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ABSTRACT This paper proposes a non-iterative direct data-driven technique that deals with linear time-
invariant (LTI) controller design by directly identifying the controller from input-output data without using
plant identification. We define the feasible controller parameter set and formulate the problem of designing
a controller to match the behaviour of a given reference model as an equivalent set-membership errors-in-
variables problem. Then we design the controller parameters by applying recent results in set-membership
errors-in-variables identification. Finally, we analyse the effectiveness of the presented technique through
simulation examples and experimental results.

INDEX TERMS Non-iterative direct data-driven control tuning, multivariable systems, errors-in-variables,
set-membership.

I. INTRODUCTION
In recent years, the control community has devoted signifi-
cant research efforts to the direct data-driven control (DDDC)
theory, which is particularly interesting in real-world appli-
cations where an accurate model of the plant under control is
unavailable. This approach uses input-output data experimen-
tally collected from the plant to design the controller directly.

Active researchers have contributed to several results in
this field during the last few years. Campi et al. [5] propose
a virtual reference feedback tuning (VRFT) approach. In this
one-shot direct data-driven method, a virtual reference signal
is the basis of the data-based procedure proposed to design
the controller. More precisely, given a set of measured
input-output data (u(t), y(t)) and a reference model M (z),
one can compute a virtual reference signal r̄(t) such that
r̄(t) = M (z)−1y(t). Then, if we feed the closed-loop system
and the reference model M (z) with r̄(t), we can identify
a set of controller C(θ, z−1) by forcing the closed-loop

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

system to match the transfer function M (z). Unlike the
standard VRFT for SISO systems, the authors of [19]
use variance weighting to achieve a consistent controller
estimate with a single input-output data set. Extensions
and improvements of this method have been presented in
some papers (e.g., [3], [6], [38], [45]). Work [23] presents
an alternative data-based approach for controller design
called Iterative feedback tuning (IFT). IFT is a data-driven
control scheme involving the iterative optimization of a fixed
structure controller, tuning its parameters according to an
estimated gradient of a control performance criterion. Amore
recent paper [22] extends the standard IFT approach to
the case of multivariable linear time-invariant systems. The
Iterative Correlation-based Tuning method (ICbT), proposed
in [25], is a data-driven control method inwhich the controller
parameters are tuned iteratively to decorrelate the closed-loop
output error, between the designed and achieved closed-
loop system, from an external reference signal. Although
such iterative approaches provide effective techniques to
solve the data-driven controller design problem, they
show a significant drawback regarding the computational
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complexity. In fact, several experiments need to be performed
at each iteration to solve the gradient estimation problem;
furthermore, at least in principle, convergence may require
a large number of iterations. In particular, the author of
paper [22] shows that for MIMO systems, 1 + nu × ny
experiments are required at each iteration, where nu and ny
are the number of plant inputs and outputs, respectively.

Direct design of the controller when the collected experi-
mental data are affected by noise is one of themain challenges
in the context of DDDC methods. The VRFT method
addresses the problem through an extended instrumental
variable (IV) approach in work [19]. Karimi et al. present
an alternative non-iterative approach called Non-iterative
Correlation based Tuning (NCbT) in paper [26]. This
controller tuning approach leads to formulating a controller
identification problem where the input is affected by noise
while the output is noiseless. Few other solutions have been
proposed to cope with the effect of measurement noise (see,
e.g., the comparison presented in [43]).

The literature offers several contributions to the complex
problem of designing a data-driven controller when the
unknown plant shows non-minimum phase (NMP) zeros.
Suppose such zeros are not present in the desired reference
model. In that case, the closed-loop system is not internally
stable because the designed controller leads to unstable
zero-pole cancellations (see, e.g., [2] and [40]).
Lecchini and Gevers [32] propose a method, in the context

of IFT, to overcome the problem of NMP zero by introducing
a flexible reference model. This model has the same poles
as the desired reference model, while the parameters of
the numerator are free. Inspired by the same idea, [4] uses
the flexible reference model in the context of the VRFT
approach. The authors of [17] have recently extended this
method to multi-input-multi-output (MIMO) plants.

