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Abstract

The current study is presented to investigate the thermal buckling and post-buckling
response of functionally graded (FG) plates with temperature-dependent properties.
Constituent properties depend not only on the thickness direction variable but also
on temperature. Therefore calculation of the temperature distribution through the
thickness is extremely significant. In this regard, an improved method is introduced
for determining temperature distribution. Two types of uniform and nonuniform
temperature distribution within the thickness are applied to the plate as thermal loads.
Here, FEM is used to analyze the thermal buckling and post-buckling problem based
on Carrera Unified Formulation (CUF), a powerful formulation and higher-order
deformation theory for modeling the plate. In this regard, the nonlinear equilibrium
equations are extracted using the virtual work principle by considering large dis-
placements and Green-Lagrange strain. The solution to the problems in this thesis is
divided into three general parts: First part is related to calculating the critical thermal
buckling load of the FG plate with temperature-dependent properties using linear
buckling analysis (LBA). The second part includes a nonlinear thermal post-buckling
analysis of the FG plate using the arc-length method. The third part explains the
procedure of analyzing the nonlinear thermal post-buckling behavior of the FG plate,
considering temperature-dependent properties. In order to validate and prove the
accuracy and effectiveness of the current method, several numerical examples are
provided to show more precise results than similar references. In addition, some
sensitivity analyses are executed to clarify the effects of the volume fraction index,
the geometry aspect ratio and thickness of the plate, the order of expansion functions,
the type of FGM combination, boundary conditions, temperature-dependent and
temperature-independent properties on the thermal buckling load and thermal post-
buckling path. The results prove the effectiveness of using CUF on thermal buckling
and post-buckling of FG plates. It is illustrated that if temperature-dependent prop-
erties are utilized, the results will be more accurate than those without temperature
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dependency. One significant result is that in a fully simply supported plate, it can not
be seen the bifurcation point in the thermal post-buckling path, while it will be seen
in the plate with fully clamped boundary condition.

Keywords: FG plate, Temperature-dependent properties, CUF, Geometrically
nonlinear analysis, Thermal buckling and post-buckling, Expansion function
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Chapter 1

Introduction

1.1 Overview

Today, composite plates are used to apply in industries such as Aerospace, Mechani-
cal, and Civil due to their lightweight, high strength, and proper thermal properties.
Some researchers have specifically shed light on new types of composite materials
known as functionally graded materials (FGM). FGM is a combination of ceramic
and metal materials, whose physical properties are defined as a function of both
material properties that vary smoothly and continuously from one surface to the
other. Nowadays, FGM is used in quite a few structures, like the space shuttle. Since
FGM has high temperature resistance and high strength, it is applied to the surfaces
of the shuttle. One side of the shuttle’s combustion chamber works at very high
temperatures while the other side operates at low temperatures because of cool liquid
hydrogen [8]. So FGM is a suitable material to resist enormous temperature differ-
ences due to thermal stress. In higher temperatures, plates are buckled even with
the absence of mechanical loads. Buckling is considered an adverse phenomenon
that is likely to damage plates. Thus, designers should investigate to find an accurate
method for thermal buckling and post-buckling of the FG plates to prevent failure
and damage.



2 Introduction

1.2 FGM Utilization

FGMs are widely used in thermal insulation coating for turbine blades, thermoelectric
generators, aerospace industries in the surface of aircraft or spacecraft and some parts
of space shuttle’s motor, biomedical materials including bone and dental implants,
automobile manufacturing, electromagnetic industries, sensors, ceramic motors,
sports equipment, metal plastics, joining non-isotropic metals, metals with diamond
structure, metal plastics reinforced with carbon, etc [9–12].

1.2.1 Description of FGM usage in some industries

More details about the use of FGM in various industries are given as follows:

1. Aerospace: FGMs are extensively used in the aerospace industry due to their
ability to withstand extreme conditions by adjusting the material composition
from one side to another. They can be employed in aircraft structures, such
as wings or fuselages, to optimize their mechanical properties, also in engine
components and thermal protection systems. The graded composition of FGMs
helps minimize thermomechanical stress concentrations and thermal mismatch,
enhancing these structures’ overall performance and durability.

2. Biomedical Engineering: FGMs have significant potential in the field of
biomedical engineering. They can be utilized in implants, prosthetics, and
dental materials. By creating a gradual transition between the implant and
the surrounding bone, FGMs can reduce stress concentration and improve the
long-term stability of implants. Additionally, FGMs can be designed to have
biocompatible surfaces, promoting tissue integration and minimizing rejection
risks.

3. Energy Generation: FGMs can be employed in various energy generation
systems, such as thermoelectric devices and fuel cells. By tailoring the material
properties to optimize thermal conductivity and electrical resistivity, FGMs
can enhance energy conversion efficiency. They can also withstand high
temperatures and chemical corrosion, making them suitable for use in harsh
environments.
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4. Automotive and Transportation: FGMs applications can be seen in the au-
tomotive and transportation industries. They can be utilized in components
like engine parts, brake discs, and exhaust systems, where high temperature
resistance and mechanical strength are crucial. FGMs can provide improved
performance, reduced weight, and increased fuel efficiency compared to con-
ventional materials.

5. Civil Engineering: FGMs have the potential to enhance the structural integrity
of buildings and infrastructure. By designing materials with a gradual change
in properties, FGMs can reduce stress concentrations at interfaces and joints.
They are employed in bridges, pipelines, and offshore platforms, among other
applications.

6. Electronics: FGMs have promising applications in the electronics field. They
can be used in electronic packaging to manage heat dissipation by gradu-
ally transitioning from materials with high thermal conductivity to insulating
materials.

7. Optics: FGMs can be utilized in optical devices to achieve refractive index
gradients, enabling better light transmission and reducing reflection losses.

8. Machine tools: In shaping tools, since the consumable materials that are used
become harder every day, more advanced tools are needed for cutting and
forming them. In this field, compatibility is needed between coating resistance
and toughness for the materials of cutting and shaping tools, so the use of
FGM in this field is essential. In addition, heat-resistant materials are needed
for dry cutting since does not use a cooling fluid; such material has already
been made, the outer coating of which is made of diamond and the inside of
which is made of steel. With this situation, it is expected that fast-cutting tools
will be made soon, without limitations in various shapes and sizes.

Generally, the utilization of FGMs spans a wide range of industries and applications.
Their unique properties and versatility make them valuable for improving perfor-
mance, durability, and efficiency in various fields of engineering and technology.
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1.2.2 The capability of FGM to improve characteristics of com-
ponents

The most important application of FGM is to improve the mechanical or thermal, or
thermomechanical characteristics of components in the following manners [9–12]:

1. The amount of thermal stress can be minimized and also, the critical areas
where the maximum thermal stress occurs can be controlled.

2. The onset of plastic yielding and failure for a thermodynamic loading can
occur with a delay.

3. The resistance of the interface between non-homogeneous solids such as metal
and ceramic can be increased by continuously decreasing the composition or
changing the direction of mechanical properties.

4. Crack growing can be reduced by choosing the appropriate grading of mechan-
ical properties.

5. Placing the hard coating on the soft sample can be made easier by grading of
mechanical properties and directing the change of material properties.

6. The grading of the composition in the surface layers can eliminate the singular
fields caused by cutting and sharp tip depressions and changes the plastic
deformation characteristics around the depressions.

7. At the connection of two different materials, instead of directly joining two
different materials, a layer of FGM is placed between them, which makes the
change of properties more smooth.

8. These materials are used as a resistant coating layer in gears, cams, ball and
roller bearings in order to reduce the effects of abrasion in machine tools.
These layers are made so that their thermal conductivity is high.

1.3 The unique characteristic of FGM

FGM is microscopically nonhomogeneous and its mechanical properties continu-
ously change from one side of the structure to the other. These material changes are
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created gradually by changing the volume fraction ratio of two materials. Usually,
these materials are made of ceramic and metal. Due to its low heat transfer coefficient
and high resistance to temperature, the ceramic structural material tolerates very
high temperatures and the metal structural material provides the necessary flexibility.
Because of continuous changes in mechanical properties, the continuity troubles that
exist in composite structures do not occur in FGM. The bold advantage of using
these materials is that they are able to withstand high temperatures.

1.4 Problem Definition

FGM is a type of composite material whose properties are gradually changed through
spatial coordinate. These gradual changes in the properties of FG plates make a
notable exception in comparison with laminated composites. In laminated compos-
ites, the sudden change in the property from one layer to another layer may cause
intensive stress in the structure. Thus, employing FGM results in softening this
difficulty. In Fig. 2.1, an FG plate is demonstrated.
FGMs, in common, are produced from a combination of two types of materials such
as ceramic and metal so as to make an optimum equilibrium between mechanical
and thermal properties. High thermal strength and low thermal conductivity of
ceramics and great strength of metals are of significant properties of these two types
of materials.
In this study, an FG plate with a length of a and width of b and thickness of t is
considered for buckling and post-buckling analysis. Many types of ceramic and
metal combinations can be used as materials for the FG plate. Some of them that
have been used in this study are listed in section 2.3 of chapter 2.
For analysis of FG plates, researchers have utilized theories like classical plate
theory (CPT), first-order shear deformation theory (FSDT), and higher-order shear
deformation theory (HSDT) with some limitations and simplifications. But, in recent
years, to increase the accuracy of the former theories, Carrera Unified Formulation
(CUF) has been introduced for the modeling and analysis of beams, plates, and shells
[13]. However, up to now, CUF has not been employed for thermal post-buckling
analysis of FG plates with temperature-dependent properties.
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Fig. 1.1 The FG plate model [1]

1.5 Purpose and Necessity of Research Fulfilment

Many structures in the aerospace and mechanical industry are exposed to extensive
thermal load and large displacements. Because of it, sometimes instability phenom-
ena like thermal post-buckling occur. Some shuttle components, such as its body and
combustion chamber, tolerate extremely high thermomechanical loads without defeat
above the buckling domain and go to the post-buckling area. Thus it is necessary to
use materials that can show acceptable behavior to thermal loads.
FGMs, known as a new class of heterogeneous composite materials, can be the same
thing mentioned. Their volume fraction is continuously distributed in the chosen
direction. FGMs have reduced the intensity of stresses, especially thermal stresses,
and have the ability to withstand extreme temperature gradients. Since it has high
strength and high temperature resistance, it is also used as the coating of the space
shuttle. The temperature varies simultaneously as the shuttle is exposed to thermal
stress while passing through the atmosphere layer. Hence, it is better to regard
the accurate temperature distribution in the design and analysis of the functionally
graded (FG) plate. Also, temperature-dependent properties should be considered for
them to get more accurate results.
Since at high temperatures, the plates start buckling, thus, it is essential to use a
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trustworthy method for studying the stability and thermal post-buckling of FG plates.
So designers should investigate the thermal post-buckling of structures by precise
computation. Until now, the thermal post-buckling analysis of FG plates is not done
based on CUF. Therefore, the main purpose of this study is the thermal buckling
and post-buckling analysis of rectangular FG plates with temperature-dependent
properties using CUF.

