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Chapter 1

Introduction

A steady push towards more feature-rich, integrated and thus complex systems has
been observed, in recent years, in the aerospace sector. This trend can be explained
given the many advantages presented by a smart system, i. e. a system capable
of autonomously performing corrective or even predictive actions when particular
conditions occur. In a broader sense, aerospace systems can be generally thought as
smart given the very high safety and reliability standards imposed, which implies
redundancies and active monitoring of the system status; mitigating strategies (e.g.
passive or cold redundancy) are implemented should a critical event occur. However,
traditional, cold redundancy based methods have drawbacks, namely reliability
reduction, sub-optimal system utilization, weight and cost increase [1].

The logical evolution is the switch from a corrective to a predictive approach,
i.e. performing a mitigating action before a critical event occurs. In this context,
the Prognostics and Health Management (PHM) [2] framework is very useful. In
brief, the objective of PHM is to give an accurate estimation of the ’health status’ of
a system defined in term of prognostics indicators. Said indicators are variable and
application-dependent, but the commonality is the embedding of status information
and sensitivity to one or more faults that can occur in the system. The concept
of Remaining Useful Life (RUL) [3] is important, as it is the main parameter that
correlates the actual system health status and maintenance events.

In fact, using a PHM approach, Condition Based Maintenance (CBM) [4] can be
achieved. While traditional, preventive maintenance is generally a result of safe-life
philosophy, i.e. components are replaced after a predetermined amount of time,
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independently of the health status, a CBM approach schedules maintenance events
when necessary by monitoring the condition of components or systems.

To perform health status monitoring, two approaches are generally used. The
first approach is model-based, where either a physical model or a digital twin is used
[5]. The other approach is data-driven, where machine learning methods are applied
to data generated by the system to infer relations [6].

Another technology steadily gaining adoption is optical fiber sensors, such as
Fiber Bragg Gratings (FBGs), which offers several advantages over traditional,
electronic based sensors. FBGs can primarily sense strain by alteration of the
reflected Bragg wavelength; this measure can be correlated with other physical
quantities when using appropriate fiber coating. Many different FBG-based sensors
exist and are used to measure humidity [7, 8], temperature [9–12], pressure [13–15],
gas and pollutant concentrations [16–18] and more.

This work aims at integrating FBGs in a diagnostics framework which uses an
electromechanic actuator (EMA) as a real test-case. The strain measures measured
using FBGs will be used in a machine-learning algorithm to estimate the health
status of the system. Additionally, a parallel evaluation can be made for other faults
such as electrical partial shorts and static eccentricity. Additionally, several FBG-
based sensor designs will be proposed; these sensors could be used as sources of
information in the prognostic process. Finally, several reduced order model with
varying levels of fidelity will be presented given their usefulness in reducing the
simulations computational time for use cases such as real-time monitoring.



Chapter 2

Optical fibers and sensors

In this section, the operating principles of fiber optics and Bragg gratings will be de-
scribed. Furthermore, some new sensors designs will be reported and characterized.

2.1 Optical fibers overview

Optical fibers are flexible and thin strands of glass (or plastic) capable of transmit-
ting light, not necessarily in the visible spectrum. They are a key technology in
telecommunications, composing the backbone of the Internet infrastructure. Due to
extremely low attenuation, a signal in a fiber optic can be transmitted for kilome-
ters or tens of kilometers before needing amplification. Fibers are also immune to
electro-magnetic interference as opposed to normal copper cables.

Furthermore, bandwidth is several order of magnitude greater than traditional
copper cables (hundreds of Gbps vs hundreds of Mbps). Recent lab testing managed
to push the maximum data-rate to petabit per second [19]. Optical fibers are also
much lighter and flexible than copper cables.

2.2 Principles of operation

Optical fibers are circular waveguides that bounds the propagation of light inside
it. Generally, the wavelength of light used is chosen as to minimize the absorption
during propagation, thus reducing attenuation as much as possible. For example, in
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Fig. 2.1 [20], the attenuation spectrum for normal fused silica glass optical fibers is
shown.

The three optical or transmission windows (shown as colored bands) are valleys
in the attenuation plot as function of wavelength. The lowest value is about 0.2
dB/km and is obtained at around 1550 nm, which corresponds to short wave infrared.

The band between 1500 and 1600 nm is usually designed third telecom window,
and presents the lowest absorption region in the whole spectrum for silica glass (blue
band in Fig. 2.1). The two other transmission windows, at shorter wavelengths, are
respectively the 800-1000 nm band (red) which is historically the first band used,
thus called the first telecom window. Finally, in green, the second telecom window
is shown, at around 1300nm of wavelength.

Fig. 2.1 Optical windows for silica glass

The physical phenomena that allows optical fibers to be waveguide is total
internal reflection, which directly postulates from Snell’s Law:

sinθ1n1 = sinθ2n2 (2.1)
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where θ1 is the angle of incidence, θ2 is the angle of refraction and n1,2 are the
refraction indexes of the two material. The refraction index is defined as the ratio of
the speed of light in vacuum (c) over the speed of light in the medium (v):

n =
c
v

(2.2)

Snell’s law applies every time there is an interface along the propagation of the
wave. As visible in Fig.2.2 [21], the angle of incidence is 60o; the reflected beam
forms the same angle. The refracted ray, however, has a different angle with respect
to the normal, which can be determined using Eq. 2.1.

Fig. 2.2 Snell’s Law example

A condition that can occur when n1 > n2, i.e. when there is a passage from a
denser to a less dense medium, is called total internal reflection. From Eq. 2.1, one
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can find that the equation has no solutions when θ1 is greater than a value called
critical angle, which can be obtained as:

θcrit = arcsin
(

n2

n1

)
(2.3)

If the angle of incidence is greater than θcrit , no refraction will occur and total
internal reflection will be observed. This particular phenomenon is key for the
operation of an optical fiber, since it bounds the light inside it, without loss of
intensity along the fibers path.

2.2.1 Single-mode and multi-mode fibers

One of the possible classifications of optical fibers can be made on the modes that a
fiber can propagate. If only one mode can be propagated, then the fiber is defined as
single-mode fiber, otherwise it is called multi-mode.

Differences between the two types of fibers are both optical and physical, as
shown in Fig. 2.3 (image from [22]).

Single-mode fibers have small cores, in the order of 8-10 µm, with external
diameters of usually 125 µm. The main advantage of a single mode fiber is the lack
of intermodal dispersion, arising from the difference in optical path length which is
problematic in multi-mode fibers.

Multi-mode fibers have larger cores, in the order of tens of microns, and can
propagate several or many optical modes. Intermodal dispersion is always present in
these fibers, accompanied to pulse broadening phenomena [23]. One mitigating strat-
egy is the adoption of graded index over step index fibers, which reduces dispersion
limiting the penetration of higher order modes electric fields in the cladding.

Another difference is the ease of coupling of the fiber with the emitting source,
being it a LED or a laser. A parameter often used to measure the accepting cone is
the numerical aperture (NA), which is defined as:
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Fig. 2.3 Schematics of single and multi mode fibers

NA =
√

n2
core −n2

clad (2.4)

The numerical aperture is related to the acceptance angle in air with the following:

θa = arcsin(NA) (2.5)

However, this approximation is only valid for multi-mode fibers and is not
applicable to single mode fibers. In any case, typical values are of about 0.1 but can
vary from 0.05 to 0.4 for single mode fibers, while typical values for multi-mode are
around 0.3.

2.2.2 Materials for optical fibers

The most used material for optical fibers is silica, i.e. silicon dioxide (SiO2), as it
presents good optical transmission properties along a wide band of the EM spectrum.
As previously exemplified in Fig. 2.1, absorption and scattering losses can be as low
as about 0.2 dB/km at around 1550 nm.
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However, such low attenuations requires extremely pure silica, as even minus-
cule impurities can lower the transmission properties by order of magnitudes. For
example, at around 1.4 µ , the absorption peak of the -OH group is always present,
but it can be lowered down by reducing the free hydroxyl groups present in the glass,
being one of the overtones of the -OH group as shown in [24].

In any case, the absorption around 1400 nm is about two orders of magnitude
higher than at around 1550 nm.

Another advantage of silica is the good mechanical capabilities it exhibits, having
an extremely high tension failure stress (more than 5000 MPa [23]) and moderate
bending resistance. Furthermore, silica is chemically inert and is not hygroscopic.

Silica can be doped with different oxides to change the refractive index; alu-
minium or germanium oxide (Al2O3, GeO2) are commonly used to raise the refrac-
tive index, while boron oxide (B2O3) or fluorine F2 are both used to lower it, as
shown in 2.4 (image from [25]). However, low solubility for rare-earth elements has
been observed so silica isn’t very apt for active fibers elements such as amplifier or
lasers.

Fig. 2.4 Several dopants used to alter refraction index

Other, much less used classes of glasses are fluoride and phosphate-based. Flu-
oride glass have several disadvantages discouraging mass adoption, such as hard
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to avoid partial crystallization, fragility and poor environmental stability; the main
advantage is the lack of hydroxyl-associated absorption band at 2780-3125 nm as
fluorides are non-oxide based.

Phospate glass are composed my (meta)phospates of metals; analogously to sili-
cate, a tetrahedral structure is observed in phospates glass, where the elemental cell
is composed by phosporous pentoxide P2O5. Four different polymorphic structures
exist, with the most popular being P4O10.

Phospate glasses have good mechanical properties (e.g. tensile strength around
2000 MPa [26]) and show a high solubility for rare-earth elements ions, making
them useful in active optical components.

Other types of glasses, such as chalcogenide glass exist, and are made with
chalcogens elements (group 16 of the periodic table, such as sulfur (S), tellurium
(Te) and selenium (Se)) reacting with metals such as silver (Ag). In general, chalco-
genide glasses are very versatile, since most of the properties can be tailored to the
desired use case, such as crystalline or amorphous structure, band gap width and
ions/electrons conductivity.

Finally, plastics are also used in optical fibers, in the so called POFs - Platic Optic
Fibers. The most common material used for core is either PMMA (poly(methyl
methacrylate)) or polystyrene, while silicone is generally used for cladding. POFs
offer several advantages over glass-based fibers, such as much lower cost both for
fibers and supporting equipment, good mechanical flexibility and high numerical
aperture. In general, the core is much bigger than in glass fibers, in the order of
1mm compared to tens of microns. However, POFs have much higher absorption
compared to glass fibers and are thus limited to short-range communications, such
as in home Gigabit [27]. POFs are also used in the making of fixtures such as lamps.

2.2.3 Manufacturing

To obtain the level of precision needed to create an optical fiber, ad-hoc manufactur-
ing methods have been developed.

The first step of glass optical fibers manufacturing is the production of a preform,
which is a large diameter element with a very precise index of refraction profile,
which is then stretched to form the fiber strands.
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Several techniques are used, which are all different types of chemical vapor
deposition (CVD): outside vapor deposition, inside vapor deposition and axial vapor
deposition.

In inside vapor deposition, shown in Fig. 2.5 (from Ref. [28]), gases such as
silicon or germanium tetrachloride (SiCl4, GeCl4) are injected inside a glass tube,
mixed with oxygen and burned in gas phase; the products of the reactions, such as
silica, will then deposit on the inside wall as soot; an external oxyhydrogen torch
is used to maintain the inside temperature to around 1500/1600 °C, allowing the
reaction to proceed. The flame is also moved along the preform direction to even the
reaction conditions and to allow the deposited soot to melt and form a new layer. The
technique is very versatile allowing precise control on thickness and composition
(and thus index of refraction) of each layer, by varying temperature and/or chemical
composition of the inbound gas mixture.

Fig. 2.5 Process of inside vapor deposition
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On the other hand, in outside or axial deposition, glass is formed on the external
surface of a seed rod, by combusting silicon or germanium tetrachloride in an
oxyhydrogen flame; the difference between the two techniques is the type of the
seed rod used, which is either removed or used as starter element and axially built
along, obtaining a porous preform. It is consolidated in a solid preform by heating at
around 1500 °C.

After the preform has been manufactured, it needs to be drawn. Using an instru-
ment calling drawing tower, which stretches the preform to the desired thickness,
after heating the preform. At the same time, the coating is applied in one or more
passes depending on the specific process. Finally, polymer coatings (generally
PMMA or polyacrilate) is cured using UV lamps. The coating layers are needed to
increase mechanical strength of the fiber and to improve the resistance to environ-
mental conditions.

2.3 Optical sensors

Optical fibers can be used to measure various quantities such as strain, temperature
and pressure. This is done by modifying the fiber so that the quantity being measured
changes the light’s intensity, phase, polarization, wavelength or transit time. Intensity-
based sensors are the simplest as they only require a source and detector. Fiber-optic
sensors can also provide distributed sensing over large distances if needed.

Temperature can be measured using a fiber with evanescent loss that changes
with temperature or by analyzing one of several possible scattering modes (Rayleigh,
Raman, Brillouin) of light in the fiber. Specially-doped fiber that alters the polariza-
tion of light based on voltage or electric field allows to directly measure voltages.
Interferometric angle measurement sensors have been developed using the Sagnac
effect, such as gyroscopes [29].

It is also possible to measure more than one quantity at the same time, for
example strain and temperature, by using more than a single effect, for example in
[30], using both FBG wavelength shift and Er3+ fluorescence.

Other applications include strain and temperature sensing in hostile environments
such as in proximity of Magnetic Resonance machines [31], due to the extreme elec-
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tromagnetic fields, or in oil wells [32], given the range of pressure and temperatures
that does not allow the use of conventional electric sensors.

Sensing can be concentrated in specific points along the fiber, using sensors such
as Fiber Bragg Gratings (FBGs), or distributed, leveraging one of the previously
mentioned scattering effects; it has been shown that using Brillouin scattering it is
possible to monitor a 250-km long stretch of fiber with a resolution of 5 m [33].

2.3.1 Fiber Bragg gratings

Fiber Bragg Gratings (FBGs) are some of the most commonly used optical sensor in
different fields, such as oil and gas, medical and aerospace.

In essence, FBGs are periodical variations in the fiber’s core refractive index,
creating a very narrow band dielectric mirror. The principle of operation is based on
Fresnel reflection. An FBG has periodic alteration of the index of refraction of the
core of the fiber, which create reflected waves at each change. The series of reflected
waves is in general out of phase, except for a specific wavelength, defined as Bragg
wavelength which correlates to the physical spacing of the variations, generally
formulated as:

λB = 2neΛ (2.6)

where ne is the effective index of refraction of the core and Λ is the physical spacing
of the variations of refraction index. ne is function of the wavelength but also of the
propagation mode in the fiber (for multimode fiber); it is thus only a function of the
wavelength when using a single-mode fiber.

As shown in Fig.2.6 (from [34]), a wide band of wavelength is sent through the
fiber where the FBG is present; the FBG works as a highly selective wavelength
mirror, allowing most of the wavelengths to passa through while a narrow peak
centered around the Bragg wavelength is reflected back and can be read.

The usefulness of FBGs is in their correlation between bands spacing and Bragg
wavelength; this allows direct measurement of mechanical strains and temperature
at the same time. In fact, one of the most used equations to correlates Bragg
wwavelength variation to physical variation is the following:
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∆λB

λB
= (1− pe)ε +(αΛ +αn)∆T (2.7)

where ∆λB is the variation of Bragg wavelength, pe is the strain optic coefficient,
ε is the strain applied to the FBG, αΛ is the coefficient of thermal expansion of the
fiber and αn is the thermo-optic coefficient.

Fig. 2.6 FBG principle of operation

Typical values for silica fibers are αΛ ≃ 0.55 × 10−6 K−1 and αn ≃ 8.6 ×
10−6 K−1, i.e. the thermo-optic coefficient has a much bigger effect on the thermal
wavelength shift (in total, on the order of 14 pm/°C) and pe ≃ 0.83 [35], i.e. a 1
µε (1×10−6∆l/l) strain induces a 1.2 pm wavelength shift. However, the FBG is
sensitive to both strain and temperature at the same time, so it is useful when only
on of the two measures changes over time; on the other hand, in most mechanical ap-
plications, it is not often that a measuring environment offers a constant temperature
or a no vibration zone. In this, more general case, a decoupling of the two measures
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has to take place, either using hardware, software or multiple sensors using different
coatings and thus having different temperature-wavelength or strain-wavelength shift
curves.

Fig. 2.7 Several types of Bragg gratings structures

Several types of Bragg gratings exist, even tough the most common types found
in sensing application is the so-called ’standard’ or type-1 grating, originally de-
veloped for the telecommunications industry as dispersion compensators or WDM
(wavelength division multiplexing) filters [36].

Other types of Bragg gratings are classified still as type-1(x), which x can be
n (negative), H (hydrogen), Hp, Hs (hypersensitised) or d (densification) [36]. All
the type-1 gratings are manufactured in either Si-based or Ge-doped fibers, using
UV-laser interference in the fiber core. In any case, type-1 gratings are all written
with energies under the glass damage threshold. Furthermore, type-1 gratings are
generally made either on silica fibers or germania-doped fibers, depending on the
variant. Additionally, substrate and nature of the gratings determine measure stability
and the maximum operating temperature.
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On the other hand, type-2 gratings are manufactured with extremely high energy
pulses, obtained using for example femtosecond-lasers, as to reach and overcome
the damage threshold in glass, leading to fracturing, void formation and possibly
filamentation [36].