Several other approaches to direct data-driven controller
design are available in the literature, although less strictly
related to the formulation and solution considered in this
work. The interested reader can find a thorough review of
most of the available approaches in the survey paper byWang
and Hou [24].
In this study, we present a novel non-iterative approach to

direct data-driven controller design, which only relies on a
set of input-output experimentally collected data corrupted by
bounded noise. The contribution of the work is a substantial
extension of our previous conference paper [12], which intro-
duces a set-membership-based direct data-driven controller
design technique for stable, minimum-phase (MP) single-
input single-output (SISO) systems. The present contribution
significantly improves the work in [12]. More specifically,
(i) we extend the approach in [12] to deal also with the case
of MIMO and NMP systems, and (ii) we provide an original
numerical procedure to certify the closed-loop stability of the
obtained feedback control system.

First, by only assuming that a bound on the uncertainty
affecting the data is available, we formulate the problem
of designing a controller in order to match the behavior of

an assigned reference model in terms of an equivalent Set-
Membership Errors-In-Variables (SM-EIV) identification
problem. Then, we design the controller parameters by
exploiting previous results by the authors in the field of
convex relaxations for errors-in-variables identification (see,
e.g., [9]).

The proposed approach has many distinctive features
over the other existing procedures in the literature. More
precisely, the main novelty of our contribution can be
summarized as follows:
(i) We only assume to know a bound, not necessarily

tight, on the uncertainty corrupting the experimentally
collected data. We do not require the knowledge of
any statistical information on the noise. Therefore,
the results presented in the paper can be successfully
applied in those applications where few experimental
input-output data are available. Furthermore, we can
account for both systematic and random errors, provided
that they are bounded: a condition always satisfied in
practice.

(ii) In contrast to IFT and ICbT approaches that require
iterative procedures involving several experiments, the
proposed method leads to a one-shot, non-iterative
algorithm based on a single experiment.

(iii) Unlike the standard VRFT andNCbT approaches, we do
not constrain the controller transfer function to depend
linearly on the parameters to be tuned. This feature
gives the user much flexibility in selecting the desired
controller structure.

(iv) We propose a unified approach to accommodate both
diagonal and non-diagonal MIMO reference models.

(v) We propose an original approach to deal with the case
of NMP systems.

(vi) To the best of our knowledge, we provide the first
non-asymptotic data-driven closed-loop stability cer-
tification procedure because we only require a finite
amount of data.

We have organized the paper as follows. In Section II,
we formulate the problem, while Section III presents the
proposed approach. Section IV presents DDDC for NMP
systems, while Section V discusses the stability of the
obtained closed-loop system. We show the effectiveness
of the presented method in Sections VI and VII through
simulation examples and experimental tests, respectively.
Concluding remarks end the paper.

II. PROBLEM SETTING
A. SISO SYSTEMS
Let us consider the discrete-time linear-time invariant (LTI)
single-input single-output (SISO) feedback control scheme
depicted in Fig. 1, where q−1 denotes the standard backward
shift operator, G(q−1) is a stable and MP plant transfer
function, K (ρ, q−1) is the controller transfer function, ρ

is the vector of controller parameters, and M (q−1) is
the transfer function of a suitable given reference model
describing the desired behavior of the controlled plant.
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The problem of designing the reference transfer function
M (q−1) is outside the scope of this work. In paper [14],
we propose a procedure to build a referencemodel guaranteed
to fulfil several quantitative performance requirements for
both minimum phase (MP) and non-minimum phase (NMP)
stable plant by solving a suitably formulated fictitious H∞

control problem. More precisely, by adequately selecting the
weighting functions of the fictitious H∞ control problem,
we can incorporate in the design of M (q−1) any given
set of specific quantitative performance requirements on
robustness, reference tracking, and disturbances rejection.
The reader can find a detailed discussion and explanatory
simulation examples in [14].

FIGURE 1. Feedback control system to be designed compared with the
reference model M(q−1).

