input features. The choice of input features for the auxiliary MP
tasks plays a crucial role in their effectiveness. In our experiments, we explored two
options: using the output features of the residual blocks of the ResNet backbone
or utilizing the spatio-temporal representations obtained from the ConvLSTM. As
shown in Table 4.2, the conv5_x features significantly outperformed the lower layer
features (such as conv4_x), indicating that leveraging high-level and more structured
information from deeper layers of the backbone is beneficial for the MP tasks.
However, the accuracy obtained from the ConvLSTM features was lower than that
of the conv5_x features. We hypothesize that this may be due to the spatio-temporal
processing capability of ConvLSTM, which makes the solution of the MP task easier.
As a result, the backbone may incorporate less motion information in its embeddings
when using ConvLSTM features, which could have negative effects on the main
FPAR task. This suggests that finding the right balance between incorporating motion
information and maintaining discriminative features for the main task is crucial in
designing effective MP tasks.

Impact of the MP tasks. Table 4.3 presents an ablation study of different
variants of SparNet, along with the total number of parameters and GFLOPS of
the resulting architecture, as well as state-of-the-art results on the same split. This
analysis allows us to understand the individual and mutual contributions of the
different MP tasks. From the results, it is evident that both individual and combined
MP tasks contribute to improving the baseline performance. However, the extent of
improvement varies among the tasks. OFR is the most challenging task, as indicated
by its lower contribution to the final FPAR task. On the other hand, the choice of
translating the optical flow estimation into a classification problem proves to be
effective. Furthermore, the mutual contribution of the individual MP tasks helps
in making the MP problem more robust, which, in turn, provides better integration
of appearance and motion information in the backbone. It is worth noting that
the overall performance of SparNet is competitive with state-of-the-art results on
the same split, indicating the effectiveness of the proposed approach in integrating
motion information for fine-grained action recognition.
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ABLATION STUDY EGTEA+
Method Acc (%) Param (M) GFLOPS

baseline 65.46 24.34 41.52

SparNet-MS 68.43 24.87 41.55
SparNet-OFR 65.73 24.80 43.01
SparNet-OFC (nd = 8) 69.32 30.39 41.61
SparNet-OFC (nd = 16) 69.49 36.16 41.68
SparNet-OFC (nd = 20) 68.96 39.04 42.21
SparNet-OFR+OFC (nd = 16) 69.57 36.62 43.17
SparNet-MS+OFC (nd = 16) 69.80 36.70 41.71

Ego-RNN RGB [34] - 24.34 94.36
Ego-RNN [34] - 45.71 98.31
LSTA RGB [35] 57.96 41.22 114.92
LSTA [35] 61.86 62.59 118.86
Two-stream I3D + STAM [131] 68.60 - -
3DConv MTL [36] 68.99 - -

Table 4.3 Top-1 accuracy (%) achieved by variations of our method compared with others
by various state-of-the-art methods on EGTEA+ (split 1, N = 11). The highest result is
highlighted in bold.

Concerning the computational burden of the MP tasks, we can say that their
effect is in general minimal, exception made for OFC that requires a larger number
of parameters for the classification (but still a limited increase in terms of GFLOPS).
We recall that the baseline numbers are those required at test time (when the MP
tasks are disabled). It can be seen that the relative increase in term of parameters
(GFLOPS) is 2.2% (0.1%) and 1.9% (3.6%) for, respectively, MS and OFR and up to
60.41% (0.5%) for OFC (when nd = 20). These numbers can be compared by those
expressed by Ego-RNN and LSTA, whose GFLOPS are substantially higher (an
increase between 127.3% to 186.3%) in both their single and two-stream versions
and in both train and test time.

MP tasks and other models. One possible question is if the proposed MP tasks
can be beneficial to other models too. To this end, we performed a detailed analysis
of their effects on Ego-RNN RGB [34] and LSTA-RGB [35]. Both methods converge
to the same baseline of SparNet when the CAM is deactivated (in Ego-RNN RGB) or
a vanilla LSTM cell is used instead of the proposed LSTA cell (in LSTA-RGB). For
these experiments, we modified both architectures adding various MP tasks, feeding
them with the conv5_x features and 25 frames in input, as in their original papers.
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GTEA-61

Method Single-stream (SS) SS + MS SS + OFC

Ego-RNN [34] 63.79 68.97 68.10
LSTA [35] 65.80 66.96 67.24

Table 4.4 Top-1 accuracy (%) achieve by applying the motion segmentation (MS) task on
Ego-RNN [34] and LSTA [35].

We present results obtained on the second split of GTEA-61. For the sake of
brevity, we report the results obtained with MS and OFC. For a fair comparison,
single-stream results are those obtained in our experiments, which, despite our
efforts, could not replicate those presented in [34] and [35]. We also underline that,
since both methods retrain merely the last residual block of the backbone and not
the whole ResNet as in our case, the MP effect is not back-propagated to the lower
backbone layers, preventing them from supporting the higher ones in learning new
features that are more focused on the actual FPAR task. Nonetheless, we think the
numbers in Table 4.4 highlight the effect of MP on these models and showing that
the effectiveness of our approach is not limited to SparNet.

Experiments on GTEA-61, EGTEA+ and FPHA In our experiments on the
GTEA-61 and EGTEA+ datasets, we followed the protocols defined in [34, 35],
which require reporting the final average accuracy over different and fixed non-
overlapping training and test sets. For the FPHA dataset, we followed the 1:1
protocol, which defines fixed training and test sets. We compared SparNet with
several state-of-the-art methods that are based on different approaches. These include
methods that use one (or a combination) of two-stream [34, 35, 89, 349, 131] or
multi-stream [46] models, attention modules [34, 35, 347, 131], 3D CNN [36, 131],
multi-task learning [348, 36], and methods that exploit hand posture data [351, 348,
36, 350].

The results in Table 4.1 demonstrate that SparNet achieves state-of-the-art perfor-
mance in all benchmarks and experimental protocols. This indicates that the motion
clues induced in the (single) appearance stream by the MP tasks were effective in
improving the discriminative capabilities of the final embeddings, surpassing the
performance of explicit optical flow information or 3D CNNs, and without the need
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for additional attention modules or supervised information. These results also con-
firm the findings from the ablation experiments, highlighting the effectiveness of the
combined MP tasks and the relatively lower contribution of OFR to the overall perfor-
mance of SparNet. As for the MP tasks considered, these results confirm the ablation
ones, i.e., the optimality of the combined MP tasks and the lower contribution of
OFR.

Experiments on EK In this work, due to the unavailability of test labels for the
EK challenge at the time of submission, we followed the experimental protocol
proposed in [36], which mirrors the "unseen" kitchen split of the EK challenge. We
acknowledge that the EK challenge is extremely challenging, and many existing
approaches involve complex architectures, combinations of 3D convolutions, prior
supervised knowledge, multi-stream approaches, and ensemble methods, making it
difficult to isolate the individual contribution of each component [352, 353, 36, 354,
47, 355].

In contrast, our approach focused on making minimal adjustments to the ar-
chitecture to meet the specific requirements of the EK challenge. We added two
separate fully connected (FC) layers at the end of the ConvLSTM for verb and
noun prediction, and combined their outputs to define the action class. We used the
average categorical cross-entropy loss for all tasks. Our rationale was to demonstrate
the potential of a single, simple, yet effective approach in this challenging setting.

Table 4.5 compares our top-1 results using the combination of MS and OFC
as the MP task (the most effective combination according to the results in Table
4.1) with the approach proposed in [36], which is the only other method available
under the same experimental settings. As seen, the two approaches show comparable
results, with SparNet achieving higher accuracy on verbs and lower accuracy on
nouns and actions compared to [36]. These results partially contradict the findings
from EGTEA+, where SparNet outperformed the other approach in all splits. There
could be several explanations for these performance differences. First, EK contains
unscripted video segments, which makes our uniform frame subsampling less optimal.
Second, despite EK videos being longer than other datasets, we had to choose only 11
representative frames due to computational and memory constraints, which may not
be optimal. Lastly, we note that [36] used a Multi-Fiber Network as their backbone,
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EPIC-KITCHENS-55

Method Verb Noun Action

3DConv MTL [36] 49.31 27.60 19.29
SparNet-MS+OFC 52.32 26.01 16.95

Table 4.5 Top-1 accuracy (%) on the EPIC-Kitchens-55 validation set defined in [36]. The
highest results are highlighted in bold.

which is a 3D CNN pretrained on Kinetics and may be better suited for video
processing compared to our ResNet-34 backbone.

Interestingly, we observed differences in verb and noun accuracies between the
two methods. The higher accuracy of SparNet on verbs could be attributed to the MP
task helping our approach focus on capturing motion-related information, while the
hand position regression task used in [36] helps their network focus on hand regions
and implicitly on objects the hands interact with. The "naive" way of combining
verb and noun predictions in our approach may explain the lower accuracy on action
predictions. Moreover, our results suggest that the EPIC-Kitchens dataset presents
more challenges compared to other available datasets, and our RGB-based approach
struggles with generalizing to novel environments, such as unseen kitchens not
included in the training data.

4.1.3 Conclusions

In this section, we introduced SparNet, a single-stream architecture for egocentric
first-person activity recognition (FPAR). One of its key features is the joint learning
of appearance and motion features through a set of self-supervised pretext tasks that
estimate motion information from static input images. This results in a lightweight
architecture that can be trained in a single stage and achieves state-of-the-art results
on various publicly available datasets.

In conclusion, while acknowledging the limitations of optical flow information,
we strongly emphasize the importance of incorporating multi-modal learning for the
advancement of FPAR. In the upcoming sections, we will further investigate alterna-
tive modalities to substitute optical flow data, specifically focusing on improving the
network’s ability to accurately recognize hand-object interactions in the egocentric
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view. For instance, we will explore the role of audio signals in the egocentric vision
context and investigate the potential of recent event data as a compelling compromise
between wearable device efficiency and motion information encoding capability.
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4.2 Multi-Modal Alignment − RNA

In this section, we focus on addressing the challenge of environmental bias or
domain shift, which significantly impacts the ability of models to generalize to
unseen scenarios. This limitation restricts the applicability of existing methods in
real-world contexts. To tackle this issue, we present a novel approach for domain
generalization in egocentric activity recognition. Our approach introduces a new
multi-modal loss called Relative Norm Alignment (RNA) loss. The RNA loss re-
balances the norms of the features extracted by the network across different domains,
modalities, and classes. This ultimately improves overall accuracy on test data
from an unseen “target” distribution. Furthermore, it can be easily extended to
Unsupervised Domain Adaptation (UDA) setting by exploiting the availability of
unlabeled target data during training. This is achieved by combining the RNA loss
with a standard adversarial domain loss to further improve feature transferability
and with an Information Maximization term to regularize predictions on target
data. We present a comprehensive analysis and ablation of our method for both
Domain Generalization (DG) and UDA settings and test our approach with different
modalities. We also extend our analysis to other tasks, such as third-person action
recognition, object recognition, and fatigue detection. The proposed approach
achieves competitive or state-of-the-art performance on the proposed benchmarks,
demonstrating the versatility of our method and its effectiveness in a wide range of
applications.

As mentioned earlier, the use of wearable cameras and large-scale egocentric
datasets has gained significant attention among researchers in the field of FPAR [34,
45–51, 10]. However, due to the camera’s mobility with the observer, there is a higher
degree of variability in factors such as illumination, viewpoint, and environment,
compared to fixed third-person cameras. This variability negatively impacts the
performance of egocentric action recognition models, and it is commonly referred
to as "environmental bias" or domain shift [356]. It arises from a reliance of the
model on the specific environment in which activities are recorded, hindering its
ability to recognize actions when they are conducted in unfamiliar surroundings.
To illustrate the impact of this problem, we present in Figure 4.3 the relative drop
in model performance from the seen to an unseen test set of the top-3 methods of
the 2019 and 2020 EPIC-Kitchens challenges. These results confirm that despite
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Fig. 4.3 Top-3 results of the 2019 [26] and 2020 [27] EK challenges, when testing on “Seen"
and “Unseen" kitchens.

numerous efforts to find a specific solution for egocentric action recognition, the
problem of environmental bias remains unsolved.

Recently, [37] addressed this issue by reducing the problem to an unsupervised
domain adaptation (UDA) setting, where an unlabeled set of samples from the
unseen test, called target, is available during training. While UDA can be effective in
reducing domain shift, it may not always be practical in real-world computer vision
applications. This is because it requires prior knowledge of the target domain, which
may not be available beforehand, and because accessing target data at training time
might be costly (or plainly impossible). Thus, we investigate an alternative solution
that aims to enhance the network’s initial generalization ability while ensuring a
seamless transition to the UDA scenario. This is known as domain generalization
(DG) setting.

Inspired by the idea of exploiting the multi-modal nature of videos [37, 47], we
make use of multi-sensory information to deal with the challenging nature of this
particular setting. As mentioned in the previous section the RGB-optical flow are
the two most widely utilized modalities in the egocentric action recognition[37, 88,
45, 46]. Furthermore, it has been shown that audio signals play an important role
in egocentric action recognition, as they are naturally captured by most wearable
devices [357]. Egocentric videos, in particular, contain rich sound information
due to the close proximity of the sensors to the sound source during hand-object
interactions, making audio a suitable modality for first-person action recognition
[47, 92, 358]. For example, the action of "cutting" can exhibit visual and auditory
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Fig. 4.4 Overview of Relative Norm Alignment (RNA) loss for RGB and audio modalities.
Given visual and audio input from both source and target domains, we perform an alignment
at feature level by re-balancing (i) the mean feature norms of visual and audio modalities
(cross-modal alignment, Lg

RNA), (ii) per-class mean feature norms of visual and audio modal-
ities (per-class alignment, Lc

RNA) and (iii) mean feature norms of source and target features
independently for each modality (cross-domain alignment, Lmod

RNA).

differences across domains, such as different types of cutting boards and food items
being cut.

