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A Consensus-Based Generalized
Multi-Population Aggregative Game with

Application to Charging Coordination of Electric
Vehicles

Mahsa Ghavami, Babak Ghaffarzadeh Bakhshayesh, Graduate Student Member, IEEE , Mohammad
Haeri, Senior Member, IEEE , Giacomo Como, Member, IEEE , and Hamed Kebriaei, Senior Member, IEEE

Abstract— This paper introduces a consensus-based
generalized multi-population aggregative game coordina-
tion approach with application to electric vehicles charging
under transmission line constraints. The algorithm enables
agents to seek an equilibrium solution while considering
the limited infrastructure capacities that impose coupling
constraints among the users. The Nash-seeking algorithm
consists of two interrelated iterations. In the upper layer,
population coordinators collaborate for a distributed es-
timation of the coupling aggregate term in the agents’
cost function and the associated Lagrange multiplier of the
coupling constraint, transmitting the latest updated values
to their population’s agents. In the lower layer, each agent
updates its best response based on the most recent infor-
mation received and communicates it back to its population
coordinator. For the case when the agents’ best response
mappings are non-expansive, we prove the algorithm’s
convergence to the generalized Nash equilibrium point of
the game. Simulation results demonstrate the algorithm’s
effectiveness in achieving equilibrium in the presence of a
coupling constraint.

Index Terms— Multi-population aggregative game, cou-
pling constraints, consensus protocol, Electric vehicles.

I. INTRODUCTION

IN today’s digital era, data availability is crucial for efficient
decision-making and resource allocation in societal-scale

systems, such as transportation electrification [1]. However,
integrating various data sources and coordinating their use
presents challenges regarding accuracy and reliability. For
instance, multiple online platforms like ChargeHub collect and
distribute data on users’ Electric Vehicle (EV) charging. The
involvement of multiple platforms, each collecting data from a
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subset of users, can lead to suboptimal decisions and inefficient
resource allocation in systems with limited capacity [2].

To address these challenges, the study of multi-agent sys-
tems and game theory has gained significant interest, par-
ticularly in large-scale systems [3]. Aggregative games with
coupling constraints have emerged as a notable research area
within this discipline. These games model competitive sit-
uations where actors experience aggregate effects from the
entire population rather than direct interactions with individual
agents while satisfying critical infrastructure constraints [4].
Applications of generalized aggregative games include peer-
to-peer energy markets [5] and coordination of EVs [6], [7].

Interestingly, the aggregative structure has been employed
to address computational complexity in scenarios involving
large populations. Proposed solution algorithms primarily
operate in a non-centralized manner, utilizing decentralized
and distributed algorithms [4] and [8]–[10]. In decentralized
algorithms, agents do not communicate directly with each
other but rely on a central coordinator that aggregates local
decisions and broadcasts signals, such as dual variables, to
all agents. Distributed algorithms, on the other hand, involve
agents obtaining information through communication with
their neighbors via a communication graph [11]–[13]. These
approaches show promise in addressing the challenges of
large-scale multi-agent systems and coupling constraints.

In decentralized generalized Nash equilibrium-seeking algo-
rithms, the authors in [8] and [9] propose a forward-backward
algorithm designed to identify a generalized Nash equilibrium
within a strongly monotone game setting where the coordina-
tor sends dual variables to all participants. Alternatively, in [4],
a gradient-type algorithm is used to exhibit global convergence
with fixed step sizes, assuming strong monotonicity in the
pseudo-gradient of the game. The coordinator sends both the
aggregate and updated dual variables in this scenario. Simi-
larly, [10] presents a continuous-time variant of the algorithm,
contingent upon strict monotonicity in the pseudo-gradient.

In the domain of distributed computation for the Nash
equilibrium in aggregative games, the authors in [11] have
proposed a dynamic average tracking scheme to estimate the
unknown average aggregate in a distributed manner. Another
study tackled coupling constraints using a monotone operator

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2023.3326993

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 13,2023 at 08:30:57 UTC from IEEE Xplore.  Restrictions apply. 



splitting method and the Krasnosel’skii-Mann fixed-point it-
erations [12]. Furthermore, aggregative games with coupling
constraints have been explored using the forward-backward
operator splitting technique [13]. The survey [14] examines
recent equilibrium-seeking algorithms and their characteristics.

