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a b s t r a c t 

Numerical prediction of material properties is attracting the attention of the scientific community 

and industry because of its usefulness in the design process. In the fields of fluid dynamics and 

microfluidics, several simulation methods have been proposed and adopted to evaluate the prop- 

erties of surfaces and material interfaces, thanks to the increasing computational power available. 

However, despite the efforts made, a general and standardized methodology for implementing 

such methods is still lacking, thus requiring a trial-and-error approach for each new problem, 

making them difficult to implement and creating a bottleneck at the initial stage of surface de- 

sign. Here, we report a validated protocol to evaluate the wettability of micro-structured surfaces 

with a phase-field model. Summarizing: 

• Simulating physical phenomena with multi-phase flows and moving contact lines can be a 

challenging task, due to the coupling among disparate length scales. 

• Using the Cahn-Hilliard diffuse-interface model, moving contact lines can be extensively in- 

vestigated, although difficulties may arise when implementing numerical simulations, e.g., 

model parameter calibration, selection of boundary conditions, post-processing of fluid dy- 

namics/equilibrium. 

• A method for employing this model and evaluating the physical consistency of the results is 

proposed here, considering the wettability of micro-structured surfaces as a case study. 
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Method Details 

The work presented here is organized into the following sections: 

1. Theoretical background , in which the theory of surface wetting phenomena is recalled. 

2. Modelling alternatives , in which we review the modelling methods available in the literature. 

3. Theoretical background of boundary conditions , in which the boundary conditions for multi-phase simulations are discussed. 

4. Dimensionless form of model equations , in which we propose the dimensionless form of the governing equations adopted. 

5. Finite element method , where we describe the formulation of the finite element method used in this work. 

6. Details on implemented boundary conditions , in which we describe the chosen boundary conditions and their effects on result

reliability. 

7. Simulation post-processing , in which we describe the methods used to post-process numerical simulations and evaluate their physical 

consistency. 

8. Calibration of phase-field model parameters , in which we identify the most important parameters to be defined in phase-field simu-

lations and describe the calibration protocol to obtain meaningful physical results. 

Readers who are already familiar with the theoretical background of wetting phenomena and multi-phase simulations may proceed 

directly to Section 4. 

Theoretical background 

When a liquid is in contact with a solid surface in the presence of a third immiscible fluid phase (usually a gas), it can either create

a film or generate a droplet, depending on the solid-liquid ( 𝛾𝑆𝐿 ), solid-gas ( 𝛾𝑆𝐺 ), and liquid-gas ( 𝛾𝐿𝐺 ) interfacial surface tensions. The

first scenario occurs when 𝑆 = 𝛾𝑆𝐺 − ( 𝛾𝑆𝐿 + 𝛾𝐿𝐺 ) > 0 ; on the contrary, if 𝑆 < 0 the three phases meet along the three-phase contact

line ( 𝑇 𝑃 𝐿 ) [4] . The angle arising at the 𝑇 𝑃 𝐿 , between the tangent to the liquid-gas interface and the solid surface, is known as

the equilibrium contact angle 𝜃𝑌 , defined by Young [5] for the case of a perfectly smooth surface ( Fig. 1 a). The related surface free

energy of the system can be generically described as follows: 𝐸 = 𝛾𝑆𝐿 𝐴 𝑆𝐿 + 𝛾𝑆𝐺 𝐴 𝑆𝐺 + 𝛾𝐿𝐺 𝐴 𝐿𝐺 , being 𝐴 𝑆𝐿 the solid-liquid interfacial

area, 𝐴 𝑆𝐺 the solid-gas area and 𝐴 𝐿𝐺 the liquid-gas area [4] . If the contact line moves by an infinitesimal distance 𝛿𝑥 , the surface

free energy undergoes a change 𝛿𝐸 = 𝛾𝑆𝐿 𝛿𝐴 𝑆𝐿 − 𝛾𝑆𝐺 𝛿𝐴 𝑆𝐿 + 𝛾𝐿𝐺 𝛿𝐴 𝑆𝐿 cos 
(
𝜃𝑌 

)
, whereas the bulk energy remains constant (unless the

volume of liquid changes, see Fig. 1 b). When 𝛿𝑥 → 0 , the ratio 𝛿𝐸 

𝛿𝐴 𝑆𝐿 
approaches zero, leading to Young’s equation [6] : 

𝛾𝑆𝐺 = 𝛾𝑆𝐿 + 𝛾𝐿𝐺 cos 
(
𝜃𝑌 

)
. (1) 

The liquid forms a spherical cap on a perfectly smooth solid surface with a contact angle ( 𝐶𝐴 ) equal to 𝜃𝑌 when 𝑆 < 0 and neglecting

gravity; the latter condition occurs if the characteristic size of the system is smaller than the capillary length, defined as: 𝑙 𝑐 = 

√ 

𝛾𝐿𝐺 

𝜌𝑔 
( 𝜌

is the liquid density, 𝑔 the gravitational acceleration) [7] . A surface is considered “phylic ” with respect to the liquid it is interacting

with if 𝜃𝑌 < 90 ◦, “phobic ” otherwise. However, these distinctions should not be applied restrictively, as changes in the wettability of

a surface are actually gradual [8] . Eq. 1 is still widely used and accepted, although 𝛾𝑆𝐿 and 𝛾𝑆𝐺 are difficult to evaluate. Moreover,

real surfaces are not atomically smooth but show microscopic imperfections, so the movement of droplets can be hindered. Therefore,

two characteristic contact angles, namely the advancing 𝜃𝐴 and receding 𝜃𝑅 contact angles, can be defined. These can be measured 

by tilting the surface, as schematically represented in Fig. 1 c. The force component parallel to the surface deforms the droplet before
Fig. 1. (a) Force balance at the contact line. (b) Displacement of the contact line on a solid smooth surface ( 𝜃 = 𝜃𝑌 ). (c) Advancing and receding 

contact angles. The contact angle hysteresis ( 𝐶𝐴𝐻) should be zero in the presence of an ideal, smooth, and homogeneous surface, whereas for real 

surfaces it is generally between 5 ◦ and 20 ◦ [13,14] . 
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Fig. 2. Schematic representation of wetting states on a structured solid surface, according to (a) Cassie-Baxter, (b) Wenzel, and (c) Wet Cassie 

models. (d) Relationship between the apparent contact angle on a rough surface ( 𝜃) and the Young contact angle of a perfectly smooth surface made 

of the same material ( 𝜃𝑌 ), for different wetting models ( 𝑟 = 2 . 5 , 𝜙𝑆 = 0 . 3 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it begins to descend, and the difference between 𝜃𝐴 and 𝜃𝑅 is known as contact angle hysteresis ( 𝐶𝐴𝐻) [9,10] . When contact angle

hysteresis is high, drops cannot be easily removed from the substrate, even at high contact angles, so it plays a key role in wettability.

It should also be noted that for real surfaces Young’s contact angle is replaced by an apparent static 𝐶𝐴 ( 𝜃), which can be observed

macroscopically and lies between 𝜃𝑅 and 𝜃𝐴 . A rough or structured surface differs from a smooth surface as it exhibits local deviations

from the ideal plane. Peaks and valleys may have different characteristic lengths and may be undesirable or created according to an

appropriate geometric pattern (highly ordered structures) [11,12] . 

The well-known Wenzel [15] and Cassie-Baxter [16] models are a commonly accepted guideline for studying the wettability of 

non-flat surfaces and for calculating their contact angle ( Fig. 2 ). According to Wenzel’s model, suitable for both hydrophobic and

hydrophilic materials, liquid penetrates the grooves of a rough surface, filling them completely while forming a finite macroscopic 

contact angle 𝜃𝑊 

. Due to roughness, the actual surface area is greater than the projected one: the wettability of the system depends

on the interfacial tensions and the magnitude of the solid/liquid contact area. In detail, assuming that the contact line moves by an

infinitesimal amount 𝛿𝑥 , the surface free energy changes as follows: 𝛿𝐸 = ( 𝛾𝑆𝐿 − 𝛾𝑆𝐺 ) 𝑟𝛿𝑥 + 𝛾𝐿𝐺 𝛿𝑥 cos 𝜃, being 𝑟 the roughness factor

𝑟 = 

Total surface area 

Projected surface area 
> 1 [6,7] . If 𝑟 = 1 the surface is perfectly smooth and Young’s equation is recovered. If 𝑟 > 1 : 

cos 𝜃𝑊 

= 𝑟 cos 𝜃𝑌 . (2) 

In the Wenzel state, therefore, roughness amplifies the wetting trend of a smooth surface: a hydrophobic material has an apparent

𝐶𝐴 greater than Young’s one, whereas a hydrophilic material becomes more easily wettable. Eq. 2 , however, can lead to non-physical

results for high roughness factors (e.g., cos 𝜃𝑊 

> 1 or cos 𝜃𝑊 

< −1 ). Lastly, due to liquid penetration within the surface roughness,

the contact angle hysteresis for drops that are in a Wenzel state can be significant. In the Cassie-Baxter state, on the other hand, the

liquid does not fill the grooves of a rough (or geometrically structured) surface, but there are air pockets trapped between the solid

substrate and the droplet. The latter is therefore suspended, resulting in a superhydrophobic condition related to the “lotus effect ”.

