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Can Competition Outperform Collaboration?
The Role of Misbehaving Agents

Luca Ballotta , Member, IEEE , Giacomo Como , Member, IEEE , Jeff S. Shamma , Fellow, IEEE ,
and Luca Schenato , Fellow, IEEE

Abstract— We investigate a novel approach to resilient
distributed optimization with quadratic costs in a multi-
agent system prone to unexpected events that make some
agents misbehave. In contrast to commonly adopted filtering
strategies, we draw inspiration from phenomena modeled
through the Friedkin-Johnsen dynamics and argue that
adding competition to the mix can improve resilience in
the presence of misbehaving agents. Our intuition is cor-
roborated by analytical and numerical results showing that
(i) there exists a nontrivial trade-off between full collabo-
ration and full competition and (ii) our competition-based
approach can outperform state-of-the-art algorithms based
on Weighted Mean Subsequence Reduced. We also study
impact of communication topology and connectivity on
resilience, pointing out insights to robust network design.

Index Terms— Multi-Agent Systems, Resilient consensus,
Misbehaving agents, Friedkin-Johnsen model.

I. INTRODUCTION

W ITH great power comes great responsibility, and net-
worked systems are powerful indeed. From smart grids

managing energy consumption [1,2] to sensors monitoring vast
areas [3], to autonomous cars for intelligent mobility [4,5],
everyday life relies evermore on control of connected devices.

While this brings numerous benefits, a major drawback is
that malicious agents can locally intrude from any point in the
system, and cause serious damage at global scale. Recently,
Department of Energy secretary stated that enemies of the
United States can shut down the U.S. power grid, and it
is known that hacking groups around the world have high
technological sophistication [6]. Cyberattacks hit Italian health
care infrastructures during the COVID-19, disrupting services
for weeks [7]. Another concern is accidental failures spreading
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from single source nodes. Cascading failure damages have
notable examples, from city-wide electricity blackouts to denial
of service of web applications. Furthermore, as new frontiers
through massively connected devices in Networked Control
Systems are breached, thanks to powerful communication pro-
tocols such as 5G, this problem will only gain in importance.

A. Related Literature
The problems above have been extensively studied in

literature. A body of work investigates control techniques
to overcome fragility of specific applications. Examples are
power outage in smart grids [8,9], cascading failures in cyber-
physical systems [10]–[13], denial of service [14,15], robot
gathering [16], and distributed estimation [17], to name a few.
From a methodological perspective, control and optimization
literature mostly focuses on robustness of distributed algorithms
and control protocols to a fraction of misbehaving agents.
This approach can tailor either intentionally malicious agents,
such as cyber-attackers, or accidental faults due to, e.g.,
hardware damage. A fundamental subclass of such approaches
is resilient consensus, aimed to enforcing consensus of normally
behaving (or regular) agents in the face of unknown adversaries.
The consensus problem has been deeply studied in the past
decades [18] and underlies a plethora of application domains. In
particular, average consensus is a cornerstone in distributed esti-
mation [17] and optimization [19]–[21], management of power
grids [22], distributed Federated Learning [23,24], among
others. Unfortunately, the standard consensus protocol is fragile
and misbehaving agents can arbitrarily deviate the system
trajectory. To tame this issue, the most common approaches
rely on the filtering strategy referred to as “Mean Subsequence
Reduced” (MSR), whereby agents discard suspicious messages
(largest and smallest values) from updates [25]. The pioneering
paper [26] introduced a weighted version (W-MSR) and defined
r-robustness of graphs, a suitable index that enables theoretical
guarantees for resilient consensus based on W-MSR. Among
the many variants and adaptations of W-MSR, [27] studies
resilient control for double integrators, [28] tackles mobile
adversaries, [29] focuses on leader-follower framework, [30]
targets nonlinear systems with state constraints, [31] extends
the notion of r-robustness to time-varying graphs, and [32]–
[34] consider generic cost functions to achieve resilience in
general distributed optimization.

Other approaches in literature do not filter information from
neighbors, but explore enhanced capabilities of regular agents.
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Fig. 1: Competition vs. collaboration in distributed quadratic optimization.
The global cost etot is the sum of two contributions that reflect two
contrasting attitudes of regular agents: edeception is caused by (erroneously)
trusting misbehaving agents, which makes them drift away from the nominal
average, while econsensus is due to the competition among regular agents,
which mitigates misbehaviors but also prevents regular agents from reaching
a consensus. The tunable parameter λ ∈ [0, 1] allows regular agents to
smoothly transition from full collaboration (λ = 0), where they fully trust all
agents in the network, to full competition (λ = 1), where they trust no other
agent, producing a rich range of behaviors at local and global scale.

For example, [35] uses a buffer to store all values received
from other agents and replaces the thresholding mechanism
with a voting strategy followed by dynamical updates, [36]
studies algorithmic robustness enabled by trusted agents, [37]
proposes dynamically switching update rule for continuous-time
double integrators, and [38]–[40] use stochastic or heuristic
trust scores to filter out potentially malicious transmissions,
providing probabilistic bounds on detection, convergence, or
deviation from average consensus. While such approaches may
overcome limitations of MSR-based strategies, they usually
require either stronger assumptions on the network (e.g., trusted
agents) or burdening local computation or storage resources.

B. Novel Contribution

Despite the success of MSR-based strategies, a critical point
is dependence of theoretical guarantees on r-robustness of
the underlying graph, which allows regular agents to reach
resilient consensus if such an index is large enough. In fact, it
is difficult to characterize the steady-state behavior of agents if
some minimal robustness is not met. Even though algorithms
might practically work, comprehensive theoretical guarantees
are still lacking, and also, some applications require more
conservative but safer approaches. In particular, while in some
cases agents may just agree on a common value, other tasks
require average consensus to succeed. Thus, we depart from
classical filtering strategies and seek a framework for resilience
that can offer theoretical guarantees in a broader sense.

Towards this goal, we set the stage with two key moves.
Firstly, rather than finding conditions that enforce a consensus
among regular agents, which only indicates if a system is
resilient, we aim to measure the level of resilience, which we
evaluate through the cost of a distributed optimization problem
with quadratic costs. Secondly, we aim to modify the original
problem to make it robust to misbehaving agents rather than
adapting a consensus protocol. Stepping forward, we propose
an update rule based on the celebrated Friedkin-Johnsen (FJ)

dynamics [41] to enhance resilience of the addressed distributed
optimization problem. The key feature of the FJ dynamics is a
tunable parameter λ ∈ [0, 1] that allows to smoothly transition
from the regime of full collaboration (λ = 0), where each
regular agent equally trusts all agents, to the regime of full
competition (λ = 1), where each regular agent regards all
others as adversaries. We refer to the regime with λ ∈ (0, 1]
as competition-based because regular agents are forced to
(partially) mistrust the others. This approach allows us to study
resilience variations that arise from different choices of agents
that can trust their neighbors or not, a choice that turns out
to be crucial if adversaries are present. In fact, we observe a
fundamental performance trade-off that we name competition-
collaboration trade-off : in general, the optimal resilient strategy
is hybrid, namely each regular agent should partially compete
with its neighbors, as depicted in Fig. 1. The global cost (solid
blue) is the sum of two conflicting contributions that represent
deception due to collaboration with misbehaving agents (dashed
red) and inefficiency caused by competition against regular
agents (dashed-dotted yellow). To achieve analytical intuition
about such a competition-collaboration trade-off, we leverage
the social power, a tool drawn from opinion dynamics that
sheds light on the twofold effect of the parameter λ used to
instantiate the FJ dynamics.

After analytically characterizing the proposed competition-
based protocol, we fix the update rule and shift attention to
the network in order to assess how it impacts resilience of
regular agents. In particular, we numerically show how network
connectivity can mitigate misbehavior and how the performance
varies as the network gets sparser or less balanced. In fact,
we heuristically observe that not only high connectivity, but
also degree balance across agents is useful to tame unknown
adversaries, that intuitively can exploit highly connected areas
to quickly spread damage at global level.

Besides new results, this article extends the preliminary
conference version [42] in two ways. Firstly, we consider a
more general prior distribution of the observations of agents.
Secondly, we compare our proposed strategy with both standard
W-MSR [26] and recently proposed SABA [35].