The other important parameter that can be tailored to the user needs is the grating
structure. The simplest is the uniform index change, as shown in Fig. 2.7(1) (from
[37]). Other common structures are chirped (2), tilted or with superstructures (4).

However, if one uses a simple discrete variation of index of refraction n, the
reflected spectrum will not be a single peak, but it will contain secondary lobes,
due to the step change of index. This effect can be mitigated using apodization, i.e.
a modulation of the amplitude of the refraction index variation using a gaussian
function, as shown in Fig. 2.8 (from [38]) . This allows reduction of the amplitude of
the side-lobes of the reflected waveband, thus improving the returning signal quality.

Fig. 2.8 Possible gratings modulations
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2.4 Developed sensors

During the PhD, several different sensors have been prototyped and tested, ranging
from vibration sensors to temperature and strain sensors. As previously explained, a
single FBG senses both temperature and strain at the same time, thus some method-
ology to decouple the measurements is necessary if one’s interested in measuring
only one of the quantities, since in most mechanical applications is hard to have a
constant temperature environment or a vibration-free one.

However, for the first case presented, i.e. a vibration sensor, the temperature
variation is not considered too important since amplitude measurements are relative
and mainly the vibration frequency is of interest.

2.4.1 Vibration sensor

In literature, several solutions are commonly adopted such as bare fibers vibrating
[39], cantilevers [40], orthogonal flexure hinges [41] or multi-axis flexure hinges
[42]. In general, these works aims at having a resonant frequency out of the range of
measuring, as to have the maximum linearity during measurements.

However, in our design, the goal is the opposite, i.e. manufacture a sensor that
resonates at a frequency of interest; this enables to detect minute amplitude variations,
which is useful in mechanical applications as many rotating machines tend to operate
at a fixed frequency, thus often showing vibration peaks at frequencies corresponding
to the rotational speed or at multiples of that when some faults start to appear. Part
of this work has been presented in [43].

Initial development consisted in the manufacturing of three different 3D-printed
supports made of PLA, as shown in Fig. 2.9, using fused deposition (FDM). Four
different fibers were used in testing, since fiber #2 failed in early pre-testing (glued
to support B), and thus another fiber (#4) was glued to support B, as reported in
Table 2.1, where L is the fiber free length, and ωn is the support combination natural
frequency calculated by FEM (Finite Element Method).

Furthermore, for fibers #1 and #4, a reduction in pre-tensioning has been observed
before testing, and it is probably caused by either the cyanoacrilate glue yielding or
a permanent (microscopic) deformation of the support caused by the fiber stress, or a
combination of both. In any case, since this facts have been observed before proper
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testing, the lower, measured value of pretensioning has been used during the testing
campaign. Pre-tensioning can be measured by reading the Bragg wavelength of the
sensor and comparing it to the nominal Bragg wavelength measured in no-stress
conditions before gluing, thus obtaining the microstrains (µε) estimation.

(a) First sample (b) Second sample (c) Third sample

Fig. 2.9 Series of samples tested

Combination L [mm] Pre-tension [µε], appr.. ω∗
n [Hz], FEM

1 - A 40 1600 → 1000 1820
2 - B 40 500 794
3 - C 100 500 978
4 - B 40 4200 → 2200 794

Table 2.1 Fibers and supports data

For the whole testing campaign, the experimental apparatus shown in Fig. 2.9
has been used, consisting of a function generator, the output of which is amplified by
an amplifier then connected to a mechanical shaker (Fig. 2.9a), and on the other side
a SMARTSCAN FBG interrogator (Fig. 2.9b) which reads the output of the sensor.
In Fig.2.11 a picture of sensor 3 is shown during a testing session, with the feedback
accelerometer visible under the sensor, above the shaker (blue cable).

Testing results

Initially, some tests have been performed to validate the testing apparatus. In
particular, Fig. 2.12 shows the FFT of a test performed at 350 Hz sinusoidal
excitation; the data source is the interrogator and thus the sensor. The exciting
frequency is clearly visible in the frequency spectrum, but numerous harmonics are
also present, due to the non-linearity of the material. The second harmonics could be
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(a) Function generator, amplifier and shaker (b) FBG interrogator

Fig. 2.10 Experimental setup overview

explained by the fiber behavior similar to a guitar string, vibrating (and deforming)
at exactly twice the excitation frequency.

Fig. 2.11 Support 3 during testing

In any case, all the following graphs have been plotted considering only the first
FFT peak, which corresponds to the exciting frequency in all the tests.

Three different testing sessions have been performed, varying frequencies at
constant amplitudes of 1, 5 and 10 m/s2, as shown in Fig. 2.13 and 2.14. It is clearly
visible how the amplification peak is very close to the predicted natural frequency
from the FEM modeling.

It can be seen how the amplification peaks tend to shift from the calculated
natural frequency to higher or lower frequencies, depending on the support. This can
be caused by several reasons: the material is not isotropic and thus not linear; the
cyanoacrilate glue used to bond the fiber to the support exhibits a visco-plastic effect
as shown in [44]; PLA and glue are sensitive to moisture and tests were performed
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Fig. 2.12 Frequency response to a sinsuoid at 350 Hz

in different days without monitoring of the air humidity; tests at higher amplitudes
might have caused a small plastic deformation in the plastic material. It wasn’t
possible to pinpoint the cause, or causes, leading to this phenomenon. Further testing
will be needed with a increased number of samples.

It has to be noted that preliminary FEM analyses consider a much simplified
model, consisting on the bare support, supposed to be made of an isotropic material
with characteristics similar to the PLA used to create the supports. However, several
strong assumptions have been made: firstly, on the material; in fact, 3D-printed
plastics should not be considered as isotropic, given the process used to manufacture
the component. However, considering a fill rate of 95% (i.e. how ’full’ is the compo-
nent), it can be considered as isotropic during this preliminary step. Furthermore,
the presence of a glued, pre-tensioned glass fiber on the two extremes of the sensors
should be considered during the FEM analyses as additional bending stiffness given
the moderate preload amount; however, the cyanoacrilate glue is not very rigid and
thus possess a moderate compliance, thus this effect doesn’t seem to affect the results
too much.

In fact, the experimental results match very closely the predicted resonance
frequency even for this very simplified model, so it was decided not to perform a
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more in-depth FEM analysis as the data are consistent to what was observed during
the tests.

Fig. 2.13 Experimental Bode plot for combination 1-A

(a) Combination 4-B (b) Combination 3-C

Fig. 2.14 Experimental Bode plot for combination 4-B and 3-C

Finally, in Table 2.2, the coefficient of amplification is reported for the different
test performed, calculated as the ratio between the highest, first FFT peak amplitude
with respect to the first 10 measurements, as to offer a baseline. It is visible how
the amplification is not linear with amplitude, and tends to increase with higher
values of it. For combination 4-B it wasn’t possible to evaluate the coefficient of
amplification for the test at 20 m/s2, as something in the testing apparatus was
influencing the measure. Finally, for combination 3-C, again for the test at 20 m/s2,
a characteristic curve was obtained but results are not very significative, as the
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maximum amplification is of about 4.4, which is an order of magnitude lower than
the case at 5 m/s2. This is probably due to some incorrect configuration in the testing
equipment.

Overall, the design will need to be improved and made more resistant, as this
proof of concept is very fragile having an exposed fiber. Additionally, some uncer-
tainties will need to be removed by means off further testing with additional samples,
and maybe developing more refined mathematical models. However, these prelimi-
nary tests show a good potential for selective frequency mechanical amplification
for frequencies of interest, as the sensor design can be easily tailored as to have a
natural frequency corresponding to the frequency of interest.

A B C

1 m/s2 14.7 15.1 23.2
5 m/s2 30.6 44.8 41.3

20 m/s2 33.5 - 4.4*
Table 2.2 Sensors amplification coefficients

2.4.2 Cantilever vibration sensor

Another solution explored during the PhD, is the cantilever. It is a simpler design
that the previous, as it is composed of a simple extruded beam with prismatic section.
Most of the theoretical design has been carried out by Dr. Antonio Marotta during
his M.Sc. thesis project [45].

Considering the beam and frame of coordinates reported on the left of Figure 2.15,
the force applied along the y-direction (right of the figure) will create a bending
moment:

Mz = Fy · x (2.8)

From elastic line theory, one can obtain the differential relation between deflec-
tion y and bending moment M as such:
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∂ 2y

∂x2 =
Mz

EIz
(2.9)

where E is the Young’s modulus of the material, which is considered isotropic.

x

y

z

L

b

h F

d

Fig. 2.15 Schematics of the cantilever beam

Solving the differential equation with fixed boundary conditions (y(0)= 0, y′(0)=
0) and with force applied at the free end, which is the case for the cantilever beam,
one can obtain that:

d(x) =
Fx2

6EIz
(3L− x) (2.10)

The maximum displacement can be found at x = L, and has a value of:

dmax = d(L) =
FL3

3EIz
(2.11)

Stress can be derived from the Euler-Bernoulli beam theory, and can be expressed
as:

σx(x,y) =
My(x)

Iz(x)
y =

12Fx

b(x)h3y (2.12)

and by using the Hooke’s law (σx = Eε), the deformation can be obtained:
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εx(x,y) =
12Fx

b(x)h3E
y (2.13)

From the previous equation, it is possible to see that the strain changes along
the length of the beam, even when considering a line at the same distance from the
neutral axis. In our case, since the objective is to glue an FBG sensor along the two
faces of the beam, this behavior is unwanted, since the FBG has a finite length and
this could lead to wrongful measures and non-linear behavior of the sensing element.

To avoid this problem, one solution is to use an ’equal-deformation’ beam, i.e. a
beam where the deformation along the x-axis is constant, given a particular distance
y from the neutral axis.

In order to do so, one can observe that:

εx(x,y) =
12F
Eh3

x

b(x)
y = k

x
b(x)

y (2.14)

thus, to have constant strain along the axis, one must impose that:

εx(x,y) = k
x

b(x)
y ⇒ x

b(x)
= const. =

L
b

(2.15)

Applying the previous condition, i.e. a section reduction along the x-axis of the
beam, the deformation is now only a function of y as such:

ε
∗
x (y) =

12FL

Eh3b
y (2.16)

From the previous equation, it can be found that the maximum deformation along
the whole beam is at the two faces, since their distance is the largest from the bending
plane which in this case corresponds with the midplane of the beam. Numerically,
these values are:
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ε
∗
x,max = ε

∗
x (±

h
2
) =±

6FL

Eh2b
(2.17)

System dynamics

The vibrating system has been modeled as a second-order system, similar to a
mass-damper oscillating system.

In fact, recalling Eqn. 2.11, the relation between force and maximum displace-
ment can be expressed as:

F =
3EIz

L3 = Kd (2.18)

where K = 3EIz
L3 is defined as the flexural stiffness of the plate.

The second order differential equation (considering y as the degree of freedom) of
a mass-spring system subjected to a periodic sinusoidal excitation and with viscous
damping omitted, is:

mÿ+Kẏ = F sin(ωt) (2.19)

where the usual solution applies:

y =
F

m(ω2
0 −ω2)

=
a

ω2
0 −ω

, ω
2
0 =

K

m
(2.20)

where a is the acceleration and ω0 is the natural frequency of the system, defined
as the square root of the ratio between the flexural stiffness K and the mass m.

Now, by combining the previous equation with Eqns. 2.16 and 2.11, remembering
that Iz =

1
12bh3, one can obtain:
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ε =
3dmax · x

L2 =
3y

(ω2
0 −ω2)L2 a (2.21)

Considering the case when the excitation frequency is much smaller than the
natural frequency of the system (i.e. ω << ω0), the previous equation simplifies as:

ε =
3y

ω2
0 L2 a (2.22)

which is a relation that links the maximum deformation of a section of the beam with
the external acceleration a.

The Bragg grating equation from the previous chapter is:

∆λB

λB
= (1+ pe)∆ε +(αΛ +αn)∆T ≃ (1+ pe)∆ε (2.23)

since the temperature component is considered negligible.

Since the fiber is glued to the upper (and lower) surface of the beam, it is
reasonable to assume that:

∆ε = αε (2.24)

where α is the glue transfer factor (0 < α < 1). In other words, there must be some
slippage introduced by the glue, which is taken into account with this particular
factor.

Finally, applying this definition to Eqn. 2.21, the final relation between Bragg
wavelength shift and acceleration can be obtained:

∆λB

λB
= (1+ pe)

3αy
ω2

0 L2 a (2.25)
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Final geometry and materials

After this preliminary analysis, a suitable material has to be chosen to manufacture
the prototype. The choice for this initial run is rather limited, as the in-house
production capability is limited to either 3d-printed PLA (Polylactic acid), a polymer,
or milled aluminium alloy.

After a script has been used to obtain possible solutions, by fixing some dimen-
sional parameters such as the various lengths. The imposed requirements are:

• ’Small’ size

• Resonant frequency above 200 Hz

• Maximum sensitivity

• Ease of manufacturing.

Sensitivity has been defined as the ratio of Bragg wavelength variation to unit of
acceleration, which can be expressed as:

S =
∆λB

a
= (1+ pe)

3αyλB

ω2
0 L2 (2.26)

In other words, the higher the sensitivity, the more the Bragg wavelength shifts
for a given acceleration value; in other words, one can obtain a finer measure by
having a higher sensitivity.

Considering all the previous conditions, the same design has been evaluated
using both PLA and aluminium, obtaining the following values:

Material K [N/m] L [mm] B [mm] h [mm] m [g] ω [Hz] S [m/g]

Al 1.9e4 10 1.5 1 11.6 206.86 1.35e-11
PLA 9.8e3 10 1.5 1 0.58 206.52 1.35e-11

Table 2.3 Sample design comparison

The previous table shows that the excitation mass m is more than an order of
magnitude greater for the aluminium compared to PLA; in particular, this sensor di-
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mensions are really small and this could lead to manufacturing and volume problems
when including a mass this big.

After considering several designs, the choice was made on the following parame-
ters set:

L [mm] b [mm] h [mm] m [g] ω [Hz] S [m/g]

28 6 4 5 232.5 4.4e-12
Table 2.4 Final prototype dimension

Fig. 2.16 Modified beam FEM sizes (in [mm])

However, this simplified geometry has several problems regarding manufacturing,
since the free edge of the beam is only 1 mm wide, which poses a challenge for
gluing the excitation masses; in fact, the chosen mass is 5 g, which is more than two
big lead fishing weights.

To amend this problem the geometry has been slightly altered to maintain sensi-
tivity and resonant frequency values from the original design. The final, modified
design has a square holder for the weights at the free end, and has a lower overall
thickness. Additionally, the exciting mass has been reduced to 4 g, since this allows
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the use of two single lead fishing weights. The last modification is a necking down
of the beam section towards the holder, since that terminal portion of the beam does
not provide support for the fiber. Final sizes are shown in Figure 2.16.

After final sizing, some FEM analyses have been performed to validate the
analytical results. In Figure 2.17, the total strain of the sensing element is shown,
from a linear analysis. As forecast by the theory, the strain value is constant along
the beam for a given value of y.

However, as explained previously, the necking down to a constant section changes
this behavior and can be observed in the terminal region of the beam.

Fig. 2.17 Modified beam FEM strain results

Furthermore, a modal analysis has been carried out and is shown in Figure 2.18,
where the natural frequency is predicted as 235.6 Hz, a value very close to the
theoretical value.

To set-up the FEM analysis, Hypermesh 2021 has been used. The type of
elements used are HEXA-type solid elements, initially meshed on the top surface
and then extruded acorss the thickness of the object. All the nodes on the base face
have been constrained in all six degrees of freedom to simulate the fixed joint, as
that face is bonded to the rest of the support. Finally, the excitation mass has been
modeled using a single node in the center of the end cavity. The node has been
connected to all nodes of the cylindrical opening with rigid beam elements, RBE2.

Finally, in Figure 2.19a, the holder for the cantilever beam is shown. It is a
simple rectangular holder designed to maintain the beams in a fixed position and
stop them from moving along the lateral axis. In Figure 2.19b the base support for



2.4 Developed sensors 29

Fig. 2.18 Modified beam natural frequency (FEM)

(a) Sensor mid support (b) Sensor base support

Fig. 2.19 Final sensor design with supports

the whole structure is shown; the need arises from making sure that, during vibration,
the two cantilever beams do not slam against a possible lower reference surface, thus
providing protection to the sensor. Additionally, the base support has 4 holes in the
corner for fasteners, while the hole in the center bottom is used to secure the whole
sensor to the shaker, as will be shown in the next section, to perform validation tests.
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Preliminary testing

After printing the sensor, and bonding the the optical fibers using cyanoacrilate glue,
an experimental setup has been arranged to perform several vibration tests of the
sensor.

Setup is shown in the Figures 2.20 and 2.21. In Fig. 2.20a, part of the experi-
mental setup is set on a very heavy steel table, as to reduce the effect of spurious
environmental vibrations. The sensor is mounted on the shaker, and the coated
optical fibers (in red) are connected to the Smart Fibres SmartScan FBG interrogator,
which can sense the strain of the FBGs which are mounted on the cantilever.

Regarding said sensors, it was planned to have two identical gratings (i.e. with
the same Bragg wavelength) on a single cantilever, since this was a preliminary test.
However, after gluing and curing of the glue, it was found out that, while the sensor
on the top face of the cantilever was in fact centered at ca. 1538 nm, the one glued to
the bottom face had a Bragg wavelength of ca. 1530 nm, which is unfortunate since
it is very close to the lower detection edge of the interrogator, which is 1528 nm.