The objective of the contribution is to propose an algorithm
to design the transfer function of the LTI controllerK (ρ, q−1)
such that the closed loop transfer function Twr (q−1) given by

Twr (q−1) =
K (ρ, q−1)G(q−1)

1 + K (ρ, q−1)G(q−1)
(1)

matches, as close as possible, in some sense,M (q−1). This is
pursued under the assumption that the plant transfer function
G(q−1) is unknown, and only a set of input-output data
collected by performing suitable experiments on the plant is
available.

Let us now introduce the following definitions.
Definition 1 (Model Matching Error Transfer Function):

The model matching error transfer function E(ρ, q−1) is
defined as the difference between the reference model and
the achieved closed-loop transfer function, i.e.

E(ρ, q−1) = M (q−1) −
G(q−1)K (ρ, q−1)

1 + G(q−1)K (ρ, q−1)
(2)

Definition 2 (Output Matching Error): The output match-
ing error ϵ(ρ, t) is defined as the signal obtained by
multiplying both sides of Equation (2) by a reference signal
r(t), i.e.

ϵ(ρ, t) = M (q−1)r(t) −
G(q−1)K (ρ, q−1)r(t)
1 + G(q−1)K (ρ, q−1)

(3)

To simplify notation, in the rest of the manuscript,
we drop the backward shift operator q−1 from equations and
corresponding block diagrams.

Since the output matching error ϵ(t, ρ) in Equation (3) still
depends on the unknown plant G, we derive an alternative
way of designing the controller K (ρ). For this purpose,
we introduce the following result.

Result 1: The following three conditions are equivalent

(i) E(ρ) = 0 (4)

(ii) ϵ(ρ, t) = 0, ∀r(t) (5)

(iii) M (1 −M )−1r(t) = K (ρ)w(t), ∀r(t) (6)

Proof of Result 1: Equivalence between (ii) and (iii) in
Result 1 follows from the fact that, by imposing ϵ(ρ, t) = 0,
the equation

M (1 −M )−1r(t) = GK (ρ)r(t). (7)

can be derived from Equation (3) by means of simple
algebraic manipulations. Condition (iii) is now obtained
thanks to the fact thatGKr(t) = KGr(t) = Kw(t), where w(t)
is the plant output sequence obtained by applying the signal
r(t) to the plant input (see the block diagram description of
the output matching error in Fig. 2). Equivalence between (i)
and (ii) is based on the fact that the output of a system is
identically zero for all the possible inputs if and only if the
system transfer function is identically zero.

FIGURE 2. A block diagram description of the output matching error
ϵ(t, ρ).

Remark 1: Result 1 plays a crucial role since it suggests
a way for turning condition (i) on the model matching error,
which depends on the unknown plant transfer functionG, into
condition (iii) which, on the contrary, depends only on the
output sequence w(t) collected by applying the signal r(t) to
the plant (see Equation (6)).
Remark 2: Condition (ii) considered in Result 1 can be

approximated in practice by the condition ϵ(ρ, t) = 0 for
a reference signal r(t), which is persistently exciting in the
sense that its frequency spectrum is rich enough to properly
excite the dynamics of both M and G. For more details
see [12].
Remark 3: It is worth noting that several previous papers

on the subject (see, e.g., [19], [42], and [46]) introduce, at this
stage, the following approximation:

1−M ∼= (1 + GK (ρ))−1. (8)

The meaning of such an approximation is that the actual
sensitivity of the controlled system to be obtained with the
designed controller will be equal to the ideal sensitivity
(1−M ), a condition which, in turn, implies perfect matching
of the input-output reference model. Such an assumption,
which was also made in our preliminary conference paper
([12]), is no more required in this work. In fact, by exploiting
the set-membership technique presented in the next sections,
the controller K (ρ) in Equation (6) can be directly designed
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from the I/O collected data without assuming that the final
controlled system transfer function will perfectly match
the desired reference model (a condition which cannot be
guaranteed in the general case).