C. Organization of the Article

We motivate average consensus for distributed optimization
in Section II, model a class of adversaries in Section II-A, and
introduce the performance metric used to quantify resilience
in Section II-B. In Section III, we propose our competition-
based protocol: we introduce the FJ dynamics in Section III-
A, compute the cost function in Section III-B, and formally
characterize the cost function and its minimizer in Sections III-
C and III-D. In Section IV, we report numerical tests that
support our analytical intuition. Then, in Section IV-A, we offer
analytical insight on the competition-collaboration trade-off
using the notion of social power. In Section V, we numerically
explore the impact of the communication network on resilience.
To evaluate our approach, we perform simulations in Section VI
and show that it can outperform MSR-based methods. We
conclude by addressing potential avenues for future research
in Section VII.
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II. SETUP AND PROBLEM FORMULATION

We consider a multi-agent system composed of N agents
labeled as the set V = {1, . . . , N}. Each agent i ∈ V carries
local information encoded by an observation θi ∈ R and a
variable state xi ∈ R. For notation convenience, we stack all
states and observations in the vectors x ∈ RN and θ ∈ RN ,
respectively.

Within the network, some agents behave according to a
control task at hand, while others cannot be controlled and
may deviate from the task. We call the former agents regular
and the latter agents misbehaving. Because the misbehaving
agents cannot be involved in cooperative tasks though their
uncontrolled nature, we consider a distributed optimization
problem involving only the regular agents. We assume that
each regular agent wishes to adjust its state so as to minimize
a quadratic mismatch among all observations,

flocal(xi)
.
=
∑
j∈R

(xi − θj)
2
, i ∈ R, (1)

where R ⊆ V gathers all regular agents. By straightforward
calculations, (1) can be rewritten as

flocal(xi) = R
(
xi − θ̄R

)2 −Rθ̄2R +
∑
j∈R

θ2j (2)

where R
.
= |R| and θ̄R is the average of observations {θi}i∈R.

The distributed optimization task is then given by

argmin
x

1

R

∑
i∈R

flocal(xi) = argmin
x

∑
i∈R

(
xi − θ̄R

)2
, (3)

which is solved if and only if all regular agents reach average
consensus among them, i.e., xi = θ̄R for all i ∈ R.

In the nominal scenario where all agents are regular (V = R),
the cost (3) can be minimized via the consensus dynamics (or
consensus protocol) x(k + 1) = W ox(k) where x(0) = θ
and W o is a doubly stochastic irreducible matrix that leads
agents to average consensus. Interpreting W o as a (weighted)
communication matrix, the consensus dynamics allows agent
j to communicate its state to agent i if and only if Wij > 0.

However, the standard consensus protocol easily fails in
the presence of misbehaving agents [26]. We next introduce a
misbehavior model that disrupts the nominal protocol.

A. Misbehaving Agents

Misbehaving agents follow state trajectories with no relation
to optimization task (3) and broadcast potentially misleading
information to neighbors. We denote the subset of misbehaving
agents by M with M

.
= |M|, V = M∪R, and M∩R = ∅.

Also, without loss of generality, we label the agents as R =
{1, . . . , R} and M = {R+ 1, . . . , N}. The vectors xR ∈ RR

and xM ∈ RM stack the states of regular and misbehaving
agents, respectively, with x⊤ = [x⊤

R x⊤
M].

To address a general scenario and remove dependence on
the specific values of observations, we assume that these are
drawn from a prior distribution.

Assumption 1 (Distribution of observations). Observations
{θi}i∈V are distributed as random variables with mean E [θ] =

0 and covariance matrix Σ
.
= E

[
θθ⊤

]
≻ 0. We denote Σii =

σ2
i and Σij = σij ∀i ̸= j.

While the standard consensus and Assumption 1 are suited to
an ideal scenario, misbehaving agents may disrupt the task (3).
In the following, we assume that misbehaving agents constantly
transmit noisy versions of their observations:

xm(k) = θm + vm + nm(k), ∀m ∈ M. (4)

We refer to the constant input vm as (deception) bias and to
the varying input nm(k) as (deception) noise. In words, the
deception bias vm makes the observation θm of the misbehaving
agent m an outlier w.r.t. the expected range of values of
observations as per Assumption 1. Conversely, the deception
noise nm(k) hides the true state of the misbehaving agent from
its neighbors, akin purposely injected measurement noise.

Assumption 2 (Misbehavior model). We stack biases in
the vector v ∈ RM and noises in the vector n(k) ∈ RM .
Further, we set their statics as E [v] = 0, E

[
vv⊤

]
= V ⪰ 0,

E
[
vθ⊤

]
= 0, E [n(k)] = 0, E

[
n(k)n⊤(h)

]
= δkhQ ⪰ 0,

and E
[
n(k)θ⊤

]
= 0 ∀k, h ≥ 0, where δkh = 1 if k = h and

δkh = 0 otherwise.

Remark 1 (Misbehavior vs. intelligent attacks). Assumption 2
is consistent with a portion of the literature on resilient
consensus, where algorithms are tested against constant or
drifting misbehaving agents that steer their neighbors far off
the nominal consensus [28,35,38,40]. In our case, misbehaving
agents are stubborn on average but behave in a less trivial
(noisy) way. On the other hand, smart (malicious) adversaries
may need to be contrasted by sophisticated strategies [43,44].
This case is outside the scope of this article, where we explore
competition as a tool to enhance resilience, and we defer a
comprehensive study with intelligent attacks to future work.

B. Performance Metric
In light of problem (3) and assuming that the states of regular

agents are updated by a control protocol overtime, we use the
following performance metric to measure the resilience of the
system, which we refer to as (average) consensus error:

eR
.
= lim

k→+∞
E

[∑
i∈R

(
xi(k)− θ̄R

)2]
. (CE)

The error (CE) coincides with the objective cost of the
optimization problem (3) (up to additive constants that depend
only on the observations) averaged over the stochastic elements
within the system dynamics, such as observations θ of all agents
and deception biases v and noises n(k) of misbehaving agents.

While the standard consensus protocol achieves eR = 0 in
the nominal scenario where all agents reach average consensus,
the presence of unknown misbehaving agents makes eR grow,
degrading the collaborative task (3). In the following section,
we propose an update protocol that makes regular agents more
resilient by decreasing the consensus error eR and hence
improving the performance associated with the task (3).
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III. RESILIENT AVERAGE CONSENSUS

A. The Friedkin-Johnsen Dynamics
Because the classical consensus is fragile to misbehaving

agents, we look for alternative strategies to minimize (CE).
To this aim, we step back to the optimization problem (3) and

search for a way to make it more robust to unexpected behaviors.
In particular, we modify the local problems associated with
each regular agents i ∈ R by integrating the nominal weight
matrix W o and adding a regularization term that penalizes
deviations from the local observation:

f̃local(xi) = λ (xi − θi)
2
+ (1− λ)

∑
j∈Ni

W o
ij (xi − xj)

2
. (5)

Assumption 3 (Nominal weights). The matrix W o is irre-
ducible, row stochastic, and W o

ii = 0, i ∈ V (no self-loops).

The parameter λ ∈ [0, 1] in (5) makes the ith agent anchor
to its observation θi, so that large deviations of its state xi from
θi are discouraged. We then let each agent greedily minimize
the modified cost (5) at step k+1, which yields the celebrated
Friedkin-Johnsen (FJ) dynamics [41]:

xi(k + 1) = λθi + (1− λ)
∑
j∈Ni

W o
ijxj(k). (FJ)

with xi(0) = θi. We interpret the rule above as a modified
consensus protocol where the agents do not fully align with
neighbors but also compete by tracking their own observation.
In particular, we call the parameter λ as competition, referring
to the case λ = 0 (equivalent to the consensus protocol) as
full collaboration and to the case λ = 1 as full competition.

While the dynamics (FJ) is suboptimal if all agents are
collaborative, because it prevents them from reaching a
consensus if λ > 0, we use it to make regular agents resilient to
unknown misbehaving agents. Intuitively, anchoring a regular
agent i ∈ R to its observation θi prevents the agent from being
arbitrarily dragged away by misleading values coming from
misbehaving agents. In particular, the latter agents obey (4)
with no relation to the protocol (FJ) or nominal weights W o.