The PC described as ’FBGI PC’ is used to run the SmartScan software for
acquisition of the data, with a sample rate set to 2.5 kHz, which is plenty since
the range of interest for mechanical vibrations are set to 200 Hz as a design limit.
Another view of the software is shown in Fig. 2.21b.

In Figure 2.20b, the PC used to generate the excitation vibration is shown, along
with the hardware controller for the shaker. The PC generates a sinusoidal voltage
profile, which is then amplified by the amplifier shown in Fig. 2.21c, to provide a
strong signal to drive the shaker.

Finally, in Figure 2.21a, a detailed view of the sensing element is shown. The
sensing cantilever is the one on the left hand side, while the right cantilever has no
fibers attached to it, since this was a preliminary test. The fibers have a protective
plastic coating (in yellow) up to the interface with the body of the support. Then,
only the bare fiber is set along the length of the cantilever. Hot glue has been used
to secure the plastic protective casing to the support. Finally, an accelerometer has
been installed on the cantilever with no fibers to provide a visual feedback on the
’Shaker PC’ to check if the system was behaving as expected.
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It has to be noted that the tests were performed in open loop conditions, as it was
not possible to create a feedback loop using the accelerometer which was used, as
previously stated, as simple visual indicator. Thus, the controlled variable was the
driving voltage (which was kept constant, while frequency was swept) and not the
amplitude of the vibrations.

(a) Experimental setup (1)

(b) Experimental setup (2)

Fig. 2.20 Experimental setup overview
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(a) Detailed view

(b) Interrogation PC (c) Amplifier

Fig. 2.21 Experimental setup overview (cont.)
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Test results

Several simple tests have been performed to experimentally validate the theoretical
results. Initially, constant-amplitude constant-frequency tests have been performed
to characterize the system. Since the time-domain signals are not very descriptive,
the FFT of all trials is shown in Figure 2.22. All signals are plotted on the same
graph since all tests have same voltage amplitude (input) and length, thus the FFT
signals are directly comparable.

As previously stated, it was not possible to directly control excitation amplitude,
thus a constant voltage of 0.570 V was set for all trials. The value has been chosen
as to have an average response amplitude of 1 g of acceleration at 5 Hz.

The response peaks are clearly visible for each of the trials as sharp peaks in the
FFT, and it can be observed that the amplitude initially increases up to the 300 Hz
test, and then start decreasing for the following tests.

However, to find the natural frequency of the sensor, a frequency sweep has
been also performed. The continuous sweep is not a perfect test since the inertial
contribute is not completely removed. However, given the very modest mass of the
sensor, and the rather long test, it is still a useful evaluation.

Fig. 2.22 FFT of all constant amplitude tests
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In Figure 2.23, the time response of both sensor is shown (sensor 1 is on the top
face, sensor 2 on the bottom). The first ca. 4 s are used to calibrate the normalization
performed on the signal. In fact, the figure shows the variation of Bragg wavelength
of each sensor (plotted in picometers) from the mean value of the first 7500 samples
(ca. 3 s), to obtain a more accurate measure rather than using the stated Bragg
wavelength, since the nominal value can be influenced by factors such as glueing
and involuntary pre-tensioning.

Fig. 2.23 Time response of frequency sweep (0-1000 Hz)

As for the previous case, the FFT of the signal has been evaluated and is shown
in Figure 2.24. In this case, the resonant frequency is clearly visible, and it is at a
frequency of ∼ 273 Hz, which is not too dissimilar from the one predicted by the
FEM analysis, which was 235.6 Hz.

The discrepancy can be attributed to several causes: firstly, the incorrect modeling
of the material. In fact, generic values for the material (PLA) properties have been
chosen, which are surely different from the one of the filament used. Furthermore,
the material has been considered isotropic, which is not a good assumptions for 3D-
printed components, as the z-axis (extrusion axis) has markedly different properties
from the x and y-axis.

Moreover, the component does not have a 100% fillrate, which means that
the component is partly empty inside, thus changing the mass/stiffness ratio; this
phenomenon is limited to the lower support and not the medium support, which
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is the one including the cantilevers and has a 100% fillrate. In any case, the FEM
simulations provide a good ballpark estimate for the resonant frequency.

Referring to Fig. 2.24, the amplification is circa constant in the range of interest
(0−200 Hz). However, for very low frequencies ( f < 15 Hz), a significant attenua-
tion is present. The cause is unclear and further testing is needed to determinate the
cause. One hypothesis is that the structure damping has a relevant effect at such low
frequencies.

Another amplification peak can be found at around 914 Hz. This amplitude does
not correspond to any harmonic of the sensor, and thus is probably a resonance
frequency of the lower support that manages to excite the cantilever. However, it has
to be noted that this frequency is far beyond the working range of the sensor.

Fig. 2.24 FFT of frequency sweep (0-1000 Hz)

Additional sweeps have been performed at different amplitudes and limited to
350 Hz, as frequency above that are not of interest for this particular sensor. The
FFT are shown in Figure 2.25, where a voltage amplitude of 1 V was used, and
in Figure 2.26, where 2 V were set. Once again, the amplitude response is quite
linear in the region of interest, and a strong attenuation can be observed for low
frequencies.
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It is also visible how the second harmonic (∼ 546 Hz) is also excited at higher
amplitudes, and the higher the excitation amplitude, the more the second harmonic
is excited.

Fig. 2.25 FFT of frequency sweep, 1 V (0-350 Hz)

However, in Fig. 2.26, the FFT of sensor 2 has a very strange response and the
power spectral density also three or more order of magnitudes greater than the one
of sensor 1. This could be easily explained by looking at the time-domain signal
of the reflected wavelength, shown in Figure 2.27. It is evident that for large part
of the test, readings from sensor 2 go out of bounds. This happens for two reasons:
firstly, because the Bragg wavelength is very close to the lower edge of the measuring
window as previously explained, and secondly since the amplitude is larger compared
to previous test.

Thus, in the time domain, there is a continous cycle between a value very close
to the Bragg wavelength and zero, which means that the reflected wavelength goes
below the minimum wavelength readable by the interrogator. This phenomenon can
be easily avoided by choosing sensors whose Bragg wavelength is in the middle of
the measuring window, i.e. around 1550 nm in the case of SmartScan interrogator.
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Fig. 2.26 FFT of frequency sweep, 2 V (0-350 Hz)

Fig. 2.27 Time domain response of frequency sweep, 2 V (0-350 Hz)

Experimental sensitivity analysis

An experimental sensitivity analysis has also been carried out thanks to the data
provided by the accelerometer placed on top of the support in a position as close
as possible to the cantilever beam. It has to be noted that it has been placed on the
opposite side where the fibers are placed, given the constraints posed by the fibers
themselves and the drop of hot glue needed to secure them to the top of the support.
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Acceleration data are collected for all the different tests performed, both for
constant sinsuoidal excitation and also for constant-amplitude chirps, which are
useful for structure characterization.

One example of accelerometric data is shown in Fig. 2.28, where the sine excita-
tion is clearly visible.

Fig. 2.28 Acceleration curve as read by accelerometer, 5 Hz

On the other hand, the chirp response is shown in Fig. 2.29, which is the FFT
of a constant-amplitude chirp between 0 and 350 Hz, and is the same test as the
one shown in Fig. 2.25. The first support natural frequency is easily detectable at
220 Hz, and also the first harmonics at 440 Hz, even tough that frequency is not
directly excited. A minor resonance is also observable at 170 Hz and will need
further investigation. It has to be noted that in the range 15-200 Hz the response is
almost constant, which is useful since the objective is to characterize the cantilever
reducing as much as possible the effect of the support.

Referring again to Fig. 2.25, the effect of the support dynamics is very modest;
in fact, the two resonances at 170 Hz and 220 Hz can be detected but do not provide
significant alteration of the FBGs readings.

All that being said, in Table 2.5, the experimental sensitivity data are obtained.
By simply dividing the amplitude read by the FBG by the excitation amplitude read
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Fig. 2.29 Support dynamic response, 0-350 Hz chirp, 1 V

by the accelerometer, the sensitivity can be obtained. For all curves, peak-to-peak
measurements are used.

For each measure, the minimum detectable acceleration is also calculated, by
setting the Bragg wavelength variation as the minimum, repeatable measure that the
FBGI can elaborate, which is 1 pm.

It can be observed that the sensitivity is almost constant in the range of interest,
i.e. for frequencies lower than 200 Hz. On the other hand, when the excitation
frequency approaches the natural frequency, a sharp increase in sensitivity can be
observed. This behavior can be easily explained by the natural amplification provided
by the cantilever which greatly increases the oscillation amplitude and thus the strain
applied to the FBGs. Sensitivity data are also graphed in Fig. 2.30.

This is a preliminary series of test and other testing campaigns will need to be
performed to completely characterize the effect of the support and the response curve
of the cantilever. In fact, the experimental values are quite higher from the theoretical
ones and the cause will need to be investigated.
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Frequency
[Hz]

Excitation
amplitude
[m/s2]

FBG
amplitude

[pm]

Sensitivity
[pm/(m/s2)]

1-pm acc.
[m/s2]

Sensitivity
[pm/g]

5 0,952 1,5 1,58 0,63 15,46
10 2,91 5 1,72 0,58 16,86
20 5,95 6,5 1,09 0,92 10,72
50 6,87 8,2 1,19 0,84 11,71

100 5,55 8 1,44 0,69 14,14
200 4,21 11 2,61 0,38 25,63
300 3,79 24 6,33 0,16 62,12
400 3,43 5 1,46 0,69 14,30
500 3,07 3 0,98 1,02 9,59

1000 9,76 2 0,20 4,88 2,01
Table 2.5 Experimental sensitivity data

Fig. 2.30 Experimental sensitivity curve
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2.4.3 Compensated thermal sensor

Another sensor which was conceived was a combined strain-thermal sensor, again
based on FBG sensors. Due to lack of time, besides the numerical modeling, a
limited test was carried out.

The main design philosophy is to have redundant measures, which is accom-
plished by using more than a single sensing element to avoid having single point of
failure. The general design is shown in Figure 2.31, and is composed of an aluminum
support and two laminae, one again made of aluminum alloy 6082 and the other
made of low carbon steel C45.

(a) Support (b) Lamina

Fig. 2.31 Sensor components schematics

The objective of this sensor is to measure both temperature and strain applied to
the sensor, since FBGs are sensitive to both mechanical and thermal-induced strains.

In the complete version of the sensor, one additional FBG sensor will be bonded
to the support, as to be also sensitive to mechanical strain. The following analysis
refers to one sensor bonded to the support and one to the aluminum lamina.

Two different materials are used for the laminae as to also allow testing of the
interaction between glue, coating, fiber and metal, which will be the scope of future
works.
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Numerical model

The basic FBG equation relating strain, temperature and wavelength is the usual
Eq. 2.7, which once again is:

∆λB

λB
= (1− pe)ε +(αΛ +αn)∆T (2.27)

However, when bonded to another material, and especially if the support mass is
much greater than that of the fiber, the effects of said material become the driving
effect on the FBG readings.

In fact, for a generic isotropic material, strain can be induced by both mechanical
effects and temperature variations, which are described by the following equations:

εM =
σ

E
=

F
A ·E

(2.28)

εT = α∆T (2.29)

where F is the force applied to the specimen, σ is stress, A is the sectional area,
E is the Young modulus of the material and α is the linear coefficient of thermal
expansion. The assumption is that the specimen is only loaded in axial direction by
traction or compression.

Considering the FBG which is bonded to the support, it will be subject to
both thermal and mechanical strains, thus the normalized wavelength shift can be
expressed as:

∆λ1

λ1
= k′ε,1

(
F

AEal
+αal∆T

)
+ kT, f iber∆T (2.30)

where k′
ε,1 is the modified kε considering the effect of the bonding, which is

harder to model better so this model relies on an experimental characterization to
obtain the numerical values.

On the other hand, the fiber bonded to the lamina will only be subject to thermal-
induced material strain, thus the normalized wavelength shift is:
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∆λ2

λ2
= k′ε,2αal∆T + kT, f iber∆T = kT 2,eq∆T (2.31)

Now, subtracting the two previous equation, we can obtain:

∆λ1

λ1
− ∆λ2

λ2
= k′ε,1

F
AEal

+(k′ε,1 − k′ε,2)αal∆T (2.32)

The modified strain coefficients are defined as:

k′ε, j = kB jkε (2.33)

where kB is a bonding constant which encapsulate the effect of the glue on the
strain transfer, while kε = 1− pE is the nominal strain coefficient of the fiber.

Substituting the previous equation in Eqn. 2.32, after some algebric passages one
can obtain:

∆λ1

λ1
− ∆λ2

λ2
= (1− pE)

(
kB,1

F

EalA
+(kB,1 − kB,2)αal∆T

)
(2.34)

where it was assumed that both fibers are identical, thus pE,1 = pE,2 and also
that the thermal-induced strain component directly on the fiber is equal, i.e. kT, f iber

is the same for both FBGs. Additionally, it is assumed that thermal equilibrium has
been reached.

Observing the previous equation, it is possible to see that the thermal and mechan-
ical components are not directly separable in a realistic case, since the magnitude
of the bonding effect is unclear. However, if the difference between the two FBGs
bonds is small, then the difference between the normalized wavelengths shift is
almost exclusively due to the mechanical-induced strain.
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Additionally, several parameters are unknown and will need to be experimentally
characterized, starting from the two bonding constants kB1,2 .

In any case, if only the temperature measure is needed, the laminae bonded
sensor can be used by itself. As reported in Equation 2.31, that sensor can be thought
as being purely proportional to temperature only. This stems from the fact that no
mechanical constraints limit the free expansion of the lamina and thus of the fiber.
To do so, a calibration will be needed to obtain the value of the equivalent thermal
coefficient for the lamina-FBG assembly, which is denoted with kT,eq in Eqn. 2.31.

Experimental determination of kB

Due to time constraints, a limited number of tests has been carried out. In this test,
the focus was on the determination of the bonding coefficient kB, limited to the case
of purely thermal strain.

To do so, two physical samples have been manufactured, with the same specifics,
and are shown in Fig. 2.32. The anodized specimen has two acrylate-coated FBGs
bonded to each of the laminae, while the non-anodized specimen uses polyammidic-
coated fibers, with the FBG element exposed. All the fibers have been bonded to the
metal supports using cyanoacrilate resin.

Both specimens have been inserted inside a Beger KK-50 climatic chamber
(Fig. 2.33a), used to precisely control temperature setpoints. Humidity has not been
changed during the test and was kept circa constant at about 50%. The thermal profile
was set as a temperature stair, with 10 ◦C increments, with each step lasting for 30
minutes. The FBGs wavelengths are analyzed by the usual Smart Fibres Smartscan
interrogator (Fig. 2.33a, on top of the climatic chamber), while the acquisition is
carried out using the laptop shown in Fig. 2.33b, which is also used to monitor and
log the chamber setpoint and actual temperature (Fig. 2.34).
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(a) Specimen with coated sensors (b) Specimen with uncoated sensors

Fig. 2.32 Supports for testing kB

(a) Climatic chamber and FBGI (b) Acquisition laptop

Fig. 2.33 Testing apparatus
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Fig. 2.34 Chamber temperature graph

The raw readings from the FBG interrogator (FBGI) are show in Fig. 2.35. While
the acrylate-coated FBGs exhibits a standard behavior, mirroring the temperature
setpoints of the chamber (including the overshoots visible especially at 10, 20 and
30 ◦C), the uncoated variants show a strange behavior at higher temperatures. It
seems that the cyanoacrilate does not bond correctly either to the bare glass, the
polyammidic coating, or both. It is possible that the fiber starts slipping and thus
provides a reading which is not constant. Thus, viscous creep due to poor bonding
could explain the behavior of the uncoated fiber.

The raw data have been used to extract the equilibrium wavelength values,
which was not really possible for the naked fibers. In that case, the last point
of each temperature step has been chosen to maintain consistency; however, new
measurements will be needed to better characterize this phenomenon.

Nonetheless, the data points have been linearly interpolated, and data are shown
in Fig. 2.36 and Fig. 2.37.
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Fig. 2.35 Readings from the FBGI

Fig. 2.36 Linear correlation for coated sensors
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Fig. 2.37 Linear correlation for uncoated sensors

For the reasons explained before, the linear fit is accurate for the coated sensor,
having coefficient of determinations R2 = 0.9979 and R2 = 0.9902 for steel and
aluminum respectively, while for uncoated sensors is not accurate enough, with
coefficient of determinations values of R2 = 0.9755 and R2 = 0.9563, again for steel
and aluminum respectively .

In any case, the bonding coefficient as defined previously is numerically evaluated
by inverting Equation 2.31, thus obtaining:

kB =
∆λ

λ
− kT, f iber∆T

kεαal∆T
(2.35)

using the following parameters: kT, f iber = 9.765 ·10−6 ◦C−1, kε = 0.784 obtained
using equations and parameters values reported in [46].

Thus, applying the previous equation the graph shown in Figure 2.38 can be
obtained. As expected, the bonding coefficient is not constant with regards to the
temperature. Furthermore, an anomaly is visible close to the reference temperature,
which is T0 = 33.9 ◦C for the coated version and T0 = 18.9 ◦C for the uncoated one.
Reference temperature is defined as the temperature where the wavelength is equal
to the nominal one, which for all sensors tested in this experiment is 1550 nm.
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For the uncoated sensors, the values descends quite rapidly after 40 ◦C, and
this phenomenon can be explained by referring to Fig. 2.37: after this temperature
FBG readings start to plateau and linearity is lost - which is directly reflected in the
bonding coefficient.