Despite multiple modalities could potentially provide additional information, the
CNNs’ capability to effectively extract useful knowledge from them is somehow re-
stricted [359–363]. In our opinion, the origin of this difficulty is due to one modality
being “privileged” over the other during training, as well as the main classifier tent to
“privilege” features extracted from the source distribution. In particular, we observed
that differences in the marginal distributions of different modalities do not only
negatively affect the training process and lead to suboptimal performance, but also
typically translate into discrepancies between the mean norms of their features. This
imbalance in norms leads the network to “favor” the modality with the larger features,
which prevents the model from fully exploiting the synergies and complementarities
between modalities and reduces its generalization capabilities [364].

Motivated by these findings, we proposed to reduce such imbalance with a simple
loss called Relative Norm Alignment (RNA) loss. In the DG setting, i.e., when the
model does not have access to the target data at training time, this loss attempts to
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align the average norms of the different modalities to a common value. This objective
also leads to successful transfer between source and target [365–367, 364]. In the
UDA setting, i.e., when target data are available during training, RNA is defined as
the sum of two domain-specific terms that aim to achieve a cross-modality norm
balance on both source and target domains. While RNA encourages the alignment
of all feature norms to a common value, it can also lead to imbalanced norms
between classes which may penalize the ones with a smaller norm. Therefore, we
include in the definition of RNA an additional component to enforce similar feature
norms between classes intra- and inter-domain (Fig. 4.4, per-class alignment), which
ultimately helps to improve overall accuracy.

In summary, the main contributions of this section are as follows:

• we bring to light the “unbalance” problem arising from training multi-modal
networks, which causes the network to “privilege” one modality over the other
during training, limiting its generalization ability;

• we introduce a new cross-domain and cross-modal loss, called the Relative
Norm Alignment (RNA) loss. This loss function progressively aligns the
relative feature norms and relative per-class feature norms of two or more
modalities in DG setting and from source and target in UDA context;

• We conduct a comprehensive analysis and ablation study of our approach in
both DG and UDA settings. We show state-of-the-art or competitive perfor-
mance on all benchmarks and extend our analysis to multiple modalities and
multiple tasks.

In the following, we detail the proposed Relative Norm Alignment (RNA) loss,
which aims to mitigate the domain shift in multi-modal learning. We begin with
a description of intuition and motivation, followed by a summary of the RNA
description and formulation.

4.2.1 Intuition and Motivation

A common adopted strategy in the literature to solve the first-person action recog-
nition task is to use a multi-modal approach [37, 47, 90, 92, 358, 88]. Despite the
wealth of information of multi-modal networks w.r.t. the uni-modal ones, their
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performance gains are limited and not always guaranteed [359–363]. The authors of
[359] attribute this limitation to overfitting and propose a solution by adjusting the
loss value of each stream with different hyperparameters. However, this technique
requires precise estimation, which is dependent on the task and dataset.

Norm unbalance. We hypothesize that during training there is an “unbalance"
between the two modalities that prevents the network from learning “equally" from
the two. Specifically, we believe that the network tends to “privilege" one modality
over the other during training, while “penalising" the other. This hypothesis is also
supported by the fact that the hyperparameters discovered in [359] differ significantly
depending on the modality.

Several works highlighted the existence of a strong correlation between the
mean feature norms and the amount of “valuable" information for classification
[368–370]. In particular, the cross-entropy loss has been shown to promote well-
separated features with a high norm value in [369]. Moreover, the work of [371]
is based on the Smaller-Norm-Less-Informative assumption, which implies that a
modality representation with a smaller norm is less informative during inference.
All of the above results suggest that the L2-norm of the features gives an indication
of their information content, and thus can be used as a metric to measure the
unbalance between training modalities, classes and domains. After conducting an
in-depth analysis of the feature norm during the training process, our hypothesis
has been validated. The subsequent sections will provide detailed information on
this validation. Leveraging this new approach to understanding the problem, we
have proposed a novel multi-modal loss function called Relative Norm Alignment,
which aims to improve the generalization capabilities of multi-modal architectures
and address the domain shift issue.

4.2.2 Relative Norm Alignment Loss

The new loss function is suited to train a standard multi-stream architecture and it
can be used in both DG and UDA scenarios. For simplicity, we will initially describe
the RNA loss function in terms of two modalities, u and v, although the complete
formula will be presented later. The input sample i consists of two modalities,
xi = (xu

i ,x
v
i ), which are fed into a features extractor (one for each modality m), as

shown in Fig. 4.5. The features f m
i = Fm(xm

i ) are then processed by a classifier Gm,
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Fig. 4.5 Labeled source and unlabeled target samples from the modalities u (e.g., visual)
and v (e.g., audio) are fed to the respective feature extractors. LRNA aims to balance the
relative feature norms of the two modalities, through a combination of the (domain-specific)
cross-modal components (Lg

RNA and Lc
RNA) and the cross-domain ones (Lmod

RNA) in each u and
v modality. In DG, only the components computed on the source are used.

which produces score predictions for the m-th modality of the i-th sample. Finally, a
late fusion approach is used to combine the prediction scores from all modalities and
obtain the final predictions. Our approach involves minimizing the following loss
function:

L= LC +LRNA (4.5)

Here, LC represents the standard cross-entropy loss on the source data, while LRNA

is a novel loss term that is explicitly designed for DG settings and can be easily
extended to UDA scenarios.

In particular, in DG setting the novel LRNA is composed by the sum of two
components:

LRNA = L
g
RNA(us,vs)+Lc

RNA(us,vs) (4.6)

The Lg
RNA promotes a relative adjustment between the global norm of the modali-

ties aimed at achieving an optimal equilibrium between them. This is expressed by
the formula provided below, which defines the L

g
RNA:

L
g
RNA(u,v) = lg

✓
E[h(Xu)]

E[h(Xv)]
− E[h(Xv)]

E[h(Xu)]

◆2
(4.7)
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where h(xm
i ) = (k·k2 ◦Fm)(xm

i ) is the L2-norm of mth modality features of the ith

sample, E[h(Xm)] = 1/BÂxm
i 2Xm h(xm

i ) is the average norm for the mth modality
of the B samples composing the batch, and lg weights L

g
RNA. To ensure that all

features have the same dimension, we project them to a common shape using a fully
connected layer when this condition is not met. The dividend/divisor structure of
L

g
RNA (Eq. 4.7) promotes a relative adjustment between the global norm of the two

modalities aimed at achieving an optimal equilibrium between the two. The square
of the difference forces the network to take larger steps when the ratio of the two
modality norms is too different, leading to faster convergence.

Although the Lg
RNA function is effective in enhancing the generalization ability of

the multi-modal approach, the formulation presented in Eq. 4.7 does not account for
the possibility that the global cross-modal alignment achieved by L

g
RNA may result in

unbalanced norms between modalities at the class level. This can lead to a scenario
where certain modalities are preferred over others when making decisions about
specific classes. To address this issue, we introduce the intra-domain class constraint
Lc

RNA as the second term in the LRNA function. The Lc
RNA is designed to tackle the

cross-modal norm imbalance at the class level, and is defined as follows:

Lc
RNA(u,v) = lc

C

Â
c=1

✓
E[h(Xu

c )]

E[h(Xv
c )]

− E[h(Xv
c )]

E[h(Xu
c )]

◆2
(4.8)

where lc weights the loss, and E[h(Xm
c )] denotes the average norm of the features of

modality m for samples of class c, with C the total number of classes.

RNA for Domain Adaptation. In UDA setting the RNA is adapted as follows:

LRNA =L
g
RNA(us,vs)+L

g
RNA(ut ,vt)+

Lc
RNA(us,vs)+Lc

RNA(ut ,vt)+

Lmod
RNA(us,ut)+Lmod

RNA(vs,vt)

(4.9)

Both the L
g
RNA and Lc

RNA are also minimized for the target data, in particular, to
compute the Lc

RNA for the target, a pseudo-labeling strategy is used, assigning the
target samples to classes. Furthermore, the last component of LRNA addresses the
problem of different norms in different domains by re-balancing the average and
per-class norms of features in each modality across domains, so that the network can
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Fig. 4.6 Individual effects of the different components of LRNA on the feature norms. Each
diagram shows the norm per class of a single modality and a single domain (the color
coding is the same as in Fig. 4.5). First row: Lg

RNA minimizes the overall average of the
feature norms (larger bar on the right) of the different modalities (u and v for either source
or target). Second row: Lc

RNA achieves the same goal at the individual class level (left:
unbalanced norms, right: balanced norms thereafter). Third row: Lmod

RNA minimizes the
difference between global and per class feature norms of the same modality across different
domains. Here, diagrams represent the class and average norms for the same modalities
(either u or v) before (left, unbalanced between domains) and after (right, balanced) the
application of Lmod

RNA.

focus on features that are more transferable between domains [367]. To this end, we
include the following term in the formulation of RNA:

Lmod
RNA(ms,mt) = L

g
RNA(ms,mt)+Lc

RNA(ms,mt) (4.10)

where m 2 {u,v}.

The individual contribution of the three losses is exemplified in Fig. 4.6. Lg
RNA

globally aligns the norms of modalities for each domain. Lc
RNA aligns the norms

of modalities per class for each domain. Lmod
RNA aligns the norms between domains,

separately for each modality. Taken together, the three losses act synergistically.
In DG, Lc

RNA supports the work of Lg
RNA, which in turn facilitates the alignment

of norms per class to a common value. The addition of Lmod
RNA in UDA helps the
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other two components to ensure that the average and per-class norms of the different
modalities are also aligned between source and target.

Extension to multiple modalities The RNA objective in Eqs. 4.6 and 4.9 can be
trivially extended to more than two modalities. In DG, the loss can be rewritten as:

LRNA = LRNA(S) =
M

Â
i=1

M

Â
j=i+1

LRNA(is, js) (4.11)

where i and j span the M modalities. Similarly, the UDA loss becomes:

LRNA = LRNA(S)+LRNA(T)+
M

Â
i=1

Lmod
RNA(is, it) (4.12)

where LRNA(S) and LRNA(T) are the loss in Eq. 4.11 for the source and target
domains, respectively.

4.2.3 Learning objective in UDA

In addition to the loss defined in Eq. 4.9, to further improve the domain invariant
properties of the features, we apply adversarial domain alignment [372, 373]. We
follow the recipe used in other recent UDA work [189, 37, 374, 191], and introduce
a classifier that predicts whether features are from the source or the target. This
classifier is directly connected to the feature extractors via a Gradient Reversal Layer
(GRL) [372]. The domain classification loss Ld is then multiplied by a weight ld

and added to the total loss.

The loss we have introduced so far (i.e., the combination of LRNA and Ld) aims
to improve the informative and domain invariant properties of the embeddings of
the different modalities. However, these two loss components affect the feature
extractors Fm and are not back-propagated through the classifier, which therefore
only sees the source data and thus has no way to benefit from the target data. The
result is that during training, the classifier focuses only on how best to integrate the
multi-modal features to improve accuracy in the source domain, and completely
ignores the classification uncertainty on target.
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One approach commonly used in UDA to address this problem is to use a mutual
information criterion [375] applied to the target data that not only minimizes the
prediction uncertainty, but also promotes a uniform distribution of samples between
classes. This is achieved through an Information Maximization (IM) loss defined
as the difference between the average entropy of the outputs and the entropy of the
average output:

LIM =−Ex2XT

C

Â
c=1

pc(x) log pc(x)+
C

Â
c=1

p̄c log p̄c (4.13)

where C is the total number of classes, pc is the posterior probability for class c, and
p̄c is the mean output score for the current batch.

When we put all the pieces together, we train the model in the UDA setting to
minimize the following loss:

L= LC +LRNA +ldLd +lIMLIM (4.14)

where LRNA is from Eq. 4.9 and lIM is the IM loss weight.

4.2.4 Experiments

In this section, we aim to verify the effectiveness of our proposed approach through an
empirical evaluation on different multi-modal benchmarks corresponding to a variety
of datasets and tasks. These range from action classification (on EPIC-Kitchens-
55 [12], EPIC-Kitchens-100 [13], and UCF-HMDB [189]) to object recognition
(on ROD [1]) and fatigue classification (on CogBeacon [376]). In particular, we
have decided to include the CogBeacon dataset in our study to further validate the
potential of our solution across various tasks and modalities beyond OR and AR.
In the analysis, the results are obtained and presented as follows. When a dataset
includes different domains, we optimized the models using the average accuracy
over all the domain splits reported in the respective experimental protocol. Results
were obtained using the same set of hyperparameters for all splits. Therefore, in the
following, we excluded from evaluation the methods for which it was obvious (either
from the description or from the available source code) that the hyperparameters were
optimized for each split. For each benchmark, a description of the implementation
details is provided, followed by an analysis of the results obtained.
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4.2.5 Experiments on EK-100

EK-100 is the most extensive and diverse benchmark utilized in this work, for this
reason, we choose to conduct an ablation study on it, enhancing the statistical signif-
icance of the findings. We follow the experimental setup proposed in [13], where
the fine-grained nature of the dataset annotations combined with the large domain
and temporal shifts between the source and target domains make the adaptation task
very challenging. All the experiments in this section use all three modalities (RGB,
Audio, and Flow) available in the dataset to test as well the model’s ability to handle
multiple modalities. The setting includes a validation split, for which labels are
available, and a non-annotated test split. The results of this work are reported on the
former, although previous work has also demonstrated the effectiveness of RNA on
test data as well [377, 378]. Performance is evaluated in terms of Top-1 and Top-5
accuracy of verb and noun predictions and on the combination of the two predictions
(action).