Again, if the contact line moves along the solid substrate, the change in surface free energy can be evaluated as follows, where 𝜙𝑆 is

the fraction of the droplet base in contact with the surface [6,7] : 𝛿𝐸 = ( 𝛾𝑆𝐿 − 𝛾𝑆𝐺 ) 𝜙𝑆 𝛿𝑥 + (1 − 𝜙𝑆 ) 𝛾𝐿𝐺 𝛿𝑥 + 𝛾𝐿𝐺 𝛿𝑥 cos 𝜃. At equilibrium,

when 𝛿𝑥 → 0 also 𝛿𝐸 
𝛿𝑥 

approaches zero: 

cos 𝜃𝐶𝐵 = 𝜙𝑆 − 1 + 𝜙𝑆 cos 𝜃𝑌 . (3) 

When 𝜙𝑆 → 0 , 𝜃𝐶𝐵 → 180 ◦. The same result can be obtained from a more general equation developed by Cassie [17] , which describes

the contact angle on a flat surface with a heterogeneous composition as a weighted average: 

cos 𝜃 = 

𝑁 ∑
𝑖 =1 

𝜙𝑖 cos 𝜃𝑌 ,𝑖 , (4) 

being 𝜙𝑖 the fraction of area with 𝜃𝑌 ,𝑖 as contact angle. If the surface consists of two different materials, one of them being air

( 𝜃1 = 𝜃𝑌 , 𝜃2 = 180 ◦), Eq. 3 emerges. In the Cassie-Baxter state, also known as the “fakir state ”[7] , contact angle hysteresis is reduced,

and droplets can easily roll off the surface. For a certain material and surface structure, the configuration involving the least change

in surface energy for an infinitesimal displacement of the 𝑇 𝑃 𝐿 prevails. The transition condition from a Wenzel to a Cassie-Baxter

state is obtained, therefore, by imposing 𝛿𝐸 𝑊 

> 𝛿𝐸 𝐶𝐵 : cos 𝜃𝑌 < 

𝜙𝑆 −1 
𝑟 − 𝜙𝑆 

< 0 . It seems clear that the Cassie-Baxter state can emerge as a

global energy minimum condition only with intrinsically hydrophobic materials, although metastable configurations may exist due 

to the presence of energy barriers opposing the Cassie-to-Wenzel wetting transition (their role in wettability has been the subject of

several studies [18,19] ). Wenzel’s law is not applicable with low 𝜃 values, at which hemi-wicking occurs and the so-called “Wet
𝑌 

3 
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Cassie ” state emerges: a certain amount of fluid invades the texture grooves, and the drop lies on a patchwork of liquid and solid

[20] . Assuming that the liquid fills the gaps of the surface pattern, leaving the top of the structures dry, an infinitesimal displacement

of the contact line would cause an energy change equal to 𝛿𝐸 = ( 𝛾𝑆𝐿 − 𝛾𝑆𝐺 )( 𝑟 − 𝜙𝑆 ) 𝛿𝑥 + 𝛾𝐿𝐺 (1 − 𝜙𝑆 ) 𝛿𝑥 . If 𝛿𝐸 < 0 , the liquid would

spread indefinitely on the surface, which leads to the following condition: cos 𝜃𝑌 > 

1− 𝜙𝑆 

𝑟 − 𝜙𝑆 
> 0 . At this point, Eq. 4 can be applied with

the following impositions, 𝜃1 = 𝜃𝑌 , 𝜃2 = 0 ◦, 𝜙1 = 𝜙𝑆 , 𝜙2 = 1 − 𝜙𝑆 , thus obtaining a descriptive equation for the Wet Cassie state: 

cos 𝜃𝐶𝑊 

= 1 − 𝜙𝑆 + 𝜙𝑆 cos 𝜃𝑌 . (5) 

The transition criterion can be also achieved by equating Eqs. 2 and 5 . 

Although these models are still widely used as references in the study of wettability, they have shown limits for describing all

behaviors found in nature [21–23] . According to Patankar’s research [24] , for example, there are multiple equilibrium states for a

droplet on a rough surface corresponding to local energy minima, and the actual shape taken by the drop depends on how it was

formed. 

Modelling alternatives 

Several modelling approaches are currently used to study the dynamics of wetting phenomena and simulate the impact and

propagation of a droplet on a surface under the continuum assumption [25] . The classical hydrodynamic model, for example, uses

the Navier-Stokes equations (momentum balance and mass conservation), which for an incompressible, chemically homogeneous, 

non-reactive Newtonian fluid with no electrical charges can be written as [7] : 

𝜌

(
𝜕 𝑢 𝑢 𝑢 

𝜕𝑡 
+ 𝑢 𝑢 𝑢 ⋅ ∇ 𝑢 𝑢 𝑢 

)
= 𝐹 𝐹 𝐹 − ∇ ⋅ 𝑇 𝑇 𝑇 (6) 

∇ ⋅ 𝑢 𝑢 𝑢 = 0 , (7) 

where 𝑢 𝑢 𝑢 is the velocity field, 𝑡 the time, 𝐹 𝐹 𝐹 represents a body force (e.g., the gravity force: 𝐹 𝐹 𝐹 = 𝜌𝑔 𝑔 𝑔 , where 𝜌 is the density and 𝑔 𝑔 𝑔 the

gravitational acceleration) and 𝑇 𝑇 𝑇 = 𝑝 𝐼 𝐼 𝐼 − 𝜇[∇ 𝑢 𝑢 𝑢 + (∇ 𝑢 𝑢 𝑢 ) 𝑇 ] + 𝜇

(
2 
3 ∇ ⋅ 𝑢 𝑢 𝑢 

)
𝐼 𝐼 𝐼 is the stress tensor ( 𝑝 is the pressure, 𝜇 the dynamic viscosity, 𝐼 𝐼 𝐼 

the identity matrix, and 𝐸 

𝐸 𝐸 = 

1 
2 [∇ 𝑢 𝑢 𝑢 + (∇ 𝑢 𝑢 𝑢 ) 𝑇 ] represents the deviatoric stress tensor). In this approach, the liquid-gas interface constitutes

a domain boundary and the surface tension 𝛾𝐿𝐺 is assumed as a boundary condition without appearing explicitly in the Navier-Stokes

equations. In the case of a free surface without surfactant adsorption or temperature gradients along the solid substrate, the interfacial

tension gradients are negligible and the boundary conditions ( 𝐵𝐶) can be expressed as [4,7] : 

Δ𝑝 + 𝜏𝑛𝑛 |𝑎𝑚𝑏𝑖𝑒𝑛𝑡 − 𝜏𝑛𝑛 |𝑙𝑖𝑞𝑢𝑖𝑑 − 𝛾𝐿𝐺 𝐶 = 0 (8) 

𝜏𝑛𝑡 |𝑎𝑚𝑏𝑖𝑒𝑛𝑡 − 𝜏𝑛𝑡 |𝑙𝑖𝑞𝑢𝑖𝑑 = 0 . (9) 

Eq.s 8 and 9 represent the stress balance at a free surface: 𝜏𝑛𝑛 = 𝑛 𝑛 𝑛 ⋅ 𝜏𝜏𝜏 ⋅ 𝑛 𝑛 𝑛 and 𝜏𝑛𝑡 = 𝑛 𝑛 𝑛 ⋅ 𝜏𝜏𝜏 ⋅ 𝑡 𝑡 𝑡 are the normal and the shear stress, respec-

tively, 𝜏𝜏𝜏 = 𝜇[∇ 𝑢 𝑢 𝑢 + (∇ 𝑢 𝑢 𝑢 ) 𝑇 ] is the viscous stress tensor, 𝐶 = 

(
1 
𝑅 1 

+ 

1 
𝑅 2 

)
is the local mean curvature of the surface, 𝑛 𝑛 𝑛 the unit normal of

the liquid-gas interface, 𝑡 𝑡 𝑡 the unit tangent vector. At equilibrium, Eq. 8 reduces to the Young-Laplace equation [6] : 

Δ𝑝 = 𝛾𝐿𝐺 

( 1 
𝑅 1 

+ 

1 
𝑅 2 

)
, (10) 

where Δ𝑝 denotes the pressure difference between the liquid mass and the gas. A numerical evaluation of the contact line motion

using these equations thus requires a non-fixed mesh that can follow the deformation of the droplet, the liquid-gas interface being a

domain boundary on which the aforementioned dynamic 𝐵𝐶 must be imposed. In addition, the chosen mesh must respect a kinematic

condition at the interface: 

( 𝑢 𝑢 𝑢 𝑚𝑒𝑠ℎ − 𝑢 𝑢 𝑢 ) ⋅ 𝑛 𝑛 𝑛 = 0 , (11) 

where 𝑢 𝑢 𝑢 𝑚𝑒𝑠ℎ is the velocity of the mesh along the liquid-gas interface. Moreover, coupling this model with a no-slip condition at the

solid-fluid interface results in the emergence of a stress singularity at the three-phase contact line (see Section 3). 

In the hydrodynamic model some additional information must be added to properly predict the evolution of the separation

interface: relating the velocity of the contact line ( 𝑇 𝑃 𝐿 ) to the contact angle ( 𝐶𝐴 , 𝜃) is the most widely used approach, although

the phenomena occurring at the 𝑇 𝑃 𝐿 are not fully explained yet. For instance, Cox’s theory assumes that 𝜃 is determined by viscous

forces acting at the interface on a macroscopic length scale, whereas the equilibrium contact angle 𝜃𝑆 is preserved within the slip

zone ( 𝑟 ≤ 𝑙 𝑠 ) [3] , namely: 

𝑔 ( 𝜃) = 𝑔( 𝜃𝑆 ) + 𝐶𝑎 ln 
(
𝐷 

𝑙 𝑠 

)
, (12) 

where 𝑔 is an algebraically complex function, 𝐷 is the macroscopic length scale, 𝑙 𝑠 the slip length (i.e., the artificial depth within the

solid for which the velocity would reach zero [26] ), and 𝐶𝑎 the capillary number (i.e., the ratio of viscous forces to surface tension).

In some cases Eq. 12 cannot accurately predict 𝜃, so some corrections have been proposed, such as replacing the static contact angle,

𝜃𝑆 , with a microscopic dynamic 𝐶𝐴 , 𝜃𝐷 , related to the contact line velocity: 

cos 𝜃𝑆 − cos 𝜃𝐷 ( 𝐶𝑎 ) = 𝐵( 𝐶𝑎 ) 𝜁 , (13) 
4 



M. Provenzano, F.M. Bellussi, M. Morciano et al. MethodsX 11 (2023) 102458 

Fig. 3. Schematic representation of the fluid-fluid separation interface according to (a) the hydrodynamic approach and (b) the phase-field model. 