Fig. 2.38 Bonding coefficients plots

Table 2.6 Bonding coefficients

Temperature [◦C] Al, coated FeC, coated Al, uncoated FeC, uncoated

0 0.3624 0.2485 0.7592 0.8903
10 0.2419 0.2381 0.7534 0.8059
20 0.1273 0.2395 1.1766 1.3099
30 -0.1278 0.0954 0.8629 1.0131
40 0.4244 0.7043 0.8297 0.9940
50 0.2199 0.2239 0.6633 0.7767
60 0.1830 0.1716 0.4939 0.5673
70 0.1705 0.1503 0.3887 0.4486
80 0.1657 0.1414 0.3063 0.3322
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The most promising result is achieved by the acrylate-coated FBG bonded on
a steel support - blue line in Fig. 2.38. Besides the anomaly in proximity of the
reference temperature, the behavior is quite linear with an average value of kB =

0.246. All the values are shown in Table 2.6.

From this preliminary results, it is clear that further investigation of the interaction
between fiber, bonding resin and support is necessary. With the results evaluated
in this study, the application of the formulation proposed in the previous section
is not direct, as the bonding coefficient is not constant but is rather a function of
temperature. Thus, a modification of the proposed model is necessary to include a
temperature dependency on the bonding coefficient, while at the same time the effect
of resin will have to be investigated to mitigate non-linearities, if possible, especially
around the normalization temperature, which could also be an artifact of the model
itself.



Chapter 3

EMA numerical models

Developing prognostics and diagnostics strategies requires a large amount of data,
which is not an easy task when the system of interest is complex. Furthermore,
the most useful data obtainable from a real system are run-to-failures, where the
component or system is continuously operated in conditions mirroring operating
conditions, with or without accelerated degradation.

As expected, run-to-failures require a number of different system to be destroyed,
which is expensive and time consuming. A tool that can ease the situation is the
adoption of numerical models representing the system in different health statuses
and operating conditions.

3.1 Usefulness of numerical models

As previously stated, numerical models can be helpful tools in the context of prog-
nostics and diagnostics. Numerical modeling has a long history in engineering.

Starting with the development of computers in the late 1940’s, solving numerical
models has become feasible when no analytical solution exist, which is generally
the case for most non linear systems. In fact, the development of the first general
purpose computer in the modern sense, ENIAC, was driven by the United States
army need to precisely calculate artillery tables [47].

Computer simulations have been instrumental to the space race. In fact, no closed
solutions exist to the gravitation equations when considering more than two bodies.
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The only way to estimate the future condition of an object in space when subject to
gravity from more than two bodies, is to numerically propagate the initial conditions
using a simulation, which is generally referred to as a numerical propagator. Without
computers, it would have been much harder to reach the Moon or plan missions
outside the Earth sphere of influence. Especially for long duration missions, a high
accuracy is paramount, as a small initial error can be propagated and amplified more
and more as time increases, providing solutions can be completely different from
reality.

Nowadays, with computers being several order of magnitudes more capable than
the original ENIAC, it is possible to model, with a reasonable accuracy, planet-scale
phenomena such as weather, climate and pollution spread.

Regarding this work, numerical modeling has been used to model an aeronautical
electromechanical actuator (EMA), actuated by a Permanent Magnet Synchronous
Motor (PMSM), in order to generate data at different levels of damage to create a
system degradation dataset, as will be explained in the next chapter. In this chapter,
starting from a reference HF model, validated on a real test bench, several reduced
order model with different levels of fidelity will be presented.

3.1.1 Reduced order models of EMA

As previously explained, numerical models are very useful to have a digital surrogate
of a physical system. However, since every model is an approximation of a real
system, different levels of fidelity can be achieved, depending on the simplifying
hypotheses applied during model construction.

In this context, reduced order model are useful for different reasons. The main
advantage is a lower computational load on the system, since detailed modeling of
some components is omitted because is deemed as not necessary for the application,
as will be described shortly.

For the following models, the common approximation is considering elements
with lumped parameters, i.e. intrinsic properties such as mass, resistance etc. is
’concentrated’ in a single element rather than be distributed as in a real system. It is a
very common approach as it strongly simplifies the modeling of the system and is the
basis to Simulink-style, block-driven modeling. On the other hand, using distributed
parameters would lead to more complex and specialized techniques such as Finite
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Elements Method (FEM) or Computational Fluid Dynamics (CFD) which are much
harder to correctly set-up and extremely hardware-intensive.

3.2 Reference High Fidelity (HF) PMSM model

The High Fidelity model will be used as a reference to test the simplified models
against and evaluate accuracy, as the HF model has been optimized on a physical
test bench to match the results as closely as possible. The test bench is shown in Fig.
3.1 (from [48]). Calibration details can be also found in [48].

Fig. 3.1 Test bench for EMA model

As previously described, the model represents an electromechanical servoactuator
driven by a Permanent Magnet Synchronous Motor (PMSM), and includes non-linear
phenomena such as dry friction, noise and backlash. The main approximation is, as
discussed before, lumped parameters.

Additionally, the rotor-stator electromagnetic interaction is not explicitly modeled
but the following equation is used:

Tm = Σk ji j (3.1)
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where k j and i j are the phase motor constant and phase current, respectively.
This approximation is needed to avoid using electromagentic FEM tools to resolve
the motor-stator coupling that would render the model extremely complex and slow
to simulate.

In Fig. 3.2 the top level view of the model is shown. The Com block is the
programmable command block used to create the command imposed on the motor,
but referred to the slow shaft, as the servomechanism is a position-commanded one.

The Ext. load is a programmable external load block used to model a torque
acting externally on the servo, which is representative of phenomena like hinge
moment as this servomechanism is referred to an aerospace one.

The HF model is the core of the model and will be described in the following
subsections, as it is complex and is composed by several nested subsystems. Finally,
the scope on the right is used to visualize important parameters such as motor position
(theta_m), motor speed (Dtheta_m), user position (theta_u) and equivalent single-
phase current (I_3eq_HF) which is used for comparison with the other single-phase
equivalent models.

Fig. 3.2 HF model top level view
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Fig. 3.3 HF model overview

In Fig. 3.2 the first level of the HF model subsystem is shown. Subsystems will
be briefly described here, as the expanded view and a more in-depth description will
be provided for each of them. From left to right:

• Command Electronics (PID): this subsystems contains the control logic
for the whole servomechanisms. The main control element, as the name
implies, is a PID (Proportional-Integral-Derivative) controller, with several
added functions such as anti-windback. Additionally, there are saturations for
several quantities such as driving current and motor velocity.

• Resolver: this simple subsystem converts the mechanical angular position of
the rotor to electrical position considering the number of pole pairs.

• Inverter model: this subsystems models to the component level the inverter
used to drive the PMSM motor. It receives a command current, I_ref, applies
the Clarke-Park transformation, to create the three current signals A1, A2, A3
which are created using Simscape Power Systems, in order to create a physical
representation of the electrical part. The three measured phase currents I_A,
I_B, I_C are also inputs to the system as they are used as feedback.

• PMSM electromagentic model: in this subsystems, the motor-stator inter-
action is simulated. Additional inputs besides the driving signals are motor
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position and speed (theta_m, DTheta_m). The main output of the subsystem
is the motor torque T_m, which is fed through the next subsystem represent-
ing the transmission model. Finally, the currents are also passed forward for
logging and plotting.

• Motor-transmission dynamical model: it models the geared transmission
from motor shaft to user shaft, while including phenomena such as viscous
and dry friction, and backlash.

• Signal acquisition: this systems is used to filter and log the current signals.

3.2.1 Command electronics (PID) subsystem

Fig. 3.4 Command electronics (PID) subsystem

The structure of the subsystem is shown in Fig. 3.4. The main input to the
controller subsystem is the user command position setpoint, which is input 1 on the
left of the figure. The error is promptly calculated using the measured user position,
which is input 2.

The error is now multiplied by the controller proportional gain, controller.Gprop.
The flag controller.Flag is used to switch the controller behavior from position
control to speed control. For the purposes of this thesis, only position control has
been used.

The position error, now multiplied by the controller proportional gain (with units
s−1), is the reference speed W_ref, which is saturated by the Speed Reference Limiter
saturation block.
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The internal speed feedback loop is now closed and the resulting speed error is
calculated (Err_W). The speed error, position error Err_Pos and measured speed
DTheta_m (input 3) are fed to the PID subsystem, which is a saturated PID controller
with several anti-windup solutions implemented.

The output of the PID subsystem is the reference torque TM_ref, which is
multiplied by the factor (2 ·BLDC.Ke)−1 to obtain the reference current to drive the
motor. It stems directly from the motor equation:

T = KT · i = Ke · i (3.2)

where T is motor torque, i is current, KT is the motor torque coefficient and Ke is
the back-EMF coefficient. It is assumed that KT =Ke, and thus the resulting equation.
From the data available, BLDC.Ke represents the back-EMF constant of a single
branch, thus the multiplication by 2 in the previous equation, since BLDC.Ke = Ke/2.

The torque calculated is now passed through a saturation block, Current Ref-
erence Limiter, to implement the overcurrent protection for the motor, and thus
obtaining the saturated reference control current I_ref.

Finally, band-limited white noise is added to the reference current to simulate
noise along the whole controller subsystem, with a rate transition to interface it
properly as the white noise can have a different sample time with respect to the other
blocks running at the model timestep. In this case, the noise sample rate is set to 100
model timesteps.

PID block

The original PID (green area in Figure 3.5) was developed, along with the model,
before the test bench was available, and is thus implemented in the parallel PID form,
altough using the characteristic times formulation rather than the more traditional P,
I, D coefficient formulation.

Starting with the (user) speed error, the proportional gain controller.PID.GAP
[Nms/rad] is applied, obtaining the proportional component of the command.
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Fig.3.5
PID

subsystem
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The same value is divided by controller.PID.Ti, where Ti is the integral time
constant of the controller. The output is then integrated and saturated to obtain the
integral component of the controller output.

Finally, a transfer function is used to model the filtered derivative part of the PID,
which is in the following form:

H(s) =
controller.PID.Td · s
controller.PID.Td
controller.PID.N · s+1

(3.3)

where controller.PID.Td [s] is the derivative characteristic time and controller.PID.N
[s−1] is the derivative bandwidth.

The three components are then summed to obtain the total output of the PID
controller.

However, the PID as formulated does not have any anti-windup implemented, but
only an output saturation. During experimental validation, it has been found that the
lack of an anti-windup caused discrepancies between the model and the test bench.

Thus, three different anti-windup have been implemented, using different trigger-
ing logic, in the New PID architecture (red area). Starting with the Anti-windup 1
(violet area), the triggering logic is that if the speed is zero for more than a single
timestep, the integrative branch should be deactivated. This case can occur when
the servomechanism is at one edge of the actuation range and further rotation is not
possible, thus a dangerous compounding of the integral error is avoided.

Anti-windup 2 has simpler logic, i.e. the integrative branch is deactivated when
the position error is greater than a treshold. Again, this is done in order to avoid total
controller saturation caused by excessive integrative error compounding.

Finally, anti-windup 3 (pink area) checks whether the saturated command is equal
to the non-saturated one, i.e. it checks if the controller is in saturation conditions. If
this is the case, then the integrative branch is deactivated as additional summing will
lead to windup.

It has to be noted that in this model system 1 and 2 do not operate at the same
time, and only one of either is active at the same time. In this thesis, only system
2 was selected. On the other hand, system 3 is always active independent of which
system between 1 and 2 is selected.
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3.2.2 Resolver

Fig. 3.6 Resolver subsystem

The resolver subsystem (Fig. 3.6) is simple, as it only computes the electrical
angle using the mechanical angle of the motor and the number of pole pairs, using
the following equation:

θe = 2π

(
P ·θm

2π
−floor

(
P ·θm

2π

))
(3.4)

where BLDC.P = P is the number of pole pairs of the motor, theta_e is the
electical angle and theta_m is the mechanical angle. In other words, this function
wraps the mechanical angle between 0 and 2π after scaling by the number of pole
pairs, as the electrical angle is the mechanical angle multiplied by the number of
pole pairs, as more polar expansion means less mechanical rotation is needed before
each commutation.

3.2.3 Inverter model

The inverter subsystem models the electronic driver (an H-bridge) including the
commutation logic used create the three driving currents starting from the reference
current originating from the controller subsystem. As shown in Figure 3.7, several
subsystems are present inside, performing different functions.

The motor is controlled using Field Oriented Control, a technique that allows
easier management of the phase switching as it performs a coordinate transformation
between the a, b, c rotating frame of the three phases to a non-rotating q, d, 0 frame
aligned with the magnetic axis of the rotor. Using two different transformations, the
rotating a, b, c frame of reference is firstly transformed in the instantaneous direct
and quadrature flux axis using the Clarke transform obtaining the α,β ,0 frame of
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Fig. 3.7 Inverter subsystem

reference. Then, by application of the Park transformation, the frame of reference is
made stationary along the direct and quadrature axis of the motor by rotating it of θe

which is the motor electrical angle.

In mathematical terms, the two change of coordinates can be expressed as:

[d,q,0] = KP · [α,β ,0] = KP ·KC · [a,b,c]

The two transformation matrices are the following:

KC =

√
2

3


1 −1

2 −1
2

0
√

3
2 −

√
3

2

1√
2

1√
2

1√
2

 KP =


cos(θe) sin(θe) 0

−sin(θe) cos(θe) 0

0 0 1

 (3.5)

However, on the control side, the inverse transformations are used (Fig. 3.9),
since the commanding variable is I_ref. In general, both Iq and Id can be controlled,
being the torque component and the flux component. In this case, the flux component
is not of interest since no field weakening is applied and thus I_ref is set equal
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to Iq, thus all the reference current contributes to an increase of the motor torque
output. The equations implemented in the model are simplified version of the general
form that can be obtained from inverting Eqns. 3.5, since applying the inverse Park
transformation gives a component which is always equal to zero.

Fig. 3.8 Phase evaluation subsystem

The direct transformations are instead used on the feedback loop to read the
actual motor currents values and used them for error calculation purposes, going
from the [a,b,c] to the [d,q,0] frame of reference.

In the model, the Evaluation of phase currents subsystem (Fig. 3.8) uses the
inverse Clarke and Parke transformations to obtain the reference currents referred to
the three motor phases. To do so, the I_ref coming from the controller is considered
as the quadrature current using the inverse Clarke transformation (Fig. 3.9a) as
previously explained. After both transformations, the three reference currents in the
[a,b,c] frame of reference are obtained and will be used to drive the motor.

(a) Inverse Clarke transformation (b) Inverse Park transformation

Fig. 3.9 Inverse Park/Clarke transformations

Once the three reference currents have been obtained, the three individual current
errors are evaluated by subtracting measured value from reference. Then, the error is
used to drive an hysteresis PWM, as in Fig. 3.10.
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Fig. 3.10 Hysteresis PWM

The pulse generation is a simplified version of the common carrier-wave PWM
with fixed frequency. In this case, there isn’t a pre-defined PWM frequency, as the
signal is triggered whenever the error is above (or below) the current dead-zone set
up in the block. Modeling the oscillating trigger in this way as the advantage of
being very easy to implement, but on the other hand, the lack of a reference carrier
frequency makes the triggering as short-timed as the model timestep. Additionally,
for very tight dead-zone width, the model will become extremely stiff since there
will be a switching between high and low values almost every timestep.

This slows down the simulation and will need to be evaluated in the future, as in
general a dedicated PWM subsystem should improve simulation time.

Finally, the three switching signals are used in the 3-phase bridge subsystem to
drive an electrical model of the 3-phase H-bridge, as in Figure 3.11.

The upper portion simply create a negation of the three command signals using
NOT blocks, while the original signal is casted as boolean. The six signals are then
grouped with a bus and used as inputs for the MOSFET-based Simscape Electrical
Power Systems Universal Bridge, which is connected to a DC Voltage source.

The three output signals are shown on the right and are not simple logical, one-
directional signals, but are rather physical connection capable of bi-directional energy
transfers. These values will be directly connected to the phases coils in the PMSM
electromagnetic model subsystem that will now be described.
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Fig. 3.11 3-phase bridge

3.2.4 PMSM electromagnetic model

This subsystems is used to model the electromagnetic interaction between the stator
and rotor of the PMSM motor, in a simplified way. As shown in Figure 3.12, several
subsystems are present, starting with the computation of back-EMF coefficients.

Since this motor is a PMSM rather than a more common Brushless DC (BLDC),
the back-EMF profile is not trapezoidal as function of the angle, but is rather sinu-
soidal. Thus, using the mechanical angle to calculate the electrical angle, a simple
modulation is used to create three 120◦ out-of-phase sinusoids representing the three
phases back-EMF coefficients (Fig. 3.13).

Computation of back-EMF coefficients

Additionally, since this model is intended to simulate also faulted conditions, an
additional modulations is introduced for each of the three coefficients as function
of the static eccentricity parameterized using ζ and φ . Eccentricity magnitude ζ is
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Fig. 3.12 PMSM electromagnetic model subsystem

defined as ζ = x0/g0, where x0 is the rotor axis linear offset from intended position
and g0 is the nominal air gap, i.e. when eccentricity is zero (x0 = 0) . Eccentricity
phase φ is the the angle where the air gap is minimized, using an horizontal axis as
zero and counting in anti-clockwise direction. Full derivation can be found in [48].