Implementation Details. RGB, Flow and Audio are processed following [47] by
uniformly sampling 25 frames and 1.28 seconds audio segments along the action.
During both training and inference, five of these samples are selected and fed to the
network. Frame-level features fm 2 R25⇥1024 from each modality m are extracted
using a TBN architecture [47] pre-trained on Kinetics [379] and fine-tuned on the
source domain. During training, the feature extractors are frozen. Features are then
fed to a multilayer perceptron and temporally aggregated using a TRN [91] module
to obtain action-level features f 0m 2 R1024. To account for the multi-task nature of
this setting, we map the features into two components f 0m,v , f 0m,n 2 R256, which
we call verb and noun features. These are fed to two separate classifiers to obtain
the modality logits for the verb (ym,v) and the noun (ym,n). Since this benchamrk
includes a single source and a single target domain, the network is trained for action
recognition by applying cross-entropy loss to the sum of per-modality logits. We
extend RNA to work in this multi-task context by applying the alignment losses
separately to the verb and noun features, immediately before the final classifier.
Applying the RNA losses to these features ensures that the alignment effect provided
by RNA is as close as possible to the classifier, which is heavily influenced by the
feature norm values. The network is trained for 30 epochs using a batch size of 128
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(a) Source only (b) LRNA (DG) (c) LRNA (UDA)

Fig. 4.7 Verb feature norms across different modalities and settings (DG and UDA). Light (
) and dark colors ( ) denote source and target validation domains, respectively.

(a) In the “Source Only” setting, different modalities and domains result in unbalanced
feature norms. (b) LRNA in DG improves the alignment between different modalities, but
leaves a gap between the source and target domains. (c) Finally, the contribution of Lmod in
LRNA reduces this gap in UDA, resulting in more consistent feature norms across different
modalities and domains.

samples and SGD optimizer. The learning rate is initially set to 0.003 and decreased
by a factor of 10 after epochs 10 and 20.

Effects of LRNA on norm alignment. We begin by discussing the contribution of
the components of the proposed LRNA loss. Its goal is to mitigate domain shift issues
by balancing the mean feature norms of the different modalities globally (Lg

RNA), at
the class level (Lc

RNA), and across domains (Lmod
RNA). In the following, we present the

results of experiments in which these components are introduced incrementally.



4.2 Multi-Modal Alignment − RNA 121

0
20
40
60

RG
B

0
20
40
60

Flo
w

tak
e

pu
t

wa
sh

op
en

clo
se

ins
ert

tu
rn

-on cu
t

tu
rn

-off po
ur

inc
rea

se
un

scr
ew for
m

sm
ell

gra
te

scr
ew

let
-go

un
wr

ap loc
k

be
nd

Verb classes

0
20
40
60

Au
dio

(a) Source Only

0
20
40
60

RG
B

0
20
40
60

Flo
w

tak
e

pu
t

wa
sh

op
en

clo
se

ins
ert

tu
rn

-on cu
t

tu
rn

-off po
ur

inc
rea

se
un

scr
ew for
m

sm
ell

gra
te

scr
ew

let
-go

un
wr

ap loc
k

be
nd

Verb classes

0
20
40
60

Au
dio

(b) Lg
RNA

0
20
40
60

RG
B

0
20
40
60

Flo
w

tak
e

pu
t

wa
sh

op
en

clo
se

ins
ert

tu
rn

-on cu
t

tu
rn

-off po
ur

inc
rea

se
un

scr
ew for
m

sm
ell

gra
te

scr
ew

let
-go

un
wr

ap loc
k

be
nd

Verb classes

0
20
40
60

Au
dio

(c) Lg
RNA +Lc

RNA

Fig. 4.8 Feature norms of the top 10 most and least common classes from the target validation
split of EPIC-Kitchen-100[13]. While Lg

RNA improves the alignment of different modalities,
there is still an imbalance between classes. The addition of the per-class variant of RNA
greatly improves this alignment, resulting in more uniform feature norms across different
classes.
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EPIC-KITCHENS-100

Method CVS CVT CVS+T

Source Only 0.126 0.076 0.101
Lg

RNA 0.089 (+29.3%) 0.121 (-59.8%) 0.103 (-2.1%)

Lg
RNA +Lc

RNA (DG) 0.075 (+40.4%) 0.098 (-28.7%) 0.081 (+20.1%)

LRNA (UDA) 0.049 (+61.0%) 0.059 (+22.7%) 0.049 (+50.7%)

Table 4.6 Coefficient of variation for DG and UDA feature norms. CVS, CVT and CVS+T
are the CVs of the source, target and combined domain(s) respectively. For clarity, we also
report the percentages of improvement with respect to the “Source Only” experiment.

Global alignment: a qualitative analysis. In Fig. 4.7 we report the mean feature
norms for each modality. For simplicity, we will base our discussion on the verb
feature norms, since the same observations apply to nouns. In particular, in Fig. 4.7
we show how the average norms of verb features for different modalities change on
DG and UDA with the contribution of LRNA.

A preliminary qualitative analysis of the data presented in Fig. 4.7 shows that
LRNA in DG (Fig. 4.7b) leads to a better alignment of the average feature norms of
the different modalities and to an overall increase of their values with respect to the
“Source Only” (Fig. 4.7a). Recall that the norm formulation in Eq. 4.6 attempts to
solve the alignment task at the batch level, and thus does not guarantee an exact
alignment of all average norms. From Fig. 4.7b we can also observe the increase
in the Flow norm, which is the lowest in “Source Only” (Fig. 4.7a). Flow has been
shown to be the modality that is less sensitive to domain shift in egocentric action
recognition [37], thus potentially guaranteeing greater generalization. This may
justify the greater attention it receives by the network. We can also observe that
the availability of the target data in UDA allows LRNA to better align the norms
of the three modalities across domains, which further improves the generalization
capabilities of the final model, as shown by the improvements in accuracy reported
in Table 4.7.

Global alignment: a quantitative analysis. To facilitate the assessment of the
balancing effect of LRNA between “Source Only”, DG and UDA norms, we also
introduce a quantitative metric. We use the coefficient of variation (CV) as a measure
of the norm imbalance, with lower CVs indicating more balanced sets of values. CV
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is defined as follows:
CV =

s
µ

where s is the standard deviation and µ is the mean of the observed norm values.
The CV values obtained are summarized in Table 4.6, where, for better clarity, we
also report the percentage of improvement (%) with respect to the CV values of
the “Source Only”. As for the average feature norms in DG (Fig. 4.7b), we have
a 40.4% decrease in CV compared to the “Source Only”. It is interesting to note
that the application of Lg

RNA alone only contributes to a 29.3% reduction of CV,
highlighting the (positive) combined effect of Lg

RNA and Lc
RNA. For the target domain

in DG, we can observe that the imbalance between modalities increases (instead of
decreasing) by 28.7%, which highlights the need for an alignment loss that works
not only between modalities but also between domains. In UDA, the ability to use
the target data contributes to a larger reduction in CV over the “Source Only” on
both source (by 61.0%) and target domains (22.7%). When we consider the total
imbalance (i.e., we calculate CV considering all source and target values together),
CV shows an improvement of 20.1% in DG and of 50.7% in UDA. These values are
reflected in progressively greater accuracy in the DG and UDA settings compared to
the “Source Only” settings (Table 4.7).

Class alignment. For assessing the contribution of Lc
RNA, we show in Fig. 4.8

the evolution of the verb norms of the ten most frequent and the least frequent classes
in the DG settings. In the “Source Only” (Fig. 4.8a) the per-class mean features
norms are largely unbalanced. While the exclusive use of Lg

RNA contributes to a
better global balance of the modality norms, it has a small effect on the balancing
of the norms per-class (Fig. 4.8b). On the contrary, when Lc

RNA is also minimized,
we can observe a significant improvement of their alignment (Fig. 4.8c). These
qualitative observations are also reflected in the CV metric computed on the class
norms. Indeed, the use of Lg

RNA leads to a minor improvement in “Source Only” CV
(37.8% and 19.5%, respectively, for source and target features) compared to that
obtained by the combination of Lg

RNA and Lc
RNA (62.5% and 49.1%).

Overall effect on feature norms. To give further insight into the impact of
LRNA, we show in Fig. 4.9 a scatter plot of the validation set in DG. This diagram is
obtained by plotting the RGB, Flow and Audio feature norms of each sample in a
3D space whose axes are the norms of the three modalities. To make the plot easier
to read, rather than using a single 3D representation, we present it as three separate
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Fig. 4.9 Comparison of the feature norms before (top) and after (bottom) application of Lg
RNA

and Lc
RNA. The dots represent the samples in the validation dataset. The color bar on the

right represents increasing density values. The original features, i.e. “Source Only”, show a
wide range of values and an irregular shape, reflecting the misalignment between the features
norms of the two modalities. The RNA loss re-balances the two, as evidenced by the more
globular distribution while also shifting the average norms towards higher values.

sections along the coordinate planes defined by the feature pairs. The goal of these
visualizations is to illustrate the changes in the shape of the resulting manifold.

It can be seen that the “Source Only” features are widely distributed and cor-
respond to a manifold with a largely irregular shape. This is due to misalignment
between the feature norms of the different modalities. When the LRNA loss is applied,
the manifold becomes more spherical and compact, reflecting the improvement in
the alignment of the modality norms. It is also possible to note an increase in the
average feature norm values that moves the manifold towards the upper right region
of the 2D dimensional plots.

Effect of loss components. Table 4.7 details the contribution of the different loss
components to the final performance in both DG and UDA settings. For better
evaluation, we also show the average improvement in Top-1 accuracy of verb, noun,
and action with respect to “Source Only” (D Acc). The combination of global and
class components in DG (Lg

RNA+Lc
RNA, D Acc. = 2.20) improves accuracy over Lg

RNA
alone (1.36), showing that the combination of the two components effectively reduces
domain shift. The ability to use target data in UDA boost the accuracy improvement
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EPIC-KITCHENS-100

Method Verb@1 Noun@1 Action@1 D Acc.

Source only 46.79 26.79 18.29 -

DG

Lg
RNA 49.53 27.50 18.91 1.36

Lg
RNA +Lc

RNA 50.75 27.92 19.81 2.20

UDA

Lg
RNA 49.98 27.79 19.44 1.78

Lg
RNA +Lc

RNA 50.46 28.49 19.77 2.28
Lg

RNA +Lc
RNA +Lmod

RNA 49.94 29.48 19.87 2.48

LRNA +Ld 50.59 29.38 20.04 2.71
LRNA +Ld +LIM 50.82 29.19 20.05 2.73

Table 4.7 Target Top-1 accuracy (%) achieved using various loss components. D Acc. is the
average accuracy improvement for the verb, noun and action metrics. The highest results are
highlighted in bold, while other notable results are underlined.

to 1.78 for Lg
RNA and 2.28 for Lg

RNA + Lc
RNA), with Lmod

RNA further contributing to
reaching an average improvement of 2.48.

As explained in Sec. 2.2, the learning objective in the UDA setting also benefits
from two other losses, namely the adversarial domain loss Ld , which aims to improve
the transferability of features across domains, and the Information Maximization
loss LIM, which aims to minimize the classification uncertainty between target
classes. Ld provides a stronger improvement in this particular case (2.71), while
LIM has a minimal effect on the overall accuracy. However, we note that the mutual
contribution of the latter two terms (Ld and LIM) also depends on the task and
benchmark considered, as other experiments show more pronounced benefits for
LIM.

Multi-modal adaptation capabilities. Another interesting question is whether
the proposed method allows effective integration of multiple modalities in the final
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EPIC-KITCHENS-100

Method Verb@1 Noun@1 Action@1 D Acc.

RGB + Flow

Source Only 44.80 25.35 16.33 -
Our (DG) 45.95 26.65 16.94 1.02
Our (UDA) 47.64 26.49 16.91 1.52

RGB + Audio

Source Only 39.91 24.18 14.84 -
Our (DG) 42.04 25.54 15.67 1.44
Our (UDA) 42.26 26.45 15.98 1.92

Flow + Audio

Source Only 45.11 21.98 15.37 -
Our (DG) 48.87 23.44 16.49 2.12
Our (UDA) 48.42 23.51 16.71 2.06

RGB + Flow + Audio

Source Only 46.79 26.79 18.29 -
Our (DG) 50.75 27.92 19.81 2.20
Our (UDA) 50.82 29.19 20.05 2.73

Table 4.8 Target Top-1 accuracy (%) on modality pairs on EPIC-Kitchens-100 [13]. D Acc.
is the average accuracy improvement for the verb, noun and action metrics.
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EPIC-KITCHENS-100

Method Verb@1 Noun@1 Action@1 D Acc.

No Audio @ Test

Source only 41.61 21.91 13.07 -
DG 44.03 24.44 14.89 2.26
UDA (LRNA) 44.08 24.77 15.25 2.50

No Flow @ Test

Source only 30.58 20.33 10.63 -
DG 36.88 22.82 12.89 3.69
UDA (LRNA) 36.67 21.83 12.46 3.14

No RGB @ Test

Source only 37.69 17.99 12.41 -
DG 46.70 18.92 13.53 3.69
UDA (LRNA) 46.51 19.37 13.55 3.78

Table 4.9 Target Top-1 accuracy (%) obtained through ablation experiments by dropping a
modality at test time. All configurations are trained on all input modalities. At inference
time, we simulate the loss of a modality which results in a large performance drop. RNA
helps the model avoid focusing too much on individual modalities and is able to mitigate
the performance drop. D Acc. is the average accuracy improvement for the verb, noun and
action metrics.

decision and whether the use of multiple modalities also helps to improve the domain
adaptation capabilities of the model.