Diffuse-interface methods replace the sharp interface with a transition region of finite thickness, through which the physical properties change 

rapidly but continuously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

being 𝐵 and 𝜁 evaluated through a fitting procedure. The molecular-kinetic theory, on the other hand, correlates the contact line

motion with the dynamics of molecules in close proximity to it: the deviation of the dynamic contact angle from the static value

results in a capillary force enabling the molecules to move. This theory, however, does not take into account any viscous stress nor

the geometric configuration of the surface, so it has no universal validity [4,27] . Alternatively, the Shikhmurzaev model can be used,

which introduces a surface tension gradient near the contact line. However, it requires phenomenological constants that cannot be

determined a priori . 

Multiphase flows and interface problems can alternatively be studied with interface-capturing methods, where auxiliary fields 

are used to describe interface behaviors (e.g., level-set, volume of fluid and phase-field methods). These models often do not require

the use of moving meshes (as is the case of interface-tracking methods); however, they typically involve higher computational costs,

issues related to the use of a finite interface thickness, and mass variations [4,27,28] . The level-set method ( 𝐿𝑆), for example, uses

a fixed grid (e.g., Cartesian) to solve numerically the Navier-Stokes equations, and an advection algorithm enables the contact line

motion. The interface is represented by the zero level set of a scalar smooth function 𝜙𝐿𝑆 ( 𝑥 𝑥 𝑥 ) ∶ ℝ 

𝐷 → ℝ , Γ = { 𝑥 ∶ 𝜙𝐿𝑆 ( 𝑥 𝑥 𝑥 ) = 0} [28] .

The interface moves by convection due to the velocity field, which in turn is obtained as a solution of the momentum equation [29] :

𝜕𝜙𝐿𝑆 

𝜕𝑡 
+ ∇ ⋅ ( 𝑢 𝑢 𝑢 𝜙𝐿𝑆 ) = 0 . (14) 

The 𝐿𝑆 method allows interface deformations and topology changes to be handled in a way that is fairly simple to implement,

especially in its original formulation. However, it shows significant non-physical mass losses for large surface deformations. The 

method has been modified and enhanced over the years to improve mass conservation while preserving the original simplicity,

resulting in the conservative level-set method (although its accuracy is reduced) [29,30] . The volume of fluid method ( 𝑉 𝑂𝐹 ), as

well as the previous one, can be used to study movements and deformations of the interface by means of a fixed computational grid,

adopting for this purpose a smooth function 𝜙𝑉 𝑂𝐹 which indicates the fraction of fluid present in each cell of the mesh. 𝜙𝑉 𝑂𝐹 = 1 in
one of the two phases (usually the liquid one) and 𝜙𝑉 𝑂𝐹 = 0 for a cell filled with the second phase, while the interface is associated

with 𝜙𝑉 𝑂𝐹 = 0 . 5 . The deformation of the liquid-gas surface is governed by an equation analogous to Eq. 14 [4,28] : 

𝜕𝜙𝑉 𝑂𝐹 

𝜕𝑡 
+ ∇ ⋅ ( 𝑢 𝑢 𝑢 𝜙𝑉 𝑂𝐹 ) = 0 . (15) 

𝑉 𝑂𝐹 methods suffer from less mass loss than 𝐿𝑆 methods, but there are still drawbacks related to the use of diffusive and unstable

computational schemes [4,28] . 

In diffuse-interface models ( 𝐷𝐼 𝑀 ), the sharp interface (separating two different phases in the hydrodynamic approach) is replaced

with a finite-thickness transition region (see Fig. 3 ), as is the case in phase-field methods. In this work, a phase-field model ( 𝑃 𝐹 )

based on the Cahn-Hilliard equations [1,31] was selected. Phase-field methods indeed provide results for multi-phase problems that 

exhibit good agreement with sharp-interface approaches, as reported in the benchmark study conducted by Aland and Voigt [32] .

Further efforts have been dedicated to the study of binary fluids using phase-field methods, aiming to approach the sharp-interface

limit by carefully selecting model parameters, such as interface thickness and interface mobility [2,33] . Such a model allows the use

of a fixed mesh and a no-slip condition at the solid-fluid interface: as also explained in Section 3, the phase-field model avoids the

occurrence of the contact line paradox typically found in sharp-interface models, since the non-equilibrium of the chemical potential

(and the resulting diffusion in a thin interface) leads to the 𝑇 𝑃 𝐿 motion [34] . The governing equation is as follows [35] : 

𝜕𝜙

𝜕𝑡 
+ 𝑢 𝑢 𝑢 ⋅ ∇ 𝜙 = ∇ ⋅ ( 𝑀∇ 𝐺) , (16) 

where 𝜙 is the phase-field variable ( 𝜙 ∈ [−1 , 1] ), 𝑀 = 𝜒𝜖2 is the mobility parameter, 𝜒 is a tuning parameter, 𝜖 scales with the

thickness of the interface, 𝑢 𝑢 𝑢 is the velocity field, 𝐺 is the chemical potential [2] . This advection-diffusion equation can be considered a

generalization of Fick’s law since the flux is related to the gradient of the chemical potential through the phenomenological parameter

𝑀 . The presence of the interface is taken into account by modifying the Navier-Stokes equations: 

𝜌

(
𝜕 𝑢 𝑢 𝑢 

𝜕𝑡 
+ 𝑢 𝑢 𝑢 ⋅ ∇ 𝑢 𝑢 𝑢 

)
= −∇ 𝑝 + ∇ ⋅ 𝜇[∇ 𝑢 𝑢 𝑢 + (∇ 𝑢 𝑢 𝑢 ) 𝑇 ] + 𝐺∇ 𝜙 + 𝐹 𝐹 𝐹 . (17) 

Density 𝜌 and viscosity 𝜇 are expressed as [35] : 𝜌 = 

1 
2 [(1 − 𝜙) 𝜌1 + (1 + 𝜙) 𝜌2 ]; 𝜇 = 

1 
2 [(1 − 𝜙) 𝜇1 + (1 + 𝜙) 𝜇2 ] . Similarly, volume fractions

are 𝑉 𝑓1 = 

1− 𝜙
and 𝑉 𝑓2 = 

1+ 𝜙
[27] , and as a result: 𝜌 = 𝜌1 𝑉 𝑓1 + 𝜌2 𝑉 𝑓2 ; 𝜇 = 𝜇1 𝑉 𝑓1 + 𝜇2 𝑉 𝑓2 . Subscripts 1 and 2 identify the two phases,
2 2 
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respectively: we refer to the air as “Fluid 1 ” and to the water phase as “Fluid 2 ”. Further details are provided by the authors in the

recently published research article [36] . 

The approaches introduced and discussed so far were all based on the continuum assumption , which is the one also considered in

this work. 

Theoretical background on boundary conditions 

When a viscous fluid is close to a surface, adherence to the wall is generally assumed, meaning that the fluid has the same velocity

as the domain boundary (no-slip condition). This assumption gives rise to the following expression: 

( 𝑢 𝑢 𝑢 − 𝑢 𝑢 𝑢 𝑤 ) ⋅ 𝑡 𝑡 𝑡 = 0 , (18) 

where 𝑡 𝑡 𝑡 is a general unit vector tangent to the wall. However, this condition is only an approximation of more complex phenomena,

and therefore it is not universally valid. For example, the no-slip condition cannot be applied to phenomena with Knudsen ( 𝐾𝑛 )

numbers close to the unit, where 𝐾𝑛 = 

𝜆𝑚 

𝐷 
( 𝜆𝑚 is the molecular mean free path length, whereas 𝐷 is the length scale of the system).

The no-slip condition is also a problem where a moving interface is in contact with a solid surface, as in wetting phenomena: under

these circumstances, as mentioned above, the adoption of a classical hydrodynamic model in conjunction with this condition results 

in the emergence of a stress singularity at the 𝑇 𝑃 𝐿 . The choice of a phase-field model in this study allowed us to overcome this

limitation and use a no-slip condition for this analysis [36] because the motion of the contact line is guaranteed by the diffusive term

of the Cahn-Hilliard equation ( Eq. 16 ) even in the presence of a zero velocity field. The incongruity that emerges from adopting a

no-slip condition with a moving contact line is not, however, a purely mathematical problem, although molecular studies allow the

coexistence of the two to be explained [37] . Other studies, conversely, have shown a relative fluid-solid slip in some cases, and none

of the models introduced to explain this phenomenon have been able to quantitatively assess the magnitude of this effect near the

𝑇 𝑃 𝐿 [38] . 

The Navier 𝐵𝐶 ( 𝑁𝐵𝐶) represents one of the slip models that can be used to relax the no-slip condition and avoid stress singularities.

This 𝐵𝐶 assumes that the relative slip is proportional to the tangential viscous stress [39] . For a Newtonian fluid: 𝜉( 𝑢 𝑢 𝑢 − 𝑢 𝑢 𝑢 𝑤 ) |𝑡 + [ 𝜇(∇ 𝑢 𝑢 𝑢 +
(∇ 𝑢 𝑢 𝑢 ) 𝑇 ) ⋅ 𝑛 𝑛 𝑛 ] |𝑡 = 0 , where 𝜉 = 

𝜇

𝑙 𝑠 
is the slip coefficient and 𝑙 𝑠 the slip length. 𝜉 is generally high, so the no-slip condition is an adequate

approximation in most cases [40] . For a two-dimensional system with zero wall velocity and a non-penetration condition (namely,

( 𝑢 𝑢 𝑢 − 𝑢 𝑢 𝑢 𝑤 ) ⋅ 𝑛 𝑛 𝑛 = 0 , being 𝑛 𝑛 𝑛 the outward-pointing normal unit vector), the previous equation becomes [4] : 𝑢 = 𝑙 𝑠 
𝜕𝑢 

𝜕𝑦 
. The 𝑁𝐵𝐶, however,

showed reliability only far from the contact line, whereas near the 𝑇 𝑃 𝐿 the condition fails. Moreover, this approach makes it necessary

– for multiphase flows – to use an additional condition that explicitly evaluates the contact angle [39] . Over the years, hybrid models

combining the results of 𝑀𝐷 simulations with continuum approaches have been created, to overcome these limitations. One possible 

solution is to use the Cahn-Hilliard-Navier-Stokes equations together with Generalized Navier Boundary Conditions ( 𝐺𝑁𝐵𝐶), which 

includes no-slip and Navier 𝐵𝐶s as approximations. According to this 𝐵𝐶, valid only with 𝐶𝑎 < 0 . 1 [41] , the slip velocity at the wall is

proportional to the sum of a viscous component and an unbalanced Young’s stress, due to the interface deviations from the equilibrium

configuration. With respect to the 𝑁𝐵𝐶, therefore, there is an additional term that vanishes if the microscopic dynamic contact angle

𝜃𝐷 becomes equal to the static value 𝜃𝑆 . Unbalanced Young’s stress is expressed by [42] : ∫
𝑖𝑛𝑡 

𝜏𝑌 𝑜𝑢𝑛𝑔 𝑑𝑥 = 𝜎( cos 𝜃𝑆 − cos 𝜃𝐷 ) , where

𝜎 = 𝛾𝐿𝐺 is the surface tension. Integration is performed through the interface, parallel to the wall. 