The three f(u) blocks that modulates the back-EMF coefficients are the following:

(A) - BLDC.Nabc(1)∗BLDC.Ke∗u(2)∗
(1+(BLDC.P > 1)∗BLDC.zeta∗ cos(u(1)−BLDC.phi))

(B) - BLDC.Nabc(2)∗BLDC.Ke∗u(2)∗
∗ (1+(BLDC.P > 1)∗BLDC.zeta∗ cos(u(1)−BLDC.phi+2∗ pi/3))

(C) - BLDC.Nabc(3)∗BLDC.Ke∗u(2)∗
∗ (1+(BLDC.P > 1)∗BLDC.zeta∗ cos(u(1)−BLDC.phi+4∗ pi/3))

where BLDC.Nabc is a three-element vector with the fraction of active turns per
each coil, BLDC.Ke is the nominal back-EMF coefficient, BLDC.P is the number
of pole pairs, BLDC.zeta is the non-dimensional eccentricity as explained above
and BLDC.phi is the eccentricity phase. u(1) and u(2) are the relative inputs to the
function block.
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Fig. 3.13 Back-EMF coefficient evaluation

Once the back-EMF coefficients have been evaluated, they are multiplied by the
motor angular speed to obtain the back-EMF voltages to be applied to the stator
coils.

Three phase RL model

This subsystem is relatively simple and is modeled by using three RL branches
(Fig. 3.14) representing the three phases, as it is usually done, wound in a wye
configuration. Additionally, the motor center is not grounded as typical for aerospace
applications.

Additionally, one controlled voltage source per branch is added with opposite
polarity to the main supply; this represents the back-EMF component. The value has
been calculated in the previous subsystem and is updated every timestep.

Voltage and current monitors are present to measure these variables of interest.

Motor-transmission dynamical model

The transmission model is relatively complex as it includes several phenomena such
as viscous friction, backlash, and an improved dry friction model, the Borello model
[49].

Starting from the left hand side of the model, the external load is reduced to
the fast shaft by multiplying by the gear ratio dyanmics.tau. The first sum block
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Fig. 3.14 Three-phase RL model

evaluates the torque balance as:

Te = Tm −L− fv (3.6)

where Te is the effective torque acting on the transmission, Tm is the motor torque
and fv is the sum of the viscous friction components, one of directly proportional to
motor speed, with coefficient dynamiucs.CU and one to the signed square root of
speed, with coefficient dynamics.CM. The second term has been empirically added
during experimental validation.

The second sum block subtracts the dry friction calculated using the Borello
friction model (Fig. 3.16), which is an implementation of the Coulomb model
intended for numerical simulation, as it provides a robust behavior even in proximity
to the static-dynamic boundary, where purely analytical models fail. In short, this
dry friction model evaluates the acting (or effective) torque on the transmission,
and if that is lower than the maximum static friction force, it sets it equal to the
acting torque. Once the acting torque is greater than the maximum static friction,
the system starts sliding and a new value of dynamic friction is calculated; reducer
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Stribeck and brake Stribeck are two relatively small contribution that appears in
conditions of incipient motion, and are also implemented in the model to have a more
realistic representation of the friction force change in proximity of the stick-slide
boundary. In fact, a discontinuity in the friction force is not physical and the Stribeck
contributions create a continous and more realistic friction curve.

Additionally, a zero-crossings check is made on the motor speed; if a zero
crossing is detected, the speed signal is reset to zero, as it implies that the conditions
changed to sticking rather than sliding at least for a timestep.

Fig. 3.15 Motor-transmission dynamical model

After that, a saturation port is used to stop the integration when the end stops are
reached, so neither position or speed can increase.

After scaling using the sum of motor and user inertia (reduced to fast shaft,
i.e. dividing by dynamics.tau2), the first integrator uses this acceleration value to
calculate the motor speed, DThM. The OR block before provides a speed reset signal
when either the position integrator provides a saturated value, i.e. an end stop has
been reached, or when the Borello friction model provides a signal. This happens
when the system starts moving so the rising edge state port on the speed integrator
triggers.

The speed signal can now be integrated to obtain an angular position, and this
is done using the second cascaded integrator. The position integrator is saturated
between the two end stops. Finally, backlash can be applied (but in this thesis has
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not been investigated, i.e. has been set to zero) before obtaining the user position
dividing by the gear ratio.

On the lower side, as previously stated, the two components of the viscous
friction have been evaluated by multiplication of motor speed with dynamics.CU for
the true viscous component and by dynamics.CM after signed square rooting for the
quasi-viscous component.

Fig. 3.16 Borello friction model

Computation of motor torque

This is the simplest subsystem which evaluated the torque generated by the motor by
knowing the currents in each phase. It simply applies the equation:

Tm = kA · iA + kB · iB + kC · iC (3.7)

where k j is the instantaneous back-EMF coefficient for the phase and i j is the
phase current. To be more accurate, the coefficient considered should be the motor
torque coefficient, usually Kτ (with units Nm/A), which is in fact defined as the
ratio between motor generated torque and current applied. However, it can be
demonstrated from conservation od energy that the back-EMF coefficient, usually
KV with S.I. units rad/(V · s), must be equal to the motor torque coefficient. This
approximation is true when losses are ignored, which is a reasonable assumptions
when the motor is used far from saturation conditions.
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3.2.5 Signal acquisition

This simple subsystems is used to change coordinate frame to the three measured
currents I_A, I_B, I_C to obtain i_q and i_d, i.e. the quadrature and direct current.
This is achieved by successively applying the Clarke and then the direct Park trans-
form, which are simply the inverse of those shown in Fig. 3.9. These measures are
useful quantities as they can be directly compared with those from other simplified,
single-phase motors that will be described in the following sections. In fact, i_d is
also labeled as I_3eq as it can be seen as the single-phase current for a simplified
equivalent monophase motor.

The signal filters are third-order low-pass filter obtained by cascading three
first-order low-pass filter; each stage has a time constant of 50 µs.

Fig. 3.17 HF signal acquisition subsystem

3.3 Medium Fidelity (MF) PMSM model

The HF model is a very precise and detailed model, and can model the behavior of
the reals system with a high degree of accuracy. However, the trade-off is that the
model runs very slowly even when optimized using Simulink Accelerator mode that
can compile part of the model and run it without using the Java interpretation layer,
thus strongly increasing performance.
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Thus, the first step to improve the simulation time is to simplify the slowest
subsystems of the model, which are those simulating electronic components. This
is the purpose of the Medium Fidelity model, which simplifies the PMSM electro-
magnetic model and uses a finite-state machine to evaluate which phase become
voltage-saturated. Subsystems that are not analyzed are to be intended equal to those
found in the HF model. Additionally, the hysteresis PWM has been eliminated which
is also a big contributor to computation time.

In Figure 3.18 an overview of the MF model is shown, and it can be seen the
conceptual similarity to the HF model.

Fig. 3.18 Medium Fidelity model overview

3.3.1 MF Inverter model

As previously stated, the inverter model in the medium fidelity model (Fig. 3.19)
is a simplification of the high fidelity one. The main difference is the lack of the
hysteresis PWM, and also the error calculation between reference and measured
currents. In the MF model, the reference currents are directly used to drive the
motor computation. The difference can be attributed to how the model is set-up,
as the electromagnetic part is not physical anymore but is rather evaluated using
mathematical functions.
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Inside the Evaluation of phase currents subsystem the previously explained
inverse Clarke and Park transformations are applied, analogously to the HF model,
to change the [d, q, 0] frame of reference the [a, b, c] frame.

Fig. 3.19 MF inverter model

3.3.2 MF PMSM electromagnetic model

The main difference between the HF and MF model can be found in how the actual
EM interaction between the stator and rotor. The physical modeling is abandoned
and equations are now used to approximate the behavior of the stator phases. In
Fig. 3.20 the top level view of the EM model is shown, which is now substantially
different from the HF implementation.

The computation of back-EMF coefficients and Computation of motor torque
are the same of the HF model and will not be explained again, since the parameters
are also equal. However, the back-EMF calculation has been refactored and is now
grouped inside the Back-EMF calculation subsystem, which simply multiplies the
instantaneous back-EMF coefficients k_A, k_B, k_C by the motor angular speed
DTheta_m as usual. It has been empirically found that an increase of 7.5% for
the back-EMF values improves the adherence to the results provided from the HF
model, so it has been applied with a gain block (with value 1.075) before passing the
back-EMF values to the PMSM subsystem.
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MF PMSM model

The inputs of the PMSM model subsystem (Fig. 3.21) are the three phase resis-
tances, which in this case are set to nominal values (BLDC.Rs/2), the supply voltage
inverter.Hbridge.Vdc/

√
3 (i.e. 380 V phase-to-ground, which means 220 V phase-

to-phase), the three reference currents IrefA, IrefB, IrefC obtained from the inverter
subsystem, which are vectorized before being passed to the subsystem, and the three
back-EMFs, which are vectorized in the vector E before being sent to the subsystem.

In this model, the PMSM is modeled using a finite state machine to comply with
conditions of voltage saturation, since it as in important phenomena that should be
taken into account for a good fidelity simulation.

Since the motor is current controlled, the three reference currents are used to
calculate the three different control voltages:

V re f
j = R j · ire f

j +E j = R j · ire f
j + k jωm (3.8)

where V re f
j , ire f

j are the reference voltage and current for a phase, E j is the
phase back-EMF, k j is the back-EMF coefficient and ωm is the motor angular speed.
However, these voltages are limited by the maximum supply voltage, Vs. It is thus
possible to have a condition in which one or more phases are in voltage saturation,
so that phase(s) have to be set equal to Vj =Vs · sign(V j

re f ).

After saturation are imposed, the electrical circuit is resolved obtaining currents
and voltages for the three phases and the neutral voltage, being a wye-wound circuit.
However, it is now necessary to re-evaluate the voltages obtained after the first step.

It is possible that, after one phase becomes voltage-saturated, the system imbal-
ance could push the other phases voltage above the supply value.

The truth tables (Case eval 1st stage, Case eval 2nd stage) are used to compare
the step output voltages to Vs, and a flag is used to determine which phases are in
saturation.

The direct lookup tables (2nd step case selection, 3rd step case selection) are
then used to select which set of equations the next step will use to solve the system.
These tables are used to keep track of which phases have already been set to saturated
in previous steps and add the newly saturated phases. In particular, three different
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evaluations are needed since a condition that can occur is that only one phase is
initially saturated; after system resolution, however, is found that a second phase
is also in saturation; the final evaluation might show that even the third phase in
saturation. Thus, only the last step currents and voltages are used as ’true’ values
outside of this subsystem.

For all the blocks in the subsystem, the truth table shown in Fig. 3.21 is used to
maintain consistency. The equations used in the functions block are the following:

Non-saturated conditions: 
i j = ire f

j

Vj =V re f
j

Vn = 0

One phase saturation (phase a):

ib,c = ire f
b,c

ia =−(ib + ic)

Va =Vs · sign(V re f
a )

V0 =Va −Raia −Ea

Vb,c =V0 +Rb,cib,c +Eb,c

Two phases saturation (phases a, b):

ic = ire f
c

Va,b =Vs · sign(V re f
a,b )

R∗ = RaRb/(Ra +Rb)

i∗a,b = (Va,b −Ea,b)/Ra,b

V0 = R∗Σ ji j

Vc =V0 +Rcic +Ec
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All phases saturation:

Vj =Vs · sign(V re f
j )

R∗
eq = Π j(R j)/(RaRb +RaRc +RbRc)

i∗j = (Vj −E j)/R j

V0 = R∗
eqΣ j(i∗j)

i j = (Vj −V0 −E j)/R j

The symbols used are: V re f reference voltage, Va,b,c phase voltages, V0 neutral
voltage, ire f reference currents, ia,b,c phase currents, R j phase resistances, Ea,b,c

back-EMFs. R∗ and i∗ are non-physical quantities used to shorten the equations.

The Case eval truth tables simply compares the stage calculated voltages to
supply voltage, and if detects a threshold crossing it will consider that phase as
saturated and it will provide the appropriate flag in accord to the truth table shown
in Fig. 3.21. This flag, and the one provided by either PMSM Model 1st stage or
PMSM Model 2nd stage, provides the new saturation conditions to be used as case
selection in the following stage.

This implies that the number of phase which are voltage-saturated can only
remain constant or increase from one stage to the next. This approach is not optimal
since for every condition three passes are done anyway, which is wasteful. If all three
phases are non-saturated or saturated in a single stage, then additional evaluation
will not yield different results and can safely be skipped. Such optimization will be
implemented in further versions of the model.

Current transfer function

Up to this point, the model is instantaneous, since only the effect of the resistance is
considered and the phase inductance is set to zero. Since this is a strong approxima-
tion, the effect of the inductance is modeled in this subsystem.

Starting from the physics of the system, the inductive effect has been implemented
(Fig. 3.22) using a firts-order low-pass filter on the current, in the form of:
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Fig. 3.21 MF PMSM subsystem

H j(s) =
1

kt
L j
R j

· s+1
=

1

kt · τLR · s+1
(3.9)

where H(s) is the transfer function, L j and R j the j-th phase inductance and
resistance and kt is a corrective constant, which has been empirically set to 0.25
to obtain the best match between the HF and MF model. The ratio L/R has been
selected as a starting point since it represents the characteristic time of the motor
electrical response.

Fig. 3.22 MF current transfer function
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3.4 Ehnanced Low Fidelity (ELF) PMSM model

Starting from the medium fidelity model, additional simplification can be performed,
again focusing on the slowest subsystems and those that are not fundamental in a
monitor model. Model overview is shown in Figure 3.23; once again, the structure
of the model is very similar to previous, higher-fidelity versions.

The main difference to the previous model is the implementation of the electric
behavior of the stator, which is now implemented using a linearized, saturated form;
three phases structure is maintained.

Fig. 3.23 ELF model overview

Most subsystems are the same used in the MF model, as code recycling was
one of the objective of the development. For example, the inverter model shown
in Fig. 3.24 is the same as that shown in Fig. 3.19 relative to the MF model; both
models directly use the reference currents to drive the motor.

3.4.1 ELF PMSM electromagnetic model

The main peculiarity of the PMSM model can be found in the PMSM model sub-
system (Fig. 3.25), and in particular in the electrical model implemented (Fig. 3.26).
Most subsystems are identical to the previous, for example the computation of
back-EMF coefficients, Back-EMF calculation and Computation of motor torque.
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Fig. 3.24 ELF inverter subsystem

On the other hand, the electrical model is much simplified and assumes the form
of three linear, saturated responses for the three phases currents. In this sense, the
model is a purely ohmic model since no inductive component is considered. The
model has thus zero response time, which is again an approximation of the real
system.

Fig. 3.25 ELF PMSM subsystem

Inside the three Corr I_j subsystems, the evaluation of the current produced by
each motor is carried out, as shown in Fig. 3.27. The model implemented is simple
and can be expressed in mathematical form as:
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Fig. 3.26 ELF electrical model

Fig. 3.27 ELF current saturation model (phase A)

I j =


Imax, j =

Vdc −E j

0.5 ·Rs ·Nabc( j)
, Ire f , j ≥ Imax, j

Ire f , j , −Imax, j ≤ Ire f , j ≤ Imax, j

−Imax, j =
−Vdc −E j

0.5 ·Rs ·Nabc( j)
, Ire f , j ≤−Imax, j

(3.10)

where I j is the actual phase current, Ire f , j is the phase reference current calculated
by the controller, 0.5 ·Rs ·Nabc( j) is the effective resistance of the considered phase
calculated by multiplying the nominal phase resistance (0.5 ·Rs) times the percentage
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of active turns (Nabc( j)), E j is the phase back-EMF voltage, Vdc is the supply voltage
and Imax, j is the maximum current output given the operating conditions (speed,
supply voltage, fault).

3.5 BLDC High Fidelity model

Before PMSM models were developed, given the availability of a test bench, simpler
BLDC modes have been created to provide a basic framework for more complex de-
velopments. Furthermore, these models have been used to test some FDI algorithms
as it will be shown in later chapters.

The first development has been an high-fidelity, component level model of a
Brushless DC driven electromechanical actuator, as shown in Figure 3.28.

Fig. 3.28 BLDC HF overview

Overall architecture is very similar to previous model; starting from a Command
and Load subsystem where a reference position signal and fixed external load are
set, the two valuescom, load are then fed to the trapezoidal EMA subsystem, shown
in Figure 3.29, which models the BLDC motor electromagnetic interaction and
evaluates the produced motor torque in slow shaft (thus including the reducer);
finally, the calculated user position is used to evaluate the aerodynamic action on an
aircraft model, modeled using state-space representation. The EMA is supposed to
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actuate a primary flight control of a fighter jet, namely an F16, and thus affecting its
longitudinal dynamics.

The external load obtained by the state space representation can be used in a
feedback loop inside the trapezoidal EMA subsystem to model actuation during
operations, or it can be set externally to an arbitrary value, as in Fig. 3.28 to simulate
ground operations.

3.5.1 Trapezoidal EMA subsystem

The trapezoidal EMA subsystem has a structure almost identical to that of the PMSM
variant, as visible from Figure 3.29. Only the main differences will be described in
the following.