Table 4.8 summarizes the results obtained comparing experiments with modality
pairs and with all three modalities. It shows that the latter not only outperforms all
other modality pairs in terms of results, but also shows better generalization proper-
ties, showing an improved delta compared to its “Source only” (2.73) compared to
2.06, the best two-modality improvement obtained with Flow + Audio. These results
suggest that our method is effective in combining the different modalities to improve
the overall accuracy and the generalizability of the features obtained.

Modality drop. In Table 4.9, we present an experiment to investigate the impact
of modality imbalance during training. In particular, we examine the scenario in
which a modality is “unexpectedly” lost at inference time without a training strategy
accounting for this possibility. The basic idea of our approach is to help the model
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learn equally from the different modalities by integrating their contribution. While it
is clear that the unexpected loss leads to a drop in accuracy, we can also expect that
the effect of RNA is to make the model more robust to such a modality drop than the
“Source Only” model, since the latter is less able to exploit the synergies between
modalities and, thus, more vulnerable to dominant modalities. This expectation is
confirmed by the results in Table 4.9, which show different but consistent effects on
“Source Only” when different modalities are dropped at test time (i.e., large accuracy
drops compared to the results in Table 4.7). At the same time, these results show
that the balancing effect of RNA can potentially help the model reduce the impact of
the lost modality, as it can take advantage of a better mutual contribution from the
remaining ones.

Comparison with State-of-the-Art Methods. We continue our analysis presenting
a comparison of the proposed method with the current state-of-the-art methods in
both DG and UDA settings. We provide an overview of the comparisons and then
discuss the obtained results.

Baselines. We compare our method with several multi-modal DG and UDA
methods: MM-SADA [37], TA3N [189], and CIA [212]. As for MM-SADA, the
original approach works only with RGB and Flow modalities. Therefore, to integrate
the Audio modality, we use two separate branches, one for RGB-Flow and the other
for RGB-Audio modalities. The adversarial branch is applied individually to each
modality. Finally, since our DG approach is primarily focused on improving the
multi-modal learning capabilities of the model, we extend our analysis to include the
Gradient Blending (GB) technique [359] as a DG comparison.

Results. In Table 4.10 results are given as Top-1 and Top-5 accuracy for verb,
noun, and action. For each of the baselines, we also report the relative “Source
Only” and its average improvement in terms of Top-1 accuracy. For the DG setting,
comparisons are made using two approaches. The first is MM-SADASS, a modified
version of MM-SADA that uses only the original self-supervised alignment task on
the modalities applied to the source domain, and does not consider the adversarial
alignment component of the method (which requires target data). The second
approach is GB, which attempts to find an optimal blending of modalities according
to their overfitting behaviour. Such a mixture is achieved by combining, with



4.2 Multi-Modal Alignment − RNA 129

EPIC-KITCHENS-100

Methods Verb@1 Noun@1 Action@1 Verb@5 Noun@5 Action@5 D Acc.

DG

Source Only 47.14 27.35 18.99 75.27 49.36 41.82 -
MM-SADASS [37] 47.76 27.93 19.15 77.07 49.77 42.90 0.45
Source Only 50.27 29.04 19.96 81.74 52.14 46.74 -
GB [359] 50.18 29.60 20.26 81.82 52.57 46.86 0.26
Source Only 46.79 26.79 18.29 75.39 48.44 41.36 -
Our (DG) 50.75 27.92 19.81 80.64 51.37 45.33 2.20
Source Only† 49.81 28.55 19.77 81.10 51.90 46.22 -
Our† (DG) 50.20 29.31 20.30 81.58 52.68 46.76 0.56

UDA

Source Only 46.70 27.78 19.20 75.42 48.27 42.12 -
TA3N [189] 48.44 28.87 19.61 75.95 50.12 43.36 1.08
Source Only 47.14 27.35 18.99 75.27 49.36 41.82 -
MM-SADA [37] 48.44 28.26 19.25 77.56 50.59 43.41 0.82
Source Only 47.69 28.48 19.61 - - - -
CIA [212] 48.34 29.50 20.30 - - - 0.79
Source Only 46.79 26.79 18.29 75.39 48.44 41.36 -
Our (UDA) 50.82 29.19 20.05 80.89 52.18 46.04 2.73

Table 4.10 Target Top-1 and Top-5 accuracy (%) on EPIC-Kitchens-100 [13]. Results
are reported for the noun, verb and action metrics. D Acc. is the average Top1-accuracy
improvement. †These experiments are trained using the cross entropy loss on both the fused
logits as well as on the per-modality logits. The highest results are highlighted in bold, while
other notable results are underlined.

appropriate weights, a cross-entropy loss for each modality and one for their fusion1.
In terms of accuracy across different labels, results show that GB clearly performs
best, while our approach is the runner-up and MM-SADASS performs slightly worse.
When we analyze the differences in “Source Only”, we see that the one of GB is
higher than ours, resulting in better delta accuracy values for our approach. This result
seems to indicate that our method makes a greater relative contribution to reducing
the domain shift. Nevertheless, the approach proposed in [359] is interesting and has
some similarities with our approach in that it improves the balance between different
modalities as a proxy for better classification accuracy. Therefore, we found it

1The original version of GB uses only RGB and Audio. The optimal weights for combining losses
were taken from [27], and the weight for the missing component, i.e. Flow, was tuned appropriately
for this work.
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interesting to replicate our method with the “Source Only” of Gradient Blending, i.e.,
using multiple classification losses but without reweighting them. These additional
experiments are marked with a † symbol. As can be seen in Table 4.8, the results
are positive, allowing our method to achieve the best action accuracy and obtaining
results competitive with GB (and also comparable with CIA, the state-of-the-art in
UDA). However, we also emphasize that our standard solution solves the alignment
problem with an adaptive approach that, unlike GB, does not depend on the model
and the dataset used and requires only two hyperparameters, namely lg and lc.

In the experiments with UDA, we can see that, although being only the runner-up
on actions, the delta accuracy improvement of our method is better than that of all
other competitors, with results on the other metrics comparable to those of the other
proposed baselines. At the same time, based on these results, we can observe that
most of the improvements occur without accessing the target domain (and thus in
DG), further highlighting the strong generalization advantage of RNA.

4.2.6 Experiments on EK-55

We adopt the experimental protocol of [37] and evaluate performance in a single-
source setting (Di ! D j) on the three domains described in Sec. 2.4.1. Despite
the small size of this setting compared to EK-100, it remains a highly valued and
challenging benchmark in the field of egocentric action recognition due to the large
domain shift between these domains and the unbalanced label distribution.

Implementation Details. As for the input, different sampling strategies are used
to allow a fair comparison with the existing baselines. When using dense sampling,
a clip of 16 consecutive frames is randomly sampled from the video. When using
uniform sampling, 16 frames evenly distributed over the video are sampled. At test
time, the same sampling strategy is used as in training, except that five clips are fed
into the network instead of one, as suggested in [88]. In training, random clipping,
scale shifts, and horizontal flipping are used for data augmentation, while in testing,
only central cropping is applied. As for the aural information, we follow [47] and
convert the audio track into a 256⇥ 256 matrix representing the log spectrogram of
the signal. The audio clip is first extracted from the video and sampled at 24kHz.
Then, the Short-Time Fourier Transform (STFT) is calculated with a window length
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of 10ms, a skip size of 5ms, and 256 frequency bands. For the Flow input, we
use the same sampling strategy as for RGB. Both the RGB and Flow streams use
an I3D model [94] as in [37]. Following [47], the audio feature extractor uses the
BN-Inception model [380] pre-trained on ImageNet [330]. Each feature extractor
produces a 1024-dimensional representation. Score logits for each modality are
first computed using a single fully-connected layer and then fused by summing
them. We train the network for 5k iterations using the SGD optimizer. The learning
rate for RGB and Flow is set to 1e−3 and reduced to 2e−4 at step 3k, while for
Audio the learning rate is set to 1e−3 and decremented by a factor of 10 at steps
{1000,2000,3000}. The batch size is set to 128.

Comparison with State-of-the-Art Methods. In the experiments, we restrict our
analysis to the RGB+Flow and RGB+Audio modality combinations, which are the
ones recent work in the literature focus on.

Baselines. We compare our results with several state-of-the-art UDA methods.
The first group (GRL [154], MMD [149], AdaBN [167], and MCD [381]) includes
approaches originally developed as image-based methods and later adapted to work
with video inputs. The second group includes more recent methods such as MM-
SADA [37], the contrastive-based methods proposed in [56] and [55] (STCDA), and
the recently published CIA [212]. In our comparison, we use the results reported in
the original paper for each baseline.

Results. We begin by discussing the UDA results, which are summarized in
Table 4.11. With respect to the RGB+Flow combination, and given the relevance of
sampling strategies in the video context [382], we divided the results into different
sections based on the sampling used for each modality (dense, D, or uniform, U). In
particular, most baselines use D-D sampling and only CIA uses U-U sampling. In
both cases, we compare the baselines to a version of our UDA method that uses the
same sampling. It can be observed that CIA (uniform sampling), gives better results
than the dense sampling-based methods. These results confirm the observation
in [382] that uniform sampling usually allows the network to learn more information.
We can also observe that our UDA approach yields state-of-the-art results for both
samplings. To further validate the importance of sampling, we included experiments
with a mixed sampling strategy (i.e., D for RGB and U for Flow) in table 4.11. Since
there are no baselines with such sampling, we present only our results for “Source
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EPIC-KITCHENS-55

Method Sampling D1!D2 D1!D3 D2!D1 D2!D3 D3!D1 D3!D2 Mean

RGB + Flow

Source Only D-D 42.00 41.20 42.50 46.50 44.30 56.30 45.47
GRL [154] D-D 50.20 44.70 46.90 50.80 50.20 53.60 49.40
MMD [149] D-D 46.60 39.20 43.10 48.50 48.30 55.20 46.82
AdaBN [167] D-D 47.00 40.30 44.60 48.80 47.80 54.70 47.20
MCD [381] D-D 46.50 43.50 42.10 51.00 47.90 52.70 47.28
DAAA [191] D-D 50.00 43.50 46.50 51.50 51.00 53.70 49.37
MM-SADA [37] D-D 49.50 44.10 48.20 52.70 50.90 56.10 50.25
Kim et al. [56] D-D 50.30 46.30 49.50 52.00 51.50 56.30 50.98
STCDA [55] D-D 52.00 45.50 49.00 52.50 52.60 55.60 51.20
Our (UDA) D-D 50.84 47.14 48.86 54.38 50.6 58.43 51.71

Source Only U-U 43.20 42.50 43.0 48.0 43.0 55.50 45.90
CIA [212] U-U 52.50 47.80 49.80 53.20 52.20 57.60 52.18
Our (UDA) U-U 52.84 47.49 54.41 54.11 55.53 61.64 54.34

Source Only D-U 54.25 50.72 54.87 56.41 51.65 61.27 54.86
Our (DG) D-U 56.00 50.39 56.25 56.37 56.73 61.63 56.23
Our (UDA) D-U 57.33 52.84 57.19 56.78 57.27 62.03 57.24

RGB + Audio

Source Only D-D 39.03 39.17 35.27 47.52 40.255 49.98 41.87
GRL [154] D-D 41.02 43.04 39.36 49.25 38.77 50.56 43.67
MMD [149] D-D 42.40 43.84 40.87 48.13 41.46 50.03 44.46
AdaBN [167] D-D 36.64 42.57 33.97 46.63 40.51 51.2 41.92
MM-SADA [37] D-D 48.90 46.66 39.51 50.89 45.42 55.14 47.75
Our (DG) D-D 42.55 41.77 42.73 51.09 42.63 54.24 46.21
Our (UDA) D-D 46.65 47.22 46.18 52.30 44.04 56.18 48.76

Table 4.11 Target Top-1 accuracy (%) on EPIC-Kitchen-55 [12], using the evaluation protocol
from [37], divided by modalities. Results are grouped by the sampling strategy used for a
fair comparison. The highest results are highlighted in bold, while other notable results are
underlined.
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Only”, DG and UDA. It can be seen that the “Source Only” method already achieves
remarkable results (up to 3% better than our method with uniform sampling), which
are further improved by our method in both DG and UDA (despite a much smaller
difference with the “Source Only” than that obtained with other samplings). One
possible explanation for the results obtained with this mixed sampling is that it
implies a better exploitation of the properties of the two modalities. Indeed, dense
sampling allows a better characterization of the (static) appearance information
(RGB) over a short temporal range, while uniform sampling allows the use of a
larger range to better capture the dynamic information conveyed by Flow.

Regarding the combination of RGB and Audio modalities, our UDA result
is again the top performer (7% improvement with respect to “Source Only” and
1% improvement over the state-of-the-art method), confirming the potential of our
method even when combining heterogeneous modalities.

Finally, we discuss the results from DG for both modality combinations. For
RGB+Flow, we report the results with mixed sampling (D-U), i.e., teh sampling
that gives the best results. In this setting, the results improve by up to 2% and 5%
the “Source Only” of RGB+Flow and RGB+Audio, respectively, and the obtained
performances are also close to those of the UDA setting (-1.01% and -2.55% for
RGB+Flow and RGB+Audio, respectively). Although no other DG methods are
available for comparison in this context, these results show that the DG setting can
compete with several existing UDA methods that benefit from target data during
training.

4.2.7 Experiments on UCF-HMDB

We conducted experiments on UCF-HMDB to evaluate the performance of our
method on third-person action recognition. We follow the same experimental setting
proposed in [91], which includes the U ! H and H ! U shifts in a multi-modal
setting that includes the RGB and Flow modalities available with this dataset.