Existing research [4] and [8]–[15] has primarily focused on
decentralized and distributed algorithms for large-scale multi-
agent systems with a single population of users. However,
these studies have often assumed that users receive information
through a single coordinator or exchange it with neighboring
agents. In today’s real-world applications, we frequently en-
counter multiple coordinators, each responsible for a subset
of users. While systems with a single coordinator allow
for centralized control and straightforward data aggregation,
multiple coordinators introduce challenges such as potential
conflicting directives and the need for synchronization. This
paper addresses the decentralized multi-population scenario
where coordinators have only local data. Specifically, we
develop a novel algorithm based on Krasnosel’skii-Mann it-
eration and consensus protocols. Rigorous analysis shows the
equilibrium point of each local population mapping converges
to the centralized generalized Nash equilibrium despite limited
information. This significantly advances decentralized equilib-
rium computation for interconnected multi-agent systems.

The authors of [16] have investigated equilibrium seeking
in multi-population aggregative games with decoupled strategy
sets, where each agent’s feasible strategy set is not impacted
by other agents. Nevertheless, motivated by the importance
of shared constraints in energy management applications, the
current paper takes a step further by examining coupling
constraints among users in a multi-population game.

This paper aims to develop a mechanism that coordinates
information from multiple platforms, considering the cou-
pling constraints imposed by user data, to improve decision-
making and resource allocation in infrastructure systems with
limited capacities. Specifically, we focus on decentralized
equilibrium-seeking methods in multi-population aggregative
games with coupling constraints. By tackling this research
gap, our consensus-based algorithm enables Population Co-
ordinators (PCs) to estimate global aggregates through local
estimates, thereby extending the existing literature and offering
new insights into this domain. The algorithm allows players
to optimize their cost functions based on local estimates
and operates through a two-level framework. At the top
level, PCs exchange information with neighboring coordi-
nators, while at the bottom level, individual players make
decisions independently. The algorithm aims to compute the
Nash equilibrium, considering the interdependencies among
players and the shared constraints. The contributions of this
paper can be summarized as: extension of the results on
multi-population aggregative game [16] to incorporate cou-
pling constraints arising from limited energy or infrastructure
resources, development of a semi-decentralized equilibrium-
seeking algorithm in which the coupling aggregate term of
the cost functions and Lagrange multiplier of the coupling
constraint are distributively estimated by local coordinators
of each population, and providing the proof of convergence
of the proposed Nash-seeking algorithm that consists of two

interrelated iterations of PCs and agents.
Notation: N,R,R>0, and R≥0 are sets of natural, real,

positive, and non-negative numbers. Sn denotes the set of
symmetric n × n matrices. xT , ‖x‖, and ‖x‖P :=

√
xTPx

denote transpose, infinity norm, and induced norm of vector
x. ‖B‖ is the induced matrix infinity norm, simply the
maximum absolute column sum of matrix B. Given vectors
x1, ..., xL, the column augmented vector xl is defined as
col(x1, ..., xL) = [xT1 , ..., x

T
L]T . In denotes the identity matrix

and 1n is a vector with all elements one. The notation K � 0
(K � 0) denotes that K is symmetric and has positive (non-
negative) eigenvalues.

II. MULTI-POPULATION AGGREGATIVE GAME WITH
COUPLING CONSTRAINTS

A. Game Setup
We consider a set of L populations of agents, each of

which has a PC l ∈ L = {1, ..., L} and Nl agents whose
set is denoted by Nl. Thus, the total number of agents is
N =

∑
l∈LNl. We assume that PCs can exchange information

through a time-varying directed graph G(L, Ek), where Ek is
the set of directed edges at time k. Here, (l, l′) ∈ Ek means
that PC l can receive information from PC l′ and W k ∈ RL×L
represents a weight matrix of the communication graph G
at time k so that wkl,l′ is a weight that PC l assigns to the
information coming from PC l′ at time k. If (l, l′) ∈ Ek ,
wkl,l′ > 0, otherwise wkl,l′ = 0. The set of neighbors of PC l at
time k consists of all PCs from which it receives information
and is denoted by Lkl = {l′ ∈ L|(l, l′) ∈ Ek}. Each agent i in
population l chooses strategy xl,i according to its individual
constraint set Xl,i ⊂ Rn and a linear coupling constraint as