1.6 Literature review

In this section background of buckling, thermal buckling, post-buckling, and FG
plate is widely investigated:
In 1991, Gary and Mei scrutinized the thermal post-buckling behavior of composite
plates by utilizing FEM. They acquired the plate’s governing equations based on
von Karman relations employing the principle of virtual work and compared FEM
results with the available analytical methods. Furthermore, they saw the effect of
the temperature dependency of materials on the plate’s buckling response [14]. In
1991, Chang and Liu analyzed the thermal buckling of an antisymmetric angle-ply
multilayer rectangular plate. They modeled the plate by shear and normal transverse
strains using a high-order deformation theory, as well as fully simply supported
(SSSS) conditions and uniform heat loads. By reducing the order of this theory,
they were able to compare their work with the FSDT and HSDT, and observed
that there was a great difference between the two theories and their theory. The
reason for this difference was to consider the effect of normal transverse strain in the
thermal buckling analysis of this plate [15]. In 1991, Chen et al. considered both
uniform and non-uniform temperature distribution to analyze the thermal buckling
and post-buckling of multilayer composite plates and solved it using FEM. They
considered the properties of the plate to be temperature dependent. Utilizing the
principle of minimum potential energy, they extracted the non-linear stiffness matrix
and the geometric stiffness matrix. They used one of the iterative methods to obtain
the thermal post-buckling path and concluded that the properties’ dependency on
the temperature has a significant effect on the post-buckling behavior of the plate.
They also concluded that the critical temperature depends on the angle of the layers,
aspect ratio, and type of temperature distribution [16, 17]. In 1993, Thornton studied
the role of temperature distribution across the thickness and also the material’s



8 Introduction

thermal properties on the plate’s post-buckling. He got the thermal buckling load by
experimental and analytical methods [18]. In 1994, Prabhu and Danaraj considered
laminate plates with different boundary conditions and analyzed thermal buckling
using the finite element method based on the Riessner-Mindlin deformation theory.
They investigated the effect of stress distribution on the critical temperature and also
included the shear correction factor in their analysis [19]. Shen, in 1997, combined
the perturbation approach and Galerkin method to examine the thermal post-buckling
of an imperfect geometrically laminate plate surrounded by uniform and nonuniform
temperature distribution by using HSDT. He also concluded that the plate’s thermal
buckling load is influenced by the transverse shear strain, direction of the fiber,
aspect ratio, and initial defect [20]. In 2001, Singha et al. examined the path of post-
buckling for composite plates imposed by uniform temperatures using FEM. They
reached the critical thermal buckling load by increasing the temperature through the
thickness of the plate; in other words, they employed the refined Newton-Raphson
approach to get the temperature-deflection graph [21]. In 2002, Javaheri and Eslami
extracted the equilibrium and stability equations for FG rectangular plates based
on the CPT and HSDT in two papers and solved them by an analytical solution
method. They applied heat in four ways, uniformly, linearly, and nonlinearly along
with the plate thickness and linearly along with the plate length, and concluded that
the critical temperature value obtained according to HSDT was less than the critical
temperature value obtained from CPT. They also found that by increasing the aspect
ratio of the width to the length of the plate and increasing the width-to-thickness
ratio of the plate, the critical temperature increases and decreases, respectively.
Another result of these two studies was that the critical temperature resulting from
the application of heat load along with the length of the plate was higher than the
critical temperature obtained from the application of linear heat load along with the
thickness of the plate [22, 23]. In 2004, Liew et al. investigated the FG laminate
plates’ thermal post-buckling according to FSDT. They used the minimization of
strain energy principle to compute the critical thermal buckling load of the FG
plate whose materials were dependent on temperature [24]. In 2004, the thermal
buckling analysis of thick rectangular FG plates with SSSS boundary conditions
was investigated by Lanhe, assuming the FSDT. He used exponential law in order
to model the gradual change of materials along with the thickness of this plate and
concluded that by increasing the amount of exponential power in this plate, the critical
buckling temperature decreases. He also found that transverse shear deformation
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has a significant effect on the critical buckling temperature of FG plates, especially
thick plates [25]. Eslami and Shariat, in 2006 and 2007, scrutinized the thick FG
plates’ buckling behavior under thermomechanical loads and extracted the governing
equations of the plate utilizing third-order shear deformation theory (TSDT). They
deemed the uniform and nonlinear temperature distribution in the thickness direction.
They inferred that the critical thermal load for the thick plate, assuming CPT, is
larger than that of FSDT, and as well as the critical temperature obtained from
FSDT is higher than that of TSDT. They suggested employing the TSDT to obtain a
more precise thermal buckling load. They also discovered the thick plate started to
buckle at a very high temperature when nonlinear temperature distribution across
the thickness is used in comparison with utilizing uniform distribution [26–28]. In
2007, Kordkheili and Naqdabadi, by utilizing the Lagrangian description, derived a
nonlinear governing equation of FG shells and plates. They acquired temperature
distribution through the thickness by solving the nonlinear equation of heat transfer
employing Raileigh-Ritz technique. They validated the outcomes of their work with
similar studies that were solved analytically, contemplating large deflections [29].
In 2009, Khalili et al. investigated the buckling control of smart FG plates utilizing
piezoelectric sensor/actuator patches. They considered an FG rectangular plate with
SSSS boundary condition that has piezoelectric patches connected to the bottom or
top surfaces in order to operate as actuators. They extracted the governing motion
equations using CLT under a constant electric charge. The Fourier series approach is
used to solve the equation of motion, and the impact of feedback gain on the buckling
load is analyzed by them [30]. In 2010, Sobhy and Zenkour investigated the thermal
buckling behavior of different kinds of sandwich FG plates utilizing sinusoidal shear
deformation theory. The bottom and upper layers of the sandwich plate are created
from FGM and its core is ceramic. Their upshots indicated that the thermal buckling
load received from the theory is smaller than that of getting from CPT. The FG
sandwich plate’s critical temperature is inferior to the critical temperature of the
ceramic-rich plate [31]. In 2012, Mohammadi and Khalili analyzed the free vibration
of FG sandwich plates in various thermal loading. They supposed that the core
properties are not only temperature dependent but also vary gradually in the direction
of thickness based on a power-law distribution according to volume fractions of
the plate. They used a new technique to reduce motion equations from twenty-
three to eleven and then could solve them. Their new solution had been consisted
of separating six of the unknowns in the face sheets’ displacements utilizing the
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compatibility equations, then separating the extra six Lagrange multipliers employing
the face sheets’ equations. Consequently, they replaced the separated unknowns into
the core’s eleven equations. They found good agreement between their work’s results
and the outcomes acquired by similar references for SSSS sandwich plates with FG
face sheets [32]. In the years 2011 to 2014, Fazzolari and Carrera proposed advanced
Ritz, Galerkin, and generalized Galerkin methods based on quasi-three-dimensional
order models to analyze the thermal buckling of composite plates and multilayer
sandwich plates based on the principle of virtual displacement. They concluded
that when it is not possible to ignore the three-dimensional effects in the thermal
buckling analysis of sandwich structures, it is necessary to use high-order improved
theories that incorporate the effect of vertical transverse deformation. An important
advantage of these theories, which include the ESL, ZZ, and LW models, is that the
accuracy of the results can be raised by extending the number of kinematic variables.
By increasing and decreasing the order of the improved theories, thick and thin plates,
respectively, can be well modeled and analyzed [33–40]. In 2015, Bouguenina et
al. investigated the thermal buckling behavior of a linearly variable-thickness FG
plate. They first extracted the equations of thermal stability under uniform heating in
the direction of thickness and analyzed them by the finite difference method. Then
they compared the results of the numerical method with the results of an analytical
solution as well as the results of similar articles and showed the accuracy of their
solution method. Their parametric studies proved that the thermal resistance of
the FG plate increases with increasing rigidity and thickness [41]. In 2016, Lee
et al. investigated the thermal buckling behavior of the FG plate according to the
neutral plane. They selected the neutral plane, not the plate’s middle surface, as the
reference. The plate’s materials depend not only on the thickness direction but also
on temperature. The neutral plane location is got regarding temperature variations.
They operated FSDT and 1D heat transfer equations in the calculations. They
concluded that while the elastic modulus of the metal is smaller than that of ceramic,
the neutral plane locomotes away from the plate’s middle surface and is located
in the ceramic part [42]. In 2017, Yu et al. investigated an FG rectangular plate’s
thermo-mechanical buckling using a unique numerical approach. They examined the
buckling response using FSDT and isometric analysis without assuming the shear-
locking effects. They employed the exponential law for the distribution of the FG
plate and inferred that by increasing the volume fraction index from 0 to 1, the plate
goes toward an instability regime. They likewise saw the plate with fully clamped
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(CCCC) boundary conditions is more stable than the plate with SSSS boundary
conditions [43]. In 2018, Megueni and Daikh studied the thermal buckling response
of a sandwich FG plate using HSDT. The plate was under several kinds of thermal
load across the thickness. They offered a new solution for the nonlinear thermal
distribution and found that the critical temperature resulting from the nonlinear
temperature distribution is higher and more accurate than the two others [44]. In
2018, Trabelsi et al. analyzed the thermal post-buckling of FGM structures utilizing
FEM. They proposed geometrically nonlinearity according to a modified FSDT. They
employed large displacement based on Green-Lagrange strains in their study and
used a parabolic shape function to modify the shear strains in the structure. They
proved that their method has high accuracy and effectiveness for getting results
[5]. In 2019, Wu et al. examined the post-buckling path and large deflection of an
isotropic rectangular plate utilizing CUF. To solve the plate’s nonlinear governing
equations, they employed Newton-Raphson and could get nodal displacement versus
load [45]. In 2021, Sadgui and Tati used FEM based on a rectangular element with
hypothetical natural shear strains to analyze mechanical buckling and free vibration
of FG plates. They utilized a new HSDT with only five unknowns and supposed
no transverse shear stress at the up and down of the plate, so it was not necessary
to use a shear correction coefficient. They proved the accuracy of their formula by
comparing it with the results of other authorities [46]. In the middle of 2021, Tahir et
al. analyzed the hygro-thermal behavior of wave propagation in porous FG sandwich
plates. Their sandwich plates were divided into two types, each of which had three
layers. The top and bottom layers of both included porous FGM graded according to
a power law. But one had a rich metal core, while another had a rich ceramic one.
Their study was accomplished HSDT with an uncomplicated four-unknown. The
governing equations of the problem were derived from Hamilton’s principle. Their
results were acquired by an eigenvalue problem [47]. In 2021, the buckling behavior
of FG plates with SSSS boundary conditions was examined by Ahmed et al. using
HSDT. The proposed formula does not use a shear correction factor but modifies the
transverse stress. In their work, the properties of the material are presumed to vary
based on the power law through the thickness direction. They investigated the effects
of the aspect ratio and volume fraction index of the plate on critical buckling load
[48]. In 2021, Zaitoun et al. studied the buckling behavior of an FG sandwich plate
considering heat-humidity conditions. An exact solution was created using HSDT
with just four unknowns. Their sandwich plate had three layers. They offered three
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different types of FG sandwich plates in terms of arrangement and layer composition.
Motion equations were derived based on the Hamilton principle. Then Navier’s
analytical solution was used to get the buckling temperature for an FG sandwich
plate with SSSS boundary conditions resting on a viscoelastic foundation [49]. In
2021, Kadapa, in order to obtain the load-deflection path of nonlinear equilibrium
of structural problems, used the arc-length method in the framework of FEM. In
his modified technique, the predictor is calculated by extrapolating the results from
two earlier converged load steps. The suggested extrapolated predictor provides
a way to follow forward motion along the path of equilibrium without employing
any complex methods usually utilized for explicit tracking. He proved the accuracy
of his suggested method by solving the nonlinear governing equations of some
structural examples such as trusses, columns, and shells. [50]. In 2021, Farrokh
et al. analyzed the thermal and mechanical buckling behavior of the rectangular
FG plate. They use three types of temperature distribution for the thermal case:
uniform, linear, and nonlinear. They also employed CUF for modeling and analyzing
the plate. In their study, boundary conditions of convection heat transfer had a
profound influence in acquiring critical thermal buckling load [51]. In early 2022,
Rachid et al. investigated free vibration and bending of FG double-curved shells
under mechanical sinusoidal and uniform loads. The purpose of their paper was to
develop a new formulation of 2D and quasi-3D HSDT with setting the influencing
of transverse shear. Numerical results are reported for different geometries, such
as plates and spherical shells employing a five-unknown displacement field. Their
suggested theory confirms proper in the study of FG double-curved shells [52].
In 2022, Khosravani et al. investigated the mechanical and thermal properties of
the constituent materials of some kinds of composites using a multiscale method
based on CUF. They concluded that the strange behavior of some composites under
thermal load can be justified from a microscopic point of view and is attributed to
factors such as the difference value in modulus of elasticity, coefficient of thermal
expansion and thermal conductivity of each component in a composite [53, 54].
In 2022, Farrokh et al. optimized the distribution of materials for FG plates in
order to maximize the critical buckling temperature subjected to thermal load. They
employed three models of distribution to minimize the materials utilized in the FG
plate. The outcomes of their work show that by increasing the degrees of freedom
corresponding to the material distribution, the FG plate’s thermal buckling load is
raised. They also discovered that the optimum distributions acquired did not rely
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on the FG plate’s boundary conditions and geometry [55]. In 2023, Kumar et al.,
using FEM based on modified TSDT in conjunction with a neural network, estimated
the buckling load of a carbon nanotube (CNT) reinforced hybrid FG plate. They
assumed a zero transverse shear deformation for their results. Employing the random
value in the material’s properties as an input parameter and considering the critical
buckling load as an output parameter, a problem based on the machine learning
method is defined by them to predict the buckling behavior of the CNT reinforced
hybrid FG plates. They developed a C0 FEM code in MATLAB software, validated
the modified TSDT with previous similar works, and discovered their method is
suitable for obtaining accurate results [56]. In 2023, Tavakoli et al. investigated
the Gaussian random fields in the mechanical properties of the composite plate and
its effects on the buckling load. In their work, the random fields were decayed by
the KarhunenLoève approach and strains were determined based on FSDT. They
extracted motion equations employing the Euler–Lagrange formula. They analyzed
the effect of spatially varying random properties on the plate’s critical buckling
load and corresponding mode shapes for the first time. Their results demonstrated
that different shear deformation theories could seriously affect the stability of thick
plates when compressive loads are applied [57]. Chen et al., in 2023, conducted a
study investigating the compressive and thermal post-buckling responses of porous
sandwich plates. In their study, the graphene platelets reinforced composite core
was made of several layers with different values of graphene porosity to receive an
FG model. They extracted the governing equations for the thermal post-buckling of
porous sandwich plates based on Reddy’s TSDT and by considering the von Kármán
nonlinear strain–displacement. They acquired results by analyzing some numerical
studies and compared their outcomes with an equivalent isotropic model. Their
results show the equivalent isotropic model is not proper for thermal buckling and
post-buckling analysis of porous plates [58]. In 2023, Wang et al. scrutinized the
post-buckling paths of the composite laminated plates reinforced by fiber under the
thermal load. They obtained the governing equations based on the nonlinear Von
Karman relation and using the TSDT and Hamilton’s principle. The consequences
of their study revealed that the limit points through unstable paths have a direct
relationship with the negative eigenvalues in the initial position in the post-buckling
region. They found that, in the flat plate, buckling deformation remains the same
under varying perturbation loads as long as the perturbation load is small. Also,
in the case of a plate with low defects, the buckling deformation is like that of
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an isotropic plate. But if the defect of the plate is more significant, the buckling
deformation would be high [59]. Therefore, it is necessary to use a reliable method
for checking the stability of the FG plate. CUF, in the framework of FEM, is an
appropriate method for thermal buckling and post-buckling analysis of the plate.