B. MIMO SYSTEMS
In this section, we consider the discrete-time linear-time
invariant (LTI) feedback control scheme shown in Fig. 1 as a
multi-input/multi-output (MIMO) system where G ∈ Cn×n,
K(ρ) ∈ Cn×n andM ∈ Cn×n are linear discrete-time transfer
function matrices of a stable and MP plant, a controller and
a given reference model respectively. As far as the selection
of the reference model is concerned, the same considerations
discussed in Section II-A for SISO systems apply. In this
work, we assume that the plant to be controlled is a square
system in the sense that the input and the output vectors, u(t)
and w(t) respectively, have the same dimension n. We make
this assumption in order to simplify the presentation for the
sake of readability. However, all the presented results and
algorithms also apply to non-square systems. In this paperGij,
Mij and kij denotes the (i, j)-element of G,M and K matrices,
respectively.

We introduce the following result.
Result 2: The following three conditions are equivalent

(i) E(ρ) = M − GK(ρ)(I + GK(ρ))−1
= 0 (9)

(ii) ϵ(ρ, t) = 0, ∀r(t) ∈ Rn (10)

(iii) ∃χ (t) ∈ Rn such that (11a)

M(I −M)−1χ (t) = w(t) (11b)

K(ρ, q−1)χ (t) = r(t), ∀r(t) (11c)

where, I is the identity matrix of appropriate dimension (i.e.,
n× n).
Proof of Result 2: Equivalence between (i) and (ii) is

based on the fact that the output of a system is identically zero
for all the possible inputs if and only if the system transfer
function is identically zero.
The equivalence between (ii) and (iii) in Result 2 can be

proved by noting that condition (ii) is equivalent to

M(I −M)−1r(t) = GK(ρ)r(t), ∀r(t) ∈ Rn. (12)

Let us now introduce a generic signal χ (t) ∈ Rn such that

K(ρ)χ (t) = r(t). (13)

Since Equation (12) holds for all r(t) ∈ Rn, then it holds,
in particular, for the signal χ (t) ∈ Rn satisfying (13). As a
consequence, we get

M(I −M)−1χ (t) = GK(ρ)χ (t) (14a)

= Gr(t) = w(t). (14b)

III. SET-MEMBERSHIP-BASED DIRECT DATA-DRIVEN
CONTROL TUNING (SM-DDDC)
In this section, we propose a set-membership-based algorithm
for DDDC design for both SISO and MIMO systems.

A. SM-DDDC FOR SISO SYSTEMS
Here we assume that a set of N input-output plant data are
collected experimentally by applying a suitable (persistently
exciting) signal r(t) to the plant. The output measurements
y(t) are assumed to be corrupted by bounded additive noise
according to

y(t) = w(t) + η(t) (15)

where

w(t) = Gr(t) (16)

is the noiseless output of the system, while the noise η(t)
is assumed to range within a given bound 1η as follows

|η(t)| ≤ 1η, ∀t = 1, . . . ,N . (17)

Substitution of Equation (15) into (6) leads to the following
equation

M (1 −M )−1r(t) − K (ρ)[y(t) − η(t)] = 0 (18)

Because of Result 1, equation (18) represents the con-
dition to be satisfied by the controller K (ρ) to solve the
model matching problem described in Section II-A. Since
such a condition depends on the uncertain variable η(t),
equation (18) does not have an exact unique solution.
Therefore, according to the set-membership paradigm (see,
e.g., [9]), we consider the set of all LTI controllers K (ρ)
of given order nρ which are the solutions to equation (18)
corresponding to all the possible noise sequences bounded as
in (17). We call this set the Feasible Controller Set (FCS).
Practically speaking, the FCS represents the solution space
of our problem from which we have to pick the specific
controller to be implemented on the plant. Fundamental
properties of FCS are discussed in Section III-C, while in
Section III-D, we propose a way to select optimally from the
FCS the controller to be implemented. The FCS for SISO
systems is formally defined as follows.