Implementation Details. For both RGB and Flow, the training input consists of
16 consecutive frames with resolution 224 x 224 pixels. In testing, we use five clips
uniformly sampled across the video. The backbone for both RGB and Flow is an
I3D pre-trained on Kinetics [379]. The learning rate is set to 0.01 and we train the
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UCF-HMDB

Method U!H H!U Mean

Source Only 82.8 90.7 86.7
MM-SADA [37] 84.2 91.1 87.6
Source Only [55] 82.8 89.8 86.3
STCDA [55] 83.1 92.1 87.6
Source Only [56] 82.8 90.7 86.7
Kim et al. [56] 84.7 92.8 88.7
Source Only [212] 86.1 92.5 89.3
CIA [212] 88.3 94.1 91.2
Source Only (conc) [212] 85.8 93.5 89.5
CIA (conc) [212] 90.6 94.2 92.4
Source Only 83.6 94.1 88.9
Our (DG) 83.3 94.9 89.1
Our (UDA) 86.4 94.3 90.4

Table 4.12 Target Top-1 accuracy (%) on UCF-HMDB on RGB+Flow combination. The
highest results are highlighted in bold, while other notable results are underlined.

model for 20 epochs with batch size of 32. We use SGD as the optimizer with a
momentum of 0.9 and a weight decay of 10−7.

Comparison with State-of-the-Art Methods. We compare our method to the
other multi-modal UDA approaches discussed in the preceding paragraphs (MM-
SADA [37], STCDA [55], the method of Kim et al. [56] and CIA [212]). To allow a
fair comparison, all multi-modal results are based on the same backbones and the
same pre-training.

Results. We present the classification accuracies of our method and several
baselines in Table 4.12. Again, to ensure a fair comparison, we report the results
of the “Source Only” model from the original paper for all baselines. In absolute
terms, our approach under the UDA setting is the second best in terms of accuracy
results, performing better than all baselines except CIA. However, we highlight the
better “Source Only” result of CIA, which we found difficult to reproduce. Moreover,
unlike our approach, the method proposed by CIA, i.e., improving spatial consensus
between modalities, is not easily extensible to modalities other than RGB and Flow
(as can be seen in [212] for the integration of Audio modality in EK-100). In terms
of domain shift reduction, our approach achieves performance gains on “Source
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SYNROD =) ROD
RGB + D RGB + E

Source Only 47.70 49.19
GRL [154] 59.51 55.11
MMD [149] 62.57 62.39
SAFN [367] 62.40 66.87
Entropy [383] 63.12 66.23
Relative Rotation 66.68 66.68
Our (DG) 50.06 50.61
Our (UDA) 82.36 78.52

Table 4.13 Target Top-1 accuracy (%) on SynROD!ROD. The highest results are highlighted
in bold, while other notable results are underlined.

Only” comparable to those of other methods. For example, the gains for MM-SADA,
STCDA, Kim et al. [56], and CIA are 0.9%, 1.3%, 2%, and 1.9%, respectively, while
our approach has a gain of 1.5%, with a maximum improvement by up to 3% on the
U ! H shift.

4.2.8 Experiments on ROD

We follow the experimental protocol already introduced in Chapter 3 (Section 3.2.1)
for RGB-depth modalities, and the one in 3.3 for RGB-event. The studied shift
is a synthetic-to-real domain shift, with synthetic source data and real target data
(SynROD ! ROD). RGB and depth modality in the synthetic domain are rendered,
while events in the synthetic domain are simulated using ESIM [44].

Implementation Details. Event representations, depth images and RGB images
are pre-processed and augmented during training following the procedure in [3].
Depth images are colorized with surface normal encoding, as in [18]. Input images
are normalized with the same mean and variance used for the ImageNet pre-training,
while we kept event representations un-normalized as this provided better perfor-
mance. We use voxelgrid representation for events with 9 bins as in [305]. All
backbones are implemented using ResNet-18 [339], and initialized with values ob-
tained by pre-training the networks on ImageNet [330]. All the parameters of the
network, including the pre-trained parameters, are updated during training, as in [3].
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We train all network configurations using SGD as optimizer, batch size 64 and weight
decay 0.003.

Comparison with State-of-the-Art Methods. The results for the comparison
between SynROD and ROD using RGB, depth, and event modalities in both DG and
UDA settings are presented in Table 4.13.

Baselines. We compare our results with standard image-based UDA methods,
namely GRL [154], MMD [149], SAFN [367] and Entropy [383], which we extend
to operate on multiple modalities. We also compare with our Relative Rotation
approach.

Results. The comparison with the baseline UDA methods show that our method
significantly outperforms all of them, with an improvement of up to 20% for the
RGB+Depth combination and up to 10% for the RGB+event combination in the
UDA setting. In the DG setting, the improvement with respect to the “Source Only”
is quite small for both modality combinations. This can be attributed to the large gap
between the distribution of source and target features in the synthetic-to-real setting,
which leads to low generalization capabilities when the target is not available. On
the contrary, better performance are obtained when there is a possibility to adapt to
the target during training.

4.2.9 Experiments on CogBeacon

We follow the experimental protocol in the supplemental of [214], evaluating the
performance in the single-source setting (Vi !Vj) using three different domains (V1,
V2, and V3), for a total of six splits.

Implementation details. The EEG signals are characterized using a total of 24
temporal and spectral features (see [376] for details). The face data are represented
as a vector combining the average values of the face data and their standard devia-
tion, yielding a total of 280 values. Both backbones are implemented by three 1D
convolutional blocks with kernel size three and stride one, followed by a MaxPool
layer and ReLU as the activation function. The output channels are 16, 32 and 64 for
EEG signals and 8, 16 and 32 for the face keypoint model. The latter ends with a
fully connected layer with an output of 64 to match the output of the EEG backbone.
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COGBEACON

Results from [214] Ours

Source Only 63.64 Source Only 61.80
MDANN [210] 66.83 SAFN [367] 64.01
MCD [381] 66.75 GRL [154] 64.24
CBST [384] 67.71 MM-SADA [37] 65.40
MM-SADA [37] 67.75 MMD [149] 65.58
DLMM [214] 70.47 Our (DG) 62.64

Our (UDA) 68.63

Table 4.14 Target Top-1 accuracy (%) on CogBeacon. The highest results are highlighted in
bold, while other notable results are underlined.

Predictions for each modality are computed with a single FC layer followed by a
LogSoftmax. We train the model for 90 iterations using Adam as the optimizer. In
all experiments, the learning rate was set to 1e−3 and decremented by a factor of
10 at step 70.

Comparison with State-of-the-Art Methods. Table 4.14 presents the results
of our proposed method compared to state-of-the-art methods using the Cobegon
dataset, which consists of multi-modal data comprising EEG signal and face key-
points.

Baselines. We compare our results with those in [214] (in particular with DLMM,
the Differentiated Learning framework proposed in [214]) and with those obtained
in our experiments with different UDA methods, namely SAFN [367], GRL [154],
MMD [149], and MM-SADA [37]. These two lists of results are presented separately
in Table 4.14 because the number of samples does not match that used in [214] (i.e.,
we have 2,240, 2,432, and 2,300 for domains V1, V2, and V3, respectively), a
difference that we could not clarify with the authors.

Results. The results show that in UDA (68.63%) our method largely improves
the “Source Only” baseline (61.80%). Although the improvement in DG (62.64%)
is not as substantial, we think it still indicates a potential for softening domain
shift. It is noteworthy that our method outperforms the other UDA methods used
for comparison. Among them, MMD performs best with an accuracy of 65.58%
(i.e., 3.05% less than our method). However, when compared to the results reported
in [214], our method falls behind DLMM, which achieves an accuracy of 70.47%,
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significantly better than our results. Nevertheless, a comparison of the performance
of DLMM and our method with the corresponding “Source Only” shows interesting
results. DLMM achieves a 6.83% improvement over the “Source Only” baseline,
and our method shows a 7.03% improvement, which can be considered equivalent.
We would like to highlight that our approach is characterized by its simplicity
compared to DLMM, which requires multiple training stages and uses a more
complex curriculum learning approach with teacher/student models for different
modalities. On the contrary, our method requires less computational resources and is
easier to train, making it a more practical option for real-world applications.

4.2.10 Limitations

The proposed approach provides interesting performance in many cases, as shown
by our experiments with a variety of tasks and scenarios. While the simplicity of the
method is certainly a strength, it may be viewed as less effective when compared to
methods developed and tuned for a specific task and benchmark. However, we believe
that this limitation does not undermine the overall effectiveness of the proposed
approach, as it provides a viable alternative for addressing various tasks without
requiring significant computational resources or architectural changes.

Another limitation we observed arises from the fact that in many real-world cases
the data distributions are strongly unbalanced, leading to lower precision for the tail
classes [385]. The literature shows how this imbalance translates into unbalanced
norms of classification weights per class [386, 387] as well as unbalanced norms of
features per class [388, 389]. In developing our method, we expected that balancing
the norms per class could have a positive effect also in rebalancing the weights of the
classifier for the tail classes. However, our experimental results show that this effect
is not present. This opens up possibilities for future developments to incorporate this
objective into RNA as an additional component that rebalances the weights of the
classifier.

4.2.11 Conclusion

In this work, we proposed a novel approach to address the problem of multi-modal
domain adaptation. Our method starts from the observation that differences in the
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marginal distributions of modalities can negatively affect the training process, cause
suboptimal performance, and induce imbalances in feature norms that limit the
model’s ability to exploit the synergies and complementarities between modalities.
To tackle these issues, we proposed a Relative Norm Alignment (RNA) loss to
balance the norms of the features extracted by the network in different domains and
modalities and improve the overall accuracy. The method is applied in UDA with the
combination of an adversarial domain loss and an information maximization term to
improve feature transferability and regularize predictions in the target domain. Our
experiments have shown that RNA can outperform or compete with several state-of-
the-art approaches in a variety of multi-modal classification tasks, demonstrating its
effectiveness and flexibility. Furthermore, the simplicity and lightweight nature of
the proposed approach makes it easy to adapt to different architectures and contexts
without requiring complex modifications. Future research will focus on further
exploring the capabilities of RNA and integrating additional strategies to improve its
performance in challenging scenarios.
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4.3 From Pixels to Events − E2(GO)MOTION

The objective of the last section of this chapter is to assess the applicability of
event cameras as an alternative modality for recognizing motion information in
the context of egocentric action recognition, where the limitations of optical flow
information are well-established. As discussed in Section 2.3, event cameras are
bio-inspired sensors that asynchronously capture pixel-level intensity changes in the
form of “events”. This study demonstrates that event data is a valuable modality for
egocentric action recognition. To this end, we introduce N-EPIC-Kitchens, which
is the first event-based camera extension of the large-scale EPIC-Kitchens dataset.
Two strategies are proposed in this context: (i) directly processing event-camera data
with traditional video-processing architectures (E2(GO)) and (ii) using event data to
distill optical flow information (E2(GO)MO). On our proposed benchmark, we show
that event data provides comparable performance to RGB and optical flow, without
requiring additional flow computation at deploy time, and an improved performance
of up to 4% with respect to RGB-only information.

The availability of wearable devices equipped with traditional frame-based cam-
eras has led to a growing interest in egocentric vision, which is increasingly asso-
ciated with visual RGB-data. However, recognizing actions in novel or unfamiliar
environments remains a significant challenge for traditional RGB-based models
[37, 54–57] that prioritize object textures and background cues, relying mainly
on appearance-based information. To overcome these limitations, appearance-free
modalities such as motion have been widely adopted in current egocentric vision
systems. Unfortunately, computing motion through optical flow extraction from
RGB frames is computationally expensive and impractical for real-time applications.
Consequently, achieving state-of-the-art performance in real-world settings and find-
ing a valid alternative to optical flow capable of unlocking cutting-edge methods for
online predictions are still lacking in the field.
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Fig. 4.10 N-EPIC-Kitchens: the first event-based dataset for egocentric action recognition.
From RGB images, we generate a stream of events (bottom). Positive polarity is represented
by red events, whereas blue events represent negative polarity. Events focus on motion,
similarly to optical flow (top). With their low latency, high temporal resolution, and low-
power consumption, event data are a perfect fit for egocentric action recognition.

Event-based cameras, on the other hand, have been shown to be particularly
suitable for online settings [390]. Their high pixel bandwidth results in reduced
motion blur, and the extremely low latency and low power consumption make these
novel sensors particularly good in egocentric scenarios, where fast motion often
impacts RGB-based systems negatively. Moreover, as they only convey differential
information, event sequences reveal more information about the dynamic of the
scene than its appearance, making them a valid alternative to RGB frames when
learning to focus on motion. Still, despite these advantages, no prior research has
looked at how to exploit their sensitivity to motion in egocentric vision, where these
devices remain unused.

As a first step towards investigating the use of event data in egocentric action
recognition, we propose a novel dataset called N-EPIC-Kitchens (Fig.4.10). It
consists in the extension of the large-scale EPIC-Kitchens dataset [12] under the
setup proposed in [37]. The latter is particularly appealing for both the availability
of multiple environments (kitchens) and multiple modalities, i.e., RGB, optical
flow, and audio. These features make it possible to analyze environmental bias and
compare event data to well-established modalities. To further explore the potential of
event data in egocentric action recognition, we introduce two approaches on N-EPIC-
Kitchens that emphasize the intrinsic motion characteristics of event data. The first,
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which we call E2(GO), consists in extending traditional 2D and 3D action recognition
architectures with layer variations aimed at exploiting the motion-rich features of
event data. The second, E2(GO)MO, extends motion reasoning by distilling motion
information from optical flow to event data. This is accomplished following a teacher-
student approach that allows taking full advantage of expensive offline TV-L1 flow
during training only, while avoiding its computation at test time. We summarize our
contributions as follows:

• We present N-EPIC-Kitchens, the first dataset for event-based egocentric
action recognition, which unlocks the possibility to explore event data in this
context;

• We have evaluated N-EPIC-Kitchens using popular action recognition architec-
tures, showing the performance of both single and multi-modal combinations
with RGB and optical flow modalities. Moreover, we demonstrate the robust-
ness of event data to environment changes;

• We have proposed two event-based approaches, E2(GO) and E2(GO)MO,
which have been designed to highlight motion information captured by event
data in egocentric action recognition.