Fig. 3.29 BLDC trapezoidal EMA subsystem

Control electronic subsystem

The control electronic (PID) subsystem is very similar to that of the PMSM, as this
last was directly derived from this one. Once again, the outer position control loop
has an additional control loop inside, for motor angular velocity.
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After being saturated, the speed error is passed through a PID block, which
creates a reference torque (TM_ref ) which is scaled by a gain (indicated with -K-),
with a value of 1/BLDC.KE/2, i.e. the back-emf coefficient of a single phase.

This calculates the needed to current to achieve that torque in the current speed
configuration; the current is then saturated to simulate the maximum allowable motor
current.

Finally, the I_ref is the reference current which is used to drive the motor.

Fig. 3.30 Control electronic subsystem

Looking inside the PID block (Fig.3.31), the implementation is very straightfor-
ward and has a parallel architecture, with three gains in explicit form. The derivative
part is filtered to remove high frequency noise on the derivative signal.

Fig. 3.31 Control electronic subsystem, PID block
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3.5.2 Hall sensors subsystem

In the Halls sensor subsystem, differences are visible when compared to the PMSM
model, as the computation of the motor angle is not evaluated in this block but rather
inside the next subsystem (Inverter model).

Fig. 3.32 Halls sensor subsystem

In Figure 3.32, the input signal is the motor position, theta_m, which is used
to compute the electrical angle - theta_e by multiplying by the number of poles
BLDC.P and wrapping to 2π as usual.

The electrical angle is used to selectively activate the three Hall sensor blocks
which turns on or deactivate depending on the electrical position. These sensors
allow the controller to evaluate the angular position of the motor to allow a correct
commutation scheme. They are modeled by using logical tables depicting a square
wave which is properly shifted for each of the three sensors.

The three logical signals are then fed to the next subsystem, Inverter model, to
compute the correct switching sequence and modify the reference currents to apply
to the three phases.
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3.5.3 Inverter model

The inverter model accomplishes several function with each of his subsystems: firstly,
it evaluates the active phases given the motor current position, obtained through
the three logical Halls sensor signals; it then uses this information to activate or
deactivate the phase by multiplication of the I_ref times the logical output (0 or 1),
as shown in Figure 3.34.

Fig. 3.33 Inverter model subsystem

Fig. 3.34 Active phase subsystem
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Once the three individual reference signals have been determined (I_refA,B,C),
the measured value is subtracted (I_A,B,C) to obtain the error-related currents to be
applied to each phase.

Then, the same PWM shown in Figure 3.10 is used. It is based on an hysteresis
band which turns on and off the driver MOSFETS according to the hysteresis band
conditions.

Finally, the 3-phase bridge is the same shown in Fig. 3.11 which uses Simscape
Power Systems elements to model a 6-transistors H-bridge configuration; it is driven
by 6 signals - 3 direct coming from the hysteresis PWM subsystem and the 3
negations.

After that, the energy connections (hexagonal ports) are connected to the BLDC
electromagnetic model which uses them to simulate the electromagnetic interaction
between stator and rotor.

3.5.4 BLDC electromagnetic model

This subsystem models the electromagnetic interaction caused by the current flow
in the stator phases and the rotor magnetic field. As per the PMSM case, this is a
simplified approach which does not models reality to the component level, but rather
uses an approximation.

In Figure 3.35 the overall subsystem is shown, and it can be noted it is very
similar to that of the PMSM - Fig. 3.12. However, the main difference is found inside
the computation of back-EMF coefficient subsystem.

As shown in Figure 3.36, the way in back-EMF coefficients are calculated is
different from the PMSM case. In fact, one of the main differences between the two
types of motors is the shape of tha back-EMF curve; while it is a sinusoid for the
PMSM, it tends to a square (or trapezoidal) wave in the case of the BLDC.

The three f(u) blocks are simple modulation functions that takes into account
the effect of partial phase shorts and static eccentricity on the back-EMF coefficient
curve.

For example, for the phase A we have:
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Fig. 3.35 BLDC electromagnetic model

Fig. 3.36 Back-EMF coefficient calculation subsystem

BLDC.Nabc(1)∗BLDC.Ke∗u(2)∗
∗ (1+(BLDC.P > 1)∗BLDC.zeta∗ cos(u(1)−BLDC.phi))

where u(1) is the electrical angle θe and u(2) is the output of the table relative
to phase A that models the square waveform of the back-EMF coefficient as func-
tion of the angular position. Additionally, BLDC.Ke is the back-EMF coefficient
(nominal), BLDC.P is the number of pole pairs, BLDC.Nabc(1) is the usual percent-
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age of shorted turns relative to stator phase A and BLDC.zeta and BLDC.phi are
respectively eccentricity amplitude and phase.

The other subsystems are the same as those of the PMSM and will not be
described again; the equal subsystems are the three-phase RL model (same as in
Fig. 3.14) and Computation of motor torque - which is the same as that in PMSM
case (see Eq. 3.7).

The Filtering and saving subsystem uses the same third-order low-pass filter to
remove high-frequency switching noise from the voltages and has the same structure
as that of Fig. 3.17.

Other subsystems

The other subsystems shown in Fig. 3.29 are identical to those described in the PMSM
section, and will thus not be reported again. In particular, the motor-transmission
dynamical model uses the same Borello-based dry friction model, and includes once
again viscous friction.

The Filtering and saving subsystems simply uses rate transition blocks to sample
all the quantities of interest with the same frequency and uses ’To Workspace’ blocks
to save said data to the Matlab workspace.

Finally, the equivalent current subsystems applies the following formula to
evaluate the single-phase equivalent current:

i3,eq =
1
2 ∑(|iA|+ |ib|+ |ic|) · sign(Tm) (3.11)

where Tm is the motor torque. This simple formulation stems from the fact that
in a BLDC motor only two phases are active at the same time, and summing the
absolute values yields double the actual value of the equivalent current. For example,
if phase A and B are active, one would find that iC = −iA while iB = 0, thus the
equivalent single-phase current would be |iC|= |iA|. Finally, since the absolute value
removes the sign to the currents, the sign is obtained by considering the sign of the
motor torque.
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3.5.5 F16 longitudinal dynamics

The other important, and different, subsytem present in the model is a simplified,
state-space representation, of the longitudinal dynamics of an F16 aircraft as shown
in Fig. 3.37. The values of the parameters are directly taken from [50].

Fig. 3.37 Longitudinal dynamics subsystem

This a simplified, linearized form to describe the longitudinal dynamics of an
aircraft. It stems directly from the equation of motion, which are then linearized and
written in matrix form. delta_e, which is the input of the subsystem, is the elevator
deflection, as the whole Simulink model a primary flight control actuator. Then, the
element F16.x0(5) is subtracted, since it is the initial condition (or trim). The initial
conditions vector includes speed V, angle of attack alpha, the horizontal body angle
theta, the pitch rate q, elevator deflection delta_e and finally hinge moment (load).

The hinge moment can be used as input for the whole EMA subsystem to simulate
a generic flight condition and actuation.

3.6 BLDC Low Fidelity model

For some application, the detailed component modeling of the electrical part of the
EMA is not only unnecessary, but it could also be counterproductive. In fact, the
electrical subsystem is the slowest subsystem to simulate, given the microsecond
timescale of the phenomena. This strongly limits the maximum allowable timestep to
values in the order of 10−6 s, making simulations very slow and very memory-heavy.
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One such example can be found in later chapters where FDI algorithms are
presented, focusing on the mechanical part of the system. In this case, the electrical
part is not of interest and can (and should) be simplified to greatly reduce computation
time.

The overall model scheme is shown in Fig. 3.38, from [51].

Fig. 3.38 Low Fidelity BLDC model overview

However, in this case, the model does not have an externally imposed external
load, rather it uses the dynamics model of an aircraft to calculate it. Thus, the
model does not represent a bench mounted EMA, but is representative of a primary
actuation system - particularly of an F16 elevator, as previously exlained.

The EMA model subsystem is shown in Fig. 3.39, and it is composed by three
elements: Controller, Electrical model and Mechanical model.

The Controller is a simplified control system made of two, nested, feedback
loops, as shown in Fig. 3.40. The commanded position is compared against the
actual position to evaluate the position error, which is then multiplied by the first
gain block to obtain a speed reference, which is then saturated.

This value is compared against the actual motor speed to obtain a speed error,
which is then multiplied by the second gain block to obtain the reference current,
after saturation.

Using multiple cascaded control loops is useful in creasing the stability margin
of a system, allowing a more rapid response to changing conditions and reducing the
effects of delays.
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Fig. 3.39 Low Fidelity BLDC EMA subsystem

Fig. 3.40 Low Fidelity BLDC Contoller

Inside the electrical subsystem, shown in Fig. 3.41, a greatly simplified version
of the electrical part of the EMA can be found. Rather than focusing on a component
level interaction with physical links, as in 3.35, in this case the whole approach devi-
ates from reality and uses some shape functions to emulate the effect of eccentricity
and partial short-circuit, in an analogous way as the HF model.

In this subsystem, an additional, internal loop on current is found - which is
basically a control loop on acceleration. After calculation of the current error, a
bang-bang control activation scheme is used. In this case, the sign of the current error
is used to power up the motor with either +Vdc or -Vdc. The bang-bang scheme is
a simplified version of the hysteresis control implemented in the HF-model, and is
much faster to compute since there is no deadzone nor zero-crossings to process.
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Fig. 3.41 Low Fidelity BLDC electrical subsystem

The motor characteristic is implemented by a simple transfer function, and the
motor has both resistive and inductive components.

Finally, the back-EMF is calculated in the usual way by multiplication of the
motor speed by the back-EMF coefficient. The coefficient is modulated by two shape
functions, shown in Fig. 3.42 and Fig. 3.43, which are derived from physics in the
case of the short-circuit, or from best-fit curves in the case of the eccentricity effect -
starting from the HF model as reference.

Fig. 3.42 Short circuit back-emf coefficient correction

On the other hand, the mechanical model has been ported directly from the HF
model and is shown in Fig. 3.44.

Finally, the longitudinal dynamics subsystem used to evaluate the hinge moment
is the same of the HF model shown in Fig. 3.37.
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Fig. 3.43 Eccentricity back-emf coefficient correction

Fig. 3.44 Low Fidelity BLDC mechanical subsystem



Chapter 4

Fault Detection and Identification
algorithms

Fault detection and identification (FDI) is a branch of control engineering that focuses
on monitoring a system to determine when and where a fault has occurred. The
objective of this branch is to prevent faults and to ensure that systems can operate in
a safe and reliable way. Methods used for fault detection varies depending on data
availability and sources.

In FDI, two approaches are usually adopted: model-based FDI and signal pro-
cessing based FDI. In model-based FDI, a model of the system is used to determine
if a fault has occurred. Models are usually mathematical description of the behavior
of the system, with varying assumptions made.

On the other hand, signal processing based FDI leverages mathematical or
statistical operations, which are performed on measurements using a neural network
or similar machine learning tools, used to extract information about the fault.

Fault detection is achieved by generating fault indicator signals called residuals
and comparing them to a threshold, which is set depending on the task. Identification
is more complex since in real systems multiple faults can appear at the same time
and some faults combinations can influence each other.
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4.1 Framework of operation

The models described in the previous chapter are useful for testing new Fault and
Identification (FDI) algorithms, which is something not feasible on a real system
for several reasons, such as cost, since many system have to be tested to obtain a
meaningful dataset, and complexity, since creating a level of damage accurately is
hard for most faults. Additionally, since several faults are considered at the same
time, the dimensionality of the problem greatly increases and thus the required
dataset size.

In this chapter, several implementations of FDI techniques, based on hybrid
approaches will be described. Application case will be the electromechanical actuator
described in the previous chapter, and FDI will aim at detecting and evaluating faults
from both the mechanical and the electrical domains.

All the techniques that will be described follow the scheme shown in Fig. 4.1,
in particular focusing on the offline component. In fact, to train the neural network,
which is the fault evaluator, a large dataset of operating data is needed. Additionally,
the data will need to be labeled, i.e. the exact amount of damage present in each
simulation must be known. Thus, the utility of the models presented in the previous
chapter, which can be seeded with exact faults and simulated to provide a realistic
representation of the physical system.

The dashed boxes in the figure represents further developments of FDI, namely
Remaining Useful Life estimation and prognostics, which will not be covered in this
thesis.

4.2 Electrical motor and shaft eccentricity FDI

The first application of the hybrid, machine-learning assisted FDI has been the
detection and quantification of the damages related to the electrical motor, such as
partial phase shorts. Additionally, rotor static eccentricity is modeled and included
in the diagnostic process.

The model used to evaluate the system has been a modified HF model, where in
this case a brushless DC motor (BLDC) has been used, rather than a PMSM which
was used in the previous chapter. However, functional architecture is the same and
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Fig. 4.1 Algorithm overview

can be found in [52], where this technique has been initially presented. The main
difference between a PMSM and a BLDC is that while a PMSM has a sinsuoidal
back-EMF profile, BLDCs presents a trapezoidal profile. This leads to a difference
in driving logic, which is much easier fort BLDCs.

Referring to Figure 4.1, k is the generic fault vector, defined as the vector which
contains information regarding the faults present in the system, while Y(k) is the
system response when the fault vector is applied to it.

For this particular application, k is defined as:

k = [NA,NB,NC,ζ ,φ ] (4.1)

where NA,B,C are the short percentage relating to each phase, with values between 0
(nominal conditions) and 1 (complete short); ζ is the static eccentricity defined as
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ζ = x0/g0, where x0 is axis offset from center and g0 is the nominal air gap; φ is the
phase of said eccentricity.

Two equations are set as boundary, in order to generate a dataset where the system
is still functioning, and also to condense all electrical faults in a single condition.
The equations are: √

N2
A +N2

B +N2
C ≤ 0.5 (4.2)

ζ ≤ 0.5 (4.3)

It has to be noted that the previous boundaries do not represent specific physical con-
ditions, but are rather arbitrary values. Specific values can be obtained considering,
for example, performance requirements and thus chosen accordingly. In any case,
the algorithm is the same and can be generalized easily to other conditions.

After creating a 5-dimensional randomized matrix, with 3000 vectors, the model
is simulated with every fault vector, and data such as current, voltages, angular
position and angular speed are logged.

4.2.1 Health indicator

The next step is the construction of an appropriate health indicator, i.e. a signal which
is sensitive to faults while being unaffected, to the extent possible, by operating and
environment conditions.

For this case, as demonstrated in [53], the back-EMF coefficient is a suitable
signal, since it can show partial phase shorts and eccentricity. An example of nominal
vs. damaged curve can be found in Fig. 4.2 (from [52]). The orange curve shows
a back-emf coefficient curve with periodic behavior (which is the effect off the
eccentricity), while the effect of the partial short is not immediately evident but
consists in a lowering of the coefficient in angular positions where the phase is
active.

The motor considered in the HF model is a three phase motor, however a single-
phase equivalent back-EMF coefficient is calculated for simplicity; there is no loss of
generality as all the information regarding the three separate coefficients is encoded
in the equivalent single-phase one.
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The motor constitutive equation is the following:

Vj −E j =Vj − kbem f , jωm = Rmi j +Lm
di j

dt
(4.4)

where Vj is the j-th phase voltage; E j is the back-EMF, calculated as E j = kbem f , jωm,
where kbem f , j is the back-emf coefficient for the considered phase and ωm is motor
angular speed; i j the j-th current and Rm, Lm are nominal phase and resistance. Thus,
solving the equation above for each timestep provides three back-EMF coefficients
curves as function of time.

In this approach, an assumption is made regarding the resistance and inductance.
Both are supposed to be constant, which is a strong assumption since:

R j(N j) = Rm ·N j (4.5)

L j(N j) = L j ·N2
j (4.6)

which correlates both resistance and inductance with the amount of partial short
present in a single phase. However, this simplified was firstly tested for simplicity
and performance were acceptable anyway, so a full algorithm considering these
values as variables has not been tested since accuracy was already very high.

Now, after obtaining kbem f , j(t), the curves are resampled to obtain back-emf
coefficient as function of the mechanical angle, thus:

kbem f , j(θm,k) =
1
n

n

∑
l=1

kcem f , j · ((θm,k − ε)≤ θm ≤ (θm,k + ε)) (4.7)

where ε is a small tolerance band.

Now, one has obtained three different back-emf coefficient curves, one for each
phase and could use that directly to proceed in the algorithm. However, it is also
possible to perform a sort of data compression by switching to the equivalent single-
phase motor back-emf coefficient, by simply applying the following:

kbem f = ∑
j= 1, 2, 3

|kbem f , j| (4.8)

and thus using a single signal which possess information regarding all three phases.
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Fig. 4.2 Example of nominal and damaged back-EMF coefficient curve

4.2.2 Sampling

The reconstructed back-EMF coefficient curve showed regularity due to the periodic-
ity of the commutation events that occurred every 30 degrees electrical. This can
be seen in Figure 4.2. This regularity could be used to implement various sampling
techniques. Three different methods were analyzed, each with a different number of
sample points extrapolated for each period between two successive commutations.

The first sampling mode extrapolated the center point value of each intracom-
mutation period, resulting in six points per kbem f curve. The central point was
sampled assuming that the commutations were instantaneous and only spanned a
single timestep.