σ ∈ C, (1)

where σ := 1
L

∑
l∈L
∑
i∈Nl

δl,ixl,i is an aggregate term.
δl,i are non-negative coefficients such that

∑
i∈Nl

δl,i =
1 and are determined by PC l. We further assume C ⊆
1
L

∑
l∈L
∑
i∈Nl

δl,iXl,i ⊂ Rn and Xl,i and C are compact and
convex subsets of Rn and satisfy Slater’s constraint qualifica-
tion. For convenience, We define xl :=col(xl,1, ..., xl,Nl

) and
x :=col(x1, ..., xL).

The cost function of each agent i is defined as

Jl,i(xl,i, σ, λ) := fl,i(xl,i) + (Cσ +Kλ)Txl,i, (2)

where λ ∈ Rn is a control vector to penalize the violation of
the coupling constraint. fl,i : Rn → R is a continuous strongly
convex function and C ∈ Sn is a given weight matrix while the
invertible matrix K ∈ Sn is a design choice that could be used
to guarantee the convergence of the decentralized learning
algorithm. Let σl and λl be the local estimates of σ and λ
in (2), which are determined by PC l (2) depending on his
own strategy xl,i ∈ Xl,i and on the strategy of other agents
through the aggregate term σ, thus we have an aggregative
game. The cost function of each agent is also influenced by
the unique control vector λ.

Remark 1: The proposed aggregative game with coupling
constraint (1) is applicable to the management of self-
interested agents in energy systems that are coupled in the
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aggregated form like the coordination of EV charging with
transmission line constraints [17], traffic and charging sta-
tions with infrastructure limitations such as road capacity and
electric power resources [6], and peak shaving for residential
energy storage systems [18].

Generalized multi-population Nash equilibrium is a set of
strategies in which no agent could benefit from unilaterally de-
viating from its own strategy and the coupling constraints are
satisfied. According to [8, Remark 2], the ε-Nash equilibrium
point of the proposed generalized multi-population aggregative
game is defined as follows.

Definition 1: A pair (x̂, λ̂) is a generalized multi-population
ε-Nash equilibrium with ε > 0 for agents with cost (2) and
coupling constraint (1) if σ̂ := 1

L

∑
l∈L
∑
i∈Nl

δl,ix̂l,i ∈ C
and for all l ∈ L, i ∈ Nl, and r ∈ Xl,i, we have

Jl,i(x̂l,i, σ̂, λ̂) ≤ ε+ min
r∈Xl,i

Jl,i

(
r,

1

L
δl,ir+

1

L

∑
i′∈Nl\i

δl,i′ x̂l,i′ +
1

L

∑
l′∈L\l

∑
i′∈N

l
′

δl′,i′ x̂l′ ,i′ , λ̂

)
.

(3)

(x̂, λ̂) is a generalized multi-population Nash equilibrium if
(3) holds with ε = 0. At the end of this paper, we have shown
that our proposed algorithm converges to the multi-population
ε-Nash equilibrium where ε converges to zero in the limit of
infinite total population size.

We define the agent’s best response mapping x∗l,i : Rn →
Xl,i to the incentive signal v = Cσ +Kλ as

x∗l,i(v) := arg min
u∈Xl,i

fl,i(u) + vTu. (4)

By defining y := col(σ, λ), we group together the optimal
response mappings into the local and global aggregation
mapping Al and A as

Al(y) :=
∑
i∈Nl

δl,ix
∗
l,i(v), A(y) :=

1

L

∑
l∈L

Al(y). (5)

Now, results in [8] can be used to establish an equivalence
between generalized Nash equilibrium and a fixed point of a
particular mapping. Specifically, for a symmetric matrix K,
define

x∗∗(y) := arg min
z∈C

1

2
zT z + (K(σ − λ))T z (6)

and let T : R2n → R2n

T (y) := B(y − ηΓ(y)),Γ(y) := −
[

A(y)
2A(y)− x∗∗(y)

]
, (7)

where B = (I + ηM)−1 and M =

[
In 0
In 0

]
. Then, we have

the following result.
Lemma 1: If K � 0 and C + K � 0, then for sufficiently

small constant η > 0, T (.) in (7) is a non-expansive mapping
with a unique fixed point ŷ = T (ŷ) which is the generalized
Nash equilibrium of the game for large number of agents.