Definition 3 (Feasible Controller Set for SISO Systems):
The Feasible controller set for SISO systems is defined as the
set of all the controllers belonging to the following given class
K(na,nb)

K (ρ) ∈ K(na,nb) = {K (ρ) : K (ρ) =

=
b0 + b1q−1

+ b2q−2
+ . . . + bnbq

−nb

1 + a1q−1 + a2q−2 + . . . + anaq−na
,

ρ = [a1 . . . .. ana b0 . . . .. bnb]T , ρ ∈Rnρ }

where, nρ = na + nb + 1 (19)

such that the equation

M (1 −M )−1r(t) − K (ρ)[y(t) − η(t)] = 0 (20)

is fulfilled for at least one noise sequence η(t) satisfying
the bound |η(t)| ≤ 1η, ∀t = 1, . . . ,N .
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The Feasible controller set can then be described as

DK = {K (ρ) ∈ K(na,nb) :

M (1 −M )−1r(t) − K (ρ)[y(t) − η(t)] = 0

× |η(t)| ≤ 1η, ∀t = 1, . . . ,N } (21)

It is worth noting that the controller class K(na,nb) is general
in the context of linear control since it includes all the linear
time-invariant (LTI) controller of order at most max(na, nb).
Since the controller class is parametrized by ρ, we can

conveniently replace the set DK with the Feasible controller
parameter set defined as follows.

Definition 4 (Feasible Controller Parameter Set for SISO
Systems): The feasible controller parameter set is the set of
all the controller parameters ρ such that K (ρ) ∈ DK.

Since Equation (21) not only depends on ρ but also on the
uncertain variable η(t), we consider the following set.

Definition 5 (Extended Feasible Controller Parameter
Set for SISO Systems): The extended feasible controller
parameter set Dρ is the set of all the controller parameters
ρ and noise sequences η(t), t = 1, . . . ,N , such that
K (ρ) ∈ DK.
Based on the definition of the extended feasible controller

parameter set, we can formulate the following result.
Result 3 (Structure of the Extended Feasible Controller

Parameter Set for SISO Systems): The extended feasible
controller parameter set can be written in the following form

Dρ = {(ρ, η) ∈ Rnρ+N
: L(t) +

na∑
i=1

aiL(t − i) =

=

nb∑
j=0

bj(y(t − j) − η(t − j)), |η(t)| ≤ 1η,

∀t = max(na, nb) + 1, . . . ,N }

(22)

where

L(t) = M (1 −M )−1r(t). (23)

Proof of Result 3: From definition 5, Dρ is the set of
parameter ρ ∈ Rn

ρ such that the following condition holds

M (1 −M )−1r(t) = K (ρ)[y(t) − η(t)] (24)

which, in turn, is equivalent to

L(t) = K (ρ)[y(t) − η(t)] (25)

where L(t) is defined as in (23). The statement of Result 3
finally follows from the fact that

K (ρ) =
b0 + b1q−1

+ b2q−2
+ . . . + bnbq

−nb

1 + a1q−1 + a2q−2 + . . . + anaq−na
. (26)

B. SM-DDDC FOR MIMO SYSTEMS
In this Section, a set-membership algorithm forDDDCdesign
is proposed to deal with the case of MIMO LTI plants.

We assume that a set of N input-output plant data are
collected through an open-loop experiment by applying a

suitable (i.e., persistently exciting) reference signal r(t) to
the plant G. The output measurement y(t) is assumed to be
corrupted by bounded additive noise according to

y(t) = w(t) + η(t), ∀t = 1, ..,N (27)

where the noise variables η(t) acting on the noiseless output
w(t) are assumed to range within given bound 1η, that is

∥η(t)∥∞ ≤ 1η, ∀t = 1, . . . ,N (28)

Substitution of Equation (27) into (11c), leads to the
following equation

M(I −M)−1χ (t) = y(t) − η(t)
K(ρ)χ (t) = r(t)

}
∀t = 1, . . . ,N (29)

where, due to the presence of noise on the output mea-
surements, the controller design depends on the uncertain
variables η(t) as in the SISO case.

Now, let us introduce the Feasible Controller Set for
MIMO systems defined as follows.