1.7 Thesis Outline

This thesis consists of 6 chapters; each chapter’s objectives and outline are as follows:

1. The first chapter has presented the overview, problem definition, purpose and
literature review of the thesis.

2. The second chapter has defined FG plates with temperature-dependent prop-
erties and their governing equations. It has also explained the procedure for
obtaining the temperature distribution within the thickness of the FG plate by
applying FEM over the heat transfer equation.

3. The third chapter has described structural theories and Carrera Unified Formu-
lation. In addition, this chapter has expressed the fundamental concept of a
continuous body, like displacement, strain, and stress. Also, thermal stresses
and strains stemming from the imposed heat are calculated to obtain thermal
load in this chapter.

4. The fourth chapter has derived the Nonlinear equilibrium equation of the FG
plate under thermal loading. It has also explained the solution procedure
of the governing equation by an increment-iterative method in the thermal
post-buckling analysis. Furthermore, the linear buckling analysis in order to
get critical temperature has been explained.

5. The fifth chapter includes the results and discussion of several numerical
examples for analyzing thermal buckling and post-buckling of the FG plate
with and without considering temperature-dependent properties.

6. The sixth chapter presents the conclusion of the present study, suggests similar
future works and shows the extracted journal papers from this thesis.



Chapter 2

FG plates with
temperature-dependent properties
and temperature distribution

2.1 Introduction

FGMs for the first time introduced in 1984 by Japanese researchers in a space
project. The gradual and continuous change of properties within thickness gives it a
preference rather than laminates and other composites due to their mechanical and
thermal behavior. Temperature also changes within the thickness of plates for various
reasons, so it is essential to calculate the profile of temperature with an accurate
approach. Furthermore, investigating temperature-dependent properties of FG plates
and modeling their equations to the problem properly is of great significance.

2.2 FG plates

FGMs create a harmony of thermal and mechanical properties because it is built of
a hybrid of ceramic and metal. One side of these plates is produced purely from
ceramics and the other side of them is entirely made of metal, and the distance
between sides is a combination of both of them. Metal properties gradually decrease
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from the rich metal face to the fully ceramic face and contrariwise. A schematic of
an FG plate is shown in Fig. 2.1

x

y
z

a

b

ceramic

metal

t
2

t
2

Fig. 2.1 The FG plate schematic.

2.3 FG plates with temperature-dependent properties

Different material gradation laws have been proposed by scientists and researchers
for FGM. In this research, the properties of the material based on volume fractions
have been assumed not only to vary through the plate thickness direction but also
to vary with temperature. It should be mentioned, different material gradation laws
such as sigmoid or exponential low have been proposed for FGM in the literature. In
this thesis, the power-gradation law has been adopted. According to it, the relation
described properties of temperature-dependent FG plate and the volume fraction of
ceramic vc and metal vm are as follows [60]:

vc = (
z
t
+

1
2
)n (2.1)

vm = 1− vc (2.2)

P(T,z) = (Pc(T )−Pm(T ))vc +Pm(T ) (2.3)

Pi = P0(P−1T−1 +1+P1T +P2T 2 +P3T 3) (2.4)
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In Eq. (2.1), n is power index that controls the volume fractions, z is thickness
coordinate, t is thickness of the considered FG plate in Fig. 2.1. In Eq. (2.3), T
is temperature distribution through the thickness and P denotes material property
such as elasticity modulus E, thermal conductivity coefficient k, thermal expansion
coefficient α and Poisson ratio ν . In this thesis, subscripts c and m refer to ceramic
and metal constituents, respectively. In Eq. (2.4), i can be c or m. Also, P0 , P−1

, P1 , P2 , P3 are such constants that are given in Table 2.1. Since the above
equations are temperature dependent, temperature distribution along with the plate
thickness must be calculated. It must be noted that in this work, in a section, all
properties, even thermal conductivity coefficient, have been considered temperature-
dependent. While in the other section, it has considered the properties of FGM
to be independent of temperature. Thus, Table 2.2 is shown here to present the
temperature-independent properties of some materials.
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Table 2.1 Temperature-dependent coefficients of materials properties E(Pa), α(1/K),
ν and k(W/mK) in FGM [7] , [4]

Material Properties P0 P−1 P1 P2 P3
Ti-6Al-4V Em 122.56e+9 0 -4.586e-4 0 0

αm 7.5788e-6 0 6.638e-4 -3.147e-6 0
νm 0.29 0 0 0 0
km 1.0000 0 1.704e-2 0 0

ZrO2 Ec 244.27e+9 0 -1.371e-3 1.214e-6 -3.681e-10
αc 12.766e-6 0 -1.491e-3 1.006e-5 -6.778e-11
νc 0.29 0 0 0 0
kc 1.7000 0 1.276e-4 6.648e-8 0

Ni Em 223.95e+9 0 -2.794e-4 3.998e-9 0
αm 9.9209e-6 0 8.705e-4 0 0
νm 0.31 0 0 0 0
km 187.66 0 -4.614e-4 6.670e-7 -1.523e-10

Si3N4 Ec 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11
αc 5.8723e-6 0 9.095e-4 0 0
νc 0.24 0 0 0 0
kc 13.723 0 -1.032e-3 5.466e-7 -7.876e-11

SUS304 Em 201.04e+9 0 3.079e-4 -6.534e-7 0
αm 12.330e-6 0 8.086e-4 0 0
νm 0.31 0 0 0 0
km 15.379 0 -1.264e-3 2.092e-6 -7.22e-10

Table 2.2 Temperature-independent properties of the Nickel and Alumina [5]

Properties Ni Al2O3
E (Pa) 199.5e+9 393e+9

α(1/K) 13.3e-6 8.8e-6
k(W/mK) 90.7 30.1

ν 0.30 0.25
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2.4 Calculation of temperature distribution by FEM

In some articles, either the assumed distribution is used to calculate the temperature
distribution along with the thickness of an FG plate, or the analytical solution of the
Fourier law by the power series method with a limited number of terms. However,
in this study, the temperature distribution in the thickness direction is obtained by
solving the heat conduction equation with an iterative method using FEM, which
makes it possible to increase the number of partitions in the thickness direction in
order to get a more accurate and realistic temperature distribution. The description
of this method is as follows:
In the beginning, a brief definition of conduction and convection heat transfer is
given. Convection is a kind of heat transfer that results from the movement of fluid
particles, such as gases and liquids. If this type of heat transfer will be occurred
by the fluid located to the structure’s adjacency, herein named convection boundary
condition. Conduction is another kind of heat transfer, in which heat conducts by the
ingredient of material. In other words, at first, a part of the material will be heated and
the molecules of the mentioned part will be moved further. Then, will collide with
their neighbor molecules and move them. This procedure will continue in the whole
material so much so that it becomes completely heated. Now, according to these
definitions, the process of achieving the temperature distribution is described in an
FG plate with surrounding fluid on both sides of it. Temperature distribution through
the thickness can be obtained by solving the 1D steady-state thermal conductivity
equation.

∂

∂ z
(k(T,z)

∂T
∂ z

) = 0 (2.5)

under the following convection boundary conditions [51]:

km
dT
dz

∣∣−t/2 = hm(Tm −T e
m)

−kc
dT
dz

∣∣
t/2 = hc(Tc −T e

c )
(2.6)

In Eq. (2.5), k and z represent thermal conductivity coefficient and one of the
coordinate’s components in direction of thickness. In Eq. (2.6), km and kc indicate
metal and ceramic thermal conductivity coefficient and hm and hc are convection heat
transfer coefficients for the surrounding fluids near the metal-rich and ceramic-rich
faces of the plate, respectively. Also Tm and Tc show metal and ceramic temperature
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while T e
m and T e

c stand for the temperatures of the surrounding fluids near the metal-
rich and ceramic-rich faces, respectively. If hm and hc lead to infinity, it can be
shown both of them by h and this causes the temperature adjacent to the metal to
be equal to the temperature of the metal surface and the temperature adjacent to the
ceramic to be equal to the temperature of the ceramic surface. Due to the fact that k
is the function of both temperature and position simultaneously, it has a complicated
analytical solution. Hence, a numerical method like FEM can be helpful to obtain
temperature distribution with governing boundary conditions.

2.4.1 Heat transfer formulating by FEM

If heat is transferred in a continuous environment, it is possible to convert this
continuous environment to a discrete environment using FEM and use its relations
to calculate the temperature distribution. In FEM, a domain is divided into several
elements that have common nodes with themselves. Then by using the governing
equation, element quantities will be calculated. By assembling them, the governing
equation of the whole domain will be solved. It is worth mentioning that the variable
field interpolation in each element will be performed by the shape function of the
target element:

T = NTe

N = {N1,N2, ...Nq}
Te = {T1,T2, ...Tq}T

(2.7)

In which N and Te, respectively are shape function and nodal temperature vectors
of an element with q nodes. By assuming L = ∂

∂ z and applying the Galerkin method
in Eq. (2.5), Eq. (2.8) will be obtained.

∫
Ωe

NT (L(kLNTe))dv = 0 (2.8)

Considering B = LN and applying convection boundary conditions, Eq. (2.9)
will be obtained.

(Ke
c +Ke

h)T
e= Re

h (2.9)
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In which:
Ke

c =
∫

Ωe kBT Bdv
Ke

h =
∫

s1
hNT Nds

Re
h =

∫
s2

hTeNT ds
(2.10)

In Eq. (2.10), the subscripts c and h are related to conduction and convection heat
transfer, respectively. Also, Ke

c and Ke
h are the element matrices resulted from con-

duction and convection heat transfer respectively, and also Re
h is the element vector

resulted from temperature distribution and convection heat transfer. For calculating
temperature distribution in an FG plate, in addition to knowing the thermal con-
ductivity coefficient of the FG plate, it must be clear convection coefficient of the
environment near metal and ceramic separately. After calculation of the element
quantities, they will be assembled in order for the heat transfer equation of the whole
domain will be obtained.

(Kc+Kh)T =Rh (2.11)

If the convection coefficient tends to infinity for both metal and ceramic, only
by knowing the conduction heat transfer coefficients and temperature of the metal
and ceramic parts, the temperature distribution along with the thickness of the plate
will be extracted by using Eq. (2.11). If the aim is to obtain a temperature distri-
bution without considering temperature-dependent properties, Eq. (2.11) could be
solved directly, but since the purpose is achieving temperature distribution supposing
dependency of properties to temperature, it is needed to use iterative methods to
solve it. Hereby, the temperature of all nodes (T) within the thickness of the plate
will be reached. Since in this study, the temperature of the metal part is assumed to
be constant and the temperature of the ceramic part is variable, through the nodal
temperatures obtained along the direction of thickness, the temperature distribution
along with the thickness of the plate can be achieved and denoted by T (z) which is
a function of the ceramic’s temperature. For more clarity, the temperature profile
through the thickness of the FG plate with a combination of Nickel/Silicon Nitride
(Ni/Si3N4) with assuming 0K for the metal surface and 300K for the ceramic surface
for different volume fraction indexes is shown in Fig. 2.2. It should be noted the
figure has been drawn when thermal conductivity coefficients of metal and ceramic
are dependent on temperature.
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Fig. 2.2 Temperature distribution through the thickness of the FG plate.