In the following, we study how the protocol (FJ) improves
system resilience. In fact, tuning λ within the interval [0, 1]
originates a nontrivial competition-collaboration trade-off :
what is the optimal competition λ that makes regular agents
most resilient with respect to task (3)? Exploring this trade-off
under misbehaving agents is the main matter of investigation
of this article. To this aim, we regard the consensus error as
function of the competition: this allows us to perform analysis
and achieve insight about minimization of eR(λ).
Remark 2 (Connections with game theory and opinion dy-
namics). The FJ dynamics can be given the following game-
theoretic interpretation. The cost (5) is interpreted in games
as cognitive dissonance, whereby a rational decision-maker
gets incentive both in aligning with the neighbors and in
following a local rule. Also, the function (5) with λ = 0
reduces to the utility used in [45] where the authors analyze
the consensus protocol from a game-theoretic perspective. In
opinion dynamics, the FJ dynamics is typically used to model
prejudice, whereby the opinion of an agent is biased towards
a personal belief despite interactions with others.

Remark 3 (Competition for resilience). While most works in
the literature regard λ as a model parameter, we purposely
design λ in (FJ). The intuition behind this choice, seemingly
counterintuitive for collaborative tasks, is that introducing some
competition among agents can mitigate behaviors that are
unpredictable at design stage: rather than addressing the binary
property “consensus is (not) achieved” like typical works on
resilient consensus, we take a broader viewpoint and interpret
resilience as a real quantity measured through the cost (CE).
Remark 4 (Heterogeneous competition). While we focus on a
single parameter λ for the sake of analysis, the general FJ model
with a different parameter λi for each agent i ∈ V makes the
analysis challenging but does not affect the fundamental system
behavior. Designing a parameter λi for each regular agent
i ∈ R to improve performance even further is an important
topic, whose investigation is left to future work.

B. Computation of the Consensus Error
We now compute the error (CE) with the steady state induced

by the dynamics (FJ). To this aim, it is convenient to write the
network dynamics associated with all regular agents.

First, we highlight the interactions of regular and misbehav-
ing agents by partitioning the nominal weight matrix as

W o =

[
WR WM
∗ ∗

]
WR ∈ RR×R,WM ∈ RR×M . (6)

Then, the dynamics of regular agents can be written as follows:

xR(k + 1) = AxR(k) +BxM(k) + λθR

A
.
= (1− λ)WR, B

.
= (1− λ)WM.

(7)

If (1− λ)WR is Schur stable, which happens if the graph is
connected, at steady state the dynamics (7) induce the following
distribution w.r.t. the deception noises n(k):

x̄R
.
= lim

k→+∞
En [xR(k)] , P

.
= lim

k→+∞
Varn (xR(k)) . (8)

Defining SR
.
= [IR | 0], the quantities above amount to

x̄R = SRL
(
θ + S⊤

Mv
)
, L

.
= (I − (1− λ)W )

−1
λ (9)

P = (1− λ)2WRPW⊤
R + (1− λ)2WRQW⊤

R , (10)

where the matrix W encodes the actual interactions (weights)
followed within the network and is defined as follows:

W =

[
WR WM
0 IM

]
. (11)

In particular, W means that the average state of a misbehaving
agent is affected by no other agent, according to (4). The
matrix L is row-stochastic with algebraic multiplicity of the
eigenvalue 1 equal to M + 1 and does not induce a consensus.

Let Ex|y [z]
.
= Ex [z|y] and let 1 ∈ RR denote the vector of

all ones in RR. From (CE) and (7)–(10), it follows:

eR = lim
k→+∞

Eθ,v,n

[∥∥xR(k)− 1θ̄R
∥∥2]

= lim
k→+∞

Eθ,v

[
En

[∥∥xR(k)− 1θ̄R
∥∥2 ∣∣θ, v]]

= Eθ,v

[∥∥x̄R − 1θ̄R
∥∥2]+ lim

k→+∞
varn

(
xR(k)− 1θ̄R

)
.

(12)
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Then, standard calculations allow us to rewrite the consensus
error as follows:

eR(λ) = eR,v(λ) + eR,n(λ) + κ, (13)

where κ does not depend on λ and

eR,v(λ)
.
= Tr

(
Σ̃E⊤E

)
, eR,n(λ)

.
= Tr (P ) , (14)

where we define Σ̃ = Σ + SMS⊤
MV , E = SRL − CRSR,

and CR
.
= 1

R11
⊤. The expression (13) highlights that the two

features of the misbehavior modeled in Assumption 2 generate
two different contributions to the consensus error. The error
term eR,v is caused by the biased observations of misbehaving
agents θ + v that are constantly injected into the dynamics (7).
Instead, the error term eR,n is produced by the deception noises
n(k) that make the steady state drift away.

Lemma 1 (Drift vs. competition). The error term eR,n(λ) is
strictly decreasing with λ and eR,n(1) = 0.

Proof. See Appendix B.

In words, Lemma 1 implies that setting λ > 0 makes regular
agents more resilient to the deception noise as opposed to the
standard consensus protocol. This observation relates to [46]
where the authors observe that even small perturbations of a
row-stochastic matrix W can result in large norm of the matrix
difference and change of the Perron-Frobenius eigenvector.

C. The Competition-Collaboration Trade-off
To study how our proposed approach performs in the

presence of misbehaving agents, we first confront the two
extreme cases of full collaboration and full competition to see
when the former approach should be ruled out by default.

Proposition 1 (Full competition vs. full collaboration). In the
presence of misbehaving agents, the dynamics (FJ) with λ = 1
yields a smaller error than with λ = 0 if and only if

M2

R
eR,n(0) + Tr (V ) ≥ M2

R
Tr (Σ11)−

2M2

R2
B (Σ11)

+
2M

R
B (Σ12)− B (Σ22) , (15)

where B (A) =
∑

i,j Aij .

Proof. The statements follow from manipulations of the
consensus errors induced by the two considered instantiations
of (FJ). The full derivation is reported in Appendix C.

In words, Proposition 1 implies that the fully competitive
approach outperforms the consensus protocol as soon as the
misbehavior disturbances are sufficiently intense compared to
the prior correlations between regular and misbehaving agents.

After acknowledging that the proposed competition-based
approach can be more resilient than the standard consensus
protocol in the presence of misbehaving agents, we now turn
to study the optimal resilient strategy. In other words, we are
interested in choosing λ so as to reduce the consensus error.
In particular, we address the optimal competition λ∗:

λ∗ ∈ argmin eR(λ). (16)

Such an optimal parameter exists by Weierstrass theorem
because eR(λ) is continuous in (0, 1] and has a continuous
extension at λ = 0 through the extended continuity of L [47].

The next result describes when the optimal competition is
nontrivial, meaning that the regular agents should compete
against their neighbors in order to minimize the error (CE).

Theorem 1 (Competition-collaboration trade-off.). Let Γ .
=

limλ→0+
dL
dλ with block partition

Γ =

[
Γ1 Γ2

0 0

]
, Γ1 ∈ RR×R, Γ2 ∈ RR×M (17)

and CRM
.
=

1R1
⊤
M

M . If either of the following conditions holds:
C1. Σ is diagonal;
C2. W o is symmetric and

− deR,n(0)

dλ
− Tr

(
V Γ⊤

2 CRM

)
> Tr

(
−Σ11Γ

⊤
1 CR−

Σ12Γ
⊤
2 CR +Σ⊤

12Γ
⊤
1 CRM +Σ22Γ

⊤
2 CRM

)
; (18)

then λ∗ ∈ (0, 1).

Sketch of proof. The result is proven in two phases. Firstly,
we show that λ∗ < 1: we compute the first derivative of eR(λ)
at λ = 1 and show that it is positive, hence eR(λ) is strictly
increasing in a left neighborhood of λ = 1. Secondly, we show
that λ∗ > 0: we compute the right derivative of eR(λ) as
λ → 0+ and show that it is negative, hence the error function
is strictly decreasing in a right neighborhood of λ = 0. The
detailed calculations are reported in Appendix D.

Intuitively, any optimal parameter λ∗ is strictly between 0
and 1 if the misbehavior is sufficiently disruptive so that the
consensus protocol yields poor performance, similarly to what
remarked below Proposition 1, while full competition is never
optimal under our standing assumptions.

Remark 5 (Optimal competition with general matrices). Even
though we assume regular agents have no self-loops, Theorem 1
holds also if this is relaxed. Further, we numerically show that
λ∗ ∈ (0, 1) if W o is row stochastic and Σ is not diagonal.

Remark 6 (Optimal competition with zero noise). Theorem 1
implies that λ∗ may be positive even if V and Q are zero.
This is indeed consistent with the misbehavior model: not
only misbehaving agents corrupt the consensus value through
deception bias and deception noise but mostly they behave
against the prescribed protocol, so that full collaboration is in
general a poor strategy even if v and n(k) are trivial.

D. Performance vs. Misbehavior

We now study how the performance of the dynamics (FJ)
varies with deception biases v and deception noises n(k).

