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Empirical studies on the landscape of neural networks have shown that low-energy configurations are
often found in complex connected structures, where zero-energy paths between pairs of distant solutions can
be constructed. Here, we consider the spherical negative perceptron, a prototypical nonconvex neural
network model framed as a continuous constraint satisfaction problem. We introduce a general analytical
method for computing energy barriers in the simplex with vertex configurations sampled from the
equilibrium.We find that in the overparametrized regime the solution manifold displays simple connectivity
properties. There exists a large geodesically convex component that is attractive for a wide range of
optimization dynamics. Inside this region we identify a subset of atypical high-margin solutions that are
geodesically connected with most other solutions, giving rise to a star-shaped geometry. We analytically
characterize the organization of the connected space of solutions and shownumerical evidence of a transition,
at larger constraint densities, where the aforementioned simple geodesic connectivity breaks down.

DOI: 10.1103/PhysRevLett.131.227301

In constraint satisfaction problems, the goal is to find a
configuration of the N variables that satisfies a system of
constraints. In the case of random instances [1] and for
large size N, one can typically identify sharp “structural”
phase transitions in the geometrical organization of the
solution space [2–4]. In the past decades, statistical physics
methods from spin glass theory [5] have been successfully
employed to investigate the impact of these landscape
features on the performance of solution-sampling algo-
rithms [6]. A deeper understanding of this interplay in the
case of continuous variables [7] is becoming a crucial
prerequisite for the study of learning dynamics in neural
networks.
The characterization of the manifold of low-energy

lying states in neural networks has become one of the
central theoretical questions of the field [8]. In typical
setups, the high degree of overparametrization of the
models guarantees the existence of multiple zero-energy
configurations, but different local geometries induce vastly
different accessibility and generalization properties [9,10].
Growing theoretical [11–16] and empirical [17–20] evi-
dence seems to show that there exist flat degenerate areas
in the landscape of neural networks. The dynamics of
common stochastic gradient descent (SGD) based algo-
rithms seem to be quickly attracted to the borders of these
regions and then drift toward their core [21–23].
Linear paths between two minimizers (e.g., as given by

SGD with different random initial conditions) display
energy barriers. Nonetheless, zero-energy paths can be

systematically constructed between them [24,25]. This
surprising finding on mode connectivity is compatible with
the hypothesis of the existence of a single connected
component of zero-energy configurations, organized in
an intricate network of tunnels and plateaus [26–28].
Understanding the extent of linear mode connectivity
may unlock progress in some of the most debated topics
in deep learning, from the “lottery ticket” hypothesis and
pruning [29,30] to multitask and continual learning and
ensemble methods [31,32].
Here, we consider the simplest nonconvex neural net-

work model, the negative spherical perceptron [33–36],
and characterize the connectivity properties of its solution
space via geodesic (minimum length) paths on the high-
dimensional sphere. In particular, we introduce a novel
analytical method, based on the replica analysis of the
model [5], that yields the typical energy barriers in
the convex hull of a group of y solutions sampled from
the zero-energymanifold.We find that, in the low constraint
density regime, the domain of solutions is star-shaped [40]:
almost all solutions are geodesically connected through
zero-energy paths to a subset of atypical high-margin
solutions. This subset, which we call the “kernel,” is nested
in the core of the largest geodesically convex component of
the solution manifold. A sketch of this geometrical organi-
zation is shown in Fig. 1.
We empirically investigate the behavior of different

classes of solvers and their bias toward different regions
of the solution manifold. In particular, we find that the
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dynamics of SGD with cross-entropy loss naturally flows
toward the large convex component of the solution mani-
fold. Moreover, for any solver, one can identify a phase at
low constraint densities and up to a certain threshold, where
the sampled solutions are geodesically connected to the
most robust solutions (see below) of the problem. Above
this threshold and up to the limit density for satisfiability,
energy barriers are encountered, signaling the breakdown
of the star-shaped organization of solutions. We compare
these thresholds with the known structural transitions
identified through the statistical physics analysis of this
model [41].
The model.—The spherical perceptron is defined by N