The adoption of a phase-field model also implies the introduction of an auxiliary variable 𝜙, thus requiring appropriate boundary

conditions. In a system consisting of two fluids in contact with each other and with a solid surface, the free energy has an additional

term 𝑓 𝑤 , due to the wall energy [3,43] . Therefore, for a domain Ω: 𝐹 = ∫Ω 𝑓 𝑚 ( 𝜙, ∇ 𝜙) 𝑑Ω + ∫
𝜕Ω 𝑓 𝑤 ( 𝜙) 𝑑𝐴 , 𝑓 𝑤 ( 𝜙) = − 𝜎 cos 𝜃𝑆 

𝜙(3− 𝜙2 ) 
4 +

𝛾1 + 𝛾2 
2 , where 𝑓 𝑚 is the free fluid-fluid mixing energy density, 𝜕Ω is the solid surface ( 𝑑𝐴 : infinitesimal surface element), 𝜎 is the

fluid-fluid interfacial tension, 𝛾1 and 𝛾2 are the fluid-solid interfacial tensions. Given the Young equation, 𝑓 𝑤 (±1) = 𝛾1 , 2 . The surface

chemical potential 𝐿 is obtained by applying a variational procedure: 𝐿 = 𝜆𝑛 𝑛 𝑛 ⋅ ∇ 𝜙 + 𝑓 ′
𝑤 
( 𝜙) . The naturally resulting boundary condition

is 𝐿 = 0 , which corresponds to imposing a dynamic microscopic contact angle equal to the static equilibrium value [27,44] : 

cos 𝜃𝑆 = 

𝑛 𝑛 𝑛 ⋅ ∇ 𝜙|∇ 𝜙| . (19) 

The generalization of this condition takes into account non-equilibrium states, enabling during the flow the occurrence of a dynamic

microscopic contact angle 𝜃𝐷 different from the static contact angle 𝜃𝑆 [3] : 

𝜕𝜙

𝜕𝑡 
+ 𝑢 𝑢 𝑢 ⋅ ∇ 𝜙 = −Γ𝐿 ( 𝜙) , (20) 

where Γ is a rate constant that, as also 𝑀 , can be seen as a property of the material. However, the values of these parameters

are often not known, so they are mostly treated as phenomenological parameters, constituting the following dimensionless groups: 

𝑆 = 

√
𝜇𝑀 

𝐷 
and Π = 

1 
𝜇Γ𝐷 . 𝑙 𝑑 = 

√
𝜇𝑀 is the diffusion length, closely related to the slip length 𝑙 𝑠 [2] . If the flow is sufficiently slow

that the 𝜙 profile across the interface can be assumed to be the equilibrium profile, applying the previous equation at the contact

line ( 𝜙 = 0 ) leads to: 
cos 𝜃𝑆 − cos 𝜃𝐷 

sin 𝜃𝐷 
= 

(
2 
√
2 

3 
Π
𝐶𝑛 

)
𝐶 𝑎 , where 𝐶 𝑛 = 

𝜖

𝐷 
is the Cahn number, and 𝐶 𝑎 is the capillary number. If the velocity

is low or Γ is high, the discrepancy between the microscopic dynamic contact angle and the static value 𝜃𝑆 is negligible, as long

as the flow is slow enough not to distort the 𝜙 profile. Γ and 𝑀 govern the interface behavior in the near-wall and outer region,

respectively, so if properly modified they can compensate for each other’s effects. The limitations caused by the small values of 𝑙 𝑠 and
6 
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𝑙 𝑑 in real phenomena can therefore be overcome by developing appropriate computational strategies: the adoption of an artificially

large 𝑆 in performing calculations can in fact be compensated for by acting on Π as if it were an adjustable parameter, achieving

the correct result on a macroscopic length scale. This condition can also be coupled with the Generalized Navier Boundary Condition

[35] : 𝜉( 𝑢 𝑢 𝑢 − 𝑢 𝑢 𝑢 𝑤 ) + 𝜇[∇ 𝑢 𝑢 𝑢 + (∇ 𝑢 𝑢 𝑢 ) 𝑇 ] ⋅ 𝑛 𝑛 𝑛 = 𝐿 ( 𝜙)∇ 𝜙, where the last term is the unbalanced Young’s stress. Under appropriate assumptions

(and specifically if the relaxation parameter Γ of Eq. 20 tends to infinity [34] ), the 𝑁𝐵𝐶 can then be derived from the 𝐺𝑁𝐵𝐶,

and further reduced to the no-slip condition when the slip length goes to zero. The Cahn-Hilliard model thus allows the contact

line problem to be studied in such a way as to include both viscous actions at the interface (analyzed by Cox, see Section 2) and

local effects (studied by molecular-kinetic models). The main limitation in using this condition, besides the computational costs, is

that adequately compensating for the use of high diffusion lengths would require knowing the exact values of Γ and 𝑀 , which are

generally unknown, or alternatively performing a fitting on experimental data [3] . 

Dimensionless form of model equations 

The equations governing the displacement of a droplet on a solid surface can be expressed in a dimensionless form, allowing a

better understanding of the phenomenon and the identification of characteristic dimensionless numbers. A phase-field model based 

on the Cahn-Hilliard/Navier-Stokes equations ( Eqs. 7, 16 and 17 ) was chosen for this study, so the following non-dimensional vari-

ables can be used: 𝑢 𝑢 𝑢 ∗ = 

𝑢 𝑢 𝑢 

𝑈 
; 𝑥 𝑥 𝑥 ∗ = 

𝑥 𝑥 𝑥 

𝐷 
; 𝑔 𝑔 𝑔 ∗ = 

𝑔 𝑔 𝑔 

𝑔 
; 𝑡 ∗ = 

𝑡𝑈 

𝐷 
; 𝑝 ∗ = 

𝑝 

𝜌𝑟𝑒𝑓 𝑈 
2 ; 𝜌∗ = 

𝜌

𝜌𝑟𝑒𝑓 
; 𝜇∗ = 

𝜇

𝜇𝑟𝑒𝑓 
. 𝐷, 𝑈 , 𝜌𝑟𝑒𝑓 , 𝜇𝑟𝑒𝑓 are reference quantities, which

should be chosen appropriately according to the system studied. Substituting these definitions into the Cahn-Hilliard/Navier-Stokes 

equations gives: 

𝜌∗ 
(
𝜕 𝑢 𝑢 𝑢 ∗ 

𝜕𝑡 ∗ 
+ 𝑢 𝑢 𝑢 ∗ ⋅ ∇ 

∗ 𝑢 𝑢 𝑢 ∗ 
)
= −∇ 

∗ 𝑝 ∗ + 

1 
𝑅𝑒 

∇ 

∗ ⋅ 𝜇∗ [∇ 

∗ 𝑢 𝑢 𝑢 ∗ + (∇ 

∗ 𝑢 𝑢 𝑢 ∗ ) 𝑇 ] + 

1 
𝐹 𝑟 2 

𝜌∗ 𝑔 𝑔 𝑔 ∗ + 

3 
2 
√
2 

1 
𝑊 𝑒 ⋅ 𝐶𝑛 

[− 𝐶𝑛 2 ∇ 

∗ 2 𝜙 + 𝜙( 𝜙2 − 1)]∇ 

∗ 𝜙 (21)

∇ 

∗ ⋅ 𝑢 𝑢 𝑢 ∗ = 0 (22) 

𝜕𝜙

𝜕𝑡 ∗ 
+ 𝑢 𝑢 𝑢 ∗ ⋅ ∇ 

∗ 𝜙 = 

3 
2 
√
2 

1 
𝑃 𝑒 

∇ 

∗ 2 [− 𝐶𝑛 2 ∇ 

∗ 2 𝜙 + 𝜙( 𝜙2 − 1)] , (23) 

where 𝑅𝑒 = 

𝜌𝑟𝑒𝑓 𝑈𝐷 

𝜇𝑟𝑒𝑓 
is the Reynolds number, the ratio of inertial to viscous forces; 𝐶𝑛 = 

𝜖

𝐷 
is the Cahn number, namely the ratio of

interface thickness to characteristic length; 𝑃 𝑒 = 

𝐷𝑈𝜖

𝑀𝜎
is the Péclet number, the ratio of advection to diffusion (it differs from the

classically used one since it is defined specifically for this model); 𝐹 𝑟 2 = 

𝑈 2 

𝑔𝐷 
is the Froude number, the ratio of flow inertia to gravity

effect; 𝑊 𝑒 = 

𝜌𝑟𝑒𝑓 𝑈 
2 𝐷 

𝜎
= 𝐶𝑎𝑅𝑒 is the Weber number, the ratio of inertial forces to surface tension; 𝐶𝑎 is the capillary number, the ratio

of viscous forces to surface tension. 

Finite element method 

For the development of this work, the cross-platform COMSOL Multiphysics® software was used [45] , which implements algo- 

rithms based on finite element methods ( 𝐹 𝐸𝑀) for solving the partial differential equations ( 𝑃 𝐷𝐸s) related to the problem under

analysis. Finite element methods use the variational, or weak, formulation of the boundary value problem, which for simplicity is

considered time-independent [6] : 

𝐷𝑢 ( 𝑥 𝑥 𝑥 ) = 𝑓 𝑜𝑛 Ω (24) 

𝑅 ( 𝑢 ( 𝑥 𝑥 𝑥 ) , 𝜕 𝛼𝑢 ( 𝑥 𝑥 𝑥 )) = 0 𝑜𝑛 𝜕Ω, (25) 

being Ω the computational domain, 𝐷 a differential operator, 𝜕 𝛼𝑢 ( 𝑥 𝑥 𝑥 ) a space derivative and 𝑅 ( 𝑢 ( 𝑥 𝑥 𝑥 ) , 𝜕 𝛼𝑢 ( 𝑥 𝑥 𝑥 )) a general set of 𝐵𝐶s. 