We first show an intuitive result: more disruptive misbehavior
induce larger consensus errors for every λ.

Proposition 2 (Performance vs. misbehavior). The error eR is
strictly increasing with V and with Q w.r.t. the partial order
of semi-definite matrices.

Proof. See Appendix F.
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Fig. 2: FJ dynamics consensus error with 3-regular graph, exponential decay
of observation covariances, and one misbehaving agent. The arrow shows
how the error curve varies as the intensity d of the deception bias increases.

We next study what happens to the optimal competition λ∗.
Intuitively, the more the nominal system behavior is disrupted,
the more regular agents should benefit from competing rather
than collaborating with (potential) misbehaving neighbors.
Formally speaking, this requires λ∗ to increase with the
intensities of deception biases and noises. Such a claim is
hard to prove analytically because of the involved structure of
the cost function. In particular, studying the second derivative of
eR(λ) is complicated by the asymmetric matrix inside the trace
of eR,v(λ), and similarly, a unique root of the first derivative
of eR(λ) cannot be proved, in general.

Nonetheless, the next results contribute towards our intuition
by describing how the minimum points vary with the misbe-
havior. For convenience, we denote the diagonal elements of
the covariance matrices by dm

.
= Vmm and qm

.
= Qmm.

Proposition 3 (Optimal competition vs. misbehavior). Let λmin

be a minimum point of eR(λ), then λmin is strictly increasing
with dm,m ∈ M, and with Q w.r.t. the partial order of semi-
definite matrices.

Proof. See Appendix G.

An immediate consequence of Proposition 3 is that, if there
is a unique minimum point for some values of V and Q,
then there is a unique minimum point for any “larger” V
and Q, which corresponds to λ∗. In words, a more disruptive
misbehavior force regular agents to progressively become more
competitive, in order not to be deceived by misbehaving agents
that can draw them away from the nominal average consensus.
The next proposition refines to this result by describing the
optimal parameter λ∗ with “extreme” misbehavior.

Proposition 4 (Optimal competition with extreme misbe-
havior). Let λmin be a minimum point of eR(λ), then
limdm→∞ λcr(dm) = 1 and limqm→∞ λcr(qm) = 1,m ∈ M.

Proof. See Appendix H.

According to intuition, the (trivial) optimal strategy for
regular agents is to fully compete when the misbehavior is too
disruptive. However, numerical tests in the next section show
that λ∗ is significantly smaller than 1 in several cases.

IV. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments on the
consensus error eR to achieve intuition about the behavior of
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(b) Optimal λ as a function of d.

Fig. 3: FJ dynamics consensus error with 3-regular graph, diagonal prior
covariance matrix Σ, and one misbehaving agent.
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(a) Average consensus error (CE)
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(b) Optimal λ as a function of M .

Fig. 4: FJ dynamics consensus error with 3-regular graph and diagonal prior
covariance matrix Σ. The arrow on the left box shows how the error varies as
the number of misbehaving nodes M increases (with R = 100).

FJ dynamics under different topologies and misbehavior, and
draw insight about effective choices of the parameter λ.

In Fig. 2, we considered a 3-regular communication graph
with 100 agents and uniform weights1. The prior covariance Σ
was chosen such that, for each agent i, the cross-covariances
obeyed an exponential decay, σij = 10−0.2ℓ(i,j), ℓ(i, j) being
the length of a shortest path between i and j, with σ2

i ≡ 1.
Further, we randomly selected one misbehaving agent and
varied the intensity of its deception bias d within the range
[0, 100], with constant intensity of deception noise q.

Figure 2a shows the error curve as d increases. All curves
exhibit a unique minimum point λ∗, plotted in Fig. 2b. Further,
both error curve and minimum point increase with d, according
to Propositions 2 and 3, showing that the competition level
needs to grow with the intensity of deception biases. The same
qualitative behavior was observed by varying q.

Figure 3 shows the same experiment but with a diagonal
covariance matrix Σ. We observe the same monotonic behavior
of eR and λ∗. Further, we note that the error curve has a convex
shape. In fact, even though it was not possible to prove it
formally, all tests performed with diagonal covariance matrices
resulted in strictly convex error functions from numerical tests.

We next studied what happens when increasing the number
of misbehaving agents M . To better visualize changes in the
behavior of the system, we fixed the set R to be a network
composed of R = 100 regular agents, and added misbehaving
agents across the network. Figure 4 shows the error curve when
10 such agents are progressively introduced. In particular, in
this example, all misbehaving agents are selected so as to
affect different portions of the network, which allows λ∗ to

1In a k-regular graph, each node has exactly k neighbors.
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Fig. 5: Optimal λ as a function of M with d = 10. Each pair of misbehaving
agents affects the same regular agent (e.g., the first two belong to N1).
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Fig. 6: FJ dynamics consensus error with (3, 4)-degree communication graph,
exponential decay of observation covariances, and one misbehaving agent.

have relatively low values, see Fig. 4b. Conversely, we note that,
in the opposite scenario, some regular agents may be forced to
almost freeze their observations (large λ) to not drive the error
too large. Figure 5 shows two cases where the misbehaving
agents are connected to the same regular agents. In particular,
each couple is added to the neighborhood of one regular agent
(e.g., the first two misbehaving agents added to the network
are neighbors of agent 1 ∈ R). In this case, λ∗ increases faster
than Fig. 4b, because the regular agents affected by multiple
misbehaving need to keep their error small: in other words, they
can hardly collaborate because of their misbehaving neighbors.
We note that λ∗ grows faster when observations of regular
agents are correlated (Fig. 5a), because such agents can trust
that their states may be similar even before starting dynamical
updates, and competing is less risky than collaborating.

Finally, it is interesting to see that the error behavior observed
above is consistent also if W o is only row-stochastic, thus
yielding nonzero consensus error even in the nominal scenario.
Figure 6 shows consensus error and λ∗ when each node in the
graph has degree 3 or 4 and W o has uniform weights.

Other numerical tests performed with different graphs,
observation distributions, and choice of the misbehaving agents
show the same quasi-convex behavior of the error function
and are omitted in the interest of space. This reinforces and
extends the scope of our formal analysis, showing that indeed
the competition-collaboration trade-off emerges as a natural
resilient mechanism for multi-agent systems.

Remark 7 (Value of optimal λ). A remarkable feature of the
FJ dynamics that emerges from the tests above is that λ∗ is
usually small (within the interval [0.1, 0.2] in many cases).
This translates into the practical advantage that adding a little
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Fig. 7: Consensus error and its two contributions in (19).

competition may be sufficient to get a good level of resilience
without forcing too conservative updates by regular agents.

A. Competition-Collaboration Trade-off: Analytical Insight
As mentioned earlier, the consensus error function eR(λ) is

hard to study and an exhaustive analysis seems not possible.
Some intuition can be achieved from a decomposition that

we study next. To keep notation light, we assume a single
misbehaving agent (with label m) and a diagonal covariance
matrix Σ. Then, we can expand the consensus error as follows:

eR =
∑
i∈R

σ2
i

∥∥∥∥L−m
i − 1

R

∥∥∥∥2︸ ︷︷ ︸
.
=eR,consensus

+
(
σ2
m + d

) ∥∥L−m
m

∥∥2 + eR,n︸ ︷︷ ︸
.
=eR,deception

.

(19)
In (19), Li ∈ RN is the ith column of L and L−m

i ∈ RN−1 is
obtained from Li by removing its mth row (corresponding to
the misbehaving agent). The error curves are shown in Fig. 7.
Equation (19) allows for an intuitive interpretation of the error,
which leverages the notion of social power [48,49].

In opinion dynamics, the social power is used to quantify
how much the opinion of an agent affects the opinions of all
agents. In particular, when opinions evolve according to the
FJ dynamics, the element Lij quantifies the influence of agent
j on agent i: as Lij increases, agent i is more affected by the
initial opinion of agent j. The total social power of agent j is a
symmetric and increasing function of all elements {Lij}i∈V .2

Borrowing such concepts from opinion dynamics allows us
to interpret the two contributions separated in (19). The first,
eR,deception, quantifies the impact of the misbehaving agent m on
regular agents. The “social power” of m, as quantified through
the vector L−m

m , depends on the communication matrix W and
on the parameter λ. Each coordinate of L−m

m decreases with λ,
meaning that the influence of the misbehaving agent weakens
as regular agents anchor more tightly to their observations, and
becomes zero when λ = 1, namely, in the full-competition
regime. We formalize this discussion as the following lemma.