weights Wi ∈R, trained to satisfy an extensive number
P ¼ αN of constraints

Δμ≡W · ξμ ≥ κE
ffiffiffiffi
N

p
; μ∈ ½P�; ð1Þ

where κE is the margin of the problem, the Δμ are called
stabilities, and ξμ ∼N ð0; INÞ. The weights are also subject
to the spherical constraint kWk2 ¼ N. We analyze the large
N limit at constant α. When a negative margin κE < 0 is
considered, the so-called negative perceptron, linear sepa-
rability of the dataset is not a necessary condition for

satisfiability (SAT) and the problem is nonconvex. The
negative perceptron has recently received attention in both
the physics [35,41,42] and mathematics communities
[43,44]. A detailed analysis of the different structural
transitions affecting the solution space, as κE and α are
increased, shows that the model enters a nonergodic phase
with replica symmetry breaking [details on the phase
diagram in Supplemental Material [36] (SM)]. In this
Letter, we further investigate the geometric properties of
the ground states in the region below the critical line
αdATðκEÞ where replica symmetry (RS) holds.
Organization of the solutions.—In the RS phase, the

problem is SAT with high probability for large N. We
consider the uniform probability density over the solutions,

pξ;κEðWÞ¼ 1

Zξ;κE

δðkWk2−NÞ
YP

μ¼1

ΘðW · ξμ− κE
ffiffiffiffi
N

p
Þ; ð2Þ

where the partition function Zξ;κE plays the role of a
normalization factor. While the typical solutions obtained
by sampling from (2) have minimum stabilities exactly
equal to κE, the solution space also contains an exponential
number of atypical solutions that satisfy the constraints (1)
with a larger margin k [45], with κE < k ≤ κmaxðαÞ, where
κmaxðαÞ represents the SAT-UNSAT transition line. In order
to characterize the geometry of the solution space, for a
given sample ξ we consider two configurations independ-
ently sampled from pξ;k1 and pξ;k2 , respectively, and
employ the replica method [46] to compute their overlaps
q1¼ð1=NÞEhW1 ·W2ik1;k1 , p¼ð1=NÞEhW1 ·W2ik1;k2 and
q2 ¼ ð1=NÞEhW1 ·W2ik2;k2 . Here, h·ik;k0 represents the
average over the Cartesian product of densities (2) with
the corresponding margins and E is the expectation over
disorder ξ (see SM). For k1 < k2, we find that they satisfy
the simple inequality q1 < p < q2. This ordering is com-
patible with a nested organization of solutions with differ-
ent margins. The degree of anisotropy of this structure can
be evaluated analytically (details in the SM).
Interpolating between solutions.—Our main analytic

result is a formula for studying the typical energy landscape
between groups of y solutions. In particular, we consider
the projection on the N sphere of the (y − 1)-simplex,

Wγ ¼
ffiffiffiffi
N

p Py
r¼1 γrW

r

kPy
r¼1 γrW

rk ; ð3Þ

with γr ≥ 0 and
Py

r¼1 γr ¼ 1. By varying the margins
fkrgyr¼1 of the solutions fWrgyr¼1 on the vertices, different
regions of the solution manifold can be explored. To obtain
the asymptotic energy of the interpolating configurations
with respect to the margin κE of the problem, we evaluate
the probability of a constraint violation:

FIG. 1. Sketch of the solution space of the negative perceptron
in the RS phase. The red dotted line represents the border of the
connected manifold of solutions for a given margin κE (white-
blue region). In the orange regions, the configurations have
nonzero energy. The solutions that satisfy margins larger than the
one of the problem, κE < k1 < k2, are organized in a nested
structure (darker shades of blue). When a typical solution with
margin κE is geodesically connected with a solution with margin
k1, an energy barrier (a crossing of the orange region) is observed.
However, the k1 solutions belong to a geodesically convex
submanifold (the geodesic path falls within the white-blue
region). Solutions with an even higher margin k2, located in
the kernel, are connected to almost any other solution. Definitions
are provided in Appendix A.
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Eγ ¼ lim
N→þ∞