Fig. 2.2 illustrates the effects of volume fraction on temperature distribution
along the thickness. It is clear from the figure that the linear line related to zero
power demonstrates a special kind of FG plate that is the same isotropic plate (pure
ceramic). Curved lines show the temperature distribution of different compositions
of metal and ceramic.



Chapter 3

Structural Theories and Carrera
Unified Formulation

3.1 Classification of plate theories

The theories represented for beams and plates are listed below:

3.1.1 Classical plate theory

This theory assumes that the normal coordinate upon the reference surface will
remain perpendicular after deformation, and no warping will occur. It means that
transverse shear strain, like normal strain within thickness, is imperceptible.

3.1.2 First-order shear deformation theory

Unlike the previous theory, it contains the transverse shear strain. In other words,
each plane that is flat and vertical to mid-plane remains flat but not vertical after
deformation. In this theory, shear strains within thickness are considered constant.
While in reality, shear stresses vary in thickness and behave parabolically. This
difference between real stress and the constant stress considered in FSDT will be
roughly resolved by the shear correction coefficient.
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3.1.3 Higher-order shear deformation theory

As calculating shear correction coefficient is not simple for many geometries, the
modified FSDTs are introduced as higher-order theories. These theories do not
require a shear correction coefficient. But the complexity of equations and huge
computing cost are considered as deficiencies of these theories.

Fig. 3.1 Theories’ differences [2]

Figure 3.1 as a x− z cross-section of a plate illustrates the differences between
these classifications for better comprehension. In CPT, transverse normal, after
deformation, remains perpendicular and straight to the mid-plane. Whereas in
FSDT, after deformation, transverse normal again remains straight but no longer
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perpendicular to the midplane. It has a deviation in angle and has a linear shape. In
HSDT, transverse normal has a curved shape which depicts the higher order of shear
deformation.

3.2 Fundamental concept of a continuous body

In Fig. 3.2, a continuous deformable body is demonstrated in a Cartesian coordinate
system that is under mechanical loads and boundary conditions.

Fig. 3.2 A body under the mechanical loads and boundary conditions

3.2.1 Displacement vector

The displacement of an element is defined as a vector below:

u = [ux,uy,uz]
T (3.1)

where u denotes the displacement vector and ux,uy,uz are the displacement
components in three principal directions.
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3.2.2 Strain Vector

The strain vector for an element in the Cartesian coordinate system is defined as:

ε = [εxx,εyy,εzz,εxz,εyz,εxy]
T (3.2)

where ε is the strain vector, εxx,εyy,εzz are principal strains and εxz,εyz,εxy are shear
strains. In the large deformations and Lagrangian description, the Green-Lagrange
strain vector have both linear and nonlinear parts:

ε = ε l + εnl (3.3)

where the strain vector is related to the displacement vector by linear and nonlinear
operators as below:

ε = (bl +bnl)u (3.4)

bl =



∂x 0 0
0 ∂y 0
0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


(3.5)

bnl =



1
2(∂x)

2 1
2(∂x)

2 1
2(∂x)

2

1
2(∂y)

2 1
2(∂y)

2 1
2(∂y)

2

1
2(∂z)

2 1
2(∂z)

2 1
2(∂z)

2

∂x∂z ∂x∂z ∂x∂z

∂y∂z ∂y∂z ∂y∂z

∂x∂y ∂x∂y ∂x∂y


(3.6)

in which ∂x =
∂ (.)
∂x , ∂y =

∂ (.)
∂y and ∂z =

∂ (.)
∂ z .



3.2 Fundamental concept of a continuous body 27

3.2.3 Thermal Strain

Thermal strain is created due to changes in temperatures. In other words, a structure
is expanded and deformed because of the temperature increment.

Thermal strain of 1D structure

Change in length of a 1D structure results from heat is calculated by equation (3.7):

∆L = L0α∆T (3.7)

where ∆L represents the length’s change, L0 is the initial length and ∆T is the
temperature increment. By dividing ∆L over L0, the thermal strain of a bar can be
computed by equation (3.8):

εT =
∆L
L0

= α∆T (3.8)

Thermal strain of 3D structure

By generalizing equation (3.8), the thermal strain εT for a 3D structure is obtained
by equation (3.9):

εT = α∆T
α = {αx,αy,αz,0,0,0}T (3.9)

In which α is the vector of thermal expansion coefficient and αx, αy and αz are
coefficients of thermal expansion in direction of x, y and z, respectively. Since they
are not constant, all of them are modeled according to relation (2.3).

3.2.4 Stress vector

In this research, σ shows vector of stress:

σ = [σxx,σyy,σzz,σxz,σyz,σxy]
T (3.10)
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It is in relation with mechanical strain ε and thermal strain vector εT as follows:

σ = C(ε − εT ) (3.11)

In which C is the constitutive matrix (connector matrix between stress and strain):

C =



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66


(3.12)

where ci j for an FG plate with temperature-dependent properties are functions of
elasticity modulus and Poisson ratio explicitly and temperature implicitly as follows
[61]:

c11 = c22 = c33 =
E(T (z),z)(1−ν(T (z),z))

(1+ν(T (z),z))(1−2ν(T (z),z))

c44 = c55 = c66 =
E(T (z),z)

2(1+ν(T (z),z))

c12 = c13 = c23 =
E(T (z),z)ν(T (z),z)

(1+ν(T (z),z))(1−2ν(T (z),z))

(3.13)

3.3 FEM analysis based on Carrera Unified Formula-
tion

The method of CUF in FEM is similar to the separation of variables in mathemat-
ics. Displacement vector is a function of x,y,z separated to shape function N and
expansion function F as below [13]:
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u = FτNiuτi (3.14)

where uτi = [uxτi,uyτi,uzτi]
T is nodal displacement vector of generalized coordinates,

in which subscript i = 1,2, . . . ,w shows the node number and w stands for the total
nodes utilized per element. While in subscript τ = 1,2, . . . ,M, the summation pattern
with the repetitive index τ is supposed, and M indicates the expansion’s order.

CUF has three models for separating the displacement vector into shape function
and expansion function:

3.3.1 1D model

In this model, according to Fig. 3.3, the shape function is 1D and the expansion
function is 2D. This model is applied in beams.

Fig. 3.3 Description of a body with 1D shape function and 2D expansion function

u = Fτ(x,z)Ni(y)uτi (3.15)

3.3.2 2D model

In this model, the shape function is 2D and the expansion function is 1D. It is shown
in Fig. 3.4. This model is used for modeling and analyzing plates and shells. In this
research, the 2D model is utilized.



30 Structural Theories and Carrera Unified Formulation

Fig. 3.4 Description of a body with 2D shape function and 1D expansion function

u = Fτ(z)Ni(x,y)uτi (3.16)

3.3.3 3D model

In this model, the shape function is 3D and the expansion function does not exist.
This model is the same as classical FEM. It is employed for analyzing 3D bodies as
shown in Fig. 3.5.

Fig. 3.5 Description of a body with 3D shape function

u = Ni(x,y,z)uτi (3.17)
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3.3.4 Taylor expansion function

As in this research, the analysis is done on the plate, thus the 2D model has been
selected. Therefore, Taylor-like polynomial is used as 1D expansion function that is
represented in Eq. (3.18).

Fτ(z) = zτ−1 (3.18)

It should be mentioned, in the expansion function, any order can be assumed to
model the kinematics of the plate in the thickness direction.

3.3.5 Lagrange shape function

In this study, Lagrange polynomials are used as 2D shape functions of a nine-node
standard element. The element is illustrated in Fig. 3.6, and the shape functions are
as follows:

N1 =
1
4
(ξ 2 −ξ )(η2 −η)

N2 =
1
2
(1−ξ

2)(η2 −η)

N3 =
1
4
(ξ 2 +ξ )(η2 −η)

N4 =
1
2
(1−η

2)(ξ 2 +ξ )

N5 =
1
4
(ξ 2 +ξ )(η2 +η)

N6 =
1
2
(1−ξ

2)(η2 +η)

N7 =
1
4
(ξ 2 −ξ )(η2 +η)

N8 =
1
2
(1−η

2)(ξ 2 −ξ )

N9 = (1−ξ
2)(1−η

2)

(3.19)

where ξ ,η are the element’s local coordinates and can change between [−1,1]. As
the geometry considered in this research is the rectangular plate, just the rectangular
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1 2 3

4

567
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η

ξ

x

y

Fig. 3.6 A 2D standard element with nine nodes.

elements are utilized in the FEM’s mesh. Thus, the relation between ξ ,η with x,y of
global coordinates are presented as:

ξ =
2(x− x1)− lx

lx

η =
2(y− y1)− ly

ly

(3.20)

where x1,y1 are coordinates of Node 1 from the element illustrated in Fig. 3.6, and
lx, ly, respectively, are each element’s length and width.



Chapter 4

Nonlinear equilibrium equation of FG
plate

4.1 Introduction

This chapter shows how to derive the nonlinear equilibrium equation of FG plate
under thermal loading. As mentioned before, the aim of this research is to analyze
the thermal post-buckling of the FG plate with temperature-dependent properties.
Searching among the previous studies in the field of plates’ post-buckling analysis, it
was clarified that the assumptions of large deflection in plates must be employed. By
doing so and using the virtual work principle, the governing nonlinear equilibrium
equations of the FG plate are acquired. In some related papers, a particular kind
of these equations are well-known as von Karman. They are such equations with
nonlinear partial differential operators so that some real practical problems can be
modeled by them. But, finding the analytical solution for them is too complicated
and is able to solve a limited range of problems analytically. Therefore it is necessary
to derive the matrix form of these equations. Then, they can be solved by numerical
methods like FEM based on CUF. In 2019, a paper was published by Wu et al.
in which they analyzed large deflection and post-buckling of rectangular isotropic
plates based on CUF. They utilized the principle of virtual work to drive equilibrium
equations by considering nonlinear terms of strain according to Green-Lagrange
strain. In the following of this chapter, in order to model and analyze the thermal
post-buckling of the FG plate, a similar technique with some changes is applied for
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obtaining nonlinear equilibrium equations under thermal load and also is presented
the solution procedure of the thermal buckling and post-buckling of the FG plate.

4.2 Thermoelastic Problems

Thermoelasticity is an expansion of the elasticity theory in which temperature
changes, in addition to imposing mechanical forces, cause deformation and strains.
Extracting governing equations is extremely complicated by inputting the tempera-
ture field in the continuous deformable body analysis. The complication occurs when
mechanical and thermal fields are coupled together. In this state, a continuum will
experience a temperature variation as a result of deformation and vice versa. Though
basically, it is usually feasible to ignore their coupling and consider the deformation
and temperature fields separately. But in this study, partially coupled thermoelastic is
considered not only to prevent huge complications but also to have accurate results.

4.2.1 Partially Coupled Thermoelastic Problems

Partial coupling in thermoelasticity refers to the situation where thermal effects
influence the deformation behavior of a material, but the deformation does not affect
the temperature field. In other words, the heat transfer influence on strain and stress
fields, while the strain and stress fields do not influence the temperature. In partially
coupled thermoelastic problems, the governing equations for both the thermal and
mechanical fields are solved simultaneously, taking into account their coupling
effects. The equations for the thermal field describe the heat conduction within
the material, while the equations for the mechanical field describe the deformation
and stress distribution. The partial coupling arises from the assumption that the
temperature field changes due to thermal expansion or contraction, but the resulting
mechanical deformation does not significantly affect the temperature distribution.
This assumption is valid when the mechanical loads applied to the continuum are
relatively small. By solving the coupled equations, it is possible to determine the
temperature distribution and the resulting deformation and stress fields in a partially
coupled thermoelastic system. This is important in various engineering applications
where temperature changes can induce thermal stresses and strains, like in the
design of structures subjected to thermal loading. Numerical methods based on
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FEM are commonly used to solve partially coupled thermoelastic problems, where
the governing equations are discretized and solved iteratively to obtain the desired
solution. These methods allow engineers and scientists to predict and analyze the
behavior of materials and structures under combined thermal and mechanical loading
conditions.