Lemma 2. The component eR,deception is decreasing with λ.

2References [48,49] use the arithmetic mean of {Lij}i∈V .
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Proof. By computing the derivative of L w.r.t. λ, we see that
each element of L−m

m is nonincreasing with λ. Because L
is a nonnegative matrix, this and Lemma 1 yield the claim.
See Appendix E for the detailed calculations.

The second contribution eR,consensus measures “democracy”
among regular agents, i.e., it is proportional to the mismatch
between how much each regular agent affects the others and
the ideal value 1/R, which means that each agent affects all
others equally. This cost is zero if and only if the submatrix
of L corresponding to interactions among regular agents is the
consensus matrix: this can happen only if they do not interact
with the misbehaving agent [47], in which case the vector L−m

m

is zero (the misbehavior has no effect). In this special case,
eR,consensus is zero at λ = 0 and increases monotonically as the
network shifts from a democratic system where agents fully
collaborate (λ = 0) to a disconnected system where agents
fully compete (λ = 1). Conversely, with misbehaving agents,
eR,consensus has a nontrivial minimizer (zoomed box in Fig. 7).
For small λ, the misbehaving agent overrules all interactions
and regular agents hardly affect each other. As λ increases,
the interactions among regular agents become more relevant,
making eR,consensus decrease. However, as λ grows further, the
competition among regular agents becomes too aggressive and
makes them shift away from an ideal democratic system.

Overall, the error (CE) has two concurrent causes that yield
two regimes: collaboration with misbehaving agents is most
misleading for small λ, while for large λ the error is mainly
due to regular agents that compete against each other and reject
useful information shared by neighbors. This matches intuition
from (FJ) where λ measures conservatism in agent updates.

V. THE ROLE OF THE COMMUNICATION NETWORK

In the previous sections, we discussed the benefits of using
a competition-based approach (FJ dynamics) to tame misbe-
having agents. We now shift attention to the communication
network, in order to achieve intuition about resilient topologies.
In Section V-A, we introduce a second performance metric
which we use to evaluate resilience to attacks. In Section V-B,
we observe how performance varies with connectivity.

A. Performance Metrics

Besides consensus error, we also aim to assess energy spent
to misbehave. To this aim, we interpret (7) as a controlled
system where the misbehaving agents command the input
xM(·). The controllability Gramian in K steps, denoted by
WK , is defined for system (7) as

WK =

K−1∑
k=0

AkBB⊤(A⊤)k. (20)

The controllability Gramian can be used to quantify the control
effort: the trace of WK , called controllability index, is inversely
related to the control energy spent in K steps (averaged over
the reachable subspace), as shown in literature [50]–[52]. In
words, a small controllability index means that the misbehaviors
consume a lot of energy to steer xR across the reachable space,

which may be desired to possibly drain out adversarial resources
and hamper an external attack.

If M = 1, the controllability index can be written as

Tr (WK) = (1− λ)2
K−1∑
k=0

∥∥∥(1− λ)kW k
RWM

∥∥∥2, (21)

resembling the consensus error component eR,deception in (19),

eR,deception ∝

∥∥∥∥∥
∞∑
k=0

(1− λ)k
k−1∑
j=0

W j
RWM

∥∥∥∥∥
2

. (22)

Both Tr (WK) and eR,deception are decreasing with λ (i.e.,
the more competition, the better) and depend on the vectors
W k

RWM that describe how attacks spread in k steps. The
discount factor (1 − λ)k makes the tail of the series in (22)
negligible, enhancing similarity between those two metrics.

Remark 8 (Controllability index). While we use Assumption 2
to compute eR, the controllability Gramian in (20) is indepen-
dent of the trajectory of the system and hence the controllability
index evaluates an “average trajectory” of misbehaving agents.

B. Network Connectivity vs. Resilience

We now explore how connectivity of the communication net-
work affects performance and resilience of the dynamics (FJ).
While in this sections we attempt to achieve heuristic intuition,
an analytical investigation is deferred to future work. To this
aim, we fix the parameter λ = 0.1 and numerically evaluate the
theoretical performance as the density of the communication
network increases. Specifically, for each evaluated network, we
assign uniform weights to the links and compute consensus
error eR and controllability index Tr (WK) (where K is
the reachability index) selecting some agents as misbehaving
according to either of the following two cases:

• the worst-case misbehaving agent, i.e., M = {m∗} with

m∗ = argmax
m∈V

eR, (23)

m∗ = argmax
m∈V

Tr (WK) ; (24)

• five misbehaving agents randomly drawn from V .
We consider three common classes of graphs: regular graphs
with degree ∆, Erdös-Rényi random graphs, where a link
between any two nodes exists with probability p, and random
geometric graphs, where nodes are randomly placed in [0, 1]2

and any two nodes are linked if their distance is not greater than
a radius ρ. While regular graphs induce a doubly stochastic
matrix even with simple uniform weights, this is generally not
true for the other graphs. Hence, to evaluate the consensus
error eR, we considered both the deviation from the nominal
average defined in (CE) and the deviation from the consensus
value computed from the left Perron eigenvector of the nominal
weight matrix W o. Given that the results were qualitatively
equal, we report only the first case in the interest of space.

We consider networks with N = 100 agents and compute the
performance for each network (i.e., a combination of class of
graph and density parameter) by averaging over 1000 random
graphs for the worst-case misbehaving agent and over 5000
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Fig. 8: Average performance metrics for regular graphs.

Fig. 9: Average performance metrics for Erdös-Rényi random graphs.

random graphs for the random selection of misbehaving agents.
The results are shown in Figs. 8 to 10, with the consensus
error on the left and the controllability index on the right.

The main insight is that, on average, increasing the graph
connectivity mitigates attacks with respect to both metrics.
Intuitively, this is because high degrees mean many interactions
among regular agents that the misbehaving agent cannot control
directly. The only remarkable difference is noted in random
geometric graphs with the worst-case misbehaving agent (top-
left box in Fig. 10), for which increasing the radius from 0.35 to
0.5 also increases the consensus error. This might be due to the
formation of hubs, that is, densely connected areas that emerge
and become denser as the radius increases, which an adversary
can exploit to quickly spread damage to a large portion of the
network. Notably, this phenomenon is absent both for the same
class of graphs with random selection of misbehaving agents
(bottom-left box of Fig. 10) and in the case of Erdös-Rényi
random graphs (Fig. 9), which also typically feature some
dense areas – even though not with the small world structure
typical of random geometric graphs, see Figs. 14a and 15a. A

Fig. 10: Average performance metrics for random geometric graphs.

deeper study of this phenomenon is an interesting direction of
future research.

Besides density and number of links, an aspect that also
seems to play a role in resiliency is degree balance among
nodes. This can be somehow deduced by the plots referred to
the same selection strategy of misbehaving agent: for example,
with worst-case misbehaving agents, regular graphs exhibit the
smallest costs, random geometric graphs – where usually nodes
have similar number of neighbors – yield worse performance,
and Erdös-Rényi random graphs – where both highly connected
and almost isolated nodes coexist – have the largest costs.

To more carefully investigate how performance varies with
degree balance, we consider almost-regular graphs, namely,
where nodes have degree either ∆ or ∆− 1 for some ∆. This
corresponds to “middle-ways” between ∆- and (∆−1)-regular
graphs, which could be ideally placed between two consecutive
ticks (degrees) ∆ and ∆− 1 on the x-axis of Fig. 8.

More specifically, starting from a ∆-regular graph, we itera-
tively remove one edge at a time so as to minimize performance
degradation while selecting the worst-case misbehaving agent
at each time. This amounts to removing the edge e that solves

min
e∈E

max
m∈V

eR(E \ {e}), (25)

min
e∈E

max
m∈V

Tr (WK(E \ {e})) , (26)

where E is the set of edges (nonzero elements of W ) and
we set W with uniform weights after each removal. To get
almost-regular graphs, we remove at most one edge per node.

Figures 11–12 show the performance obtained starting
from a 4-regular graph with 50 nodes (100 edges in total,
corresponding to the rightmost point in the plots) and gradually
pruning edges according to (25)–26 (proceeding leftwards on
the x-axis). Also, performance with a 3-regular graphs obtained
by removing perfect matchings from the initial 4-regular graphs
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Fig. 11: Consensus error (left) and controllability index (right) for
almost-regular graphs starting from a 4-regular graph with λ = 0.2. Edge
removal proceeds from right (initially, all 100 edges are present) towards left.
At each iteration, one edge is removed so as to minimize performance
degradation according to (25)–(26) while enforcing that each node has degree
either three or four. At the last iteration (leftmost diamonds), most or all
nodes have degree three, with possibly a few nodes left with degree four. The
red squares show the performance metrics for a 3-regular graph obtained by
removing a perfect matching (set of edges) from the initial 4-regular graph.