• We show that event data can outperform RGB in challenging unseen environ-
ments and are competitive with them in known environments, suggesting that
using event data is a viable option and more research should be performed in
this direction.

4.3.1 N-EPIC-Kitchens

Event-based cameras have shown to be particularly efficient in egocentric scenarios
as they focus on capturing only variations in the scene. This drastically reduces
the amount of data to be processed and acquired, while also avoiding motion blur
artifacts and providing fine-grained temporal information. Despite these advantages,
the availability of freely accessible event-based datasets for human activity recog-
nition is limited [29, 391, 282, 392]. Despite the field is actively working towards
increasing their availability, as testified by the recent release of event-based versions
of ImageNet [292, 393], relatively few datasets for human activity recognition are
currently available. As shown in Figure 4.11, most of the available datasets focus
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Fig. 4.11 N-EPIC-Kitchens vs existing event-based action classification datasets in the
literature [28–32].

on action or gesture recognition in controlled settings where both the camera and
background are static. None of the available datasets consider egocentric action
recognition, preventing the use of event-based cameras in this scenario.

To showcase the efficacy of event-based cameras in online egocentric scenarios,
as well as their ability to complement and compete with other modalities, we have
expanded the EPIC-Kitchens (EK) dataset [12]. EK is a vast collection of egocentric
action videos spanning multiple modalities and diverse environments. In line with
the framework presented in [37], we selected the three largest kitchens from EPIC-
Kitchens in number of training action instances, which we refer to as D1, D2 and
D3, analyzing the performance for the 8 largest action classes, i.e., ‘put’, ‘take’,
‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’ and ‘pour’. In the following, we first introduce
the operating principles of DVS cameras. Then, we outline the approach used to
generate N-EPIC-Kitchens and emphasize its benefits.

4.3.2 Event-Based Vision Data

Pixels of DVS cameras are independent and respond to changes in the continuous
log brightness signal L(u, t), differently from a standard RGB camera. An event is a
tuple ek = (xk,yk, tk, pk) specifying the time tk, the location (xk,yk) and the polarity
pk 2 {−1,1} of the bright change (brightness decrease or decrease). An event is
triggered when the magnitude of the log brightness at pixel u = (xk,yk)

T and time
tk has changed by more than a threshold C since the last event at the same pixel, as
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described in the following equation:

DL(u, tk) = L(u, tk)−L(u, tk −Dtk)> pkC. (4.15)

Therefore, the output of an event camera is a continuous stream of events described
as a sequence E= {(xk,yk, tk, pk)|tk 2 t}, being t the time interval.

D1 D2 D3

Fig. 4.12 RGB (top), optical flow (middle) and Voxel Grid representation (bottom) from the
same action (“cut") on the three different kitchens (D1, D2, D3).

N-EPIC-Kitchens generation. We leverage a recent event camera simulator
(ESIM) [44] to enhance the EPIC-Kitchen dataset with the event modality. ESIM
allows us to produce events stream for a given brightness signal. Unfortunately, the
original egocentric videos’ temporal resolution (milliseconds) is incompatible with
one of the event cameras, which operates on a microsecond timescale. To address
the RGB stream’s low temporal resolution, as in [294, 394], we use SuperSlow-
MO [395]. It is a high-quality variable-length technique for frame interpolation
that allows to increase the frame rate of the original video. Unlike previous frame
interpolation approaches [396–399], SuperSlow-MO has the unique ability to gen-
erate frames with any temporal precision, which is ideal for our process. Finally,
we use Voxel Grid [8], a frame-like event encoding technique, to convert sparse
and asynchronous events to a tensor representation and enable learning with typical
convolutional neural network architectures.
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Challenges of Evaluating Event Data Assessing event data for first-person action
recognition poses a fundamental challenge as the use of event modality in egocentric
vision is entirely new. To overcome this challenge, we propose evaluating four
different aspects of event-based modeling to establish a benchmark for this setting.
We start by considering the importance of performance on both seen and unseen test
sets, where seen indicates performance on the same kitchen on which training is
performed, and unseen the performance obtained on a different one. This enables
us to evaluate the upper bound performance of the modality and its ability to en-
code domain invariant features necessary for real-world applications. Then, as the
performance of different modalities may greatly vary depending on the architecture
used for processing [400], we benchmark events using three of the most accredited
architectures in FPAR, namely TSM [90], TSN [121] and I3D [94]. To integrate
event streams with off-the-shelf CNNs, we utilize a well-established procedure for
converting event data into a frame-like representation that has been demonstrated to
be efficient [295, 62]. Finally, we employ attention at the channel level to encourage
the modeling of motion features.

Event Representation. Since event cameras produce sparse encodings of the scene,
they must be converted into intermediate representations before processing. Several
representations have been proposed, ranging from bio-inspired [244, 401, 402] to
more practical ones. Frame-like representations are by far the most widespread
methods as they can be directly used together with off-the-shelf networks. Among
available ones [263, 264, 8, 402, 403, 269, 281, 271] we chose Voxel Grid [8] as
it proved to be superior in cross-domain settings [295, 62]. This representation
computes a B-channel image by discretizing time in B separate intervals:

xE(x,y,b) =
N

Â
k=1

pkkb(b− t⇤k ), (4.16)

where b are the channels, t⇤k are the timestamps scaled into [0,B− 1], pk is the
polarity and kb(a) = max(0,1− |a|).

Backbone Architectures. To evaluate the performance of event data on different
network designs, we analyze two popular 2D-CNN approaches, TSM [90] and
TSN [121], and one 3D-CNN, I3D [94]. While TSN [121] only utilizes late fusion
for temporal modeling, TSM [90] uses shift modules to exchange channel information
across adjacent frames. On the other hand, I3D [94] is a pure 3D-CNN model that
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inflates filters and pooling kernels into the temporal dimension. In the literature, there
is currently no clear preference for any particular technique, as certain modalities
may react differently to different techniques. Therefore, we evaluate the performance
of event data on all three techniques to assess which approach works best.

The Importance of Motion. Environmental biases are typically managed in egocen-
tric vision systems by employing complementary, often appearance-free, modalities.
Optical flow is generally the one performing the best in action recognition tasks
[13, 12, 121], as (i) it helps focusing on the moving content, i.e., the action being
performed, while (ii) preserving the edges of moving objects and (iii) ignoring back-
ground information. We argue in this section that, while event cameras are sensitive
to moving edges and may ignore static information, they only record a portion of
the three fundamental aspects of optical flow stated above. Event cameras can still
detect events in the background due to camera movement, reducing their efficiency
in filtering out less discriminative data. To solve this issue, we suggest using flow
data to increase our capacity to filter out irrelevant information and improve action
action recognition.

4.3.3 Learning from Motion

While a traditional RGB frame only encodes static information, event data frame-
based representations also carry motion information on the channel dimension. Each
temporal channel, in fact, captures the motion that happens in the blind-time between
two normal frames of a video clip. We present two ways for enabling ordinary
CNNs to leverage this information. The first, E2(GO), explicitly models temporal
relationships by providing channel operations that encourage motion reasoning.
The second, on the other hand, employs a student-teacher technique known as
E2(GO)MO to encourage the network to extract motion properties during training by
utilizing a pre-trained optical flow-based network. We detail the two approaches in
the following.

E2(GO): Event Motion In order to enable standard CNNs capture motion infor-
mation from event data, we propose two simple but effective architectural variations,
which improve the capability of extracting temporal inter-channel relations in 2D
and 3D CNNs. We refer to them as E2(GO)-2D and E2(GO)-3D, respectively.
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time
Fig. 4.13 Illustration of the proposed E2(GO)MO. The input xE and xF from the event and
flow modality are passed to the feature extractors FE and FF respectively. Information from
the pre-trained teacher stream (frozen) FF is distilled to the student stream FE . The latter is
trained with standard cross-entropy loss.

E2(GO)-2D. A common practice in the literature is to extract temporal correlations
at the video level by modeling dependencies between distinct frames [47, 90]. A
feature of event representation is that the channel sequence captures continuous
motion, describing micro-movements in the scene. This observation motivates
us to extend the practice of modeling temporal relations to also learn short-range
correlations between event channels.

Our approach involves utilizing Squeeze And Excitation modules [404] to en-
hance attention correlations between channels in 2D CNNs. The input to our model
is an event volume xE 2 RT⇥H⇥W⇥F , where T represents the temporal dimension,
H ⇥W denotes the feature map resolution, and F corresponds to the number of
channels. We refer to the features extracted from the i-th layer of the network as
fi

E 2 RT⇥Hi⇥Wi⇥Ci . As a first step, we “squeeze" the spatial information content
of fE

i into a channel descriptor by performing feature aggregation along the spatial
dimensions. It follows an “excitation" operator, which takes in input zE

sq to produce
an activation vector s to be used to scale xE . The scaling vector s is obtained from
zE

sq through two fully-connected layers with a bottleneck that down sizes C to C/r.
Finally, s is used to re-weight xE , resulting in a new feature vector x̃E to enhance



148 Multi-Modal Learning for Egocentric Vision: First Person Action Recognition

discriminative motion features and discard the less informative ones. As a result,
x̃E encodes the relation dynamics between different temporal channels, effectively
modeling the dependencies between them as a result of a self-attention function on
channel dimension.

E2(GO)-3D. Similarly, we propose to exploit 3D-CNNs’ ability to process tempo-
ral information through a 3D kernel. Starting from the same input xE 2 RT⇥H⇥W⇥F ,
traditional 3D CNNs apply a 3D convolution on the (T,H,W,F) dimensions, result-
ing in an output of shape (T 0,H 0,W 0,C). We re-purpose the 3D convolution operator
in this context to operate on xE 2 R(F ·T )⇥H⇥W⇥1 by moving the channel dimensions
on the temporal axis. This allows the convolution to capture the micro-movements
present across the temporal channels of the event representation, which would have
been ignored if processed only on the channel dimension.

E2(GO)MO: Learning from Flow. Our objective is to train a network using both
event and optical flow data, while eliminating the need to estimate the optical flow
during testing. The input to our network is a multi-modal data X = (XE ,XF), where
XE represents the event modality, and XF denotes the flow modality. We use FE

and FF to refer to their respective feature extractors, and represent their resulting
features with fE = FE(xE) and fF = FF(xF), respectively. Initially, we train the
flow extractor FF using cross-entropy loss between the true action labels ŷ and the
predicted labels yF generated by a fully connected layer on top of FF . Following this,
we freeze the weights of the flow stream, and aim to transfer the knowledge from the
pre-trained optical flow stream to the event stream. We first freeze the flow stream
FF and then train the event stream FE by combining the standard cross-entropy loss
with a distillation loss, which is defined as the L2 distance between features fE and
fF :

Ldist = a||fE − fF ||2. (4.17)

where a is a scaling hyperparameter. Such loss encourages features of the event
stream to match those of the flow one, forcing FE to mimic the behavior of FF ,
and thus enabling the two to produce similar activations. Notice that we use optical
flow data only during training and remove the teacher branch during inference, thus
exploiting the advantages of this modality but effectively avoiding its computational
complexity in prediction.
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4.3.4 Experiments

In this section, we first introduce the experimental setup used, then we benchmark
event data and validate the proposed E2(GO) and E2(GO)MO.

Experimental Setup

Input. Experiments with I3D [94] are conducted by sampling one random clip
from the video during training and 5 equidistant clips spanning across all the video
during test, as in [37]. The number of frames composing each clip is 16 for RGB and
optical flow, and 10 for events. For TSN [121] and TSM [90] architectures, uniform
sampling is employed by selecting five frames that are uniformly distributed along the
video. During testing, five clips are selected per video, following the experimental
protocol presented in [90]. The Voxel Grid representations are clipped between
−0.5 and 0.5, and all data modalities are rescaled and normalized in accordance
with the pretrained network associated with the architecture used. Standard data
augmentation, as described in [88], is applied to all modalities.

Implementation and Training Details. Regarding the implementation and train-
ing details, the original implementation from [94] is utilized for I3D. On the other
hand, TSN and TSM models are constructed using a BN-Inception [405] and a
ResNet-50 [339] backbone, respectively. In the multi-modal experiments, a classic
late fusion strategy is used, in which prediction scores from different modalities
are summed and the error is backpropagated to all modalities. The models are
implemented using PyTorch [406]. The optimizer used for training is SGD with
momentum [407], with a starting learning rate of h = 0.01, a weight decay of 10−7,
and a momentum of µ = 0.9. The networks are trained for a total of 5000 iterations
with a learning rate decay to 1e−3 at step 3000. All experiments are conducted using
a batch size of 128 on 4 NVIDIA Tesla V100 16Gb GPUs. The hyperparameter
a = 100 is found to be optimal for the distillation loss.