4.3 Governing Equations

The governing equations of the FG plate are acquired by the virtual work principle.
Based on this principle, the variation of the virtual work on the plate is zero. In
simple terms, the virtual work variation of internal strain energy δLint is equal to the
virtual work variation of external loading δLext.

δL = 0
δLint −δLext = 0

(4.1)

In this study, there is no external loading. Therefore, the variation of the total energy
for the plate is equal to the variation of virtual internal work and is obtained as:

δL = δLint = 0 (4.2)

The virtual work variation is computed as:

δL =
∫

Ve

δε
T

σdV (4.3)

It worth be mentioned ε and σ are relations (3.4) and (3.11) respectively. But here,
considering CUF, they are first rewritten and then replaced in the relation of (4.3).

The strain vector of Eq. (3.4), which is related to the displacement vector by linear
and nonlinear geometrical matrices for the investigation of large deflection, can be
represented as follows:

ε = (Bτi
l +Bτi

nl)uτi (4.4)

where
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Bτi
l = bl(FτNi) =



FτNi,x 0 0
0 FτNi,y 0
0 0 Fτ,zNi

Fτ,zNi 0 FτNi,x

0 Fτ,zNi FτNi,y

FτNi,y FτNi,x 0


(4.5)

Bτi
nl =

1
2



ux,x Fτ Ni,x uy,x Fτ Ni,x uz,x Fτ Ni,x

ux,yFτ Ni,x uy,y Fτ Ni,x uz,y Fτ Ni,x

ux,z Fτ,zNi uy,z Fτ,zNi uz,zFτ,z Ni

ux,x Fτ,zNi +ux,z Fτ Ni,x uy,x Fτ,z Ni +uy,zFτ Ni,x uz,x Fτ,z Ni +uz,z Fτ Ni,x
ux,yFτ,zNi +ux,z Fτ Ni,y uy,yFτ,zNi +uy,z Fτ Ni,y uz,yFτ,z Ni +uz,z Fτ Ni,y
ux,x Fτ Ni,y +ux,yFτ Ni,x uy,x Fτ Ni,y +uy,yFτ Ni,x uz,x Fτ Ni,y +uz,yFτ Ni,x


(4.6)

The variation of Eq. (4.4) is as follows:

δε = (Bs j
l +2Bs j

nl)δus j (4.7)

It should be noted by substituting the s and j respectively, instead of τ and i in Eqs.
(4.5) and (4.6) matrices Bs j

l and Bs j
nl are created. In this thesis, i and j are related to el-

ement nodes in the shape function, while indexes τ and s refer to expansion functions.

By replacing Eq. (4.4) in Eq. (3.11) and by substituting the resulting equation and
Eq. (4.7) in Eq. (4.3), the virtual strain energy for the fundamental nucleus (FN) is
rephrased as:

δL =
∫

Ve
δuT

s j(B
s j
l +2Bs j

nl)
T C((Bτi

l +Bτi
nl)uτi−α∆T )dV

=
∫

Ve
[δuT

s j(B
s j
l +2Bs j

nl)
T C(Bτi

l +Bτi
nl)uτi

−δuT
s j(B

s j
l +2Bs j

nl)
T Cα∆T )]dV

= δuT
s jK

i jτs
S uτi −δuT

s jPs j = 0

(4.8)

Therefore, the nonlinear equilibrium equation of the FG plate under thermal load
can be expressed in a unified form as follows:

Ki jτs
S uτi = Ps j (4.9)
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In which Ps j and Ki jτs
S are FN of thermal load vector and secant stiffness matrix,

respectively. It can be stated each is constituted of some linear and nonlinear terms
as below:

Ki jτs
S = Ki jτs

0 +Ki jτs
lnl +Ki jτs

nll +Ki jτs
nlnl (4.10)

Ps j = Ps j
l +Ps j

nl (4.11)

It should be mentioned that Ki jτs
0 is the linear FN of secant stiffness matrix while

Ki jτs
lnl and Ki jτs

nll stand for first-order nonlinear FN of secant stiffness matrix, and
Ki jτs

nlnl represent second-order nonlinear FN of secant stiffness matrix [45] as:

Ki jτs
0 =

∫
Ve
(Bs j

l )T CBτi
l dV

Ki jτs
lnl =

∫
Ve
(Bs j

l )T CBτi
nldV

Ki jτs
nll = 2

∫
Ve
(Bs j

nl)
T CBτi

l dV
Ki jτs

nlnl = 2
∫

Ve
(Bs j

nl)
T CBτi

nldV

(4.12)

The details of the aforementioned relations are described in Appendix.

Also, Ps j
l and Ps j

nl are, respectively, the linear and nonlinear FN of the load vector.
According to Eq. (4.8), these are defined as:

Ps j
l =

∫
Ve
(Bs j

l )T Cα∆T dV
Ps j

nl = 2
∫

Ve
(Bs j

nl)
T Cα∆T dV

(4.13)

By four looping on indexes i, j,τ,s of FN for secant stiffness matrix and thermal
load vector, the element’s stiffness matrix and thermal load vector are acquired [13].
Then they would be assembled based on the classical manner of FEM to equilibrium
equation for the whole of the FG plate. For further comprehension, the process
of assembling from the FN of stiffness matrix to the structure’s stiffness matrix is
shown in Fig. 4.1.

According to the above explanation, the governing equation for the FG plate is
represented as:

KSu−P = 0 (4.14)
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Fig. 4.1 The process of assembling the stiffness matrix[3]

In which KS, u, and P are the total secant stiffness matrix, the total displacement,
and the total thermal load vector of the FG plate. To analyze the thermal post-
buckling of the FG plate, the governing equation due to nonlinear geometric must be
solved. Since Eq. (4.14) is a nonlinear geometrical system, it is generally solved via
incremental methods such as Newton-Raphson and arc-length. In this regard, the
nonlinear equilibrium equation must be linearized.

4.4 Linearization and Jacobian matrix

In structural engineering, the Jacobian matrix is frequently dubbed the tangent
stiffness matrix since it is a slope of the load-displacement curve for an arbitrary
degree of freedom. For solving nonlinear governing equation by FEM via incremental
methods, the unbalanced nodal load vector of equilibrium equation is defined as:

R = KSu−P = 0 (4.15)
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where R is the residual nodal load vector.

As the method is an incremental strategy, it is needed to increase the amount of load
from a reference value to a final value by a parameter named load factor (λ ). In the
current research, the following equation regulates the temperature changes explicitly
and controls the thermal load implicitly:

T = T0 +λ (T1 −T0)

T −T0 = λ (T1 −T0)

∆T = λ ∆̄T
(4.16)

where T , T0, and T1, respectively, are current temperature, reference temperature,
and temperature related to λ = 1.
According to Eq. (4.16), the thermal load vector can be stated as:

P = λ P̄ (4.17)

P̄ represents the proportional loads’ reference vector.

Hence, Eq. (4.15) is rewritten as:

R = KSu−λ P̄ (4.18)

By extending R of Eq. (4.18) around an assumed solution (u,λ ) by series of Taylor
and using the linearization method and skipping the higher-order terms, the following
expression is generated:

R(u+δu,λ +δλ ) = R(u,λ )+
∂R
∂u

δu+
∂R
∂λ

δλ = 0 (4.19)

∂R
∂u

δu =−∂R
∂λ

δλ −R(u,λ ) (4.20)

in which ∂R
∂u is equivalent to tangent stiffness matrix (KT ) and ∂R

∂λ
=−P̄. Therefore

Eq. (4.20) is rewritten as below:

KT δu = P̄δλ −R (4.21)
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It should be noted an extra equation like f (δu,δλ ) = 0 is needed for solving
Eq. (4.21). There are various incremental techniques may be executed. For example,
δλ = 0 is related to the load-control method, but if δu = 0, it means a displacement
control method. However, in the present work, a path-following approach according
to an arc-length method mentioned by Carrera [62] is employed here. It can follow
both loads factor and displacement variations. In other words, the selected relation is
A2 = δλ 2 +δuT δu in which A is arc’s length.

It should be implied that the FN of the tangent stiffness matrix Ki jτs
T is emanated

by linearizing the nonlinear governing equation. The virtual work variation formula
included the geometrical relation of strain-displacement and the constitutive equation
of stress-strain. Thus both must be linearized so that it causes the tangent stiffness
matrix:

δ (δL) = δ (
∫

Ve

δε
T

σdV ) =
∫

Ve

δε
T

δσdV +
∫

Ve

δ (δε
T )σdV (4.22)

δ (δL) = δuT
s j Ki jτs

T uτi (4.23)

By utilizing some mathematical operations that are reported in detail by Wu et al.
[45], the tangent stiffness matrix’s FN is extracted as:

Ki jτs
T = Ki jτs

0 +2Ki jτs
lnl +Ki jτs

nll +2Ki jτs
nlnl +Ki jτs

σ (4.24)

in which Ki jτs
0 ,2Ki jτs

lnl ,K
i jτs
nll , and 2Ki jτs

nlnl are the same as FNs as given in Eq. (4.10)
which are provided in the Appendix. Ki jτs

σ is FN of the geometric stiffness matrix
that is proposed below:

Ki jτs
σ = KgI (4.25)

where I represents the identity matrix with dimensions 3 × 3 and Kg is as below:
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Kg =
∫

Ve
(σ0

xxFτFsNi,xN j,x +σ0
yyFτFsNi,yN j,y +σ0

zzFτ,zFs,zNiN j

+σ0
xyFτFsNi,xN j,y +σ0

xyFτFsNi,yN j,x +σ0
xzFτFs,zNi,xN j

+σ0
xzFτ,zFsNiN j,x +σ0

yzFτFs,zNi,yN j +σ0
yzFτ,zFsNiN j,y)dV

(4.26)

where the some thermal pre-stresses such as σ0
xy,σ

0
xz, and σ0

yz are zero and other are
as follow [61]:

σ
0
xx = σ

0
yy = σ

0
zz = σ

0 =
Eα∆T 0

1−2ν
(4.27)

It can rewrite Eq. (4.26) as follows:

Kg =
∫

Ve
σ0(FτFsNi,xN j,x +FτFsNi,yN j,y +Fτ,zFs,zNiN j)dV (4.28)

Like the assembling procedure of the secant stiffness matrix, the tangent stiffness
matrix is assembled in some steps, including creating tangent stiffness of the FN,
node, element, and total structure. It is obvious that FN is utilized for the formulation
of the secant or tangent stiffness matrix and the thermal load vector related to any
higher-order plate theory. It can be recognized that the FN of the tangent stiffness
is a symmetric matrix. It is seen, considering to problem, the fundamental nuclei’s
formulation of the tangent and secant stiffness matrices will be easier if just some
geometric nonlinearities are contained, like von Karman nonlinearities.

4.5 Solution procedure of the thermal post-buckling
analysis

Post-buckling analysis of the structures leads to a complex nonlinear differential
equation that cannot be solved analytically. In this study, in order to solve the
nonlinear governing equation, the tangent stiffness matrix is used to develop the
linearized iterative technique. Then, the arc-length approach is utilized, which makes
the tangent stiffness matrix and unbalanced load vector update at each iteration after
an increment of thermal load to extract the numerical results. They are implemented
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through the following steps considering two loops (load increments with index d and
equilibrium iterations with index q):

1. Input plate’s geometry, boundary conditions, material properties, etc and also
assume R1

1 = 0.

2. Loop over load increments (d = 1,2, ...).

3. Set an arc-length value (A) to designate a search domain for answers out of a
guessed initial or known solution (ud

1,λ
d
1 ).

4. Loop over equilibrium iterations (q = 1,2, ...).

5. Set T0 , T d
1 and compute T d

q = T0 +λ d
q (T

d
1 −T0).

6. Compute temperature distribution through the thickness of the plate according
to section 2.4 by considering Tc = T d

1 and calculate temperature-dependant
properties (if needed).

7. Compute tangent stiffness matrix and thermal load vector according to ud
q,T

d
1 .

8. Calculate the residual load vector in each increment-iteration.

9. Calculate δλ d
q ,δud

q according to: A2 = (δλ d
q )

2 +(δud
q)

T δud
q

(δud
q)I = KT

−1
q P̄ , (δud

q)II =−KT
−1
q Rd

q , δud
q = δλ d

q (δud
q)I +(δud

q)II .

10. Check if ||δud
q||/||ud

q|| and |δλ d
q |/|λ d

q | are less than the convergence error
tolerance? If yes, break equilibrium iteration loop, else, evaluate the below
equations and go to step 4:
ud

q+1 = ud
q +δud

q , λ d
q+1 = λ d

q +δλ d
q .