Fig. 12: Consensus error (left) and controllability index (right) for
almost-regular graphs starting from a 4-regular graph with λ = 0.7.

are shown for comparison.3 Remarkably, performance degrades
(almost) monotonically for both performance metrics as edges
are removed. This may be explained by a combination of lower
connectivity and degree unbalance, which allows the adversary
to exploit highly connected agents to make more effective
damage against low-connected regular agents.

Interestingly, while the consensus error increases smoothly as
edges are removed, the controllability index exhibits “jumps”.
This is evident with large λ, as Fig. 12 shows. Such a behavior
suggests the presence of critical subsets of edges and might
give indication about critical links to be kept or removed.

Further, in almost all tests (not shown here in the interest
of space), the 3-regular graph obtained by removing a perfect
matching yielded better performance compared to the last edge
removal (leftmost marker on the blue curve). This suggests that
increasing connectivity may not be beneficial if it entails less
degree balance: in Fig. 12, the 3-regular graph reduces both
the consensus error and the controllability index w.r.t. the last
graphs obtained by pruning edges (leftmost markers), which
have one node with degree 4 and all others with degree 3. In
particular, the latter metric is reduced by 22% and is comparable
to graphs having most nodes with degree 4. However, as shown
in Fig. 11, a regular graph of degree ∆−1 obtained by removing
a perfect matching (not related to performance metrics) from

3A matching is a set of edges that do not share nodes. A maximum
matching is a matching of maximal cardinality, and a perfect matching is
a maximum matching such that each node is incident to one edge (total
coverage). Note that our edge removal strategy need not remove exactly one
edge for each node in the graph, because we constrain the resulting graphs to
be almost regular. For example, the iterative removal corresponding to Fig. 12
stops before reaching a 3-regular graph.

a ∆-regular graph may yield worse performance than almost-
regular graphs. This gives further insight: an arbitrary edge
selection may perform substantially worse compared to a task-
related strategy.

VI. COMPARISON WITH EXISTING LITERATURE

In this section, we test our proposed protocol and compare
its performance with other approaches in the literature.

Many techniques have been proposed to mitigate misbehav-
ing agents. However, they usually focus on reaching a generic
consensus, possibly while keeping the states of regular agents
within a safe region (usually defined by initial conditions),
and do not consider performance of average consensus, which
here is key to the distributed optimization task, as argued
in Section II. Indeed, most resilient consensus strategies aim to
make the regular agents agree on, e.g., a common location (such
as in robot gathering) in the face of misleading interactions,
but need not relate the consensus value to the initial locations.

We compare two strategies: Weighted Mean Subsequence
Reduced (W-MSR) [26] and Secure Accepting and Broadcast-
ing Algorithm (SABA) [35]. As noted in Section I-A, many
resilient algorithms adapt W-MSR to specific applications and
enjoy the same guarantees. W-MSR suffers from two main
limitations related to r-robustness, which is the cornerstone of
all theoretical analysis. First, while sufficient conditions for
resilient consensus are clear, there is little clue about necessary
conditions. This translates into an unknown behavior of the
system if r-robustness does not hold. While r-robustness has
proved a good characterization for update rules based on W-
MSR, it raises practical limitations. On the one hand, the
communication network may be fixed but not robust enough.
On the other hand, checking r-robustness is computationally
intractable for large-scale networks [32]. Thus, in some cases,
for example with a sparse structure, a more conservative
behavior with provable performance bounds may be preferred.
Also, W-MSR requires to estimate the number of misbehaving
agents affecting the network. This may be an issue: if the
estimate is too low, regular agents may be deceived and average
consensus disrupted, whereas, if it is too high, the updates may
be too conservative, possibly preventing convergence. Further,
misbehaviors could happen in a time-varying fashion and make
the r-robustness fail at times, yielding poor performance overall.
SABA does not estimate the number of misbehaving agents, but
stores all received values in a buffer and processes them with a
voting strategy. However, this design may impose impractical
memory requirements, and the convergence of SABA is still
ensured under a minimal r-robustness.

In the next simulations, we consider N = 100 agents
interacting through sparse communication networks, whose
low connectivity hampers W-MSR and SABA, and matrices
W o with homogeneous weights. As performance metric, we
computed the objective cost of the distributed optimization
task (3), which equals eR up to additive constants, cf. Section II-
B. The observations are drawn as θ ∼ N (0, 0.1I) and each
misbehaving agent m is assigned a deception bias vm ∈ [2, 6].
For each scenario, we chose the parameter λ by selecting the
minimizer of the theoretical error eR(λ) with V = 5IM .
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(a) Communication network. (b) Cost (3) of regular agents.

Fig. 13: Comparison among consensus, FJ, W-MSR [26], and SABA [35]
with 4-regular graph and six misbehaving agents.

(a) Communication network. (b) Cost (3) of regular agents.

Fig. 14: Comparison among consensus, FJ, W-MSR [26], and SABA [35]
with Erdös-Rényi random graph with p = 4/N and ten misbehaving agents.

Figure 13 illustrates a network where the agents use a
regular graph with degree ∆ = 4 as communication network
with six misbehaving agents (Fig. 13a). We implement W-
MSR assuming that each regular agent has (at most) one
misbehaving neighbor because larger values make updates
trivial, i.e., xi(k) ≡ xi(0). However, some misbehaving agents
communicate with the same regular agents (e.g., the two in
the bottom-right portion of the graph), making this scenario
challenging for W-MSR and SABA whose r-robustness re-
quirement suffers the sparse communication graph. While both
SABA and W-MSR perform poorly (Fig. 13b), our approach
mitigates the attacks by setting λ at a suitably large value.

In Fig. 14, we simulate the protocols over an Erdös-Rényi
random graph with link probability p = 4/N. (hence, each
agent has (N−1)p neighbors on average), and ten misbehaving
agents (10% of the total number of agents). Note that the matrix
W is row stochastic. Also in this case, the dynamics (FJ) tames
the numerous attacks better than the confronted approaches.

Finally, we address a random geometric graph with radius

(a) Communication network. (b) Cost (3) of regular agents.

Fig. 15: Comparison among consensus, FJ, W-MSR [26], and SABA [35]
with random geometric graph with ρ = 0.25 and twenty misbehaving agents.

ρ = 0.25 and twenty misbehaving agents in Fig. 15. Also in
this case, the matrix W is row stochastic. Interestingly, W-MSR
is rather challenged by this class of graphs, yielding a large
cost. On the other hand, the dynamics (FJ) again manages to
keep the error small compared to the other algorithms.

Many other simulations that validated our approach are not
reported here in the interest of space and can be found in [53].

Remark 9 (Advantages of FJ dynamics). The experiments above
highlight some advantages of the proposed approach. Firstly,
the tunable parameter λ makes the algorithm flexible, because
it can smoothly adapt to a different attack intensity while
still providing decent performance. Further, while the optimal
parameterization requires exact knowledge of the adversary,
which may not be reasonably assumed, yet our proposed
approach proves pretty robust to the choice of a specific λ, as
shown in Figs. 2–6 where the error is kept small around λ∗.
This also holds with row-stochastic matrices, enabling simple
weighing rules to be locally implemented. In contrast, in other
approaches the cost function may be highly sensitive to some
design parameters, e.g., the estimated number of misbehaving
agents in W-MSR. Further, most works in the literature do
not describe the system behavior when resilient consensus is
not guaranteed. In fact, they usually either ensure that the
states of the agents remain inside the convex hull of the initial
conditions (which may be equivalent to setting λ = 1 in (FJ)),
or let agents reach consensus but potentially be steered far away
from initial conditions [38]. Finally, computational complexity
and memory requirements are minimal, which is typically
desired for resource-constrained devices.

VII. CONCLUSION AND FUTURE WORK

In this article, we have proposed a competition-based
protocol based on the Friedkin-Johnsen dynamics to mitigate
a class of misbehavior that disrupts a quadratic distributed
optimization task. We have presented formal results and numer-
ical experiments on performance and optimal parametrization,
and showed that our approach can outperform state-of-the-
art algorithms. Further, we have discussed the competition-
collaboration trade-off with analytical arguments that are
insightful towards a deeper understanding of the fundamental
properties of the system in the presence of misbehaviors.
Finally, we have addressed network design and explored how
resilience relates to graph connectivity, looking both at the
optimization performance and at the energy spend to misbehave.