EξhΘð−Wγ · ξμ þ κE
ffiffiffiffi
N

p
Þik1;…;ky : ð4Þ

In the high dimensional limit, this quantity only depends on
the typical overlaps between pairs of solutions with differ-
ent margins qrs, r; s∈ ½y�. Analytic details are reported in
Appendix B. With a similar approach, one can also derive
the stability distribution Δμ in Eq. (1) for the interpolating
configurations (details in the SM).
The largest geodesically convex component.—We first

consider the case where the vertices of the simplex
are all sampled with identical margin kr ¼ k, with
κE ≤ k < κdATðαÞ. One finds that the energy on the
projected (y − 1)-simplex is always strictly greater than
zero when k ¼ κE, while extended regions around each
vertex fall to zero energy for k > κE. For each value of y
one can identify a “coalescence threshold,” κ⋆y ðκE; αÞ,
corresponding to the value of the margin above which
the entire (y − 1)-simplex lies at zero energy. In particular,
we find the minimum margin κ⋆2 ðκE; αÞ that ensures linear
mode connectivity. These thresholds are displayed in
Fig. 3 as a function of α for κE ¼ −0.5, and satisfy
κ⋆2 < κ⋆3 < … < κ⋆∞. Above the last coalescence threshold,
κ⋆∞, the projected convex hull of the entire ensemble of
solutions lies at zero energy: this is what we call geodesi-
cally convex component of the manifold of solutions (see
also Appendix A). The size of this region can be bounded
by the typical overlap q between κ⋆∞ solutions. By
inspecting the distribution of stabilities across the zero-
energy manifold, one finds that the geodesic paths encoun-
ter different solutions from those of the equilibrium
description at the corresponding margin (details in the SM).
In Fig. 2(a), we plot Eγ on the two-dimensional simplex,

with all vertices at k ¼ κE. Since the maximum energy
barriers are located on the edges of the projected simplex,
the minimum energy path connecting the corner solutions

needs to deviate through its barycenter. Notice that, since
κ⋆2 < κ⋆3 , as k is increased from k ¼ κE, the energy barriers
along the edges go to zero faster than the energy at the
center of the simplex. At the top of panel (c), we show how
the barrier on the edges goes to zero as the margin of the
vertices is increased.
The kernel of the solution space.—We now focus on

the connectivity of solutions with different margins. Speci-
fically, we start by considering the geodesic path between a
typical solution, k1 ¼ κE, and a higher margin solution,
k2 > κE. One can show that, for any ðκE; αÞ below the dAT
transition, there exists a threshold κkrn such that, with high
probability, no energy barrier is encountered along the
geodesic path between any solution with k2 ≥ κkrn and any
other typical solution with margin k1 ≥ κE. These findings
imply that the solution space is star-shaped, and allow us to
identify the kernel of solution space, i.e., a subset of
solutions that are “visible,” through geodesic paths, from
any typical point of the solution manifold. In the bottom
of Fig. 2(c), we show the decrease of the energy barrier
with k2.
In Fig. 3(a), we display the line κkrnðαÞ for a problem

with margin κE ¼ −0.5. Notice that its continuation above
the dAT line (dashed), where the RS results are incorrect,
would predict an intersection between the κkrn and the κmax
lines, implying a breakdown of the star-shaped property.
We revert to numerical experiments, in the next section, to
understand what happens to the connectivity of typical
solutions in this phase.
The analysis of the connectivity of solutions with

different margins can be carried out also with y > 2. In
Fig. 2(b), we display the y ¼ 3 case, with the bottom
vertices being typical solutions with margin κE and the
upper vertex having a margin larger than κkrn. As expected
from the y ¼ 2 analysis, by deviating through the core of
the solution manifold, one can construct a piecewise

FIG. 2. Interpolating manifold between triplets of solutions for κE ¼ −0.5, α ¼ 1. (a) Solutions with the same margin k ¼ κE.
(b) Solutions with different margins. The two bottom vertices are two typical solutions to the problem, i.e., k1 ¼ κE; the top vertex is
sampled with k2 ¼ −0.1 > κkrnðκE; αÞ ≃ −0.171. The red level curve separates the zero from the nonzero energy region on the simplex.
(c-top) Energy along the geodesic connecting two solutions sampled with margin k for k ¼ κE;−0.49;−0.48;−0.47. (c-bottom) Same as
the top panel but with the left endpoint margin fixed to k1 ¼ κE and the one on the right having margin k2 ¼ −0.4;−0.35;−0.3. Lines
are the theoretical predictions, dots are large-N extrapolations of the numerical simulations.
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geodesic path between any pair of solutions lying exactly at
zero energy.
Sampling bias and disconnection.—We compare the