11. End loop over equilibrium iterations.

12. Draw the point consisting of the desired DOF displacement (e.g. central
deflection) and the corresponding temperature T d

q .

13. Check if T d
q has passed from a desired high temperature, break load increments

loop else, consider ud+1
1 = ud

q , λ
d+1
1 = λ d

q and go to step 2.

14. End loop over load increments.

15. Connect the points extracted from step 12 together in order to obtain the path
of thermal post-buckling.
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4.5.1 Linear buckling analysis

It is worth mentioning that in this study, in addition to nonlinear analysis of thermal
post-buckling, linear buckling analysis (LBA) also is used for getting some results
and outcomes. Furthermore, there is the possibility of comparing the critical buckling
temperature obtained by LBA with the bifurcation point of the thermal post-buckling
path. LBA is based on the solution of an eigenvalue problem. It is a simple method
for obtaining structures’ buckling loads regarding the following hypotheses: (I)
applying the load to the structure is conservative, and (II) nonlinear displacements
are neglected. LBA just calculates the bifurcation point as a critical buckling load and
cannot provide post-buckling information. The main goal of this part is to compute
the critical temperature of FG rectangular plates. Although the computed eigenvalue
by LBA is not a physical and real critical temperature and has little difference from
the actual critical temperature, but in the design and modeling of the FG plate under
uniform and nonuniform temperature distribution, the LBA approach is utilized as
reliable and a low-cost method.
For solving the governing equation of the problem in order to solve by LBA, it is
needed to neglect from nonlinear terms tangent stiffness matrix:

KT = K0 +Kσ (4.29)

where K0 and Kσ are assembled forms of Ki jτs
0 and Ki jτs

σ , respectively.

The governing equation of the FG plate in order to solve by LBA can be represented
as follow:

KT u = 0 (4.30)

In the LBA, if the problem is temperature independent, the Eq. (4.28) can be rewritten
as:

Kg = βKG (4.31)

where KG =
∫

Ve
Eα

1−2ν
(FτFsNi,xN j,x +FτFsNi,yN j,y +Fτ,zFs,zNiN j)dV .
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Consequently, assuming Ki jτs
G = KGI, the geometric stiffness matrix for the case of

temperature-independent properties would be as below:

Kσ = βKG (4.32)

where KG is assembled form of Ki jτs
G .

By substituting Eq. (4.32) in Eq. (4.29), and then by substituting the resulting
equation in Eq. (4.30), the governing equation of the plate in order to compute
critical buckling loads will be as following eigenvalue problem:

K0u =−βKGu (4.33)

where u and β are, respectively, eigenvectors and eigenvalues. The smallest eigen-
value is known as critical buckling temperature.

If the problem depends on temperature, Eq. (4.30) can be rewritten as below:

KT (T )u = 0 (4.34)

Since it is temperature-dependent, it cannot be solved in a direct way as a common
eigenvalue problem. It will be solved by using the successive linear problems
(SLP) method [63]. This method uses two first terms of the Taylor series at T1

(guessed initial temperature of ceramic) in order to convert Eq. (4.34) to the following
equation:

(KT (T1)+(Tc −T1)×K′
T (T1).u = 0 (4.35)

Then, by assuming β = Tc −T1, Eq. (4.35) is rewritten as follows:

KT (T1).u =−βK′
T (T1).u (4.36)

Eq. (4.36) is a kind of eigenvalue problem, and the smallest eigenvalue of β is known
as critical temperature differences.
The algorithm of the SLP method to obtain the critical temperature of ceramic is as
below:

1. Input mechanical and thermal properties, plate’s geometry, boundary condi-
tions, etc
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2. Guess the initial ceramic’s temperature T1 = 10K

3. Calculate material properties based on T1

4. Calculate tangent stiffness matrix based on T1

5. Calculate derivative stiffness matrix based on T1 using finite difference K′
T (T1)=

KT (T1+dT )−KT (T1)
dT (e.g. dT = 0.1K)

6. Solve |KT (T1)+βK′
T (T1)|= 0 to get β

7. Tc = T1 +β

8. If Tc −T1 < ε then go to step 10, else go to step 9

9. Input the value of Tc into T1 and go to step 3

10. Write Tc as critical temperature of ceramic (T cr
c )
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Numerical examples and discussion

5.1 Introduction

In this chapter, several numerical examinations are reported to indicate the capability
of the proposed method based on CUF using FEM to analyze the FG plate’s thermal
buckling loads and thermal post-buckling response. In other words, in section 5.2,
the figures and tables are presented to demonstrate the critical temperature value of
the FG plate in different conditions. In the figures of section 5.3 related to thermal
post-buckling, the temperature curve was drawn versus the central deflection of the
FG plate. In this chapter, the results are obtained with and without considering the
properties’ dependency on temperature so that TD shows temperature-dependent
properties, while TID means properties are temperature-independent. In some
examples, the properties of the plate are TD, while others have TID properties. Also,
they are subjected to uniform and nonuniform temperature distribution through the
thickness. Furthermore, in some examples, LBA in the thermal environment has been
done to compare its results with bifurcation points extracted by thermal post-buckling
analysis. In order to validate, the thermal post-buckling of FG plates’ behavior using
the current method is compared with similar references. Parametric studies are
taken to demonstrate the effect of geometrical dimensions, volume fraction index,
type of FGM combination and boundary conditions on the thermal buckling and
post-buckling response of the rectangular FG Plate.
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5.2 Thermal buckling load of FG rectangular plates

In this section, a number of numerical examples are presented using LBA. The
behavior of thermal buckling loads of FG plates under heat load with uniform and
nonuniform distributions in the direction of thickness is investigated. Here, two types
of materials combination have been used for analyzing the FG plate. One of them is
Nickel/Silicon Nitride (Ni/Si3N4), and another is Titanium/Zirconium Oxide alloy
(Ti−6Al −4V/ZrO2). It should be noted that in obtaining the results of Tables 5.1
to 5.5, and Figures (5.2) and (5.3), the combination of (Ni/Si3N4) has been used.
In reaching the results of Tables 5.6 and 5.7, and also Figures (5.4) and (5.5), the
combination of (Ti−6Al −4V/ZrO2) has been utilized.
The results of the examples by considering the metal’s temperature equal to 0K,
various volume fraction indexes, and different boundary conditions have been ex-
tracted by utilizing FEM based on CUF. Figure (5.1) investigates the sensitivity of
the critical temperature to expansion order on the FG plates with a/b = 2, a/t = 100,
and n = 10. From Figure (5.1), it is clear that the critical temperature of the FG
plates is converged to a definite value for expansion order equal to 3 and upper than
it. So, the value of expansion order is selected equal to 3 for reducing computational
costs in getting results. This selection reduces not only computational costs but also
has high accuracy.
Sensitivity analysis on volume fraction index, length to width ratio a/b, length
to thickness ratio a/t, temperature distribution, and type of boundary conditions
have also been performed. In order to compare and validate, Tables 5.1 to 5.4
are presented. In Tables 5.1 and 5.2, the results have been computed based on
uniform temperature distribution and they have been compared with the results of
reference [24]. It should be noted in Tables 5.1 and 5.2, the results have been
expressed in terms of dimensionless temperature T̄ cr

c = α0 T cr
c ×103. In which α0

is calculated based on Nickle thermal expansion coefficient at 300K according to
material properties of Table 2.1.
In Tables 5.3 and 5.4, the results of the present study are extracted by using the
temperature distribution already explained in section 2.4 and have been compared
with the results obtained by assumed nonuniform temperature distribution in ref-
erence [4]. It must be mentioned assumed temperature profile of reference [4] is
approximated as follow:
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T (z) = (Tc −Tm)(
z
t
+

1
2
)γ +Tm (5.1)

As mentioned in reference [4], in Eq. (5.1), γ is an index when it is equal to 1, it
supposes a linear distribution and when it is equal and higher than 2, it means the
order of nonlinearity temperature distribution. Tables 5.1 and 5.2 show the critical
temperature of rectangular FG plates under uniform temperature distributions, while
the data of 5.3 and 5.4 are related to critical temperatures based on nonuniform
temperature distributions. By paying attention to Tables 5.1 and 5.2, it can be found
there are some differences between the results of the present study and the results of
reference [24]. These differences are due to the theory being used in each of them.
The present study’s results are more accurate because a higher-order theory, CUF, is
applied, and in reference [24], FSDT has been utilized.
It is shown in reference [51] that the higher the power of the expansion function,
the lower the critical load and the more accurate the result. Tables 5.3 and 5.4
prove the accuracy of the results of the present study that are extracted by the exact
temperature distribution in comparison with a nonuniform assumed temperature
distribution. As shown in Tables 5.3 and 5.4, in columns of reference [4], instead of
decreasing the critical temperature by increasing the amount of power of the assumed
temperature distribution, it increases. In all states, the critical temperature of the
present study is different from the results of reference [4], and only for the power
of 1, it has an amount relatively close to the results of reference [4]. It means that
the present study results are remarkably accurate because the critical temperatures
of the present study have resulted from the temperature distribution calculated by
solving the heat conduction equation using FEM. Figure (5.2) is given to understand
this matter better.
According to Figure (5.2), it can be understood that the temperature distribution
in the FG plate has an influential role in obtaining correct and accurate results.
Ceramic’s critical temperature is not conventional for the nonlinear state (γ = 2,3)
of the assumed temperature distribution of reference [4] and differs significantly
from its corresponding value, which is calculated using the temperature distribution
described in the section 2.4.
According to Table 5.5, the critical temperature with supposing dependency of prop-
erties to temperature for higher a/b is significantly less than the critical temperature
received without the assumption of temperature-dependent properties compared to
lower a/b. Results of Tables 5.6 and 5.7 have been extracted considering CCCC



5.2 Thermal buckling load of FG rectangular plates 49

and SSSS boundary conditions, respectively. From these tables, it can be discovered
that the critical temperature obtained considering the dependency of properties to
temperature for lower a/t has more difference with the critical temperature resulting
without considering temperature-dependent properties.
Figures (5.3) and (5.4) illustrate the effects of a/t and a/b on the critical temperature
of the simply supported rectangular FG plate for both types of materials combina-
tion in TD and TID states. It is clear from Figures (5.3) and (5.4) that the critical
temperature decreases with increasing a/t although it grows with raising a/b with
or without considering dependency on temperature. It is seen from Figure (5.3), in
the square plate (a/b = 1), for various volume fraction indexes, the critical temper-
ature values related to all volume fraction indexes are closer to each other. On the
contrary, for high a/b, the values of the critical temperature are far from each other
for them. It can be seen the geometry of the plate affects the critical temperature. It
is also apparent from Figure (5.4) that in the state a/t = 100, the critical temperature
values are near together for different volume fraction indexes. On the other side, for
a/t = 40, they exist distant from each other for various volume fraction indexes. It
can be realized the plate’s thickness influences the critical temperature directly.
Results of critical temperature versus boundary condition are also shown in Fig-
ure (5.5). From this diagram, it can be caught that the critical temperature for CCCC
boundary conditions is much higher than SSSS. It also can be recognized that in
the case of TD properties, the critical temperature for the lowest a/t, has more
difference with the critical temperature extracted with TID properties in comparison
with maximum a/t that both cases have the near result.
According to Figure (5.6), increasing the volume fraction index in Ni/Si3N4 re-
duces the critical temperature, although in Ti−6Al −4V/ZrO2 the critical temper-
ature has been increased. Therefore, the type of combinations of materials (here
Ti−6Al −4V/ZrO2 or Ni/Si3N4) has an evident influence on the critical tempera-
tures in analyzing the behavior of the thermal buckling loads. One of the fundamental
reasons for the difference in behavior shown in Figure (5.6) is due to the difference
in thermal conductivity coefficients. Since the calculation of the temperature distribu-
tion depends on the thermal conductivity coefficient of the materials used in the plate,
the resulting critical temperature is also affected by the materials used in the plate.
According to Table 2.1, it can be seen that Ni has a thermal conductivity coefficient
approximately 187 times greater than Ti−6Al−4V (both used as metal in FG plate),
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Fig. 5.1 Sensitivity of the critical temperature to expansion order.

and also, the thermal conductivity coefficient of Si3N4 is around eight-fold than the
thermal conductivity coefficient of ZrO2 (both used as ceramics in FG plate).
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Table 5.1 Non-dimensional critical temperature of ceramic T̄ cr
c for clamped

rectangular FG plate under uniform temperature rise with a/t = 30

a/b = 1 a/b = 1.5
reference present reference present

n [24] study [24] study
0(TID) 14.087 11.7871 24.342 20.433
0(TD) 4.9867 3.6472 7.6920 7.0151