Definition 6 (Feasible Controller Set for MIMO System):
The feasible controller set for MIMO system is the set of
all the controllers belonging to the following given class
K

(n[ij]a ,n[ij]b )

K(ρ) ∈ K
(n[ij]a ,n[ij]b )

= {K(ρ) : K(ρ) is a square matrix;

where the generic entry of such a matrix is described as,

kij(ρij) =

b[ij]0 + b[ij]1 q−1
+ b[ij]2 q−2

+ . . . + b[ij]
n[ij]b
q−n[ij]b

1 + a[ij]1 q−1 + a[ij]2 q−2 + . . . + a[ij]
n[ij]a
q−n[ij]a

,

ρ = [ρ11 . . . ρ1n . . . ρn1 . . . ρnn]T ∈ Rnρ ,

ρij = [a[ij]1 . . . .. a[ij]
na[ij]

b[ij]0 . . . .. b[ij]
nb[ij]

]T ,

∀i, j = 1, . . . , n}, where, nρ =
∑n

i=1
∑n

j=1 n
[ij]
a +n[ij]b +1

(30)

such that the equation

M(I −M)−1χ (t) = y(t) − η(t)
K(ρ)χ (t) = r(t)

}
∀t = 1, . . . ,N (31)

is fulfilled for a noise sequence η(t) satisfying the bound
∥η(t)∥∞ ≤ 1η, ∀t = 1, . . . ,N .

The Feasible controller set can then be described as
DK = {K(ρ) ∈ K

(n[ij]a ,n[ij]b )
:

M(I −M)−1χ (t) = [y(t) − η(t)]
K(ρ)χ (t) = r(t)
∥η(t)∥∞ ≤ 1η, ∀t = 1, . . . ,N }

(32)

Since the controller class considered here is parametrized
by ρ, we can conveniently replace the set DK with the
Feasible controller parameter set defined as follows,

Definition 7 (Feasible Controller Parameter Set for
MIMO System): The feasible controller parameter set Dρ is
the set of all the controller parameter vectors ρ such that
K(ρ) ∈ DK.
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Since Equation (21) not only depends on ρ but also on the
uncertain variables η(t) and χ (t), we consider the following
set.

Definition 8 (Extended Feasible Controller Parameter
Set for MIMO Systems): The extended feasible controller
parameter set Dρ is the set of all the controller param-
eter vectors ρ, noise sequences η(t), t = 1 . . . ,N and
uncertain signal samples χ (t), t = 1, . . . ,N such that
K(ρ) ∈ DK.
Based on the definition of the Extended Feasible controller

parameter set, we can formulate the following result.
Result 4 (Structure of the Extended Feasible Controller

Parameter Set for MIMO System): The extended feasible
controller parameter set can be written in the equivalent form
by introducing some additional variables, Zij and Qij, called
partial outputs (see Appendix A and [11] for more details)

Dρ = {(ρ,Zij,Qij, η, χ ) ∈ Rnρ+2nN+2Nn2
:[

M(I −M)−1
]
ij

=

∑nL
j=0 β

[i,j]
j q−j

1 +
∑nL

j=1 α
[i,j]
j q−j

Zij(t) +

nL∑
f=1

α
[i,j]
f Zij(t − f ) =

nL∑
f=0

β
[i,j]
f χj(t − f )

n∑
j=1

Zij(t) = yi(t) − ηi(t), |ηi(t)| ≤ 1η

Qij(t) +

n[ij]a∑
f=1

a[ij]f Qij(t − f ) =

n[ij]b∑
f=0

b[ij]f χj(t − f )

n∑
j=1

Qij(t) = ri(t), ∀i, j = 1, . . . , n

∀t = max
i,j

(max(n[ij]a , n[ij]b , nL)) + 1, . . . ,N }

(33)

Proof of Result 4: See Appendix A.
Remark 4: In many real-world applications, the off-

diagonal transfer functions of the controller matrix K are
tuned in such a way that the interactions between the
outputs are decoupled, and therefore G is assumed to be
diagonalizable by output feedback (see, e.g., [34]). Thanks
to Result 4, this decoupling can be satisfied by choosing a
diagonal reference model M . In this case, the formulation
of the extended feasible controller parameter set enjoys
additional properties that can be exploited to reduce the
number of slack variables involved in its description, and
thus reduce the computational effort required to compute
the controller. See Appendix B for a detailed mathematical
description. For more details about controller decoupling in
linear multivariable systems, see, e.g., [34], [39], and [44].