properties of solutions found with different solvers on
instances of the negative perceptron with κE ¼ −0.5. In
particular, in Fig. 3(b), we characterize their geodesic
connectivity to solutions located in the kernel region, as
a function of α. Note that, because of the nested overlap
structure, we expect the maximum-margin solutions of the
problem to be located in the kernel. Therefore, for
obtaining them we employ the focusing Belief Propagation
(fBP) algorithm, which was shown in [41] to yield good
proxies of the κmax solutions.
Typical solutions instead are approximated by carefully

applying simulated annealing (SA) on the square hinge loss
with margin κE and are found to be in good agreement with
the theory [cf. the points in Figs. 2(a), 2(b), and 3(a), and
further experiments in the SM]. Nonzero energy barriers
with the fBP solutions seem to appear in close proximity of
the dAT transition line, confirming the star-shapedness of
typical solutions in the RS stable region.
SGD on the cross-entropy loss—the most common

optimization objective for this class of problems—yields
robust solutions [14] with higher average stability than
typical, as shown in the inset in Fig. 3(b). The geodesic path
between independent optimization trajectories, starting
from random initialization, shows no energy barriers as
soon as the zero-energy region is accessed, revealing an
algorithmic bias toward the geodesically convex compo-
nent of the solution manifold (details in Appendix C and in
SM). The disconnection transition with the core solutions
[Xent in Fig. 3(b)] is delayed with respect to SA, and seems
to happen in close proximity of the αLE transition charac-
terized in [41].

Finally, we implement the classic perceptron algorithm
(PA). When the learning rate is sufficiently small, this
algorithm is able to sample solutions with a large mass of
stabilities at threshold [inset of Fig. 3(b)], and therefore less
robust than typical ones. The disconnection with the core
region of the solution manifold is in this case anticipated
before the dAT line. Notice that this result is not incom-
patible with our predictions, since these solutions seem to
be subdominant in the flat measure over solutions, and
cannot be seen through an equilibrium analysis.
These numerical results are consistent with our theo-

retical picture of a star-shaped space of solutions in the
overparametrized regime, and reveal a progressive discon-
nection transition that affects different types of solutions
according to their degree of robustness.
Discussion and conclusions.—In this Letter, we charac-

terized the connectivity properties of a prototypical model
of nonconvex neural networks. The theoretical analysis
unveiled the presence, in the overparametrized regime, of a
connected manifold of solutions organized in a star-shaped
structure. Similar types of structures have been shown to
appear in completely unrelated high-dimensional problems
[47,48]. We conjecture that simple mode connectivity may
be a universal property of nonconvex optimization prob-
lems in the overparametrized regime. A promising future
research direction would be to investigate analytically
whether the star-shaped geometry, or a generalization
thereof, holds in more complex [49] and more realistic
models of neural networks [50,51].
With a precise picture in hand, we were also able to

characterize where different solvers end up in the solution
space. Understanding how algorithmic bias can be
exploited to enhance learning performance is a central
question in the field of deep learning. At the same time,

FIG. 3. (a) Coalescence threshold lines at κE ¼ −0.5 (blue and cyan), and the κkrn threshold (green line) as a function of α. In orange
the dAT transition line, delimiting the RS-stable region; in red the RS estimate of the κmax. Above the dAT line, dashed lines indicate the
continuation of the (unstable) RS predictions. Points are numerical extrapolations from SA samples (see SM for details). (b) Maximum
error along the geodesic path (y ¼ 2) connecting numerical solutions found with different algorithms (PA, SA, and Xent) with the fBP
max-margin solutions. Nonzero energies along the path indicate disconnection in the solution space. The vertical dashed lines denote the
values of αdAT and αLE at κE ¼ −0.5. The inset shows stability distributions for PA, SA, and Xent at α ¼ 2 compared with the theoretical
stability distribution of typical solutions (red dashed line).
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probing the landscape with different dynamics could help
characterize the solution space in more complex settings,
following up on [26,27].