This approach opens several avenues for future research.
Firstly, it is desirable to address an effective design of
parameters λi’s in the realistic case where knowledge about the
attack is scarce. This may also involve online reweighing of
protocol parameters, for example in the realm of recent work
where weights are updated via trust information or evidence
theory [38,40].

Secondly, the more general and challenging scenario of
distributed optimization should be addressed. In this case, a
common approach is to alternate local descent steps to consen-
sus updates to steer all agents towards a common point [19,21].
Here, the task-tailored descent steps may critically impact
performance even if consensus steps are made resilient.
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A third research avenue involves zero-sum games to model
interactions among agents [43,44]. In particular, in asymmetric
zero-sum games, one player has more knowledge than the other,
which is a suitable model for worst-case attacks. In this case,
a relevant challenge is determining the optimal strategies for
both players, to ultimately derive effective resilient algorithms
in the presence of intelligent adversaries.

Finally, it is interesting to deeply investigate the design of
the communication network. While graph robustness to node
or edge failures has been extensively addressed [54]–[57], the
novel element given by the dynamics (FJ) calls for a tailored
investigation as heuristically motivated in Section V. Also, in
the spirit of a graph-theoretic approach, a comparison between
classical centrality measures and worst-case attacks may be
useful to get insight about agents that deserve higher attention.
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APPENDIX

A. Useful Lemmas
In this Appendix, we report some standard facts in linear

algebra that will be used in the following proofs.

Lemma A.1. Let α ∈ R and A,B ∈ Rn×n differentiable
functions of α, then the derivative of Tr

(
A⊤B

)
is

dTr
(
A⊤B

)
dα

= Tr

(
dA⊤

dα
B

)
+Tr

(
A⊤ dB

dα

)
. (A.1)

Lemma A.2. Let α ∈ R and A ∈ Rn×n invertible and
differentiable function of α, then the derivative of A−1 is

dA−1

dα
= −A−1 dA

dα
A−1. (A.2)

Lemma A.3. Let A ∈ Rn×n invertible with eigenpair (λ, v),
then A−1 has eigenpair (λ−1, v).

Corollary A.1. If A ∈ Rn×n is diagonalizable, then A and
A−1 are simultaneously diagonalizable.

Lemma A.4. Let A ∈ Rn×n have eigenpair (λ, v), then (I −
αA) has eigenpair ((1− αλ), v).

B. Proof of Lemma 1
We use the implicit function theorem to prove that each

diagonal element Pii of P is strictly decreasing with λ. Let

gi(λ, Pii)
.
= Pii−(1−λ)2

[
WRPW⊤

R
]
ii
−(1−λ)2Q̃ii (B.1)

where Q̃ = WMQW⊤
M. The implicit function theorem holds

for the solutions of gi(λ, Pii) = 0 with λ ∈ (0, 1): for i ∈ R,

∂gi(λ, Pii)

∂Pii
= 1− (1− λ)2W 2

ii ̸= 0 ∀λ ∈ (0, 1). (B.2)

Making dependence on λ explicit and for λ ∈ (0, 1), we get

dPii(λ)

dλ
= −∂gi(λ, Pii(λ))

∂λ

(
∂gi(λ, Pii(λ))

∂Pii(λ)

)−1

= −
2(1− λ)

([
WRPW⊤

R
]
ii
+ Q̃ii

)
1− (1− λ)2W 2

ii

< 0.

(B.3)

Finally, from eR,n(λ) =
∑

i∈R Pii(λ) and linearity of the
derivative, it follows that eR,n(λ) is decreasing.

For λ = 1, we trivially get P = 0 and thus eR,n(1) = 0.

C. Proof of Proposition 1
In this and all following proofs, the constant κ in (13) is

neglected for the sake of simplicity.
We first compute the consensus error with λ = 1:

eR(1) = eR,v(1) = Tr (Σ11(IR − CR))

=
R− 1

R

∑
i∈R

σ2
i −

1

R

∑
i∈R

∑
j∈R
j ̸=i

σij . (C.1)

With λ = 0, the average steady-state consensus value is
determined by the biased observations of malicious agents, i.e.,
x̄R =

¯̃
θM

.
= 1

M

∑
m∈M(θm + vm). We have:

eR,v(0) = E
[∥∥∥1R

¯̃
θM − 1Rθ̄R

∥∥∥2]

=
R

M2

∑
m∈M

dm +
R

M2

∑
m∈M

σ2
m +

∑
n∈M
n ̸=m

σmn



+
1

R

∑
i∈R

σ2
i +

∑
j∈R
j ̸=i

σij

− 2

M

∑
i∈R

∑
m∈M

σim

eR,n(0) = Tr (P (0)) . (C.2)

By comparing the expressions in (C.1) and (C.2), it follows
that eR(0) > eR(1) is equivalent to

M2

R
Tr (P (0)) +

∑
m∈M

dm > −
∑

m∈M

σ2
m +

∑
n∈M
n̸=m

σmn



+
M2

R

∑
i∈R

σ2
i−

2M2

R2

∑
i∈R

σ2
i +

∑
j∈R
j ̸=i

σij

+2M

R

∑
i∈R

∑
m∈M

σim,

(C.3)
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which leads to condition (15).

D. Proof of Theorem 1

From (13), we get

deR(λ)

dλ
=

deR,v(λ)

dλ
+

deR,n(λ)

dλ

= κ
1

λ
Tr
(
Σ̃L⊤ (I −W⊤L⊤)S⊤

RE
)
+

deR,n(λ)

dλ
,

(D.1)
where Lemmas A.1 and A.2 were used and κ > 0.

1) Part one: λ∗ < 1: From (B.3), deR,n(λ)
dλ

∣∣
λ=1

= 0 and

deR(λ)

dλ

∣∣∣
λ=1

= κTr
(
Σ̃
(
I −W⊤)S⊤

R (SR − CRSR)
)
.

(D.2)
The argument of the trace in (D.2) has expression[

A 0
⋆ 0

]
, A ∈ RR×R. (D.3)

Condition C1. If Σ is diagonal, the ith diagonal element of
A is

Aii = σ2
i

1− 1

R
+

1

R

∑
j∈R

Wji

 > 0. (D.4)

Condition C2. If W o symmetric, the ith diagonal element of
A is

Aii = σ2
i+

1

R

∑
m∈M

σim

1− ∑
m′∈M\{m}

W o
m′m

− 1

R
σ2
i

∑
m∈M

W o
mi

−
∑
j∈R
j ̸=i

σijWij −
1

R

∑
j∈R
j ̸=i

σij

∑
m∈M

W o
mj −

∑
m∈M

σimWim.

(D.5)

It holds

1

R
σ2
i

∑
m∈M

W o
mi +

∑
j∈R
j ̸=i

σijWij +
1

R

∑
j∈R
j ̸=i

σij

∑
m∈M

W o
mj

+
∑

m∈M
σimWim ≤ max

{
1

R
σ2
i + σim∗ , σij∗

}
, (D.6)

where j∗
.
= argmaxj∈R\{i} σij and m∗ .

= argmaxm∈M σim.
Inequality (D.6) can be split into the following two cases.
Case 1

R
σ2
i + σ2

im∗ ≥ σ2
ij∗ :

Aii ≥ σ2
i +

1

R
σim∗ − 1

R
σ2
i − σim∗

=
(
σ2
i − σim∗

)(
1− 1

R

)
> 0. (D.7)

Case 1
R
σ2
i + σ2

im∗ < σ2
ij∗ :

Aii ≥ σ2
i −σij∗+

1

R

∑
m∈M

σim

1−
∑

m′∈M\{m}

W o
m′m

 > 0.

(D.8)
The final inequalities in (D.7)–(D.8) follow from Σ ≻ 0 and
the Gershgorin circle theorem that imply σ2

i > σij ∀i, j ∈ V .

It follows that the derivative (D.2) is positive and the consensus
error (CE) is increasing in a left neighborhood of 1. By
continuity of (D.1), the minimum points satisfy λ∗ < 1.