Let 𝑉 be a space consisting of “admissible functions ” 𝑣 ∶ Ω → ℝ , also called shape functions, defined on Ω = Ω ∪ 𝜕Ω and satisfying

certain regularity requirements (the definition of which is beyond the scope of this analysis). Moreover, let 𝐵 ⊂ 𝑉 be a basis of 𝑉 ,

that is, each element 𝑣 ∈ 𝑉 can be written as a linear combination of functions 𝜙 ∈ 𝐵. The weak solution 𝑢 to problem 24 - 25 belongs

to 𝑉 and satisfies the following condition: 

∫Ω 𝐷𝑢 ( 𝑥 𝑥 𝑥 ) 𝑣 ( 𝑥 𝑥 𝑥 ) 𝑑 𝑥 𝑥 𝑥 = ∫Ω 𝑓𝑣 ( 𝑥 𝑥 𝑥 ) 𝑑 𝑥 𝑥 𝑥 ∀𝑣 ∈ 𝑉 (26) 

where 

𝑣 ( 𝑥 𝑥 𝑥 ) = 

∑
𝑛 ∈ℕ 

𝑎 𝑛 𝜙𝑛 ( 𝑥 𝑥 𝑥 ); 𝑢 ( 𝑥 𝑥 𝑥 ) = 

∑
𝑖 ∈ℕ 

𝑢 𝑖 𝜙𝑖 ( 𝑥 𝑥 𝑥 ); 𝜙𝑖,𝑛 ∈ 𝐵. (27) 

The variational formulation of the problem makes it possible to deal with more general cases than the strong one: the two are

equivalent if certain assumptions concerning the regularity of the functions involved are respected. The problem can be approximated

by replacing 𝑉 with a subset 𝑉 ℎ ⊂ 𝑉 , a finite dimensional space (i.e., containing only a finite number of mutually independent

functions), and its components 𝑣 ℎ are definable using a finite number of parameters (degrees of freedom). The solution 𝑢 ℎ of the

discrete problem will be an approximation of 𝑢 . The finite element method provides a simple way to define the 𝑉 ℎ spaces used in the

discrete variational formulation. The domain Ω is subdivided into polygons/polyhedrons, the size of which can be chosen according to 
7 
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Fig. 4. (a) Computational domain and boundary conditions used. (b) Simulation domain at the initial condition. The color bar indicates the air 

volume fraction. (c) Geometry of the micro-structured surface with details of the characteristic dimensions. As can be seen, a trapezoidal geometry 

was chosen. Figure taken from reference [36] and modified under license CC BY 4.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the desired degree of accuracy and computational time, and the basis functions are chosen to be polynomial. Each of these polynomial

functions has a domain located on a small number of mesh elements, so the overlap between different functions is low. To modify

the accuracy of the simulation, actions can be taken either on the size of the mesh elements or on the degree of the interpolating

polynomials. Recalling that the solution 𝑢 ℎ is a linear combination of basis functions 𝑢 ℎ ( 𝑥 𝑥 𝑥 ) = 

∑𝑁 

𝑖 =1 𝑢 𝑖 𝜙𝑖 ( 𝑥 𝑥 𝑥 ) , 𝜙𝑖 ∈ 𝐵 ℎ , and using the

linearity of the integral and derivative operators, a boundary value problem can be transformed into a system of linear algebraic

equations: 

𝐴 

𝐴 𝐴 𝑢 𝑢 𝑢 = 𝑓 𝑓 𝑓 , (28) 

where 𝑢 𝑢 𝑢 ∈ ℝ 

𝑁 is the solution vector, 𝑓 𝑓 𝑓 ∈ ℝ 

𝑁 contains information about the forcing terms, and 𝐴 

𝐴 𝐴 ∈ ℝ 

𝑁𝑥𝑁 is a sparse matrix, as a

result of using spatially localized basis functions. 

Details on implemented boundary conditions 

The scenario chosen for simulations consists of a droplet placed a few tenths of a millimeter from a solid surface, which settles

on the surface after a short transient phase due to the action of gravity. Initially, perfectly smooth surfaces were considered to assess

the physical reliability of the results in a simple case ( Fig. 4 ). Next, some micro-structures were added to the computational domain

( Fig. 5 ) [36] . 

The system of Cahn-Hilliard/Navier-Stokes equations considers the velocity field 𝑢 𝑢 𝑢 = ( 𝑢, 𝑣, 𝑤 ) , the pressure 𝑝 , and the phase 𝜙 as

variables, which must then be defined properly along the boundaries of the chosen computational domain (see Fig. 4 ). 

As for the solid-fluid wall, a no-slip condition ( Eq. 18 ) coupled with the non-penetration condition was chosen. Moreover, the

presence of zero diffusive flux across the wall was added: 

𝑛 𝑛 𝑛 ⋅ ∇ 𝐺 = 0 , (29) 

combined with Eq. 19 . Further details about these choices can be found elsewhere [36] . For the upper and right edges, open boundary

conditions were applied to simulate an infinite domain: 

[− 𝑝 𝐼 𝐼 𝐼 + 𝜇(∇ 𝑢 𝑢 𝑢 + (∇ 𝑢 𝑢 𝑢 ) 𝑇 )] ⋅ 𝑛 𝑛 𝑛 = − 𝑓 0 𝑛 𝑛 𝑛 ; 𝑓 0 = 0 𝑁 

𝑚 

2 . (30) 

Regarding the value of the phase variable along these edges, as well as the conditions to be used on the left side, different configurations

were compared: 

• 2D, inlet/inlet . A symmetry condition was imposed on the axis (i.e., the left edge of the domain), expressed by: 

𝑢 𝑢 𝑢 ⋅ 𝑛 𝑛 𝑛 = 0; 𝐾 

𝐾 𝐾 − ( 𝐾 

𝐾 𝐾 ⋅ 𝑛 𝑛 𝑛 ) 𝑛 𝑛 𝑛 = 0 0 0 ; 𝐾 

𝐾 𝐾 = [ 𝜇(∇ 𝑢 𝑢 𝑢 + (∇ 𝑢 𝑢 𝑢 ) 𝑇 )] ⋅ 𝑛 𝑛 𝑛 . (31) 

Similarly, the flow of fluid phases across this edge was also set to zero. On the upper and right edges, on the other hand, the phase

function was defined as 

𝜙 = −1 . (32) 

• 2D, inlet/outlet . The boundary conditions are the same as in the previous point, but an outlet condition was imposed on the right

side, corresponding to a net outflow from the domain. 

• 2D, outlet/outlet . The outlet condition was chosen for both the upper and right edges. 
• 3D, inlet/inlet . In this case, an axisymmetry condition was applied on the axis, thus simulating a three-dimensional domain. 

8 
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Fig. 5. (a) Example of a simulation carried out with micro-structured surfaces, computational domain at the initial condition. The color bar indicates 

the air volume fraction. (b) Example of mesh used in simulations with perfectly smooth surfaces. 

Fig. 6. Comparison of deviations from mass conservation (absolute values) obtained with different boundary conditions applied to the upper, right, 

and left edges in simulations involving perfectly smooth surfaces. In the 2D cases, the volume of water is half of a cylinder of unit length, so the 

mass is expressed in kg/m. 

 

 

 

 

 

 

 

In all of these cases, the simulations resulted in a final contact angle comparable to that imposed on the solid wall, so this parameter

was not used as a benchmark to evaluate the quality of the numerical results. Therefore, we checked the conservation of mass: there

are no reactions in the system, so the total mass of water shall be constant. The water mass per unit volume can be defined as: 

𝜌𝑤𝑎𝑡𝑒𝑟 = 𝜌2 ⋅ 𝑉 𝑓2 . (33) 

We performed the integration of Eq. 33 on both the entire domain and only on the inner region (which was divided into smaller mesh

elements since affected by the interface motion, see Fig. 5 ), as well as on the outer region. The relative errors 𝐸 were computed using

the initial value as a reference. All data were exported from COMSOL® as text files, and re-processed with MATLAB® [46] . 

From Figs. 6 and 7 it can be seen that the presence of an outlet condition greatly increases the mass change, which instead is kept

low in the other two cases (when considering the entire domain). Comparing the “2 𝐷, 𝑖𝑛𝑙 𝑒𝑡 ∕ 𝑖𝑛𝑙 𝑒𝑡 ” and “3 𝐷, 𝑖𝑛𝑙 𝑒𝑡 ∕ 𝑖𝑛𝑙 𝑒𝑡 ” situations,

it is clear, however, that for both of them, a portion of the calculated mass comes from the outer region, where theoretically no
9 
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Fig. 7. Comparison of deviations from mass conservation (relative errors) obtained with different boundary conditions applied to the upper, right, 

and left edges in simulations involving perfectly smooth surfaces. Relative errors were computed using the initial value as a reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

water should be present. This is due to the fact that the volume fraction of fluid two is not exactly zero in this area, for presumably

numerical reasons. Although the absolute value of the integral evaluated on the outer region is lower in 3 𝐷 simulations than in 2 𝐷
simulations, the total volume of water at the beginning of the process is also lower in the former case: this should not be surprising,

since we are comparing a sphere with a cylinder of equal radius but unit length. Overall, therefore, the lowest relative error occurs in

the first of the situations analyzed. At the beginning of simulations, the difference between the integral evaluated only over the inner

region and that calculated over the entire domain is negligible, because of the initial conditions imposed on the phase variable. The

estimated mass in the inner region then decreases, eventually settling on a stable value in both the first and last configurations. In

light of these considerations, subsequent simulations were performed on a two-dimensional computational domain, with inlet-type 

conditions. 