Appendix A: Definitions.—Typical solutions: In high
dimensions, due to entropic factors, independent sampling
from a given measure will return with high probability
configurations with specific shared properties. For
instance, almost all the exponentially many solutions
of the perceptron problem have the same stability
distribution profile. In this work, we define independent
identical distributed samples from measure (2) as typical
solutions. The measure also contains different types of
solutions that we call atypical and that are exponentially
subdominant in number and therefore become statistically
irrelevant when considering the high-dimensional limit.
Some atypical solutions satisfy a higher margin constraint
than the one of the problem, or more generally have a
different stability profile (e.g., robust solutions sampled
with SGD have higher average stability than typical).
Projection of the Euclidean y simplex on the N-

dimensional sphere—geodesic paths and polytopes: All
the results presented in the Letter for the interpolation
energy Eq. (3) are obtained first on the Euclidean simplex
by interpolating configurations among y normalized sol-
utions, and then by normalizing all interpolated configu-
rations, i.e., projecting them on the N-dimensional sphere.
This gives rise, on the N-dimensional sphere, to geodesic
paths for y ¼ 2 and geodesic polytopes of dimension y − 1
for y > 2 (their edges are themselves geodesic polytopes of
dimension y − 2). See Fig. 4 for an illustration of the
projection of the straight path onto the geodesic for y ¼ 2.
Geodesic connectivity and geodesic convexity: Given

two points x1, x2 of a set S in a Euclidean space, we say that
x1 is connected to x2 via S if the straight path ½x1; x2� ¼
fγx1 þ ð1 − γÞx2∶ γ ∈ ½0; 1�g is such that ½x1; x2� ⊂ S. A set
C ⊂ Rd is convex if all x1; x2 ∈C are connected via C [40].
Keeping in mind the projection operation of the y − 1
simplex on the N-dimensional sphere illustrated in Fig. 4
for a geodesic path (y ¼ 2), we can notice that all notions of
connectivity and convexity usually defined in the Euclidean
space straightforwardly generalize to the N-sphere by
substituting the concept of straight path with the one of
geodesic. Since our model is defined on the N sphere, the
concepts of connectivity and convexity that appear in the
main text of the Letter are to be intended in the geodesic
sense. Figure 4 also illustrates the notion of geodesic
connectivity.
Star-shaped set, its kernel and the geodesically convex

component: As a natural relaxation of the convexity notion,
a set S ⊂ Rd is star-shaped if ∃ x1 ∈ S such that ∀ x2 ∈ S
we have ½x1; x2� ⊂ S. The kernel of a star-shaped set S
is defined as the set of all x1 ∈ S such that
½x1; x2� ⊂ S ∀ x2 ∈ S. Its elements are called the star
centers of S. The kernel of a star-shaped set is a convex set.

The kernel of the star-shaped set of solutions of the
negative perceptron considered in this Letter is represented
by the set of solutions with κ > κkrn; see Fig. 3. In Fig. 4 we
represent a simple two-dimensional star-shaped set, its
kernel, the possible existence inside the star-shaped set of a
convex set containing the kernel and distinct from it. This is
called geodesically convex component in the main text.

Appendix B: Details on the analytical computation for
the connectivity thresholds.—To compute the asymptotic
training error Eγ in Eq. (4) on the manifold spanned by
y independently sampled solutions, we resort to the
replica trick [5]. The computation for the general case in
which each sampled solution has a distinct margin
fkrgyr¼1 ≥ κE involves standard steps (see SM for
details). The final expression of Eγ can be factored into
the product of two terms:

Eγ ¼ ΘðfγðκE; fkrgrÞÞIγðκE; fkrgrÞ; ðB1Þ

where fγðκE; fkrgrÞ ¼ κEcγ −
P

r γrkr is a linear

function of the margin, with cγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

rs qrsγrγs
p

, and Iγ
is a non-negative function involving 2y-dimensional
Gaussian integral, whose expression is fully reported in
SM. Since the expression evaluates to zero only if
the argument of the Heaviside Θ function is negative,
the sign of fγ is sufficient to analytically derive the
connectivity thresholds reported in Fig. 3. It is useful to
distinguish between cases. (1) All sampled solutions
corresponding to the vertices of the y − 1-dimensional
simplex have the same margin kr ¼ k ≥ κE, giving
fγ ¼ κEcγ − k. In this case, since all solutions are
statistically equivalent, the only order parameter is the
typical overlap between them q ¼ ð1=NÞEhW1 ·W2ik;k.
Consequently the norm of the interpolating vector is
cγ ¼ ð1 − qÞPr γ

2
r þ q ≤ 1. We consider two subcases.