Lemma 1 follows from [8, Proof of Theorem 1 and 4].
Although the fixed point of mapping T in (7) is also equivalent
to the generalized Nash equilibrium for our multi-population
case, the equilibrium-seeking algorithm proposed in [8] can

no longer be used since the aggregate term σ and λ is
controlled by multi-coordinators connected through G(L, Ek).
To determine the fixed point of mapping T in our multi-
population case, we define mapping Tl : R2n → R2n and
Γl : R2n → R2n as follows.

Tl(y) := B(y − ηΓl(y)),Γl(y) := −
[

Al(y)
2Al(y)− x∗∗(y)

]
(8)

According to (5), since A(y) = 1
L

∑
l∈LAl(y), it is

easy to show that Γ(y) = 1
L

∑
l∈L Γl(y). Then, T (y) =

1
L

∑
l∈L Tl(y). We aim to design a consensus-based decentral-

ized algorithm such that the local signals yl := col(σl, λl) con-
verge to the fixed point of mapping T in (7) as the generalized
ε-Nash equilibrium. The schematic of the information flow is
illustrated in Fig. 1. Each PC broadcasts an incentive signal
to its population. Then, each agent updates its strategy and
sends it back to its PC. Based on local agents’ strategies and
communication with neighbors, each PC updates the incentive
signal to be broadcast at the next iteration.

+

PC 2

+

1 

𝑁2 

 +

PC 1

+

1 

𝑁1 

 

PC 3

 +

1 

 

𝑁3 

Incentive signal
Strategy

Communication network

Fig. 1. Schematic of information flow of a three-population network.

Algorithm 1 Consensus-based decentralized equilibrium seeking
Initialization: k ← 1, y1l ← y0l , ∀l ∈ L
(y0l = col(σ0

l , λ
0
l ) ∈ C × Rn)

Iteration k:
• Each PC l ∈ L broadcasts vkl = Cσk

l +Kλkl to
its population and computes x∗∗(ykl ) from (6).
• For each l ∈ L and i ∈ Nl, the agents compute in parallel
x∗l,i(vl) as (4).
• Each PC l ∈ L computes Tl from (8) and updates ykl

by using Tl and communicating with its neighbors:
yk+1
l = (1− αk)(

∑
l′∈L w

k
l,l′y

k
l ) + αkTl(ykl )

k ← k + 1

B. Consensus-Based Decentralized Equilibrium Seeking
To develop an equilibrium-seeking algorithm with

lightweight information exchange, we assume that the
agents have no information about the parameters of their cost
functions, including C and K in (2), the structure of aggregate
term σ and parameters δl,i, control vector λ, and strategies
of other agents. Instead, we assume that each agent responds
optimally to the local incentive signals vl := Cσl + Kλl,
which are broadcasted by PC l. The proposed algorithm is
summarized in Algorithm 1. At iteration k, each PC sends
vkl , which is a function of the local estimation ykl , to its
population. Afterwards, each agent reacts optimally to vkl by
x∗l,i(v

k
l ) in (4). Then, having the local aggregate strategies

and x∗∗(ykl ), PC l updates the output of Tl as T kl := Tl(ykl ).
Additionally, PC l receives the local incentive signal of its
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neighbors through the communication network and updates
ykl based on a combination of Krasnoselskij-Mann (KM)
iteration [19] and consensus update as follows

yk+1
l = (1− αk)

∑
l′∈L

wkl,l′y
k
l′ + αkT kl , (9)

where αk ∈ (0, 1), k ∈ N is an step size. The convergence
analysis of Algorithm 1 is challenging since the consensus
update and aggregate term update are performed consecutively
by each coordinator, which introduces a coupling between
these two iterations.