The first simulations were carried out with smooth surfaces to test the model and calibrate its parameters (see Section 8). Next,

several trapezoidal micro-structures with different geometric features were added at the solid wall (see Fig. 4 ). 

Simulation post-processing 

The purpose of this protocol is to predict the wettability of micro-structured surfaces by means of continuum simulations, to

facilitate the creation of systems with the desired hydrophilicity/hydrophobicity while reducing the time and cost of the design 

phase. The wetting properties of a surface are influenced by several factors: a hydrophobic surface, for example, may have excellent

self-cleaning capabilities (lotus effect), or high adhesion (rose petal effect) [47–49] . In this study, we chose to characterize different

surfaces by using the apparent contact angle, while simultaneously paying attention to which wetting state was achieved. 

The apparent contact angle was evaluated at some distance from the solid wall, to avoid any local effect due to the imposed

boundary conditions. Given a generic curve and a secant intersecting the curve at two distinct points 𝐴 and 𝐵, the tangent is the line

to which the secant tends when 𝐴 and 𝐵 are infinitely close to each other. We chose to exploit this definition for the evaluation of the

final contact angle in our simulations, by approximating the water-air interface near the 𝑇 𝑃 𝐿 with a straight line passing through

two sufficiently close points. The procedure used is as follows: 

• We selected three parallel lines, depicted in Fig. 8 , and we extracted the profile of 𝑉 𝑓2 along these lines at the end of the simulation.
10 
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Fig. 8. Evaluation of the contact angle using appropriately selected parallel lines in the case of (a) a smooth surface and (b) a micro-structured 

surface. (c) Example of a 𝑉 𝑓2 profile along a horizontal line. 

Fig. 9. Geometric description of a droplet on a perfectly smooth surface, provided it takes the shape of a spherical cap. 

 

 

 

 

 

• For each of the three extracted profiles, we identified the 𝑥 coordinate corresponding to 𝑉 𝑓2 = 0 . 5 (i.e., 𝜙 = 0 , the value representing

the interface), by linear interpolation. We will call these positions 𝑥 1 , 𝑥 2 , and 𝑥 3 below, with reference to the three lines (from

bottom to top). 

• With the positions thus obtained, corresponding to the 𝑥 coordinates of the intersections between the lines and the interface,

the angles formed by the secants (passing through these points) and the horizontal direction were estimated. Since the distance

between the parallel lines is sufficiently small, the secants can be considered a good approximation of the respective tangents.

Defining Δ𝑥 1 = 𝑥 1 − 𝑥 2 , Δ𝑥 2 = 𝑥 2 − 𝑥 3 and Δ𝑥 3 = 𝑥 1 − 𝑥 3 , we computed: 

𝐶𝐴 1 = arctan 
0 . 5 ℎ 𝑚𝑎𝑥 
Δ𝑥 1 

, (34) 

𝐶𝐴 2 = arctan 
ℎ 𝑚𝑎𝑥 

Δ𝑥 2 
, (35) 

𝐶𝐴 3 = arctan 
1 . 5 ℎ 𝑚𝑎𝑥 
Δ𝑥 3 

, (36) 

𝐶 𝐴 1 + 𝐶 𝐴 2 + 𝐶 𝐴 3 Δ𝑦 

and thus 𝐶𝐴 = 3 . If Δ𝑥 < 0 , 𝐶𝐴 = 𝜋 − arctan |Δ𝑥 | . 

11 
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Fig. 10. Analysis of simulations performed with a perfectly smooth surface: evolution of the interface positions over time ( 𝐶𝐴 𝑤 = 70 ◦, ℎ max = 
2 . 35 × 10 −5 m , 𝜒 = 100 m ⋅ s∕ kg ). 𝐶𝐴 𝑤 is the angle imposed at the wall, and ℎ 𝑚𝑎𝑥 is the maximum size selected for the mesh elements in the area of 

the domain crossed by the interface motion (inner region). These definitions will also be used in subsequent images. 

Fig. 11. Analysis of simulations performed with a perfectly smooth surface: evolution of the interface positions over time, magnified view ( 𝐶𝐴 𝑤 = 
70 ◦, ℎ max = 2 . 35 × 10 −5 m , 𝜒 = 100 m ⋅ s∕ kg ). 

Fig. 12. Analysis of simulations performed with a perfectly smooth surface: water mass conservation, calculated from the domain-wide integration 

( 𝐶𝐴 𝑤 = 70 ◦, ℎ max = 2 . 35 × 10 −5 m , 𝜒 = 100 m ⋅ s∕ kg ). 
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Fig. 13. Analysis of simulations performed with a perfectly smooth surface: water mass conservation, with integration carried out on the inner 

region of the domain ( 𝐶𝐴 𝑤 = 70 ◦, ℎ max = 2 . 35 × 10 −5 m , 𝜒 = 100 m ⋅ s∕ kg ). 

Fig. 14. Analysis of simulations carried out with a perfectly smooth surface: verification of compliance with the boundary conditions imposed on 

pressure and velocity. (a) Velocity profile near the solid wall during the movement of the 𝑇 𝑃 𝐿 . (b) Relative pressure profile along the 𝑦 axis. The 

velocity near the solid wall is actually zero, although the diffusion introduced by the Cahn-Hilliard model makes contact line motion possible. As 

for pressure, this is essentially equal to the atmospheric value throughout the domain, except inside the droplet. 

13 
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Table 1 

Results of simulations carried out with smooth surfaces, imposing a contact angle on the wall ( 𝐶𝐴 𝑤 ) 

of 70 ◦. Comparison between different methods used to evaluate the 𝐶𝐴 . The designation “𝐸 𝑡𝑜𝑡 ” refers 

to the percentage error related to water mass conservation (estimated over the entire domain). This 

definition will also be used in subsequent tables. 𝑙 𝑔 and ℎ 𝑔 were evaluated from geometric considera- 

tions using the contact angle defined through the boundary condition, i.e., 70 ◦. 𝑙 and ℎ , on the other 

hand, were obtained from simulations. As can be seen, the two ratios ( 𝑙 𝑔 ∕ ℎ 𝑔 and 𝑙∕ ℎ ) differ by about 

4% . For further details, please refer to Fig. 9 and Reference [51] . 

𝜖 ( μm) 𝐶𝐴 𝑤 ( 
◦) 𝐶𝐴 1 ( 

◦) 𝐶𝐴 2 ( 
◦) 𝐶𝐴 3 ( 

◦) 𝐶𝐴 ( ◦) 𝐶𝐴 𝐼𝑚𝐽 ( 
◦) 𝐸 𝑡𝑜𝑡 (%) 𝑙∕ ℎ 𝑙 𝑔 ∕ ℎ 𝑔 

23.5 70 70.33 70.69 70.57 70.53 69 ± 2 0.22 1.48 1.43 

11.8 70 70.75 71.52 71.26 71.18 70 ± 2 0.12 1.49 1.43 

Table 2 

Results of simulations carried out with micro-structured surfaces ( 𝐴 = 24 μm , 

𝐵 = 80 μm , 𝐷 = 120 μm , 𝐻 = 200 μm , 𝜖 = 15 . 7 μm , see Fig. 4 ). Comparison of 

contact angle values obtained from the geometric definition of spherical cap 

( 𝐶𝐴 𝑔𝑒𝑜𝑚 ) and contact angles evaluated using the tangent definition ( 𝐶𝐴 1 and 

𝐶𝐴 , see Eqs. (34)–(36) ). 

𝐶𝐴 𝑤 ( ◦) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐶𝐴 𝑔𝑒𝑜𝑚 ( ◦) 

120 159.1 159.8 153.8 

110 152.5 151.9 145.4 

105 151.8 151.0 144.9 

100 135.9 134.1 128.2 

95 134.1 133.1 128.0 

85 125.7 124.6 119.3 

80 125.0 124.3 119.1 

75 116.5 115.0 110.5 

70 116.0 114.8 110.4 

60 99.3 98.1 93.2 

50 91.0 89.8 84.6 

30 66.4 62.9 55.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The values thus obtained ( Table 1 ) were compared with the results of a post-processing performed with the “ImageJ ” image

analysis software [50] . This comparison showed substantial consistency between the software results and the contact angles evaluated

with the procedure just explained. We chose to use the numerical method to estimate contact angles in subsequent simulations, to

automate the procedure and reduce the subjectivity of processing as much as possible. We repeated the same procedure by reducing

the mesh size to check that the result was not significantly affected by the interface thickness. In a phase-field simulation, as a

matter of fact, the outcome is physically reliable only when it is not meaningfully influenced by the numerical thickness chosen

for the interface, since the widths of interfaces in real systems are much smaller than those used in simulations. As shown by the

results in Table 1 , simulations performed with perfectly smooth surfaces led to values in agreement with the imposed boundary

conditions and not significantly affected by variations in interface thickness. These outcomes were also found to be consistent with

geometric evaluations commonly used to describe a droplet in equilibrium on a perfectly smooth surface, barring minor deviations

also mentioned in the next section (see Table 1, Eq. 37 and Reference [51] ). 

Gravity can significantly affect the resting shape of liquid droplets, especially large ones. In the simulations performed, the equa-

tions include the gravitational effect, although droplet sizes smaller than the capillary length were considered. The gravitational 

effect, along with micro-structures added to the geometry as well as numerical approximations, could result in small deviations of

the droplet profile from the spherical shape. If the drop was perfectly comparable to a spherical cap, indeed, the contact angle could

be evaluated as [52] : 

𝜃 = 

{ 

𝜋 − arcsin ( 2 𝑙ℎ 
𝑙 2 + ℎ 2 ) , if ℎ > 𝑅 

arcsin ( 2 𝑙ℎ 
𝑙 2 + ℎ 2 ) , if ℎ ≤ 𝑅 

(37) 

where 𝑙 = 

𝐿 

2 and 𝑅 = 

𝑙 2 + ℎ 2 
2 ℎ ( Fig. 9 ). Comparing the results provided by these expressions with the contact angles evaluated with

the tangent method shows differences of a few degrees between the two approaches, ascribable to deviations of the shape from the

spherical one and the approximations made. Table 2 shows the results for the two approaches in the case of simulations carried out

with a micro-structured surface. 