0.5(TID) 6.9458 5.8061 7.3584 7.3407
0.5(TD) 4.0583 3.6019 5.7121 5.1353
2(TID) 4.8657 3.8841 6.6275 5.6379
2(TD) 3.6595 3.5700 5.3330 5.0229

10(TID) 4.0680 3.0798 6.1479 5.3480
10(TD) 3.4825 2.5060 5.0544 4.7613
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Table 5.2 Non-dimensional critical temperature of ceramic T̄ cr
c for clamped

rectangular FG plate under uniform temperature rise with a/t = 50

a/b = 1 a/b = 1.5
reference present reference present

n [24] study [24] study
0(TID) 5.1235 4.3008 8.9186 7.5208
0(TD) 2.0828 1.1518 3.3981 1.9223

0.5(TID) 2.5260 2.1194 2.7082 2.7021
0.5(TD) 1.6609 1.0585 2.4112 1.7256
2(TID) 1.7712 1.4186 2.4366 2.0756
2(TD) 1.4798 1.0232 2.2433 1.6759

10(TID) 1.4822 1.1254 2.2584 1.7862
10(TD) 1.3976 0.9859 2.1208 1.6565

Table 5.3 Critical temperature of ceramic T cr
c (K) for simply supported rectangular

FG plate under nonuniform temperature rise with a/t = 100 , a/b = 1

present reference [4]
n study γ = 1 γ = 2 γ = 3

1(TID) 26.3231 26.5427 40.4946 54.6340
1(TD) 26.2156 26.0534 39.3628 52.5968
5(TID) 21.2627 23.1963 35.0739 47.1168
5(TD) 21.1542 22.8337 34.2457 45.6291

10(TID) 18.4906 22.1893 33.4279 44.7616
10(TD) 18.3880 21.8604 32.6844 43.4337

Table 5.4 Critical temperature of ceramic T cr
c (K) for simply supported rectangular

FG plate under nonuniform temperature rise with a/t = 100 , a/b = 2

present reference [4]
n study γ = 1 γ = 2 γ = 3

1(TID) 65.6657 66.3241 101.186 136.5199
1(TD) 65.0067 63.4233 94.6109 124.9215
5(TID) 53.0319 57.9562 87.6394 117.7241
5(TD) 52.3638 55.7939 82.8042 109.1654

10(TID) 46.1127 55.4405 83.5218 111.8337
10(TD) 45.4818 53.4753 79.1692 104.1843
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Table 5.5 Critical temperature of ceramic T cr
c (K) for simply supported rectangular

FG plate under nonlinear temperature rise with a/t = 40 versus various a/b

a/b
n 1 2 3 4

1(TID) 161.8037 401.7035 799.0625 1344.370
1(TD) 157.9325 378.7939 709.3272 1208.750
5(TID) 130.5942 324.1648 644.8110 1084.777
5(TD) 126.6398 300.9130 558.4389 952.8177

10(TID) 113.5635 281.8798 560.7076 943.3746
10(TD) 109.8452 260.3532 482.8028 828.3657

Table 5.6 Critical temperature of ceramic T cr
c (K) for clamped rectangular FG plate

under nonlinear temperature rise with a/b = 2 versus various a/t

a/t
n 40 60 80 100

0(TID) 387.2542 175.2887 99.2891 63.7754
0(TD) 295.4867 143.6808 90.9303 62.0161
1(TID) 541.8506 245.2940 138.9478 89.2507
1(TD) 447.4807 226.4899 120.9446 83.1542
5(TID) 756.1984 342.7639 194.2473 124.7968
5(TD) 515.3181 312.9343 169.0928 116.6659

10(TID) 852.3991 386.3836 218.9704 140.6817
10(TD) 650.6272 320.3245 201.8116 125.9099

Table 5.7 Critical temperature of ceramic T cr
c (K) for simply supported rectangular

FG plate under nonlinear temperature rise with a/b = 2 versus various a/t

a/t
n 40 60 80 100

0(TID) 123.3975 55.5362 31.4130 20.1656
0(TD) 100.8262 50.2977 29.6472 19.4195
1(TID) 174.0401 78.3455 44.3184 28.4514
1(TD) 134.8174 68.1983 40.5270 26.6558
5(TID) 242.4470 109.1992 61.7855 39.6697
5(TD) 187.6369 95.4530 56.8312 37.4085

10(TID) 272.5469 122.7489 69.4501 44.5901
10(TD) 223.8799 111.1412 65.3453 42.7467
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5.3 Thermal post-buckling analysis of FG rectangular
plates

The significance and benefit of the current method in the prediction of the thermal
post-buckling response of rectangular FG plates are determined in this part. Here,
the FG plate has been examined considering two different types of combinations of
materials. One compound is Nickel/Alumina (Ni/Al2O3), and another is Stainless
Steel and Silicon Nitride (SUS304/Si3N4). The results of Figures (5.7) to (5.12) and
Table 5.8, have been obtained based on the FG plate made from (Ni/Al2O3), and in
Figures (5.13) to (5.15) have been acquired by considering (SUS304/Si3N4) for the
FG plate. Their material properties are expressed in Tables 2.1 and 2.2.
In this section, in all figures, the temperature path is drawn versus the central deflec-
tion of the FG plate. Sensitivity analysis on the geometric ratios such as length to
width a/b and length to thickness a/t, type of boundary condition, type of tempera-
ture distribution, dependency or independency to temperature, and volume fraction
index have been investigated for the thermal post-buckling analysis of the FG plates.
In examples of this part, the volume fraction index and the reference temperature
are equal to n = 1 and 290K, respectively, unless it has stated another value in some
particular cases. In this study, everywhere it has been mentioned about nonuniform
temperature, it means that it is computed according to section 2.4.
In Figures (5.7) to (5.12), and Table 5.8, the results have been presented in terms
of non-dimensional temperature T̂ = (αc +αm)T ×103. It should be mentioned in
Figures (5.7) to (5.11), and Table 5.8, the boundary condition of the FG plate is
CCCC. From Fig. (5.7), it is evident that the FG plates’ thermal post-buckling path
has converged to a specific order of expansion equal to 3 and higher than it. Thus, in
all examples of this section, the value of 3 is selected as expansion order, not only
for reducing computational costs but also for high accuracy in getting results.
Figures (5.8) and (5.9) show the temperature-deflection curves of the FG plate for
various a/t by considering a/b = 1 under uniform and non-uniform temperature
distribution, respectively. According to Fig. (5.8) and Fig. (5.9), it can be found
the current method is validated with similar Ref. [5] for both cases of uniform
and nonuniform temperature distribution. Since the temperature value in exchange
for each central deflection of the plate is lower than the corresponding reference
value, this proves that the present method is more accurate. Furthermore, it can be
seen the reduction of a/t causes a lowering of the FG plate’s deflection. Also, it is
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evident the plate is buckled later for lower a/t. It means that the critical temperature
for the inferior a/t has a higher value in comparison to the greater a/t. Hence,
when a/t reduces, the FG plate acts as a thick plate, making it stiffer versus rising
temperatures.
Fig. (5.10) displays the path of temperature-deflection for various a/b regarding
a/t = 100 under uniform and nonuniform temperature distribution. From the figure,
it can be seen the rise of a/b yields sooner buckling of the FG plate. In other words,
the increment of a/b induces more deflection on the FG plate. However, by paying
attention to Fig. (5.10), for a/b = 20, it cannot find an exact bifurcation point, but for
a/b = 1 and a/b = 10, the bifurcation point is more visible. It should be mentioned
the increase of a/b causes more deflection in FG plates for both cases of uniform
and nonuniform temperature distribution. Also, it can be understood in the same
aspect ratio, the FG plate subjected to non-uniform temperature distribution has a
higher buckling temperature in comparison to the case under the uniform temperature
distribution.
Fig. (5.11) demonstrates the influences of the volume fraction index on FG plates’
temperature-deflection curve under the nonuniform temperature profile. It makes
sense that the deflection of the fully ceramic plate is lower than that of the rich metal
under the same thermal load. In other words, in this study, the FG plate evolves
much stiffer versus a weak value of the volume fraction index because the FG plate’s
flexural rigidity is high.
In Fig. (5.12), three types of boundary conditions are assessed under both uniform
and nonuniform temperature distribution. The first case is CCCC; the second type
is SSSS; and the third one includes two parallel clamped and two parallel simply
supported edges (CSCS). It can be recognized that the SSSS causes more deflection
than the CSCS under the same temperature distribution and same thermal load. In
addition, in both SSSS and CSCS, a bifurcation point cannot be found evidently. In
other words, these two cases go to the post-buckling area directly without passing
from a definite point like critical buckling temperature. But in the case of CCCC, a
critical buckling point can be seen clearly on the path of the temperature-deflection;
then, it inputs to the post-buckling region. As anticipated, the plate with CCCC
boundary conditions has the most inferior deflection for low temperatures. Nonethe-
less, this case reacts inversely to high temperatures, and the FG plate buckles more
readily.
In Fig. (5.13), the thermal post-buckling path of the FG plate with a/b = 1 , a/t = 20
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, n = 1 under nonuniform temperature distribution in SSSS state for both TD and
TID properties is compared with Ref. [6] as a similar work. In this part, both the
present study and the reference utilized order 3 in the assumption of displacement in
the thickness direction, with this difference that a TSDT function based on Reddy’s
theory has been applied in the reference, while in the present work, it is used in the
Taylore polynomial as an expansion function based on CUF. From this Figure, it
can be found the current method has more accurate results because the path of the
post-buckling related to the present study is at a lower level in comparison with Ref.
[6]. In addition, from Figure (5.13), it can be seen the temperature-deflection path
of the FG plate by assuming TD properties is more underneath than that considering
TID properties.
Figure (5.14) illustrates the thermal post-buckling path of the FG plate with a/b = 1
, a/t = 20 considering TD properties for n = 1,10 under two different boundary
conditions: CCCC and SSSS. From this figure, it is evident that when the thermal
load is applied on the plate, similar to the FG plate with TID properties, the clamped
type with TD properties can tolerate up to a definite value, and after this value, it
goes to post-buckling phase while the simply supported type with TD properties
starts buckling from the beginning. Also, from this figure, it can be understood that
increasing the volume fraction index decreases the thermal post-buckling path level
for both CCCC and SSSS.
Figure (5.15) shows the temperature-deflection path of the FG plate with a/b = 1,
a/t = 100 , n = 1 for both TD and TID properties under two different boundary con-
ditions of CCCC and SSSS. According to this Figure, although the path of thermal
post-buckling related to TD properties is below the TID, since the plate is relatively
thin, the result of the temperature-deflection path of TD and TID are close together.
But this matter differs for the moderately thick FG plate, as seen in Figure (5.13). It
means that the distance level between the path extracted by assuming TD and that
TID in the thick plate is much more than the thin plate. From both Figures (5.13)
and (5.15), it can be seen that for making a specific central deflection, the case of
CCCC needs higher temperature rising rather than the case of SSSS. In other words,
the path of temperature-deflection of the FG plate for CCCC state is always at an
upper level compared to SSSS state.
In order to compare the results extracted by nonlinear analyzing of thermal post-
buckling of the FG plate with results of the critical temperature obtained by LBA
and also prove the present study’s accuracy using CUF rather than other methods of
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Fig. 5.7 Sensitivity analysis of thermal post-buckling path to expansion order for a
clamped FG plate with a/b = 1 and a/t = 100 under the nonuniform temperature
distribution

similar references, Table 5.8 is presented for a clamped rectangular FG plate with
a/b = 1 and three different a/t. In Table 5.8, critical temperatures extracted from
the thermal post-buckling path of the current method for both cases of uniform and
nonuniform temperature distributions are less than that extracted from the thermal
post-buckling analysis of Ref. [5]. By comparing critical temperatures values of
LBA based on CUF with values of bifurcation from the present study and bifurcation
of the reference, it can be understood amounts of LBA are closer to Ref.[5]. Since
employing CUF in LBA have a result near the bifurcation point of post-buckling
analysis without CUF, definitely applying CUF on thermal post-buckling has more
accurate results, as shown in the Table. It is another proof that CUF is a powerful
formulation and theory for analyzing thermal buckling and post-buckling of the
plate.