III. CONVERGENCE ANALYSIS

In this section, we investigate the convergence of Algorithm
1. First, we prove the convergence of the local incentive
signals, denoted as ykl to the average signal yk, defined as
the mean of all ykl values

yk :=
1

L

∑
l∈L

ykl . (10)

Next, we establish the convergence of yk to the fixed point of
the mapping T defined in (7), which represents the generalized
Nash equilibrium of problem (2).

Assumption 1: The sequence of αk > 0, k ∈ N is non-
increasing, non-summable, and square-summable.

Assumption 2: ∀l, l′ ∈ L and k ∈ N, (1): There exists a
scalar 0 < µ < 1 such that, wkl,l > µ and wkl,l′ > µ if wkl,l′ > 0.
(2): W k is doubly stochastic which means,

∑L
l′=1 w

k
l,l′ = 1

and
∑L
l=1 w

k
l,l′ = 1. (3): There is an integer k ≥ 1 such that

G(L,∪k′=1,...,kEk+k
′

) is strongly connected.
By averaging ykl in (9) over the entire population, utilizing
(10), and considering Assumption 2, we obtain the following
update equation for yk+1

yk+1 = (1− αk)yk +
1

L
αk
∑
l∈L

T kl . (11)

Our objective is to prove the consensus of the local variables
ykl towards yk.

Theorem 1: Let Assumptions 1 and 2 hold, then
limk→∞maxl∈L ‖ykl − yk‖ = 0.

Proof: We define the transition matrix φk−1,0 :=
W k−1W k−2...W 0 and φk,k := W k,∀k ∈ N, where[
φk2,k1

]
l,l′

denotes the (l, l′) element of the matrix φk2,k1 .
By relating the local estimations in (9) from 0 to k, ykl is
derived as

ykl = αk−1T k−1l +

k−2∑
k1=0

∑
l′∈L

[
φ̂k−1,k1+1

]
l,l′
αk1T

k1
l′

+
∑
l′∈L

[
φ̂k−1,0

]
l,l′
y0l′ ,

(12)

where φ̂k2,k1 = φk2,k1F k2,k1 and F k2,k1 = (1 − αk2)...(1 −
αk1). Similarly, by relating the average signal in (11) from 0
to k, yk can be computed as

yk =
1

L
αk−1

∑
l∈L

T k−1l +
1

L

k−2∑
k1=0

∑
l∈L

F k−1,k1+1αk1T
k1
l

+ F k−1,0y0. (13)

Based on (12) - (13), the distance between ykl to yk bounds
as follows

‖ykl − yk‖ ≤ αk−1‖T k−1l ‖+
1

L
αk−1

∑
l∈L

‖T k−1l ‖+

k−2∑
k1=0

∑
l′∈L

∣∣∣∣[φk−1,k1+1
]
l,l′
− 1

L

∣∣∣∣F k−1,k1+1αk1‖T
k1
l′ ‖+

∑
l′∈L

∣∣∣∣[φk−1,0]l,l′ − 1

L

∣∣∣∣F k−1,0‖y0l′‖.
(14)

Thanks to Assumption 2 and [20, Prop. 1, b], we have∣∣∣∣[φk2,k1 ]l,l′ −
1

L

∣∣∣∣ ≤ cγk2−k1 , γ ∈ (0, 1), c > 0.

Therefore, (14) can be written as

‖ykl − yk‖ ≤ 2αk−1 max
l∈L
‖T k−1l ‖+ Lcγk−1 max

l∈L
‖y0l ‖+

Lc
k−2∑
k1=0

γk−k1−2αk1 max
l∈L
‖T k1l ‖. (15)

We aim to determine the upper bound of ‖T kl ‖ to obtain
an upper bound for (15). Since the feasible constraint set Xl,i
and the coupling constraint set C is compact, Γl(y

k
l ) in (8)

is bounded, i.e., there exists a constant e ∈ R>0 such that
‖Γl(ykl )‖ ≤ e. Additionally, it is easy to show that ‖B‖ =
1

1+η . Then, the upper bound for Tl in (8) is derived as follows.