C. FUNDAMENTAL PROPERTIES OF THE FEASIBLE
CONTROLLER SET
The importance of the feasible controller set comes from the
fact that DK is the set of all the controllers having order
less than or equal to max(na, nb), which are consistent with

the assumption that the output matching error is identically
zero for at least one of the possible feasible noise sequences.
In turn, this implies that no controller in the considered class
K(na,nb) can solve the problem if and only if the feasible
controller setDK is empty. If that is the case, we must enrich
the model class by considering higher values for na and/or
nb (i.e., higher controller order). The converse is not true in
general, i.e., ifDK is not empty, it is not guaranteed to contain
the ideal controller defined by

K id = (G [I −M])−1M (34)

which exactly solves the model-matching problem. To ensure
this desirable property, we also need to guarantee that the
controller class is rich enough. Formally we introduce the
following result.
Result 5 (Emptiness of the Feasible Controller Set): Let

na, nb ≥ nG + nM , where nG =
∑n

i,j=1 order
(
Gij
)
,

nM =
∑n

i,j=1 order
(
Mij
)
. Then, for all N ≥ 0, the feasible

controller set is not empty and always contains the ideal
controller K id .
Proof of Result 5: The above result immediately follows

from the definition of the ideal controller.
If na, nb < nG + nM , either the ideal controller performs

cancellations with the plant, and the feasible controller set is
non-empty for all N ≥ 0, or the feasible controller set does
not contain the ideal controller and eventually could become
empty when N increases.
Remark 5: Since we use physical sensors to collect the

output data y experimentally, the measurements are corrupted
by the effect of disturbances and errors. Our approach models
the uncertainty affecting the collected data with the unknown
but bounded variable η. Since η enters into the definition
of the feasible controller set, the FCS size could become
significant in the presence of large uncertainty η. In such a
situation, assuming that a sensor model is available, we can
design an interval observer around the sensor to obtain an
improved estimate of the measured variables, thus reducing
the size of the uncertainty η. The design of such an observer
is outside the scope of the paper. The interested reader is
referred to the survey papers [27], [28].

D. CENTRAL ESTIMATE
Given the set Dρ of all the feasible controller parameters
ρ, we pick a specific single value in the set to design the
controller K to be actually implemented in the feedback
control system of Fig. 1. According to the set-membership
identification theory, we select a single point inDρ by looking
for the value of the parameter ρ that minimizes the distance in
the ℓ∞ norm from the farthest point in the feasible controller
parameter set, i.e.

ρc
.
= arg min

ρ∈Rnρ
max

(ρν ,η)∈Dρ

∥ρν − ρ∥∞. (35)

The estimate ρc computed by solving (35) is the so-called
ℓ∞-Chebyshev center of Dρ , also called central estimate
in the set-membership literature. The central estimate is
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the center of the minimum-volume-box outer-bounding Dρ

and can be computed by exploiting the convex relaxation
approach proposed by [9]. In particular, for each single
component ρx of the parameter vector ρ the central estimate
ρcx is given by

ρcx =
ρcx + ρc

x

2
(36)

where

ρ
x

= min
ρ,η,χ∈Dρ

ρx , ρx = max
ρ,η,χ∈Dρ

ρx (37)

Controller parameter bounds ρ
x
and ρx implicitly define the

Controller parameter uncertainty intervals (CPUIs) given by

CPUIρx = [ρ
x
, ρx]. (38)