Event Analysis. In Table 4.15 we show the performance of the event modality on
the three selected action recognition architectures, varying the number of channels
used for the voxel representation [8]. It can be observed that extracting 3-channels
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EPIC-KITCHENS-55

Model Voxel ch. Testing Seen acc Unseen acc

I3D

9 Clip 49.84 34.52
Video 52.50 36.24

3 Clip 53.75 35.90
Video 55.54 37.52

1 Clip 49.34 34.93
Video 51.29 35.05

TSN

9 Clip 57.28 31.74
Video 58.98 32.52

3 Clip 58.81 34.65
Video 59.82 35.24

1 Clip 52.59 30.94
Video 54.54 31.87

TSM

9 Clip 65.02 37.65
Video 66.39 38.71

3 Clip 64.38 37.75
Video 65.93 38.23

1 Clip 60.76 34.66
Video 62.46 36.45

Table 4.15 Top-1 accuracy (%) achieved using I3D, TSN and TSM architectures depending
on the number of channels for the event representation. The highest results are highlighted
in bold.

Voxel Grid is the optimal choice and we used it in all the remaining experiments. In
fact, it allows retaining the first ImageNet pre-trained convolution, which is otherwise
trained from scratch when using a different number of channels. Indeed, the latter
option is damaging on unseen domains. In fact, the first layers of the network are
usually the ones that specialize the most on training data distribution [336], thus
training them from scratch may lead the network to overfit on the training set, poorly
generalizing on the unseen test. Instead, when exploiting pre-trained layers, the
network can take advantage of robust low-level features.

In terms of performance on both seen and unseen test sets, the TSM model
outperforms the I3D model, albeit only by a small margin. This can be attributed to
the fact that the I3D model processes only a limited section of the video at any given
time, thereby capturing only local features when trained at the clip level. Conversely,
the TSM model works with full video frames, enabling it to capture global features.
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EPIC-KITCHENS-55

Input Model D1 D2 D3 D1! D2 D1!D3 D2!D1 D2!D3 D3!D1 D3 !D2 Seen Unseen
RGB I3D 53.67 61.12 60.70 34.50 35.70 34.94 36.46 33.93 38.37 58.49 35.65
Event I3D 50.32 58.33 57.99 37.27 39.12 32.98 36.52 35.68 43.56 55.54 37.52
Event E2(GO)-3D 50.52 62.99 60.11 38.07 38.71 35.02 38.49 36.73 45.53 57.87 38.76
RGB TSM 61.61 77.08 75.75 37.39 32.49 34.28 38.99 34.43 38.25 71.48 35.97
Event TSM 56.86 72.43 68.49 28.73 34.00 37.09 42.30 42.27 45.02 65.93 38.23
Event E2(GO)-2D 56.58 70.03 69.60 34.98 35.16 38.21 47.80 41.71 44.13 65.40 40.33

Table 4.16 Top-1 accuracy (%) of event w.r.t. RGB on both I3D and TSM. Results are shown
on all shifts, i.e., Di ! D j indicates we trained on Di and tested on D j, and Di means we
trained and test on the same. E2(GO)-3D and E2(GO)-2D improvements are shown w.r.t.
to their respective baselines, where no architectural variations are performed. The highest
results are highlighted in bold on both seen and unseen for each backbone.

EPIC-KITCHENS-55

Model Streams Pretrain Seen (%) Unseen (%)
I3D Event Kinetics-400 (R) 55.54 37.52
E2(GO)-3D Event Kinetics-400 (R) 57.87 38.76
TSM Event ImageNet 65.93 38.23
E2(GO)-2D Event ImageNet 65.40 40.33
I3D Event+RGB Kinetics-400 (R) 59.12 38.13
E2(GO)-3D Event+RGB Kinetics-400 (R) 61.23 41.85
TSM Event+RGB ImageNet 71.88 39.92
E2(GO)-2D Event+RGB ImageNet 72.42 40.61
I3D Event+Flow Kinetics-400 (R) 60.48 44.47
E2(GO)-3D Event+Flow Kinetics-400 (R) 62.66 45.86
TSM Event+Flow ImageNet 72.26 46.89
E2(GO)-2D Event+Flow ImageNet 72.87 49.23
I3D RGB+Flow Kinetics-400 (R) 62.07 44.56
TSM RGB+Flow ImageNet 75.08 45.66

Table 4.17 Top-1 accuracy (%) of the event modality when used in combination to stardard
RGB and optical flow. The highest results are highlighted in bold.

As for the TSN model, its frame aggregation technique hinders the modeling of any
temporal correlation, hence its inferior performance, which was expected. Thus,
unless otherwise stated, we perform video-level analysis and evaluate the proposed
approaches on TSM and I3D backbones in all of the following experiments.

Event vs RGB. In Table 4.16 we compare the behavior of the event modality
against the RGB modality. Results show that the event modality outperforms RGB
by a margin of up to 3% on unseen test sets. Indeed, it has been shown in the
literature that appearance-based CNNs are biased toward texture, which causes them
to underperform across-domain, but their robustness improves when shape-bias is
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EPIC-KITCHENS-55

Method Model D1 D2 D3 D1!D2 D1!D3 D2!D1 D2!D3 D3!D1 D3!D2 Seen (%) Unseen (%) Mean (%)
RGB TSM 61.61 77.08 75.75 37.39 32.49 34.28 38.99 34.43 38.25 71.48 35.97 53.73
RGB + Ldist TSM 63.36 79.47 77.97 38.61 35.73 39.36 41.09 34.76 49.68 73.60 39.87 56.73 +3

RGB + Flow TSM 66.97 79.69 78.58 43.76 43.76 45.80 47.13 45.44 48.09 75.08 45.66 60.37

Event TSM 56.86 72.43 68.49 28.73 34.00 37.09 42.30 42.27 45.02 65.93 38.23 52.08
Event E2(GO)-2D 56.58 70.03 69.60 34.98 35.16 38.21 47.80 41.71 44.13 65.40 40.33 52.87
Event E2(GO)MO-2D 61.38 75.83 75.08 39.77 37.19 44.71 51.03 47.01 53.73 70.76 45.57 58.17 +5.3
Event + Flow E2(GO)-2D 65.11 77.58 75.91 42.12 41.80 48.20 53.50 51.85 57.91 72.87 49.23 61.05

Table 4.18 Top-1 accuracy (%) of E2(GO)MO w.r.t. the baseline on events (TSM) and
E2(GO)-2D. We compare E2(GO)MO with the same approach on RGB to validate the choice
of combining event and flow. The highest results are highlighted in bold, while underlined
the best multi-modal.

increased [341]. Our hypothesis is that the event modality’s superior performance
is primarily attributed to its capacity to encode additional geometric and temporal
information, which makes it more robust to variations in lighting and color, and
thereby more invariant to domain shifts. This view is supported by the observation
that RGB-based networks tend to overfit to domain-specific features, particularly
in seen test sets. We remark that until now the event modality was still lagging
behind RGB images in purely visual tasks, as reported by the recent release of
N-ImageNet benchmark [292], where the best performing event architecture scores
48.94%, considerably below RGB’s > 90% accuracy [408–411]. Instead, our study
demonstrates that the event modality exhibits a clear advantage over RGB in cross-
domain scenarios, particularly within the context of egocentric vision. This highlights
the importance of introducing shape and temporal biases to enhance the robustness of
appearance-based convolutional neural networks and suggests that further research
on the event modality has the potential to yield promising results in a variety of
visual tasks.

E2(GO). In Table 4.16, we present the results of our proposed models E2(GO)-
2D and E2(GO)-3D. These models are designed to improve temporal correlations,
enabling the network to emphasize informative motion features and suppress those
that are not relevant to the action. Our experiments demonstrate that these models
are particularly effective on unseen test sets. Specifically, E2(GO)-3D achieved an
improvement of up to 2% on the seen test set, while E2(GO)-2D achieved results
on par with the baseline TSM. These findings suggest that 2D CNNs, which rely
heavily on visual signals and frame-based techniques, may not be as effective in
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changing environments, but they can still perform well in familiar environments. On
the other hand, I3D, which uses convolutions across the temporal domain, is naturally
more responsive to temporal correlations. By extending its temporal reasoning to
micro-movements, our proposed models extract more discriminative features for the
action, leading to higher accuracy even when testing on the same environment.

Multi-Modal Analysis. In Table 4.17 we illustrate the behavior of the event
modality when used in combination of traditional ones, i.e., RGB and optical flow.
When combined with RGB, it achieves an improvement of up to 7% on seen test sets
and 3% on unseen ones. When combing event data with optical flow information, the
best performance is achieved, improving event results by up to 7% on seen domains
and 9% on unseen ones. This suggests that, while both event and flow encode
motion, flow emphasizes the motion-relevant part, neglecting the scene or object
affordances, while the event data maintain useful information about objects’ shape
(see Figure 4.12). For this reason, the event modality offers a potential advantage
when combined with optical flow data than with RGB, which, instead, suffer on
unseen domains due to its dependency on appearance. It is also worth noting that it
outperforms standard RGB+Flow since event data is unaffected by negative features
of appearance on unseen test set.

E2(GO)MO. In Table 4.18 we illustrate the performance of E2(GO)MO against an
RGB-based TSM, which we proved to be the most robust architecture in the previous
analysis. To prove our claim that the proposed distillation technique benefits from
motion features, we also apply the same mechanism to an RGB-based stream, which
we label in Table 4.18 with the RGB+Ldist entry. Both event and RGB benefit
from the flow learning strategy, improving performance on unseen tests (+5.3%
and +3% respectively), confirming the importance of motion information in real-
world scenarios. However, E2(GO)MO gains far more from the distillation loss
Ldist than RGB, indicating that event data conveys more motion-rich features than
RGB streams, thus proving our argument. Finally, we compare these two networks
against their multi-modal upper bound performance, obtained exploiting the offline-
computed optical flow also in prediction, namely RGB+Flow and E2(GO)+Flow.
Despite both are unable to reach their upper bound, E2(GO)MO is much closer to
E2(GO)+Flow, and it even exceeds the multi-modal RGB-Flow performance. This
result further motivates the use of event data over standard RGB in egocentric vision.
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Fig. 4.14 Accuracy vs time of RGB modality, E2(GO)MO, estimated PWCNet optical flow
and TV-L1 optical Flow on seen and unseen scenarios for one clip evalutation.

Event vs. Optical Flow. Figure 4.14 depicts the trade-off between accuracy and
average time per frame at test time, for both seen and unseen data. We evaluate
the performance using two flow computation methods: TV-L1 flow, computed
offline [59], and the one extracted from PWC-Net [412], which is one of the most
competitive end-to-end CNN models for flow, providing an optimal balance between
accuracy and time. The calculations were performed using an NVIDIA Titan RTX
GPU, and we report both the input’s computation and forward time, while ignoring
data access time. In Figure 4.14, we also present the real-time capability of our
proposed methods by highlighting the range of sufficient frame rates for a motion
tracking system, using the threshold proposed in [413] as a reference. TV-L1 flow
achieves higher accuracy than PWC-Net but at the cost of a longer extraction time
(488 ms), which makes it unsuitable for online scenarios. On the other hand, the use
of PWC-Net for online flow estimation leads to a significant drop in performance
(up to 10% on seen tests and 8% on unseen tests).

Additionally, PWC-Net necessitates the execution of an additional network,
increasing the parameter count (⇡ 40M) and requiring an additional fine-tuning
stage. In contrast, we do not have to compute flow at test time, thus we can take full
advantage of the more precise optical flow when distilling. Despite E2(GO)MO does
not explicitly use flow during inference, it still outperforms PWC-Net on seen tests
(by up to 6%) and performs on par with it on unseen ones.
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EPIC-KITCHENS-55

Stream Model Repr. Seen Unseen
Time (ms) (%) (%)

RGB I3D 58.49 35.65
Event I3D 6ms 55.54 37.52
Event E2(GO)-3D 6ms 57.87 38.76
Flow (TV-L1) I3D 488ms 58.47 43.40

RGB TSM 71.48 35.97
Event TSM 6ms 65.93 38.23
Event E2(GO)-2D 6ms 65.40 40.33
Flow (TV-L1) TSM 488ms 73.23 53.98

Table 4.19 Top-1 accuracy (%) of RGB, Event and optical flow (TV-L1), along with their
representation time, i.e., time to calculate the Voxel Grid for event, and extraction time for
TV-L1 flow. The highest results are highlighted in bold.

Discussion and Limitations. Although the decision to simulate event data instead
of creating a new first-person dataset was made to enable a direct comparison with
established egocentric action recognition benchmarks [414, 12, 13], the inability to
fully replicate event camera behaviors poses a significant challenge that may result in
a domain shift between simulated and real-world event data, as discussed in Section
3.3.1.

Even though in the previous Section 3.3.1, our analysis primarily focused on
the visual shift between simulated and real event data, considering it is an image-
based classification task, it’s crucial to recognize that another shift should be taken
into consideration within the context of simulated event data. This additional shift
arises from the contrast between the real high frame rate of the data captured with a
DVS camera and the simulated one that is mainly derived from using SuperSlow-
MO [395]. Isolating the impact of this particular domain shift (temporal domain
shift) from the other one is a complex task. Moreover, it’s important to note that
in action classification tasks, the primary focus is on actions derived from human
motion capabilities, which typically operate at a frame rate close to 20 fps. As a
result, this temporal domain shift might not have a significant impact on performance.
Nonetheless, it’s reasonable to assume that domain adaptation or test-time adaptation
techniques could help mitigate this gap. To gain insights into how this shift might
impact performance, we can refer to the analysis performed in the task of Video
Frame Interpolation (VFI) by [415].
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The task of VFI consists of generating intermediate frames by inferring object
motions in the image from consecutive key-frames, and in this specific work [415]
the authors propose a method that uses the high-resolution capability of the DVS
sensor in order to see in the blind time from two consecutive frames. In the analysis
they provide results on the simulated and real parts of the High Quality Frames
(HQF) dataset, showing a variation in performance from simulated and real data up
to an average of 1.94 dB. This result confirms the existence of a domain gap between
simulated and real event data even though it might not manifest at the same loss level
as the one discussed in Section 3.3.1.