As the main purpose of this protocol is to analyze not the dynamics of the droplet spreading, but the equilibrium condition reached

at the end of the process, it is also necessary to verify that the state attained by the drop at the end of simulations is sufficiently stable.

For this reason, we decided to extract the 𝑉 𝑓2 profile at each time-step along a horizontal line placed at a certain distance from the

𝑥 axis, and to identify for each of them the 𝑥 coordinate corresponding to the interface position. The same procedure was applied

along the 𝑦 axis. From Fig. 10 it can be seen that the positions thus identified follow oscillatory trends and then settle on stable

values, although small movements are always present (as shown in Fig. 11 ) for presumably numerical reasons. In each simulation,
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Fig. 15. Representation of the collision, spreading, and rebound process of a droplet on a perfectly smooth surface, simulated using the phase-field 

model ( 𝐶𝐴 𝑤 = 70 ◦). Different colors identify the fraction of air in the domain: blue corresponds to 𝑉 𝑓1 = 0 ( 𝜙 = 1 ), red to 𝑉 𝑓1 = 1 ( 𝜙 = −1 , see Fig. 4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the conservation of water mass was always verified [36] . For the sake of brevity, only the graphs for the first of the simulations

shown in Table 1 are presented here ( Figs. 12 and 13 ). As a final check on the consistency of the model, we verified that the

boundary conditions imposed on pressure and velocity were respected ( Fig. 14 ). All these tests were performed in simulations with

both smooth and micro-structured surfaces. Finally, some images illustrating the process of impact, spreading, and rebound of the 

droplet on a smooth surface are provided ( Fig. 15 ). 

Calibration of phase-field model parameters 

The most interesting parameters for what concerns the adopted model Eqs. 16 and (17) are the interface thickness 𝜖 and the

mobility tuning parameter 𝜒 , which are the degrees of freedom of the selected phase-field model. 

With regard to the thickness of the interface, many authors suggest using a width equal to or greater than half of the maximum

mesh size [35,53] . Therefore, we chose to compare the results obtained with different 𝜖 values to select the most appropriate one. A

fixed, non-uniform, triangular mesh was selected for this study, and a finer grid was chosen for the area affected by the movement

of the interface (inner region): ℎ 𝑚𝑎𝑥 is the value of the maximum mesh element size selected in the software for the area with the

finer grid. From Fig. 16 , we can notice that when 𝜖 is smaller than half of the mesh size, the deformation of the interface is abnormal:

its configuration is not consistent with the physics of the process, and a jagged profile and non-constant thickness can be seen from

the magnification. Moreover, the diffusive phenomenon due to the Cahn-Hilliard equations occurs incorrectly, as evidenced by the 

presence of regions distant from the interface where the volume fraction takes on values far from those for pure components ( 𝜙 = ±1 ).
A similar, though less obvious, situation can be observed when the set interface thickness is exactly half of the mesh size configured

in the software. Since the diffusion of the phase-field model is governed by the mobility parameter 𝑀 (which, in turn, is related to the

interface thickness and the mobility tuning parameter), we tried to assess whether the incorrect deformation of the interface could

be attributed to the low mobility by increasing 𝜒 . However, from Fig. 16 we can see that, although the interface no longer exhibits

the jagged appearance identified in previous cases, the system fails to evolve, and the drop remains in a position close to its initial

location. The problem, therefore, probably lies in the magnitude of 𝜖 with respect to the set value of ℎ 𝑚𝑎𝑥 : to further support this

hypothesis, the interface shows a nearly constant thickness and smoother profile when increasing the interface thickness up to the

mesh size, and the evolution of the separation surface appears to be physically consistent. Given the above evidence, we chose to use

an interface thickness 𝜖 = ℎ 𝑚𝑎𝑥 . 
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Fig. 16. Examples of interface deformation with different values of interface thickness and mobility parameters. Different colors identify the 

fraction of air in the domain: blue corresponds to 𝑉 𝑓1 = 0 ( 𝜙 = 1 ), red to 𝑉 𝑓1 = 1 ( 𝜙 = −1 , see Fig. 4 ). (a) 𝜖 = ℎ 𝑚𝑎𝑥 ∕3 , 𝜒 = 10 m ⋅ s∕ kg , Time = 10 ms ; 
(b) magnified view of the interface. (c) 𝜖 = ℎ 𝑚𝑎𝑥 ∕2 , 𝜒 = 10 m ⋅ s∕ kg , Time = 6 ms ; (d) magnified view of the interface. (e) 𝜖 = ℎ 𝑚𝑎𝑥 ∕2 , 𝜒 = 500 m ⋅ s∕ kg , 
Time = 15 ms ; (f) magnified view of the interface. (g) 𝜖 = ℎ 𝑚𝑎𝑥 ∕1 . 5 , 𝜒 = 10 m ⋅ s∕ kg , Time = 6 ms ; (h) magnified view of the interface. (i) 𝜖 = ℎ 𝑚𝑎𝑥 , 
𝜒 = 10 m ⋅ s∕ kg , Time = 6 ms ; (j) magnified view of the interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As far as the mobility parameter is concerned, several approaches have been proposed in the literature to guide its definition,

often based on the need to obtain phase-field simulations that do not depend on the interface thickness (convergence to the sharp-

interface limit). If the interface does not intersect a solid wall, this convergence value exists and is unique, and it can be achieved

for 𝐶𝑛 = 𝑂(10 −2 ) ( 𝐶𝑛 = 

𝜖

𝐷 
is the Cahn number, i.e. the ratio of interface thickness to characteristic length). Conversely, when the

separating surface intersects a solid wall, the diffusion produces the displacement of the 𝑇 𝑃 𝐿 , and achieving convergence becomes a

non-trivial problem. Yue et al. [2] verified the existence of the sharp-interface limit for these cases, and developed a practical criterion

for choosing 𝑀 to approach convergence with a finite value of 𝐶𝑛 . The criterion has been applied many times over the years, and

proposes 𝐶𝑛 ≤ 4 
√
𝑀𝜇

𝐷 
as a limit for achieving convergence by reducing 𝐶𝑛 while keeping the other parameters fixed. This relation,

however, allows only the lower limit of 𝑀 (and consequently the minimum value of 𝜒) to be determined, while the appropriate

value for a given 𝜖 can be found by comparison with experimental data: different mobility parameters lead to dissimilar results

[35] . Moreover, Yue et al. [2] analyzed a Couette flow involving two fluids of comparable viscosity, for which a power law scaling

𝑀 ∼ 𝜖0 was found. To account for situations where the viscosities are highly dissimilar, the use of an effective 𝜇 value calculated

as a geometric mean was proposed: 𝜇𝑒 = 

√
𝜇1 𝜇2 , where 𝜇1 and 𝜇2 are the viscosities of the two fluids involved. Magaletti et al. also

emphasized the importance of defining an asymptotic state where the macroscopic behavior is independent of the specific values

of 𝜖 and 𝑀 used [33] , pointing out that mobility should suitably change as the interface thickness decreases. They proposed the

following scaling law to assess the optimal mobility: 𝑀 

∗ 
𝑜𝑝𝑡 

≃ 3 𝐶𝑛 2 , where 𝑀 

∗ = 

3 𝑀𝜎

2 
√
2 𝐷 3 𝜔 

, 𝑈 = 𝜔𝐷 is the characteristic velocity, 𝜔 the

frequency. A similar expression is suggested by the COMSOL R ○ user’s guide [53] . More recently, Demont et al. [54] investigated the

open questions concerning the optimal scaling of the mobility parameter 𝑀 and the approach to the sharp-interface limit solution 

for an oscillating droplet, finding that the deviation between the diffuse-interface solution and its sharp-interface limit decreases 
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Fig. 17. Estimation of the contact line velocity with respect to the solid (perfectly smooth) wall, by numerically deriving the 𝑥 coordinates of the 

interface as a function of time. (a) 𝐶𝐴 𝑤 = 70 ◦; (b) 𝐶𝐴 𝑤 = 120 ◦. 

Table 3 

Dimensionless numbers and mobility tuning parameter, estimated with different 

approaches. We chose to use the droplet diameter before impact as the charac- 

teristic length 𝐷 [27] and to assume the contact line velocity as 𝑈 [3] : after 

running the simulations, we estimated the actual contact line speed with re- 

spect to the solid wall, by numerically deriving the 𝑥 coordinate as a function 

of time (see Fig. 17 ). 

Water Air Effective 

𝜇 ( Pa ⋅ s) 1 . 002 × 10 −3 1 . 81 × 10 −5 1 . 35 × 10 −4 

𝜌 ( kg ∕m 3 ) 998 1.205 34.68 

𝜖 (m) 2 . 35 × 10 −5 - 2 . 35 × 10 −5 

𝐷 (m) 0.002 - 0.002 

𝜎 (N∕m) 0.073 - 0.073 

𝑈 (m∕s) 0.2 - 0.2 

𝜔 ( Hz ) 100 - 100 

𝐶𝑛 0.012 - 0.012 

𝑅𝑒 398 - 103 

𝐶𝑎 0.003 - 0.0004 

𝑊 𝑒 1.09 - 0.038 

𝐹𝑟 2 2.04 - 2.04 

𝜒Yue (m ⋅ s∕ kg ) 62 - 464 

𝜒Maga letti (m ⋅ s∕ kg ) 7.75 - 7.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

according to  ( 𝜖) when the interface thickness ( 𝜖) tends to zero. Similarly, Schmeller and Peschka [55] focused their attention on

conducting a systematic examination of the optimal selection of the Cahn-Hilliard mobility. In particular, they showed that there are

optimal values for 𝑀( 𝜖) for each 𝜖, and this optimal mobility decreases for smaller 𝜖. 