‖T kl ‖ ≤
1

1 + η
(‖ykl ‖+ ηe) (16)

According to (16), to prove boundedness of ‖T kl ‖, it suffices
to show that the sequence ‖ykl ‖ is bounded. Using proof by
induction, we aim to prove that if there exists constant ρ ∈ R
such that ‖ykl ‖ is bounded (‖ykl ‖ ≤ ρ), then ‖yk+1

l ‖ is bounded
(‖yk+1

l ‖ ≤ ρ). Using (9) and (16), we have

‖yk+1
l ‖ ≤ ρ+

αkη

1 + η
(e− ρ). (17)

If ρ > e, then ‖yk+1
l ‖ ≤ ρ and there exist a constant θ ∈ R>0

such that ‖T kl ‖ ≤ θ. Therefore, (15) can be written as

‖ykl − y
k‖ ≤ 2αk−1θ+Lcγk−1ρ+Lcθ

k−2∑
k1=0

γk−k1−2αk1 . (18)

Since αk is square-summable, then limk→∞ αk = 0 and
the first term on the right side of (18) converge to zero. Also,
owing to γ ∈ (0, 1), the second term converges to zero. It
is easy to show that limk→∞

∑k
k1=0 γ

k−k1αk1 = 0, thus
limk→∞ ‖ykl − yk‖ = 0.

Now, we aim to prove the local incentive signals converge to
the fixed point of a mapping which is the generalized ε-Nash
equilibrium of (2).

Assumption 3: The best response mapping x∗l,i(vl), l ∈
L, i ∈ Nl in (4) is non-expansive.

Remark 2: Non-expansiveness of x∗l,i(vl) depends on the
choice of the function fl,i(.). For some classes of the func-
tions, these sufficient conditions can be made explicitly, e.g. if
fl,i(u) = uTQu+pTu with Q � 0 and p ∈ Rn, then according
to [21], x∗l,i(vl) is non-expansive whenever Q − 1

4Q
−1 � 0.
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In this case, A(.) in (5) is a convex combination of the best
response mappings and thus is non-expansive.

Theorem 2: Under Assumptions 1-3, ∀l ∈ L and k ∈ N,
the sequence ykl converges to the fixed point of mapping T .

Proof: Due to linearity of coupling constraint (1) and
quadratic nature of objective function (6), 1

L

∑
l∈L x

∗∗(ykl ) =
x∗∗(yk) (see [22]) and

1

L

∑
l∈L
Tl(ykl ) = T (yk) + Ek, Ek = Bη

[
−A(yk) +A(ykl )

2(−A(yk) +A(ykl ))

]
(19)

Therefore, yk+1 in (11) can be written as

yk+1 = (1− αk)yk + αk(T (yk) + Ek). (20)

According to [23], the sequence yk, k ∈ N converges to the
fixed point of the mapping T if

∑∞
k=1 αk(1− αk) =∞ and∑∞

k=1 αk‖Ek‖P <∞.
Remark 3: The non-expansiveness of the mapping T is

a prerequisite to proving the robustness of yk in (20).
The method to design K and x∗∗(.) to satisfy the non-
expansiveness of mapping T in (7) is given in [8].
Owing to Assumption 1, the first condition is satisfied. We
only need to prove

∑∞
k=1 αk‖Ek‖P <∞. We can write

∞∑
k=1

αk‖Ek‖P ≤ ĉ
∞∑
k=1

αk‖A(ykl )−A(yk)‖

≤ ĉ
∞∑
k=1

αk‖ykl − yk‖, (21)

where ĉ = η
√

5λmax(BTPB). The second inequality in (21)
has resulted from Assumption 3. Therefore, it suffices to prove
that

∑∞
k=1 αk‖ykl − y

k‖ <∞. According to (18),
∞∑
k=1

αk‖ykl − yk‖ ≤ 2θ

∞∑
k=1

αkαk−1 + Lcρ

∞∑
k=1

αkγ
k−1+

Lcθ

∞∑
k=1

αk

k−2∑
k1=0

γk−k1−2αk1 . (22)

Based on Assumption 1 and γ ∈ (0, 1), the first two terms
on the right-hand side of (22) are bounded. As for the last
term, since αk is non-increasing and γ ∈ (0, 1)

∞∑
k=1

αk

k−2∑
k1=0

γk−k1−2αk1 ≤
∞∑
k=1

k−2∑
k1=0

(αk1)2γk−k1−2 =

∞∑
k1=0

(αk1)2
∞∑

k=k1+2

γk−k1−2 <∞.