The intention to collect and analyze the impact of using real event streams,
as demonstrated in [9], is an intriguing direction that can shed light on future
research in the context of egocentric vision. This exploration is significant not
only for understanding the challenges of egocentric vision but it could motivating
advancements in future technologies. Indeed it’s worth noting that, up to this point,
there have been no smart glasses equipped with event cameras, making this research
direction even more pioneering.

Furthermore, as shown in Table 4.19, TV-L1 optical flow still outperforms event
data despite its high computational and time costs. This exceptional resilience to
domain changes is primarily attributed to the fact that the algorithm for extracting
TV-L1 optical flow partially filters out camera motion, resulting in cleaner motion
data compared to unprocessed events. To address this limitation, another impor-
tant direction for future work involves the use of motion compensation techniques
commonly used with events [416], to remove redundant background noise.

4.3.5 Conclusion

In this section, we aim to investigate the potential of event data in the context of
egocentric vision. Our motivation stems from the need to identify an alternative
visual modality that can encode motion information more effectively than RGB data,
while also having low computational requirements for online settings. Event-based
cameras offer several advantages, such as high pixel bandwidth, extremely low
latency, and low power consumption, which make them particularly well-suited for
egocentric scenarios.
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For this scope, we introduce N-EPIC-Kitchens, a novel event-based egocentric
action recognition dataset. Leveraging the diverse modalities already available
in the EPIC-Kitchens dataset, we conduct a comprehensive comparative analysis
that highlights the significance of event data in the egocentric action recognition
context. Based on these findings, we propose and evaluate two innovative event-based
approaches, namely E2(GO) and E2(GO)MO, which prioritize motion information
and achieve competitive results compared to the computationally expensive optical
flow modality. Our extensive experiments demonstrate the resilience of event data
and their effectiveness in action recognition settings, providing encouragement for
the community to pursue further exploration in this direction.
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Chapter 5

Conclusion

In this chapter, a thorough summary is presented that covers the significant outcomes
and contributions highlighted in the thesis. Additionally, open issues are discussed,
and potential areas for future research are outlined.
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5.1 Summary

Despite the remarkable achievements of AI in recent years, there still exist disparities
between the capabilities of intelligent systems and those of humans. Humans possess
the remarkable ability to perceive and interact with the world in an efficient and
adaptive manner. Our understanding of the world stems from a multi-sensory percep-
tion, enabling us to derive deeper knowledge beyond what can be extracted from a
mere 2D representation. By integrating multiple modalities into AI systems, we can
unlock new possibilities for enhancing accuracy, efficiency, and overall performance,
and bridge the gap between human capabilities and machine performance in various
real-world applications.

This thesis is dedicated to exploring the potential of multi-modal learning to
enhance the capabilities of models in terms of accuracy, robustness, and adaptability.
To achieve this goal, we delve into two specific research domains: Object Recognition
discussed in Chapter 3, and First Person Action Recognition explored in Chapter 4.
These research areas share the common goal of addressing the limitations inherent in
relying solely on uni-modal approaches. Indeed, in Section 3.1, we introduce a novel
end-to-end trainable model for OR using RGB-D data. This approach facilitates the
interaction between RGB and depth channels, resulting in a final embedding that
effectively captures the object characteristics. In the context of FPAR, accurately
extracting motion information from videos poses a significant challenge for current
models. To address this issue, Section 4.1 introduces SparNet, a network that
simultaneously encodes appearance and motion information. This is achieved by
incorporating a self-supervised pretext task that focused on motion segmentation.
Notably, the multi-modal aspect plays a distinct role here. The optical flow, which
captures motion information, is considered as non-real second modality since it is
not directly captured by a sensor and its computation requires substantial time and
resources. For this reason, our approach leverages optical flow solely during the
training phase, while utilizing a single-stream network during the test phase that has
significantly benefited from multi-modal learning.

Furthermore, the ability of models to generalize and adapt to new environments
and tasks is a crucial aspect of advancing the capabilities of AI systems. In this regard,
in Sections 3.2 and 4.2 we demonstrate how improving the interaction between
modalities is essential for enhancing the models’ generalization capabilities and
subsequent adaptability, introducing novel multi-modal DG and UDA techniques.
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In addition to exploring the benefits of multi-modal learning, this work also
investigates the impact of new modalities. Specifically, Sections 3.3 and 4.3 delve
into the opportunities and challenges associated with the utilization of event-based
cameras. Specifically in Section 3.3, we have made significant progress in addressing
the challenges associated with using simulated event data. This advancement has
the potential to drive further research in the field of event vision, allowing for the
exploration of new tasks even without access to real cameras. Furthermore, in Section
4.3, we introduce a pioneering event-based dataset specifically designed for fine-
grained action recognition in a first-person perspective. This dataset facilitates the
exploration of this novel modality for the aforementioned task and allows for direct
comparisons with other established modalities. Finally, we present E2(GO)MO,
a strategy to adapt existing networks for action recognition to event-based data.
This approach leverages the potential of encoding motion information offered by
event-based data.

In conclusion, this thesis extensively explores multi-modal learning, focusing on
two specific tasks. Significant advancements have been achieved in these contexts,
in particular on the topics of UDA, and DG, and new possibilities are opened for
the event data, particularly in the context of egocentric vision. Lastly, this thesis
offers a crucial bridge that effectively connects different contexts characterized by
diverse literature, application domains, and research communities. We firmly believe
that establishing such connections not only facilitates the exchange of knowledge
but also promotes future interdisciplinary collaboration, thereby contributing to the
continuous advancement of these fields.

5.2 Open Issues

The progress made in this thesis has broader implications beyond the domains of OR
and EAR. These advancements have the potential to benefit a wide range of tasks,
including image-related tasks such as object detection and segmentation [417, 418],
as well as other tasks within the field of egocentric vision [51, 419–421]. It is
worth noting that the field of multi-modal learning continues to be an active area
of research, as demonstrated by recent publications such as [422, 41, 423]. These
recent contributions have made significant progress in pushing the boundaries of AI
systems and highlighting the importance of ongoing research in the field.
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Where does this thesis stand in relation to ongoing Large Language Models research?
The recent years have witnessed a remarkable revolution in Large Language Models
(LLMs), as they have demonstrated exceptional proficiency in natural language
understanding, encompassing semantic comprehension, question answering, and
text generation [424–426]. The application of LLMs to computer vision tasks has
also seen significant interest. An example of this is CLIP [427], which involves the
creation of image representations from scratch using a vast dataset comprising 400
million (image, text) pairs sourced from the internet. CLIP’s noteworthy ability to
generalize, particularly in zero-shot and few-shot scenarios, has been a significant
breakthrough.

We firmly believe that the topics and methodologies explored in this thesis will
serve as enduring references for future research in applying LLMs to computer
vision tasks. Notably, many of the multi-modal methods introduced here possess
architecture-agnostic characteristics. This means they are well-suited to work seam-
lessly with emerging models like CLIP. Furthermore, these methods have consistently
yielded remarkable results at scale, as evidenced by their performance in prestigious
competitions like EPIC-Kitchen.

Nevertheless, it is crucial to acknowledge certain limitations inherent in ap-
proaches like CLIP and similar models. Firstly, these models primarily focus on
creating a text-based representation for uni-modal visual data, often sourced from
the web. This narrow focus limits their consideration of other vital multi-modal
and temporal information. In response to this limitation, the research community
has made significant progress in adapting CLIP for video and various modalities
[428–432]. This development underscores the potential validity of our research,
especially in the domain of synthetic and simulated data, facilitating access to new
annotated datasets and leveraging the properties of CLIP encoders for novel tasks
and modalities, such as event data. Second, as regards the egocentric setup, despite
reaching an impressive data scale, videos in those existing video-text pretraining
datasets are often of 3rd-person views and may have been edited before posting on
the Web. Yet, there is a noticeable domain gap between the existing video-text pre-
training datasets and 1st-person view videos such as those videos directly captured
by wearable cameras or smart glasses. Some progress to overcome this limitation
and generate a Video-Language Pretraining that uses egocentric videos are made in
some works like EgoClip [433] that exploits data taken from the large-scale dataset
Ego4D.
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In our recent work, which is not included in this thesis, we have demonstrated an
important application of the CLIP model within the egocentric context. Specifically,
our work showcases how CLIP can be effectively employed to extract agnostic
affordance information from first-person videos. The concept of affordance is used
already in neuroscience and cognitive psychology to describe a relationship between
the actions and the environments in which they occur. This information holds
relevance for various sub-tasks, including enhancing a model’s capability to adapt
to new environments. In conclusion, the substantial contributions to the realm of
multi-modal learning introduced in this thesis are aligned with the evolving landscape
of LLM research.

Multi-modal learning. In future research, there are several important directions
to explore in the field of multi-modal learning. One key aspect is to explore scenarios
where the availability and reliability of all modalities cannot be always guaranteed.
This variability in the presence of input modalities poses unique challenges that
require tailored solutions for effective handling. Developing robust methods that can
adapt to variations in the number of input modalities will be crucial in real-world
applications. Another interesting direction for future investigation is the develop-
ment of methods that can dynamically activate and deactivate modalities or handle
modalities with different sampling rates. This dynamic modality management ca-
pability is essential for optimizing the resource allocation in multi-modal learning
systems. By selectively activating modalities based on their relevance or adjusting
the sampling rates according to the task requirements, the overall efficiency and
performance of the system can be improved. This becomes particularly important
in resource-constrained environments where energy efficiency is a priority. Recent
literature has already made significant progress in addressing some of these chal-
lenges, with notable contributions from works such as Alfasly et al. [434] and Woo
et al. [435]. However, further research is necessary to refine and expand upon these
approaches. Continued exploration of these directions will contribute to advancing
the field of multi-modal learning and unlocking its full potential in various domains
and applications.

Unsupervised Domain Adaption. One future research direction involves ad-
dressing the limitations of the DA setting. Currently, in DA setting we assume that
the source and target domains share the same label space, known as Closed Set
DA. However, in real-world scenarios, this assumption may not always hold. To
overcome this limitation, exploring alternative settings such as Partial DA, Open Set
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DA, and Universal DA would be valuable. These settings allow for variations in the
label space between the source and target domains, including cases where there is
partial overlap, full overlap, or no overlap at all.

At the same time, in the context of egocentric vision, the domain shift problem
becomes more pronounced due to significant variations in data caused by rapid
changes in the environment, perspective, and lighting conditions. Alternative ap-
proaches need to be explored to effectively address the domain shift issue. For
example, methods such as Test Time Training or Adaptation (TTT or TTA) [436]
or Continual Unsupervised Domain Adaptation (CUDA) can be investigated. TTT
or TTA involves refining the model during the test phase, instead, CUDA focuses
on adapting the model incrementally as new target domain samples become avail-
able over time, allowing the model to continuously learn and adapt to the evolving
domain.

Event data. Our research has achieved remarkable results in utilizing event data
for OR and FPAR. However, it is crucial to recognize that the current efforts, includ-
ing those in the existing literature, largely involve adapting pre-existing architectures
designed for standard image data to handle event data. To fully unlock the potential
of event cameras, it is necessary to explore novel architectures explicitly tailored
to this data. A promising avenue for further investigation is the development of
architectures optimized specifically for this new modality, leveraging recent advance-
ments in Neural Architectural Search (NAS) [437]. By employing NAS techniques,
researchers can identify architectures that are well-suited for processing event-based
data, thereby enhancing performance and computational efficiency.

Egocentric vision. In future research, an exciting direction is to explore ways to
relax the constraints associated with egocentric action recognition and develop a real-
time system capable of predicting ongoing actions as they occur and detecting their
boundaries. This system should demonstrate adaptability to varying environments,
effectively handling the dynamic nature of wearable sensor data. Additionally, it
is crucial to consider the context of wearable devices and optimize the system to
meet the requirements of small devices in terms of model size and computational
efficiency. While some progress has been made in our previous work [438], which is
not included in this thesis and in [439], further research is necessary to address the
specific challenges related to action detection and the development of lightweight
models. Advancements in these areas will contribute significantly to the development
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of a robust and efficient system for real-time action prediction in egocentric vision
applications.
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Appendix A

Code Repositories

The contributions presented in this thesis, as well as other work published, can
be found in publicly available repositories. These repositories serve as a valuable
resource for accessing the code, datasets, and other materials associated with the
research.

• https://github.com/MRLoghmani/rcfusion

• https://github.com/MRLoghmani/relative-rotation

• https://github.com/DA4EVENT/home

• https://n-rod-dataset.github.io/home/

• https://egocentricvision.github.io/EgocentricVision/index.html

• https://github.com/EgocentricVision/N-EPIC-Kitchens

• https://github.com/EgocentricVision/RNA-TTA

• https://github.com/EgocentricVision/EgoWild

https://github.com/MRLoghmani/rcfusion
https://github.com/MRLoghmani/relative-rotation
https://github.com/DA4EVENT/home
https://n-rod-dataset.github.io/home/
https://egocentricvision.github.io/EgocentricVision/index.html
https://github.com/EgocentricVision/N-EPIC-Kitchens
https://github.com/EgocentricVision/RNA-TTA
https://github.com/EgocentricVision/EgoWild
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Computational Resources Support

This thesis is made possible through the support and contributions of various or-
ganizations and initiatives. Specifically, it is a part of the RoboExNovo project
(ERC grant 637076) and has received support from the VIDESEC project of the
CINI Consortium. Computational resources for this research were provided by the
Italian Institute of Technology (IIT) through their HPC infrastructure, as well as
by Politecnico di Torino through HPC@PoliTo. We would like to acknowledge the
CINECA award (IsC92_EVEgo, IsCa0_EgoRobot, IsC98_RNA4DA) received under
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