(a) In the case where all vertices are typical solutions
with κ ≡ κE, since cγ ≤ 1 then fγ ¼ κEcγ − κE > 0 when

FIG. 4. Left: illustrative example of the projection of a straight
path (blue) onto the geodesic (red) in the case of a one-dimen-
sional path, i.e., y ¼ 2. All points along the geodesic (or that can
be connected by a geodesic) are said to be geodesically
connected. Right: simple 2-dimensional visualization of the
shape of the manifold of solutions. The large geodesically convex
component, (darker blue) and its kernel (purple) are also shown.
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κE < 0 and therefore every interpolated configuration
has nonvanishing training error (Fig. 2). When κE ≥ 0

instead, we have that fγ ≤ 0 and therefore Eγ ¼ 0 for all
γ, consistently with the convexity of the solution space.
(b) When κE < κ < 0, the minimum value of cγ is
attained on the barycenter γr ¼ ð1=yÞ ∀ r. Hence, if the
inequality κEcγ − k < 0 holds for the barycenter, all
interpolated configurations have zero training error. The
condition κ > κEcbarycenter ¼ κE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − qÞð1=yÞ þ q
p ≡ κ⋆y

defines the coalescence thresholds κ⋆2 < κ⋆3 < … < κ⋆∞ ¼
κE

ffiffiffi
q

p
(see Fig. 3) indicating that for κ > κ⋆y the

normalized y − 1-simplex lies at zero error. Their
ordering in y is due to the fact that the overlap q is
an increasing monotonic function of the margin κ.
(2) Solutions sampled with different margins. If y − 1

vertices have margins k1 and one vertex has margin k2,
with k2 > k1 ≥ κE, then the overlap matrix will depend
on q1¼ð1=NÞEhW1 ·W2ik1;k1 , q2 ¼ð1=NÞEhW1 ·W2ik2;k2
and p ¼ ð1=NÞEhW1 ·W2ik1;k2 . In this case we can

rewrite fγ ¼ κEcγ − k1
Py−1

r¼1 γr − k2γy and study it
analytically when an explicit algebraic relation can be
derived. For y ¼ 2 (and by using the explicit expression
of the norm cγ, see SM for details) we can find the
minimum margin k2 that should be imposed on W2

given the margin k1 on W1 such that the two solutions
are geodesically connected. We call it κkrnðk1Þ and
define it as κkrnðk1Þ ¼ k1p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − p2Þðκ2E − k21Þ

p
. The

maximum value of κkrn is obtained for k1 ¼ κE, for
which κkrn ¼ k1p, which is reported in Fig. 3.

Appendix C: Numerical simulations on the attractiveness
of the convex core for SGD.—We study the inductive bias
of SGD dynamics on the cross-entropy loss by evalu-
ating the average maximum energy barrier’s height
between pairs of independent solutions (means are over
different initial conditions).
We observe that randomly initialized trajectories on the

N sphere access the zero-energy star-shaped manifold of
solutions by entering directly in the geodesically convex
component: as soon as the solutions are obtained, they are
not only connected to fBP solutions in the core of the
solution space [see Xent curve in Fig. 3(b)], but they are
also connected between each other with zero-energy
geodesic paths, as shown in the upper panel of Fig. 5,
where the optimization is stopped as soon as the solutions
are found. The disconnection transition of the SGD-SGD
barrier is located close to the αLE transition [41].
To further investigate the dynamical bias of SGD toward

the convex manifold, we consider pairs of trajectories
initialized inside the zero-energy region in correspondence
to typical solutions (provided by SA). We find that the
initial nonzero energy barrier between them quickly drops

to zero in a few epochs, showing that SGD naturally drifts
to the inner and convex region of the solution space; see
lower panel of Fig. 5.
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