The second sampling mode sampled two different points for each intracommuta-
tion period, resulting in 12 points per back-EMF coefficient curve. In this case, it was
necessary to consider the noise present in the signal. By using linear interpolation,
i.e. y = mx+q, the maximum angular range where the curve could be approximated
as linear before commutation effects occurred was determined. In Figure 4.3 (from
[52]), the zone where there was no variation in the angular coefficient of the in-
terpolating line is shown. This was necessary because the kbem f value could vary
greatly if sampled near a commutation. An angular amplitude of 20 degrees electrical
was chosen, considering a total angular range of 60 degrees electrical between two
successive commutations.
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Fig. 4.3 Variation of m for two different intra-commutations periods considering 5 randomly
seeded back-EMF coefficient curves.

The third method is simply the combination of the two previous methods, i.e.
sampling both the midpoint and the two additional equally-spaced samples, for a
total of 18 points per curve.

In Figure 4.4 (from [52]) the relevant points (commutations, center points and
additional points) are shown for five randomly seeded kbem f curves.

Fig. 4.4 Discretization of five randomly seeded reconstructed back-EMF coefficient curves.
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4.2.3 Artificial neural network

Artificial neural networks (ANNs) are a powerful tool for machine learning. They
operate on the principle of biological neural networks and learn to perform tasks
based on examples without specific programming rules. ANNs can process data that
would be difficult to handle using other methods, such as fitting many-dimensional
data sets, image classification, and speech recognition.

The structure of a neural network is based on fundamental elements called
neurons, which are connected to each other in a way that resembles biological
synapses. The combination of neurons and connections defines the topology of the
network. Each connection has a weight that represents its importance. These weights
are adjusted during training to minimize the error function using a training function,
typically with a back-propagation method. There are several learning paradigms,
including supervised, unsupervised, and reinforcement learning, each of which is
more effective for certain tasks.

Another important characteristic of a neural network is the propagation function,
which evaluates neuron inputs based on the outputs of connected predecessor neurons
as a weighted sum. A bias term can be included as an additional parameter for each
neuron to increase the complexity and capabilities of the network.

In this work, networks were implemented using MATLAB Machine Learning
Toolbox. The architecture was either a single layer or two layer perceptron with one
or two hidden layers. In general, this class of neural networks is called multi-layer
perceptron ([54]), and are very simple networks for today’s standards. However,
the task at hand is not particularlty difficult, since it is a regression task, albeit on a
multi-dimensional dataset.

Networks inputs were the sampled values as previously described, while the
outputs were always five - representing the target fault vector. The number of neurons
in each hidden layer was changed in size between the number of inputs (18, 12 or 6)
and the number of outputs (always 5), thus obtaining a network with a decreasing
size between input and outputs. An example of two-layers MLP network can be
found in Figure 4.5.
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Fig. 4.5 Example of two-layer perceptron

For each architecture, two different learning functions were tested: trainlm,
implementing the Levenberg–Marquardt back-propagation algorithm ([55] , [56]),
and trainbr, with Bayesian regularization [57].

Performance function for every run was MSE (Mean Square Error), which is
usually good fot regression tasks, with a target accuracy of 10−6. The dataset was
subdivided, randomly, into three subsets, used for training, validation and testing
with ratio 70%, 15%, 15%.

The transfer function used for all networks was symmetric saturated linear
function, as shown in Figure 4.6; the function output was linear in the [−1,1] region,
while it assumed constant values outside the interval (−1 for x <−1 and 1 for x > 1).
This function is easy to compute when compared to hyperbolic tangent, and provides
the non-linearity needed to fit non-linear datasets.

Fig. 4.6 Saturated linear symmetric transfer function.
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4.2.4 Results

In the simplest network architecture based on the first sampling mode, i.e. by using
a single point per commutation, we have six inputs and a single hidden layer of size
5 or 6 (Figure 4.7, [52]).

Addition of a single neuron increased network performance, even tough there
still was low accuracy. The Bayesian regression scored better with five neurons, with
very small performance difference with six neurons.

Fig. 4.7 Single hidden layer networks performance as function of neurons and training
function, sampling mode 1.

Using a more complex sampling strategy, the number of inputs was increased to
two per commutation - 12 in total. In general, increasing the available inputs lead to
an increase in prediction accuracy. For this condition, 6, 9 and 11 neurons networks
were considered.

As expected, the performance score (which is the mean squared error) decreased
with the increase of neurons, to value less than 10−5 in the case of 9 or 11 neurons
as visible in Figure 4.8 ([52]), achieving better predictions in comparison to the
previous case.
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Fig. 4.8 Single hidden layer networks performance as function of neurons and training
function, sampling mode 2

Differences between the two training algorithms were marginal; considering
six neurons, Bayesian regression was superior, while the opposite was true when
considering nine neurons; differences were basically negligible in the 11 inputs case.

Let’s consider now the most complex configuration possible, with three samples
per commutation, with 18 total inputs. The number of neurons was set to 8, 10,
12, 14 and 16. As predictable, increasing the neuron numbers allows the network
to perform better predictions with smaller errors. In this case, the target score of
10−6 was almost reached by the best performers, as visible in Figure 4.9 ([52]).
The Levenberg–Marquardt algorithm performed better with fewer neurons, while
Bayesian regularization showed improvements in higher complexity networks.
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Fig. 4.9 Single hidden layer networks performance as function of neurons and training
function, sampling mode 3.

In Figure 4.10 ([52]), correlation between targets/labels (i.e., expected outputs)
and network outputs for sampling mode 3, 18 neurons and trainlm algorithm was
reported. The high number of outliers in both scatter plots can be attributed to the
polar representation of the eccentricity-phase, as with very small eccentricity values
the phase error become very large. In other words, polar coordinates exhibits a sin-
gularity in the origin, thus phase isn’t defined when amplitude was zero; additionally,
if the amplitude value is small, the phase is ill-conditioned and large errors in fault
detection would appear. However, the behavior is not so influential since it shows for
very small amplitude values. In any case, the network coefficient of determination
(R2) was 0.9846 for the training dataset, 0.9836 for the validation dataset, 0.9841
for the testing datasets and 0.9844 for the complete dataset.

In Figure 4.11 ([52]), mean absolute error (MAE) boxplots have been reported for
the case of single hidden layer, three input networks using a new custom verification
set made of 10 different fault vectors. MAE reduction can be observed as the number
of neurons increased, even though dispersion did not seem to reduce, especially for
the phase fault (Figure 4.11c). The reason is the same explained just above.

Furthermore, the two training algorithms did not seem to have a marked effect
on performance. Mean network errors were in the order of 10−3, thus generally
granting relatively accurate predictions.
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Fig. 4.10 Correlation between targets (i.e., expected outputs) and actual outputs of the
network for sampling mode 3, 18 neurons and trainlm algorithm, for training and validation
datasets

The last configuration tested was based on a 2-layers perceptron. Scores were
not always compared to the previous topologies; this implies that an increase in the
number of layers was not always associated with an increase in network performance.
Additionally, the increase in network depth implied a large amount of new parameters
to be evaluated, so the total training time was about three time as long as in the
single-layer network.

The only configuration capable of achieving a score better than the shallow
configuration was the 16-8 network using Bayesian regularization algorithm for
training, as visible in Figure 4.12 ([52]). In this case, the performance score was less
than the set 10−6, thus achieving the best score of all the considered configurations.
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(a) (b)

(c)

Fig. 4.11 Distribution of the mean absolute error (MAE) on the identification of the consid-
ered fault modes, for increasing number of neurons in the layer. Errors were determined for
a custom identification set, randomly sampled in the acceptable range. (a) Short circuits. (b)
Eccentricity. (c) Phase.

Fig. 4.12 Double hidden layer networks performance as function of neurons and training
function, sampling mode 3.
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4.3 Improved motor FDI

While the previous FDI algorithm achieves good accuracy, some important approxi-
mations have been assumed to make the computation easier. Chiefly among them, is
the effect of the temperature on altering phase resistance. This improved algorithm
allows the prediction of temperature too and also considers the phase resistance
change caused by temperature variations. This improvements have been firstly
presented in [58].

The algorithm can be summarized as such:

1. Faults vectors are generated, and the system is simulated using these values,
obtaining a simulations dataset;

2. Relevant physical quantities are logged for each simulation (e.g., voltages,
currents, motor angular position and speed);

3. In each simulation, for each phase, an estimation of the back-EMF coefficient
is calculated;

4. Estimation error is minimized by obtaining the real values of phase resistance
and back-EMF coefficient;

5. These values are used in a neural network to predict the health status of the
system.

The first two steps are self-explanatory; the faults are modeled as in the previous
section, using a fault vector f = [Na, Nb, Nc, ξx, ξy, ∆T ], with 6 different com-
ponents: Na, Nb, Nc which are the fraction of turns shorted for each phase; ξx, ξy

which are the components of static eccentricity now in cartesian coordinates (polar
coordinates were previously used and were problematic for small amplitudes) and
finally ∆T which is the temperature deviation from reference conditions T0 = 20 ◦C.
Variable ranges are the ones proposed in previous section. For stator windings
temperature, the range ∆T = [−50; +70] ◦C is chosen; it is representative of con-
ditions encountered in aeronautical applications. However, the range chosen might
be too restrictive to include sudden transitory temperature spikes and might need
adjustments in future developments but the algorithm applies without modifications
to modified fault and/or temperature ranges. The faults are injected into the model
prior to each simulation.
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4.3.1 Health index

Once again, the back-EMF coefficient has been used as an health index for the
FDI algorithm. However, some important modifications are applied to the previous
simplified approach as now the effect of the temperature is considered.

In order to do so, the temperature dependency of each phase resistance has been
included in the model using the usual equation:

R = Rre f (1+α∆T ) (4.9)

where α = 0.00404 ◦C−1 is copper resistance temperature coefficient, Rre f is the ref-
erence temperature (for this case Tre f = 20 ◦C) and ∆T is the temperature difference
from reference conditions.

The main assumption used in this approach is that the motor is purely ohmic,
i.e. the inductive component is not considered. This is a strong assumptions but the
algorithm is much simpler in this case and still remains accurate, so this approach
will be discussed. As previously stated, the whole derivation which will be here
described has been presented in [58].

The back-EMF coefficient is obtained using the following equation:

V − k′ω =V − (k+ ke)ω = R0i (4.10)

where k′ is the estimated back-EMF coefficient and ke is the estimation error. In this
case, values of V,ω, i are those that can be measured from the simulation (and by
extension, from a real system), while R0 is the nominal resistance of a phase. There
is an error in the estimation of the back-EMF coefficient since the nominal resistance
is used, thus not considering the effect of both a temperature variation and partial
phase to phase short, which changes this value.

The actual (or true) system condition is described by:

V − kω = R · i = (R0 +∆R)i (4.11)
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where k is the true back-EMF coefficient, R = (R0 +∆R) is the true resistance, i.e.,
the effective resistance of the coil in the instantaneous conditions of temperature,
fault, etc. and ∆R is the deviation of actual resistance from nominal value.

Now, subtracting Equation (4.11) from Equation (4.10) and rearranging, one can
obtain:

ke = ∆R
i
ω

(4.12)

Assuming that ∆R is constant (i.e., R varies slowly), which is reasonable in the
framework presented, since each measurement is very short (in the order of one
second), applying derivative to Equation (4.12) we have:

∂ke

∂ (i/ω)
= ∆R (4.13)

Furthermore, assuming that k is constant, which implies that the fault does not
change during the simulation, we can obtain:

∂ (k+ ke)

∂ (i/ω)
=

∂k′

∂ (i/ω)
= ∆R (4.14)

So, we have demonstrated that k′ = (k+ ke) is linearly dependent to i/ω with
a slope equal to ∆R. Now, to obtain the real values of back-EMF coefficient and
resistance, we have to iteratively reconstruct the value of k (Equation (4.11)), using a
temporary R∗ variable to optimize to make Equation (4.14) equal to zero. This stems
from the definition of back-EMF:

|BEMF |= ∂Φ

∂ t
=

∂Φ

∂θ

∂θ

∂ t
=

∂Φ

∂θ
ω → k j(n j,θ ,T ) =

∂Φ(n j,θ ,T )
∂θ

(4.15)

where Φ is the concatenated magnetic flux, n is the number of shorted turns and T
is the temperature. In other words, the concatenated magnetic flux is a function of
angle, number of turns and temperature and so is the back-EMF coefficient k j. It
does depend only on motor geometry and on the magnetic properties of the magnets,
and thus the temperature dependency. In this preliminary work, the temperature-
induced variation of magnetic properties is not considered and will be added in
further developments.
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The following problem must then be solved:
V − k∗ω = R∗ · i
∂ (k∗)

∂ (i/ω)
= 0

(4.16)

At convergence, we obtain R∗ = R which implies ke = 0 (from Equation (4.11)):
we are calculating true resistance and true back-EMF coefficient. In this work, a
simple bisection method is used to perform the optimization.

Up to this point, we have considered k j(θ , i/ω), as visible in Figure 4.13, where
the subscript j indicates one of the three phases; in this case, the number of variables
to optimize will be 3 ·n, where n is the number of subdivisions along the θ axis. The
total number of variables will thus be 6 ·n, i.e., 3n values of resistance and 3n values
of back-EMF coefficient.

However, in order to simplify the computation, the dependence on θ has been
dropped, thus collapsing the 3D graph into a 2D plot of k j(i/ω), i.e., Figure 4.14
([58]). Now, a ’global’ (or generalized) k j approximation can be calculated, using
least square fit. Values close to zero have been discarded, since they provide no
additional information, and an absolute value on k j has been applied. The final result
is a reduction of the number of variables from 6 ·n to 6, i.e., 3 generalized resistances
(one for each phase) and 3 generalized back-EMF coefficients.

These 6 values are used in a simple feed-forward neural network to perform an
estimation of the fault vector f .

Figures 4.13 ([58]) and 4.14 have been obtained using a parabolic position com-
mand (i.e., a speed ramp) with a constant angular acceleration of 0.3 rad/s2; initial
conditions are zero angular position and zero angular velocity (θ(0) = θ̇(0) = 0).
The following fault vector was seeded: f = [0.0375, 0.0504, 0.0507, 0.0059, 2.8 ·
10−5, 4].
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Fig. 4.13 Reconstructed ka as function of both θ and i/ω .

Fig. 4.14 Reconstructed ka as function of i/ω (non optimized).

4.3.2 Dataset

The number of different fault vectors simulated is 600; dataset has been randomly
divided into 70%,15%,15% subsets for training, validation and testing, respectively.
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Dataset size has been empirically chosen to be a good representation of the 6-
dimensional fault space; the dataset, regarding the first 5 variables of the fault vector
(Na, Nb, Nc, ξx, ξy) is the same presented in the previous section, with the two
eccentricity components now transformed into cartesian coordinates from polar. For
each fault vector, a temperature difference value (∆T ) has been appended, being
randomly sampled from the allowable interval.

Each simulation takes about 50 seconds to run, on a 6-core AMD-5600X using
3200 MHz DDR4 RAM; to speed up dataset generation, parallel pooling has been
used, and also Simulink Accelerator mode provided benefits in computation time
reduction.

In the future, we hope to implement the faults considered in this study on a real
test bench, even though it is a complex task, especially for the partial phase shorts.

4.3.3 Results

Several tests on different hyperparameter combinations have been carried out, and
the best performing set has been used for error distribution calculation. The network
architecture is very similar to that presented in the previous section, with minor
modifications to the hyperparameters values.

The architecture chosen is a feed-forward neural network with a single hidden
layer of size 12; training function is trainlm which implements the Levenberg–
Marquardt algorithm; activation function for each neuron is the hyperbolic tangent
sigmoid. Maximum size of failed validation checks is set to 10.

As expected, the network inputs vector is of size 6, including 3 generalized
back-EMF coefficients and 3 generalized resistances, while the output is again of
size 6 and is the fault vector used to generate the simulation.

In Figure 4.15 ([58]), the mean absolute error box plot for each variable is shown.
A new subset of 10 simulations is used and called external validation set. It is a good
representation of the predictive capabilities of the network with new data during
operations, since it was never used by the network during training. As visible, the
mean absolute error is very small, in the order of 0.02 on normalized data. The error
distribution is however uneven between variables and this might be caused by the
relatively small dataset used in training.
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In absolute terms, the mean error for the ∆T estimation, on the external verifica-
tion dataset, is about 1.8 ◦C, which is a good result.

Fig. 4.15 Mean absolute error for external validation set.

4.3.4 Discussion

The strong points of the algorithms presented include the ability to estimate the
current health status of the motor in terms of fault variables including partial phase
shorts, static eccentricity and temperature deviation from ambient conditions. Ad-
ditionally, no additional sensors besides those needed for normal operations are
required, since inclusion of additional sensors it is usually expensive and a cause of
lower reliability. Fault estimation is performed by a feed-forward neural network
after the raw data have been pre-processed.

As with any other work that includes neural networks in the pipeline, a parametric
optimization of the network could yield additional benefits in the form of higher
accuracy or a simpler network if the algorithm is to be implemented on embedded
hardware.

Furthermore, several assumptions have been made to simplify the algorithm,
mainly the temperature independence of magnetic properties. Even though it is a
reasonable assumption for small variations of temperature (magnetic flux variation
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of ca. −4% for 100 ◦C for SaCo magnets), a generalized algorithm should include
and simulate such variations.

Increasing the available data, i.e. increasing the number of simulations, could
prove beneficial in obtaining better prediction performance. The best combination of
actuation command-load should be evaluated, which could again cover more feature
space with the same length of simulation.