Therefore
∑∞
k=1 αk‖Ek‖ <∞.

Remark 4: Theorems 1 and 2 conclude that Algorithm 1
converges, meaning that the local incentive signals yl, l ∈ L
converge to a fixed point of mapping T . While this analysis
differs from single population case [8], due to coupled consen-
sus and aggregate terms update iterations, nevertheless, as for
verifying the correspondence of the fixed point of mapping
T and ε-Nash equilibrium point, according to [8, Theorem
1], it is straightforward to show that a set of strategies which
are best responses to the fixed point of mapping T is ε-Nash
equilibrium. More details are given in [24].

IV. CHARGING CONTROL OF EVS

We consider the problem of the charging schedule of EVs
when there are transmission line constraints. We assume that
there are L populations of EVs, each with a charging station
coordinator. The charging station coordinators exchange infor-
mation through a communication graph G(L, Ek) to estimate
the aggregative charging demand of the whole population of
EVs. Each EV i ∈ Nl aims to control its charging demand
xl,i := [xtl,i]

n
t=1 over a charging interval I = {1, ..., n} and

to minimize its cost subject to the individual and coupling
constraints which are described as follows.

The cost function of EV i ∈ Nl includes the battery
degradation and charging costs and is given as

Jl,i(xl,i, σ) = ql,ix
T
l,ixl,i + pTl,ixl,i + (a(σ + d) + b1n)Txl,i,

(23)
where ql,i > 0 and pl,i ∈ Rn≥0 are parameters of the battery
degradation cost and a > 0 and b > 0 are parameters of the
unit price function. Vector d ∈ Rn represents the normalized
non-EV demand. The charging demand of EV i ∈ Nl at t ∈ I
must satisfy

xl,i ∈ Xl,i = {xtl,i|xtl,i ∈ [xl,i, xl,i], 1
Txl,i = βl,i}. (24)

Also, we consider transmission line constraints as

0 ≤ 1

L

∑
l∈L

∑
i∈Nl

δl,ix
t
l,i ≤ st, st ∈ R≥0. (25)
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Fig. 2. Consensus of the local incentive signals.

We simulate the problem of controlling the charging sched-
ule of EVs with n = 14 and L = 10 populations of EVs.
We assume the number of EVs in each population equals 103

(Nl = 103, l ∈ L). The parameters of (23-25) are borrowed
from [25]. As for battery degradation cost, we set ql,i = 0.004
and pl,i = 0.075114. Regarding the unit charging price, we
set a = 0.038, b = 0.06, and d is assumed as in [25]. For
the individual constraint set (24), we consider xl,i = 0 and
xl,i = 0.25 and βl,i is randomly selected from the range
[0.6, 1]. For the coupling constraints, we consider st = 0.04 if
t = {1, 2, 3, 11, 12, 13, 14} and 0.1, otherwise. By this choice
of st, we restrict the total amount of charging demand when
the non-EV demand is high. We tune the gains in (9) as
αk = 1

k+1 , design parameter K as K = 0.08I , and choose η
based on design choice 3 in [8]. Figure 2 shows the minimum
and maximum distance between the local incentive signals ykl
and the average quantity yk = 1

L

∑
l∈L y

k
l . As shown, the

signals ykl reach consensus on yk. To show that the sequence
yk in (20) is robust in the sense that it converges to the
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fixed point of mapping T in (7), we compare our algorithm
with single population algorithm in [8]. To have a reasonable
comparison, we set parameters of EVs in Algorithm 1 of [8]
similar to our case. Figure 3 indicates that local aggregates
average yk in our framework converges to the global fixed
point y∗ := col(σ∗, λ∗) obtained from Algorithm 1 in [8].
From Figs. 2 and 3, we can conclude that all the local incentive
signals converge to a global fixed point of the game’s mapping.
Figure 4 compares charging demand in our method with [16]
which neglects the coupling constraints in the decision-making
procedure. As it is seen, the charging demand in [16] violates
transmission line constraint (25) at t = 1, 2, 13, 14, which
shows inefficiencies of neglecting the coupling constraints.
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Fig. 3. Convergence of yk to the global incentive signal y∗,k.
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