Table 3 shows the results provided by the different approaches, together with some dimensionless numbers. Given the conflicting

results provided by the analytical formulations (see Table 3 ), we decided to treat mobility, and in particular the tuning parameter

𝜒 and the interface thickness 𝜖, as phenomenological parameters. We ran several simulations, setting a contact angle at the wall of

𝐶𝐴 𝑤 = 120 ◦ and systematically changing the mesh size ℎ 𝑚𝑎𝑥 (hence the interface thickness 𝜖) and the parameter 𝜒 . All simulations

resulted in final contact angles consistent with each other and with the imposed boundary conditions [36] . A comparison of Figs. 18 ,

19 and 20 shows that by increasing the mesh size while keeping 𝜒 fixed, the error associated with water mass conservation increases:

the lowest mass variations are observed with 𝜒 = 100 m ⋅ s∕ kg , whereas for high values of the tuning parameter markedly increasing

trends are visible. All simulations reached a sufficiently stable state, but increasing mobility dampens the oscillation amplitude more

quickly, and at the same time changes their phase ( Fig. 21 ). The substantial instability associated with higher values of 𝜒 , already

evident in the mass evaluation, can also be observed by analyzing the interface positions: in the magnified views presented in Fig. 22 ,

the slight oscillations already mentioned above become more pronounced at 𝜒 = 470 m ⋅ s∕ kg and 𝜒 = 1000 m ⋅ s∕ kg . Also in view

of the computational costs, shown in Fig. 23 , we considered it appropriate to use 𝜒 = 100 m ⋅ s∕ kg as a first guess in subsequent

simulations. 
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Fig. 18. Conservation of water mass in simulations carried out with perfectly smooth surfaces while varying the mobility parameter ( 𝐶𝐴 𝑤 = 120 ◦, 
ℎ max = 2 . 35 × 10 −5 m ). For interpretation of the color references in the legend of this figure and subsequent ones, the reader is referred to the web 

version of this article. 

Fig. 19. Conservation of water mass in simulations carried out with perfectly smooth surfaces while varying the mobility parameter ( 𝐶𝐴 𝑤 = 120 ◦, 
ℎ max = 4 . 7 × 10 −5 m ). 

 

 

 

 

 

 

 

 

 

 

 

 

With the introduction of micro-structures, however, achieving a 𝜖-independent solution (i.e., convergence to the sharp-interface 

limit) may not be obvious, because interactions between the interface and geometric elements with length scales comparable to its

thickness can occur. For this reason, in simulations with micro-structured surfaces, we varied the thickness of the interface until

we achieved a result that was essentially independent of the chosen 𝜖-value (see Tables 4 , 5 and 6 and reference [36] for further

details). We also performed some simulations to assess the influence of mobility, geometry, and contact angle on the convergence

limit ( Tables 7 , 8 , 9 and 10 ). For all simulations, conservation of water mass and achievement of a sufficiently stable state were

verified [36] . 

It is worth noting that the parameters deemed suitable within the scope of this study may not be adequate for simulating phe-

nomena of a different nature. This work is intended to suggest some analyses and procedures to be considered in the parameter

calibration process, which will hopefully be useful in the future. Therefore, for each simulated phenomenon it would be advisable

to repeat the calibration process, also taking advantage of any experimental data that may be available. Moreover, some simplifying

assumptions and approximations (such as the use of a 2D domain or a static boundary condition for the contact angle) were employed

as considered appropriate in the context of this analysis, aimed at evaluating the static contact angle of a droplet on micro-structured

surfaces. For future developments of this study, we are currently considering some improvements to increase the accuracy of the

simulations, such as using a dynamic boundary condition for the contact angle. 
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Fig. 20. Conservation of water mass in simulations carried out with perfectly smooth surfaces while varying the mobility parameter ( 𝐶𝐴 𝑤 = 120 ◦, 
ℎ max = 7 . 05 × 10 −5 m ). 

Fig. 21. Evolution of the interface positions in simulations carried out with perfectly smooth surfaces while varying the mobility parameter ( 𝐶𝐴 𝑤 = 
120 ◦, ℎ max = 2 . 35 × 10 −5 m ). 

Table 4 

Results of simulations performed with micro-structured surfaces: analysis of the 

dependence of the result on the considered interface thickness ( 𝐴 = 24 μm , 𝐵 = 
80 μm , 𝐷 = 120 μm , 𝐻 = 200 μm ). 

𝜖 ( μm ) 𝐶𝐴 𝑤 ( ◦) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐸 𝑡𝑜𝑡 (%) 

94 70 35.3 33.3 0.71 

47 70 65.5 63.8 0.38 

35.3 70 83.9 80.4 0.30 

23.5 70 102.0 98.6 0.22 

15.7 70 116.0 114.8 0.17 

13.4 70 116.0 115.1 0.14 

11.8 70 115.4 115.2 0.12 

10 70 116.0 115.4 0.11 
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Fig. 22. Evolution of the interface positions (magnified view) in simulations carried out with perfectly smooth surfaces while varying the mobility 

parameter ( 𝐶𝐴 𝑤 = 120 ◦, ℎ max = 2 . 35 × 10 −5 m ). 

Fig. 23. Computational cost of simulations with perfectly smooth surfaces as the mobility parameter and mesh size change ( 𝐶𝐴 𝑤 = 120 ◦). 

Table 5 

Results of simulations performed with micro-structured surfaces: analysis of the 

dependence of the result on the considered interface thickness ( 𝐴 = 12 μm , 𝐵 = 
40 μm , 𝐷 = 60 μm , 𝐻 = 100 μm ). Since we divided each dimension of the micro- 

structure by two compared to the previous case, the maximum suitable interface 

thickness is also half of the former. 

𝜖 ( μm ) 𝐶𝐴 𝑤 ( ◦) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐸 𝑡𝑜𝑡 (%) 

47 70 31.9 30.4 0.42 

35.3 70 43.5 43.1 0.30 

23.5 70 69.1 67.7 0.22 

15.7 70 94.3 91.5 0.16 

11.8 70 105.6 103.7 0.12 

7.8 70 116.7 115.9 0.08 

6.7 70 116.2 115.6 0.07 

Table 6 

Results of simulations performed with micro-structured surfaces: analysis of the 

dependence of the result on the considered interface thickness ( 𝐴 = 6 μm , 𝐵 = 
20 μm , 𝐷 = 30 μm , 𝐻 = 50 μm ). With these dimensions, convergence could not 

be achieved for any of the thicknesses used. 

𝜖 ( μm ) 𝐶𝐴 𝑤 ( ◦) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐸 𝑡𝑜𝑡 (%) 

47 70 48.6 46.7 0.63 

35.3 70 26.5 24.6 0.30 

23.5 70 31.2 29.9 0.22 

15.7 70 51.5 51.2 0.13 

11.8 70 71.0 69.7 0.11 
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Table 7 

Results of simulations performed with micro-structured surfaces: analysis of the 

effect of mobility tuning parameter on convergence ( 𝐴 = 24 μm , 𝐵 = 80 μm , 𝐷 = 
120 μm , 𝐻 = 200 μm ). The mobility tuning parameter also plays an important 

role in defining the suitable mesh size: with the same geometry, as 𝜒 decreases, 

the interface thickness 𝜖 must also be reduced to achieve convergence. 

𝜒 (m ⋅ s∕ kg ) 𝜖 ( μm ) 𝐶𝐴 𝑤 ( ◦) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐸 𝑡𝑜𝑡 (%) 

20 15.7 100 143.1 142.1 0.21 

100 15.7 100 135.9 134.1 0.16 

300 15.7 100 135.9 134.1 0.16 

50 15.7 70 108.1 106.9 0.15 

100 15.7 70 116.0 114.8 0.17 

100 15.7 50 91.0 89.8 0.16 

500 15.7 50 91.0 89.7 0.16 

20 11.8 50 91.4 90.1 0.11 

100 11.8 50 91.4 90.1 0.12 

Table 8 

Results of simulations performed with micro-structured surfaces: analysis of the effect of 

micro-structure geometry on convergence. The results analyzed so far have shown that the 

mesh size for which convergence is achieved is influenced by the characteristic dimensions 

of the micro-structure geometry. This table also reveals that, by changing just the height 

of the trapezoids, the convergence condition varies. 

𝜖 ( μm ) 𝐻 ( μm ) 𝐴 ( μm ) 𝐵 ( μm ) 𝐷 ( μm ) 𝐶𝐴 𝑤 ( ◦) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐸 𝑡𝑜𝑡 (%) 

15.7 100 24 80 120 70 107.7 107.6 0.16 

11.8 100 24 80 120 70 117.7 117.4 0.12 

9.4 100 24 80 120 70 118.1 117.2 0.10 

15.7 300 24 80 120 70 114.4 113.1 0.17 

11.8 300 24 80 120 70 113.5 112.9 0.12 

Table 9 

Results of simulations performed with micro-structured surfaces: analysis of 

the effect of the 𝐶𝐴 imposed at the solid wall on convergence ( 𝐴 = 24 μm , 

𝐵 = 80 μm , 𝐷 = 120 μm , 𝐻 = 200 μm ). With both a contact angle of 120 ◦ and 50 ◦, 

varying the thickness of the interface does not significantly change the result. 

𝜖 ( μm ) 𝐶𝐴 𝑤 ( ◦) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐸 𝑡𝑜𝑡 (%) 

15.7 120 159.1 159.8 0.17 

11.8 120 161.4 160.4 0.13 

15.7 50 91.0 89.8 0.16 

11.8 50 91.4 90.1 0.12 

Table 10 

Results of simulations performed with micro-structured surfaces. To further verify the stabil- 

ity of the model, we decided to run a simulation by translating the micro-structure slightly, to 

check that the exact point where the droplet impacts does not significantly alter the wetting 

state. (a) Original micro-structure; (b) shifted geometry. The behavior of the system appears 

to be essentially unchanged, despite the alteration introduced: in both cases, a Wenzel state 

was achieved, with a difference of a few degrees in the final contact angle. 

𝐶𝐴 𝑤 ( ◦) 𝐴 ( μm ) 𝐵 ( μm ) 𝐷 ( μm ) 𝐻 ( μm ) 𝜖 ( μm ) 𝐶𝐴 1 ( ◦) 𝐶𝐴 ( ◦) 𝐸 𝑡𝑜𝑡 (%) 

100 24 80 120 200 15.7 135.9 134.1 0.16 

100 24 80 120 200 15.7 138.7 138.2 0.17 
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