2) Part two: λ∗ > 0: From Lemma 1, the error term eR,n(λ)
has negative right derivative at λ = 0. By continuity of the
derivative of eR,v(λ), we can compute the following limit:

lim
λ→0+

deR,v(λ)

dλ
= Tr

(
Σ̃ lim

λ→0+

dL

dλ

⊤
S⊤
R lim

λ→0+
E

)
= Tr

(
Σ̃Γ⊤S⊤

R
(
SRW − CRSR

))
= Tr

(
Σ̃Γ⊤S⊤

R
[
− CR |CRM

])
= Tr

(
−Σ11Γ

⊤
1 CR − Σ12Γ

⊤
2 CR+

Σ⊤
12Γ

⊤
1 CRM + (Σ22 + V )Γ⊤

2 CRM

)
,

(D.9)
where the steady-state consensus matrix W

.
= limλ→0+ L has

block partition (cf. Assumption 2 for the value of W )

W =

[
0 CRM

0 IM

]
. (D.10)

Matrix Γ can be computed from the spectral decomposition of
W . In particular, its elements are finite, Γ1 is nonnegative, and
Γ2 is nonpositive (details in Appendix E). Putting together (D.9)
and Lemma 1, the right derivative of eR(λ) at λ = 0 is negative
if and only if the following inequality holds,

− deR,n(0)

dλ
− Tr

(
V Γ⊤

2 CRM

)
> Tr

(
−Σ11Γ

⊤
1 CR−

Σ12Γ
⊤
2 CR +Σ⊤

12Γ
⊤
1 CRM +Σ22Γ

⊤
2 CRM

)
, (D.11)

which coincides with (18). If (D.11) holds, eR(λ) is strictly
decreasing in a right neighborhood of λ = 0 and λ∗ > 0. If Σ
is diagonal, then Σ12 = 0 and (D.11) is always satisfied.

E. Computation of Matrix Γ

We now show how to derive Γ from W and discuss the
sign of its elements. For the sake of simplicity, we assume
that the nominal weight matrix W o is symmetric, which
implies that both W o and W are diagonalizable. If W is
not diagonalizable, a similar derivation (with more tedious
but conceptually identical calculations) can be carried out
by considering the Jordan canonical form. This is because a
straightforward extension of Lemma A.3 shows that W and Γ
share the same (chain of) generalized eigenvectors.

Computation of Γ. The derivative of L is (Lemma A.2)

dL

dλ
= L̃− λL̃

dL̃−1

dλ
L̃ = L̃− λL̃WL̃, (E.1)

where L̃
.
= (I − (1− λ)W )

−1. Let λW and vW an eigen-
value of W and its associated eigenvector, respectively,
from Lemmas A.3–A.4 it follows that L̃ has eigenvalue
(1− (1− λ)λW )

−1 with associated eigenvector vW . Hence,
straightforward computations yield

dL

dλ
vW =

1− (1− (1− λ)λW )
−1

λλW

(1− (1− λ)λW )
vW . (E.2)



15

In particular, the dominant eigenvector vW = 1 (associated
with λW = 1) is in the kernel of dL/dλ for any λ. As for the
other eigenvectors, by letting λ go to zero in (E.2), one gets

ΓvW = (1− λW )
−1

vW . (E.3)

Finally, the eigendecomposition of Γ is obtained from eigen-
vectors vW and eigenvalues (1− λW )

−1, plus the kernel.
Sign of Γ1 and Γ2. As regards Γ1, note that the upper-

left block in W is identically zero, and that L is a stochastic
matrix for any value of λ: hence, as λ becomes larger than
zero, (some) elements in L1 become positive, and thus their
derivative at λ = 0+ is also positive.

As for Γ2, define the following block partitions,

L =

[
L1 L2

0 IM

]
, (E.4)

with W1, L1 ∈ RR×R and W2, L2 ∈ RR×M . Then, it holds

dL

dλ
=

1

λ
L (I −WL) =

[
⋆ −L1W1L2 − L1

0 0

]
, (E.5)

which implies, for any λ ∈ (0, 1),

dLim

dλ
≤ 0, i ∈ R,m ∈ M. (E.6)

In particular, the limit of the derivative of element Lim at λ =
0+ is nonpositive in virtue of the theorem of sign permanence.

F. Proof of Proposition 2

Dependence on V . Note that eR,n is independent of V .
From (13), we highlight the contribution of v to the error
eR as follows:

eR,v = Tr
(
L2V L⊤

2

)
+ κ, (F.1)

where κ does not depend on V and we use the block partition

L =

[
L1 L2

0 I

]
. (F.2)

The matrix L2 is positive, see [47] and discussion in Section IV-
A). Then, if V1 ≻ V2, it follows that L2V1L

⊤
2 ≻ L2V2L

⊤
2 and

hence the trace in (F.1) is strictly increasing with V .
Dependence on Q. Note that eR,v is independent of Q. Let
P1 and P2 denote the solutions of (10) with Q = Q1 and
Q = Q2, respectively. If Q1 ≻ Q2, then Q̃1 ≻ Q̃2 and it is
known that P1 ≻ P2, from which the claim follows.

G. Proof of Proposition 3

Dependence on V . In the following, we make the dependence
of the error eR on dm explicit. Let us compute the partial
derivative of the error first w.r.t. λ and then w.r.t. dm:

∂2eR(λ, dm)

∂dm∂λ
=

1

λ
Tr

(
L
dΣ̃(dm)

ddm
L⊤ (I −W⊤L⊤)S⊤

RSR

)
.

(G.1)

It holds

L
dΣ̃(dm)

ddm
=

[
0 L2Sm

0 Sm

]
(G.2)

M
.
= I −W⊤L⊤ =

[
IR −W⊤

1 L⊤
1 0

−W⊤
2 L⊤

1 − L⊤
2 0

]
(G.3)

L⊤MS⊤
RSR =

[
⋆ 0

−L⊤
2 W

⊤
1 L⊤

1 −W⊤
2 L⊤

1 0

]
(G.4)

and the argument of the trace in (G.1) is[
−L2SmL⊤

2 W
⊤
1 L⊤

1 − L2SmW⊤
2 L⊤

1 0
⋆ 0

]
(G.5)

whose upper-left block is a negative matrix for all λ ∈ (0, 1),
and is the zero matrix for λ = 1. Hence, the derivative of the
consensus error w.r.t. λ (D.1) is strictly decreasing with dm for
any λ ∈ (0, 1). By continuity of (D.1), the minimum points of
eR(λ) are strictly increasing with dm.
Dependence on Q. Note that eR,v is independent of Q. We
consider the derivative of eR,n w.r.t. λ:

deR,n(λ)

dλ
= −

∑
i∈R

2(1− λ)
(
[WRPW⊤

R ]ii + Q̃ii

)
1− (1− λ)2W 2

ii

. (G.6)

Let Q1 ≻ Q2, then it holds P1 ≻ P2, which implies
[WRP1W

⊤
R ]ii > [WRP2W

⊤
R ]ii ∀i ∈ R. Further, it holds

Q̃1 ≻ Q̃2 and [Q̃1]ii > [Q̃2]ii ∀i ∈ R. By combining such
two facts, we conclude that (G.6) is strictly decreasing. The
statement follows by the same argument of the case above.

H. Proof of Proposition 4

Dependence on V . We expand (D.1) to highlight dm:

deR(λ)

dλ
=

Nmm

λ
dm + κ, (H.1)

where N is the nonpositive matrix given by

N = −
(
L⊤
2 W

⊤
1 +W⊤

2

)
L⊤
1 L2 (H.2)

and κ does not depend on dm. Note that Nmm ̸= 0 because
the opposite implies that the mth malicious agent has no
interactions with regular agents. It follows that for any λ < 1
there exists dm ≥ 0 such that (H.1) is negative, which is given
by the following inequality:

dm > − κλ

Nmm
−
∑

m′∈M
m′ ̸=m

Nm′m′

Nmm
dm′ . (H.3)

The claim follows by combining (H.3) with Proposition 3.
Dependence on Q. We use (B.3) to highlight qm in (D.1):

deR(λ)

dλ
= −

∑
i∈R

2(1− λ)
(
[WRPW⊤

R ]2ii + qmQ̃2
im

)
1− (1− λ)2W 2

ii

+ κ,

(H.4)
where κ does not depend on qm. Also, P is increasing with qm
and thus [WRP1W

⊤
R ]ii also is. Hence, for any λ < 1, there

exists qm ≥ 0 such that (H.4) is negative, which is given by
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the following inequality:

∑
i∈R

2(1− λ)
(
[WRPW⊤

R ]2ii + qmQ̃2
im

)
1− (1− λ)2W 2

ii

> κ. (H.5)

The claim follows by combining (H.5) with Proposition 3.
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