Finally, an empirical validation on properly calibrated equipment is mandatory
to test that the assumptions made are reasonable and can effectively represent the
system status, even tough it is quite hard to obtain identical motors and apply specific
and precise fault conditions to them.

4.4 FDI for mechanical transmissions

Another application of the proposed FDI method has been to mechanical transmis-
sions, as reported in [51]. The algorithm proposed is analogous to the one used for
electrical faults, described in the previous section; however, this time, the health
index used is the residual torque, defined as the difference between motor torque,
hinge moment and inertial torque, which carries information regarding dry friction
in the whole transmission. This approach is not component-based, rather a global
estimate of the dry friction expressed by the whole transmission.

4.4.1 Health index

As previously stated, the health index used for this work is the residual torque,
defined as:

TR = TM −Tin −He = kbem f i− Jmθ̈m −He (4.17)

where TM and Tin are respectively the motor and inertial torque, kbem f is the equivalent
single-phase back-emf coefficient, i is the single-phase equivalent motor current,
Jm is the transmission equivalent inertia (fast-shaft reduced), θ̈m is the angular
acceleration of the fast shaft and He is the hinge moment.
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Most of these quantities are already available, wither because are needed to
maintain correct motor operations (i.e. current, back-emf coefficient) or because
are physical constants, such as equivalent transmission inertia. Additionally, some
are easily derivable such as the angular acceleration which can be obtained by
differentiating the position signal obtained by the Hall sensors, used to close the
position loop.

The only quantity which is not readily available is the hinge moment, which
can either be measured directly (by using a load cell) or indirectly, e.g. using a
mathematical model of the aircraft-environment interaction.

In the proposed algorithm, the hinge moment is supposed to be known, thus the
previous equation can be solved for each time-step to obtain the residual torque.

The fault vector in this case does not have a direct physical correlation to a
specific component, but rather is a collective representation of the health status of
the whole transmission. The fault vector used is:

f = [ηa,ηo,FSJ,FDJ] (4.18)

where ηa and ηo are mechanical efficiencies under aiding and opposing loads, FSJ
is the static friction force and FDJ is the dynamic dry friction force.

The model of dry friction implemented in the model, as explained in chapter 3,
is the Borello friction model, which is a numerical-friendly implementation of the
Coulumb dry friction model. Using this model, friction torque TF can be tought as
the the sum of two components - load invariant and load-dependent friction torques.
In case of sliding conditions, the friction torque is equal to FDJ, otherwise it is equal
to the motor torque for values lower than FSJ.

In formulae it can be expressed as:

TF =


TM, ẋ = 0∧|FM| ≤ FSJ

FDJ · sign(FM), ẋ = 0∧|FM|> FSJ

FDJ · sign(ẋ), ẋ ̸= 0

(4.19)
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Additionally, the load-dependent friction torque component can be determined
once the external load FR is known, and is mediated by the two transmission effi-
ciencies, as demonstrated in [59]. In other words, the total friction torque can be
expressed as:

TF =

FDJ+(1−ηa) · |FR|, under Aiding loads

FDJ+( 1
ηo

−1) · |FR|, under Opposing loads
(4.20)

Finally, thanks to the work presented in [60], an additional equation between the
two efficiencies and the gear ratio τ can be written:

ηa =
2τ2ηo − τ2 + τ

τ2ηo + τ −ηo +1
(4.21)

Thus, this additional equation implicitly reduces the dimensionality of the prob-
lem, making it easier to solve. In future works, these relations can be directly used in
tools such as physics-informed neural networks (PINN) to obtain better estimation
accuracy or to reduce the dataset size needed to train the model.

4.4.2 Dataset

In a similar fashion to previous cases, a dataset has been generated using a numerical
model of the system, which is still an electromechanical actuator acting on a primary
flight control (elevator). In particular, the model used is the BLDC LF model, the
same one presented in Chapter 3.

The total number of simulations is 2000, with each one having a different fault
vector injected, The command curve used in this simulation has been chosen ’fill’
the TR/θ̇m space in order to increase the information density of each simulations
allowing to reduce the total simulation time. An example of this response is shown
in Figure 4.16 (from [51]).
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In particular, a third-order polynomial has been chosen with the following points
as guide: (0,0) - (0.16, -15) - (0.3, 0) - (0.5, 15), in terms of (time, angular position in
degrees). A representation of the command curve is shown in Fig. 4.17 (from [51]).

Fig. 4.16 Example of system response in terms of θ̇m,He,T R

All the simulations use ode1 as solver (simple forward Euler integrator) with a
timestep of 1 µs, and are 0.5 s long.

Two datasets have been generated: the one for case B will have the full dynamics
model as explained in Chapter 3, thus relating to an actuation in flight conditions; on
the other hand, case A will be performed on a model stripped of the flight dynamics
component, simulating a ground actuation. Thus, for case A, the hinge moment is a
constant simulating the weight of the elevator itself.

4.4.3 Artificial neural network

In a similar fashion to previous FDI algorithms, artificial neural networks are also
used in this regression task to estimate the targets, i.e. the fault vector [ηa,ηo,FSJ,FDJ]
starting from samples of the residual torque which has been reconstructed as seem
before.
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Fig. 4.17 Command curve used for the all simulations

Once again, the whole pipeline has been implemented in MATLAB using the
Machine Learning toolbox, given the ease of integration between that and the data
generated from the Simulink simulations.

The first task has been to reduce the size of the residual torque vector, otherwise
one would have 500.000 points per each simulations - it was chosen to reduce the
number of points to 2000, which seemed enough to capture most information while
not having input vector with exceedingly large size. Thus, the apparent timestep is
of 25 ms.

Hidden layer size has been chosen to 200 as it is a good medium value between
the input size (2000) and output size. The overall architecture is shown in Fig. 4.18,
however the output layer should have three element rather than 2 as depicted.

In fact, it was chosen to only estimate three elements of the fault vector, namely
ηa, FSJ and FDJ, given the relation between ηa and ηo shown in Eq. 4.21. This
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allows a simpler network and leverages system knowledge, considering that the gear
ratio τ can be considered constant during the span of each simulation.

Fig. 4.18 Neural network architecture

All the data are being normalized in the range (0, 1) before being used as training
vectors in the neural network, as this improves the accuracy of the prediction. The
activation function used in every neuron is ’satlins’, i.e. a linear, symmetric saturated
linear function which can provide non-linearity to the network and is easier to
compute compared to hyperbolic tangent or sigmoid. The training function used has
been ’trainscg’ i.e. scaled conjugated gradient method. This particular function has
been chosen since is a first-order method and is fast and relatively light on system
memory, since the size of the problem has lead to several out of memory incidents
using more standard functions (e.g. ’trainlm’ or ’trainbr’).

Each dataset has been randomly split with the usual percentages of 70% for
training, 15% for testing and 10% for validation.

Finally, as with most regression tasks, the Mean Squared Error (MSE) has been
chosen as performance metric.

4.4.4 Results

Initial testing has shown that predicting the value of FSJ (static force) is not possible
with the current setup, since the number of simulation steps in sticking conditions is
really slim, thus not providing enough information to the network. In principle it
is possible to use different commands that allows the transmission to work more in
sticking conditions thus encoding more information in the residual torque curve. So,
the predicted values are FDJ (dynamic force) and ηo, and thus ηa indirectly.
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Case A: ground test

As previously state, these simulations replace the dynamics of the aircraft with a
simple constant block, and are meant to simulate a ground actuation where only the
weight of the elevator is present.

Performance are (2.41, 2.43, 2.45)·10−4 for the training, testing and validation
subsets, respectively.

Error values are in the range a few percentage points, as shown in Table 4.1. A
summarizing view is shown in Fig. 4.19, where on the x-axis the targets are shown,
while on the y-axis the prediction of the networks are shown. In a perfect condition,
all the predictions (red marks) are aligned along the y = x curve.

Table 4.1 10 random samples for FDJ and relative predictions (Case A)

Target Prediction Rel. Error [%]

0.9782 0.9792 0.11
0.8399 0.8442 0.50
0.2670 0.2722 1.98
0.2687 0.2614 2.73
0.5300 0.5160 2.64
0.6933 0.7047 1.64
0.4183 0.4505 7.69
0.6042 0.6013 0.49
0.6015 0.5843 2.85
0.8478 0.8707 2.71

Case B: generic in-flight actuation

In this more complex case, the whole longitudinal dynamic of the aircraft is consid-
ered, thus simulating a generic in-flight actuation. However, the particular combina-
tions of command and initial flight conditions are not completely general and should
be tailored to the specific aircraft.

Results obtained in this more complex situation are still satisfying, with MSE
accuracy in the order of (1.742, 1.926, 2.601)·10−6 for the best tested combination,
which has an hidden layer of size 50 and uses 500 simulations as dataset.
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Fig. 4.19 Validation set outputs, case A

The average MSE error are much lower than those of Case A. The main explana-
tion is that in Case A the external load is constant, and thus is equal for all timesteps.
This leads to loss of information and the hinge moment does not provide more
information to the network. On the other hand, in Case B there is a new variable
which contributes to the learning of the network, and this drives down the average
MSE. In fact, in Figures 4.20 and 4.21 the fit capabilites of the network are shown.
Results are globally good and there isn’t much difference between the two variables.

Several combinations of hidden layer size, inputs size and number of simulations
have been tested, and results are shown in Table 4.2.

Similarly to Case A, 10 random samples and relative predictions are shown in
Table 4.3.
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Table 4.2 Settings tried for Case B and relative performances.

Timesteps Simulations Neurons Training MSE Test MSE
100 100 10 6.007 ·10−6 1.611 ·10−5

500 100 50 4.364 ·10−5 4.244 ·10−5

100 500 10 6.217 ·10−6 6.730 ·10−6

100 500 50 4.529 ·10−6 7.643 ·10−6

500 500 50 1.742 ·10−6 2.601 ·10−6

Table 4.3 Validation for Case B. 10 random predicted values were confronted with their
actual value (“Target value”) to calculate the relative error of the prediction.

Parameter: FDJ Parameter: ηO
Target Value Predicted Value Relative Error [%] Target Value Predicted Value Relative Error [%]

0.9648 0.9596 0.54 0.0761 0.0756 0.73
0.5432 0.5415 0.30 0.0734 0.0730 0.45
0.3115 0.3107 0.26 0.6876 0.6871 0.08
0.4217 0.4195 0.51 0.0984 0.0979 0.57
0.5003 0.4987 0.32 0.5235 0.5224 0.22
0.5839 0.5842 0.06 0.6001 0.6012 0.19
0.2609 0.2608 0.02 0.8887 0.8914 0.31
0.2121 0.2123 0.12 0.7008 0.7015 0.10
0.9311 0.9312 0.02 0.1336 0.1349 0.96
0.7147 0.7158 0.16 0.6471 0.6499 0.43
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Fig. 4.22 The values on the X axes are the actual values of the parameters (normalized
between 0 and 1), while the values on the Y axes are those predicted by the network. This
figure shows the individual fits for: (a) FDJ of Case B; (b) ηO of Case B



Chapter 5

Conclusions

The objective of this thesis was to present several tools that are useful to improve the
smartness of electromechnical actuators, especially for aerospace use, which implies
that the system is capable of detecting faults autonomously.

In this sense, several fault detection and identification algorithms have been
presented, with capabilities ranging from mechanical faults, to partial electric shorts
to static eccentricity. All of this models leverages machine learning tools and have
been trained using data provided by numerical models of a real system. Preliminary
results are good but as always validation on data from real systems is mandatory
before deployment on active systems.

On this topic, different MATLAB-Simulink numerical models, with varying
levels of fidelity, have been developed for this task. High fidelity models can be
used to generate realistic, synthetic data when either data are not available or it
is too complex or hard to obtain large amount of data relative to a particular fault
with a specific magnitude. The main advantage of this approach is the accuracy
of the fault modeling which can be tailored to specific values. Albeit some testing
has been performed on validating the model on a real system, additional testing is
needed to evaluate the accuracy of the fault modeling included in the models, and to
supplement the implementation proposed.

Finally, several FBG-based optical sensors have been proposed, for vibrations,
temperature and mechanical strain. These preliminary designs will need further
testing to optimize the design in terms of accuracy and robustness. The final objective
is to integrate measure obtained by said sensors in a more complete FDI scheme, and
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possibly further in a prognostics tool that is capable of also evaluating the remaining
useful life of components or of the whole system.
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Appendix A

Code

EMA model

Data file for EMA model

1 %% Initialization
2 clear; clc;
3
4 %% Simulation parameters
5
6
7 % [s] Sim. stop time
8 simulation.TiBr = 3;
9

10 % [s] Timestep
11 simulation.DT = 1e-6;
12
13 % [rad] Slow shaft initial pos.
14 simulation.initPos = 0;
15
16 % [s] Filter char. time
17 simulation.tauFilter = 5e-5;
18
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19 % [s] Com time points
20 simulation.timeCom = [0 0.1 0.10001 2];
21
22 % [deg] Com value points
23 simulation.com = [0 0 0.01 0.01];
24
25 % Load time points
26 simulation.timeLd = [0 simulation.TiBr];
27
28 % Load value points
29 simulation.ld = [0 0];
30
31 % [s] Output downsample
32 simulation.out_sample = 1e-3;
33
34
35
36 %% Controller
37
38
39 % Com flag: - pos. = 1 ; - speed = 0
40 controller.Flag = 1;
41
42 % [1/s] Controller prop. gain
43 controller.Gprop = 500;
44
45 % [rad/s] Pos. error saturation
46 controller.W_refMax = 8000*pi/30;
47
48 % [A] I_ref saturation
49 controller.I_Max = 22.5;
50
51 % [] Noise amplitude factor
52 controller.Knoise = 0;
53
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54 % [Nms/rad] PID Proportional gain
55 controller.PID.GAP = 0.2368;
56
57 % [Nm/rad] PID integrative gain
58 % controller.PID.GAI = 0;
59
60 % [Nms^2/rad] PID derivative gain
61 % controller.PID.GAD = 0;
62
63
64 % [Nm] Max integrative error
65 controller.PID.ErIM = 100;
66
67 % [rad] Integrative branch tolerance
68 controller.PID.band = 1e-3;
69
70 % [s] Charact. time integr. branch
71 controller.PID.Ti = 0.01;
72
73 % [s] Charact. time anti -windup
74 controller.PID.Tt = 0.01;
75
76
77 % [s] Charact. time deriv. branch
78 controller.PID.Td = 0;
79
80 % [1/s] Bandwidth deriv. branch
81 controller.PID.N = 1000;
82
83
84
85 %% Inverter
86
87 % [A] Hystersis band amplitude
88 inverter.PWM.hb = 0.1;
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89
90 % [V] Supply voltage
91 inverter.Hbridge.Vdc = 380;
92
93 % [ohm] Snubber resistance
94 inverter.Hbridge.RSnubber = 1e5;
95
96 % [F] Snubber capacity
97 inverter.Hbridge.CSnubber = 1e9;
98
99 % [ohm] Ron (in Universal Bridge)

100 inverter.Hbridge.Ron = 1e-2;
101
102
103 %% Motor
104
105 % [] Pole pairs
106 BLDC.P = 4;
107
108 % [] Active turns percents (phases A, B, C)
109 BLDC.Nabc = [1 1 1];
110
111 % [ohm] Nominal phase -to-phase resistance (e.g. Rab)
112 BLDC.Rs = 2.94660867034355;
113
114 % [H] Nominal phase -to-phase inductance (e.g. Lab)
115 BLDC.Ls = 30.5e-4;
116
117 % [Nm/A] BEMF constant
118 BLDC.Ke = 0.957651428671564;
119
120
121 % [Nm] Torque saturation
122 BLDC.TMM = 11.842;
123
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124
125 % [] Static eccentricity amplitude
126 BLDC.zeta = 0;
127
128 % [] Static eccentricity phase
129 BLDC.phi = 0;
130
131
132
133 %% Motor -transmission dynamical model
134
135
136 % [] Transmission ratio
137 dynamics.tau = 1/124;
138
139 % [kg*m^2] Motor inertia moment
140 dynamics.JM = 0.00077;
141
142 % [N*m*(s/rad)^(1/2)] Motor viscous damping

coefficient
143 dynamics.CM = 0.0379430075528975;
144
145 % [kg*m^2] User inertia moment reduced on fast shaft
146 dynamics.JU = 0.00203912312500147;
147
148 % [N*m*s/rad] User viscous dampinig coefficient
149 dynamics.CU = 0.000798437115408432;
150
151 % [] Motor dry friction (% of BLDC.TMM)
152 dynamics.friction.FDTm = 0.00585477490946900;
153
154 % [] User dry fruction reduced to fast shaft (% of

BLDC.TMM)
155 dynamics.friction.FDTu = 0.00990871474413106;
156
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157 dynamics.a1 = 0.006683;
158 dynamics.b1 = 0*1.488e-8;
159 dynamics.c1 = 8.728;
160
161 dynamics.a2 = 0.04842/2;
162 dynamics.b2 = 0*3.958e-5;
163 dynamics.c2 = 4.633;
164
165 % [rad] Backlash width (slow shaft)
166 dynamics.BLK = 1e-5;
167
168 % [rad] Lower excursion limit
169 dynamics.ThUmin = -2;
170
171 % [rad] Upper excursion limit
172 dynamics.ThUmax = 2;
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