60 Numerical examples and discussion

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 00

1

2

3

4

5
No

n-d
im

ent
ion

al T
em

per
atu

re

u z /  t

              R e f .  [ 5 ]       P r e s e n t
a / t = 5 0                   
a / t = 7 0       
a / t = 1 0 0       

Fig. 5.8 Thermal post-buckling path of the clamped FG plate with a/b = 1 for
various a/t under the uniform temperature distribution compared with Ref. [5]
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Fig. 5.9 Thermal post-buckling path of the clamped FG plate with a/b = 1 for
various a/t under the nonuniform temperature distribution compared with Ref. [5]
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Fig. 5.10 Thermal post-buckling path of the clamped FG plate with a/t = 100 for
various a/b under the uniform and nonuniform temperature distribution
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Fig. 5.11 Thermal post-buckling path of the the clamped FG plate with a/b = 1
and a/t = 100 for various volume fraction index under the nonuniform temperature
distribution
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Fig. 5.12 Thermal post-buckling path of the FG plate with a/b = 1 and a/t = 100
for various boundary conditions under the uniform and nonuniform temperature
distribution
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Fig. 5.13 Thermal post-buckling path of the simply supported FG plate with assuming
both temperature dependent and independent properties for a/b = 1 and a/t = 20
under the nonuniform temperature distribution compared with Ref. [6]
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Fig. 5.14 Thermal post-buckling path of the FG plate with assuming temperature
dependent properties for a/b = 1 and a/t = 20 under the nonuniform temperature
distribution
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Fig. 5.15 Thermal post-buckling path of the FG plate with assuming both temperature
dependent and independent properties for a/b = 1 and a/t = 100 and under the
nonuniform temperature distribution
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Table 5.8 Comparison of three different methods for calculating non-dimensional
critical temperatures for clamped rectangular FG plates with a/b = 1 and various
a/t

Uni f orm Non−uni f orm
present reference LBA present reference LBA

a/t study [5] method study [5] method
50 2.30 2.45 2.75 4.50 4.80 5.20
70 1.15 1.25 1.41 2.25 2.55 2.74

100 0.50 0.60 0.69 1.00 1.20 1.35



Chapter 6

Conclusions

6.1 Summary

There were three general parts for the solution of the problems in this thesis: The
first part deals with utilizing LBA to determine the critical thermal buckling load for
an FG plate with temperature-dependent properties. The second part is related to
a nonlinear thermal post-buckling analysis of the FG plate utilizing the arc-length
approach. The final part describes how to analyze the nonlinear thermal post-buckling
behavior of the FG plate while taking temperature-dependent properties into account.

6.2 Conclusions

Based on the examples’ results in chapter 5, the following consequences are evalu-
ated:

1. Real temperature distribution should be used instead of assumed temperature
distribution to obtain accurate results in thermal buckling problems.

2. Concerning increasing the volume fraction index, it can be found that increas-
ing or decreasing the critical temperature difference depends on the mixture
and type of ceramic and metal used in the FG plate. Because this increase in
some combinations of metal and ceramic increases the critical temperature
difference and reduces it in some other compounds.
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3. The higher-order theory utilized in this thesis in the framework of FEM based
on CUF is a very powerful theory for analyzing behavior of the thermal
buckling loads of FG plates. Since the order of expansion function (Taylor-like
functions) is considered 3, the results obtained from it are much closer to the
actual behavior in comparison with some other theories like FSDT.

4. It must be mentioned that regardless of the type of materials combination,
volume fraction index, and other parameters, the temperature-dependent prop-
erties caused a decrease in the critical temperature. So, it is better to consider
the temperature-dependent properties in the behavior of the thermal buckling
loads of an FG plate to obtain a more accurate result.

5. A significant result is that the effect of material dependency on temperature
can be seen much more clearly on the critical temperature when a/b is too
high or a/t is much low. It means, in such state, the difference value of critical
temperature extracted based on TD properties with that extracted based on
TID properties is at the highest.

6. In the thermal post-buckling analysis, the plate’s deflection rises nonlinearly
with the temperature increment. The paths of temperature-deflection prove
FGM is capable of withstanding thermal loads that are induced by high-
temperature differences.

7. The expansion’s order of CUF theory used here is greater than FSDT, the
theory utilized in the Ref. [5], that is, its DOF is higher, so its stiffness is lower
and more accurate than the reference’s stiffness. Therefore, its deflection is
larger than the reference’s deflection for the same thermal load, which better
describes the post-buckling of the FG plate. In other words, the outcomes
achieved from the present study are considerably closer to the real behavior of
the FG plate compared with theories such as FSDT and TSDT.

8. Lengthening or thinning of the FG plate increases its deflection in the ther-
mal post-buckling analysis under both uniform and nonuniform temperature
distribution.

9. The fully clamped FG plate has a lower deflection for inferior temperatures but
responds inversely to heightened temperatures and buckles more. This affair
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may be described by the reality that a fully clamped plate has more constraints;
thus, the plate would be so sensitive to temperature rises that influences the
FG plate’s stiffness.

10. Post-buckling analysis reveals that bifurcation has appeared only at aspect
ratios lower than a/b ⩽ 10 and fully clamped boundary conditions. Besides
post-buckling analysis, LBA can calculate it correctly considering these condi-
tions.

11. The thermal post-buckling path of the FG plate is at a lower level when the
TD properties are assumed than the TID properties are considered.

12. When a thermal load is imposed on the plate, the clamped FG plate with
TD or TID properties can tolerate up to a certain value before entering the
post-buckling phase, whereas the simply supported type properties begin to
buckle right away.

13. For the FG plate with both CCCC and SSSS boundary conditions, the temperature-
deflection path level reduces as the volume fraction index rises.

14. The distance level between the temperature-deflection path extracted consider-
ing TD and that extracted by TID in the thick plate is much more than the thin
plate.

15. The thermal post-buckling path of the FG plate under CCCC boundary condi-
tions is always at a higher level than under SSSS conditions.

6.3 Suggestions

According to the search in various sources to complete this thesis, the lack of the
following research is felt:

1. Thermal post-buckling analysis in nanomaterials based on CUF.

2. Thermal post-buckling analysis in FG piezoelectric sandwich plates with the
porous core using CUF.

3. Hygrothermal post-buckling analysis of FG plates based on CUF.

4. Experimental analysis of thermomechanical post-buckling of FG plate.
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6.4 Extracted journal papers

The list of journal papers extracted from this thesis is as follows:

1. Majid Afzali, Mojtaba Farrokh and Erasmo Carrera “Thermal buckling loads
of rectangular FG plates with temperature-dependent properties using Carrera
Unified Formulation”, Composite Structures (2022): 295, 115787

2. Majid Afzali, Mojtaba Farrokh and Erasmo Carrera “Nonlinear thermal post-
buckling analysis of rectangular FG plates using CUF”, Composite Struc-
tures (2023): 117282
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Appendix A

Appendix

A.1 Fundamental nucleus

FN of stiffness is a 3 × 3 matrix with nine components that include the below sub-
matrices:

FN’s components for the linear stiffness matrix Ki jτs
0 [r,c] are stated as follows:

Ki jτs
0 [1,1] =

〈
C11FτFsNi,xN j,x

〉
+
〈
C44Fτ,zFs,zNiN j

〉
+
〈
C66FτFsNi,yN j,y

〉
Ki jτs

0 [1,2] =
〈
C66FτFsNi,yN j,x

〉
+
〈
C12FτFsNi,xN j,y

〉
Ki jτs

0 [1,3] =
〈
C13FτFs,zNi,xN j

〉
+
〈
C44Fτ,zFsNiN j,x

〉
Ki jτs

0 [2,1] =
〈
C12FτFsNi,yN j,x

〉
+
〈
C66FτFsNi,xN j,y

〉
Ki jτs

0 [2,2] =
〈
C66FτFsNi,xN j,x

〉
+
〈
C55Fτ,zFs,zNiN j

〉
+
〈
C22FτFsNi,yN j,y

〉
Ki jτs

0 [2,3] =
〈
C23FτFs,zNi,yN j

〉
+
〈
C55Fτ,zFsNiN j,y

〉
Ki jτs

0 [3,1] =
〈
C44FτFs,zNi,xN j

〉
+
〈
C13Fτ,zFsNiN j,x

〉
Ki jτs

0 [3,2] =
〈
C55FτFs,zNi,yN j

〉
+
〈
C23Fτ,zFsNiN j,y

〉
Ki jτs

0 [3,3] =
〈
C44FτFsNi,xN j,x

〉
+
〈
C33Fτ,zFs,zNiN j

〉
+
〈
C55FτFsNi,yN j,y

〉
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FN’s components for the first-order nonlinear stiffness matrix Ki jτs
nll [r,c] are filled as

below:

For r = 1 : 3

Ki jτs
nll [r,1] =

〈
u,x[r]C11FτFsNi,xN j,x

〉
+
〈
u,x[r]C44Fτ,zFs,zNiN j

〉
+
〈
u,x[r]C66FτFsNi,yN j,y

〉
+
〈
u,y[r]C66FτFsNi,xN j,y

〉
+
〈
u,y[r]C12FτFsNi,yN j,x

〉
+
〈
u,z[r]C44FτFs,zNi,xN j

〉
+
〈
u,z[r]C13Fτ,zFsNiN j,x

〉
Ki jτs

nll [r,2] =
〈
u,x[r]C12FτFsNi,xN j,y

〉
+
〈
u,x[r]C66FτFsNi,yN j,x

〉
+
〈
u,y[r]C66FτFsNi,xN j,x

〉
+
〈
u,y[r]C55Fτ,zFs,zNiN j

〉
+
〈
u,y[r]C22FτFsNi,yN j,y

〉
+
〈
u,z[r]C23Fτ,zFsNiN j,y

〉
+
〈
u,z[r]C55FτFs,zNi,yN j

〉
Ki jτs

nll [r,3] =
〈
u,x[r]C13FτFs,zNi,xN j

〉
+
〈
u,x[r]C44Fτ,zFsNiN j,x

〉
+
〈
u,y[r]C55Fτ,zFsNiN j,y

〉
+

〈
u,y[r]C23FτFs,zNi,yN j

〉
+
〈
u,z[r]C44FτFsNi,xN j,x

〉
+
〈
u,z[r]C33Fτ,zFs,zNiN j

〉
+
〈
u,z[r]C55FτFsNi,yN j,y

〉
end

It should be noted that Ki jτs
lnl = (Ki jτs

nll )
T .

FN’s components for the second-order nonlinear stiffness matrix Ki jτs
nlnl[r,c] are made

as:
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For r = 1 : 3
For c = 1 : 3

2×Ki jτs
nlnl [r,c] =

〈
u,x[r]u,x[c]C11FτFsNi,xN j,x

〉
+
〈
u,x[r]u,x[c]C44Fτ,zFs,zNiN j

〉
+
〈
u,x[r]u,x[c]C66FτFsNi,yN j,y

〉
+
〈
u,y[r]u,y[c]C66FτFsNi,xN j,x

〉
+
〈
u,y[r]u,y[c]C55Fτ,zFs,zNiN j

〉
+
〈
u,y[r]u,y[c]C22FτFsNi,yN j,y

〉
+
〈
u,z[r]u,z[c]C44FτFsNi,xN j,x

〉
+
〈
u,z[r]u,z[c]C33Fτ,zFs,zNiN j

〉
+
〈
u,z[r]u,z[c]C55FτFsNi,yN j,x

〉
+
〈
u,x[r]u,y[c]C12FτFsNi,xN j,y

〉
+
〈
u,x[r]u,y[c]C66FτFsNi,yN j,x

〉
+
〈
u,y[r]u,x[c]C12FτFsNi,yN j,x

〉
+
〈
u,y[r]u,x[c]C66FτFsNi,xN j,y

〉
+
〈
u,x[r]u,z[c]C13FτFs,zNi,xN j

〉
+
〈
u,x[r]u,z[c]C44Fτ,zFsNiN j,x

〉
+
〈
u,z[r]u,x[c]C13Fτ,zFsNiN j,x

〉
+
〈
u,z[r]u,x[c]C44FτFs,zNi,xN j

〉
+
〈
u,y[r]u,z[c]C23FτFs,zNi,yN j

〉
+
〈
u,y[r]u,z[c]C55Fτ,zFsNiN j,y

〉
+
〈
u,z[r]u,y[c]C55FτFs,zNi,yN j

〉
+
〈
u,z[r]u,y[c]C23Fτ,zFsNiN j,y

〉
end

end

In the above formulations, <#>=
∫
#dV , where V is the volume of the plate.

Also u,x[#], u,y[#] and u,z[#] represent the #th component of the vector ∂u
∂x , ∂u

∂y and
∂u
∂ z respectively, (e.g. u,x[2] = uy,x).
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