Problem (37) is, in general, a hard non-convex optimization
problem that falls into the class of semi-algebraic opti-
mization problems, widely studied in recent years. More
specifically, it has been shown that the global optimum of
a constrained semi-algebraic program can be approximated
arbitrarily well by exploiting either the moment-based-
approach [29] or the sum-of-squares-based decomposition
approach proposed in [15] and [35]. Methodologies proposed
in [15], [29], and [35] allow the user to construct a sequence of
convex linear matrix inequality (LMI) problems, guaranteed
to converge to the global optimum of the original non-convex
polynomial problem as the order of relaxation goes to
infinity (see the book [30] and the references therein for
details). However, the direct application of such methods to
large-scale identification problems (i.e., a large number of
parameters to be estimated and/or a large set of experimental
input-output data) might lead to intractable LMI problems
due to the required memory storage and/or computational
time. To overcome this limitation, ad hoc approaches have
been proposed in [7], [8], [9], and [10], aimed to reduce
the computational complexity by exploiting some structural
features of the polynomial optimization problems arising
from the context of system identification. In particular,
it is possible to show that problem (37) enjoys the same
sparsity structure as the problem considered in [7], [8], [9],
and [10]. Thus computationally effective implementation can
be applied to solve DDDC problems with several hundreds of
input-output data.
Remark 6: We remark that in the proposed work, we need

to solve a non-convex optimization problem. This fact is a
major drawback compared with the most common DDDC
methods, such as VRFT and NCbT, where the controller
design only requires the solution of convex optimization
problems. However, in these methods, the user is asked to
design a linear controller such that the denominator of K (ρ)
is fixed (usually 1 − q−1), which has a big limitation on the
controller structure that needs to be designed (see, e.g., [38]
and simulation Example 1). Moreover, this limitation can
affect the output results for NMP systems, as discussed in
the next section and illustrated in the simulation Example 3.

To overcome this problem, few methods in the literature have
been used to extend the basic SISOVRFT andNCbT to obtain
a fully parameterized controller (see, e.g., [38]). However,
these methods failed to have good results when the data
is corrupted by noise and to design a fully parameterized
controller for MIMO systems. Therefore, one of the main
distinctive features of the SM-DDDC approach is that the
controller transfer function (both for SISO and MIMO
systems) does not need to depend linearly on the parameters
to be tuned, and no statistical information about the noise is
assumed to be a-priori available.

IV. DIRECT DATA-DRIVEN DESIGN FOR MIMO
NON-MINIMUM PHASE PLANT
An important limitation related to the internal closed-loop
stability arises when the plant possesses transmission zeros
outside the unit circle. Pole-zero cancellation issues may
occur when applying model-matching design techniques to
NMP systems. This section studies a data-driven design
methodology to handle the case of NMP systems.

As stated in the SISO case in [13], when the plant has NMP
zeros that are not included in the reference model, the model
matching controller may lead to instability. In fact, in this
case, the ideal controller K id (q−1) will certainly include in
its denominator all the transmission zeros of G that are not
included in the reference modelM . However, unstable poles
may arise in the ideal model matching controller and also in
the case of minimum phase plant, as shown in [13].Moreover,
the notion of NMP zero is much more complex for MIMO
systems than for the SISO case. In particular, to discuss
the internal stability of NMP MIMO systems we need to
refer to the notion of transmission zeros and their direction.
On this basis, and for the self-consistency of the paper, the
following definitions for zeros for the multivariable system
are introduced.

Definition 9 (Transmission Zeros [31]): The finite trans-
mission zeros polynomial z(q) of a systemG(q) is the greatest
common divisor of all numerators of all minors of order nr of
G(q), where nr is the normal rank of G(q).

Definition 10 (Transmission ZeroDirection [31]): IfG(q)
possesses a transmission zero at q = zi, then there exist
non-null vectors known as the zero input direction uzi and
zero output direction yzi . These vectors satisfy the following
conditions: uHzi uzi = 1, yHzi yzi = 1, and furthermore, they
fulfill the relationships G(zi)uzi = 0 and yHzi G(zi) = 0.

In principle, we may obtain uz and yz from an SVD of
G(z) = U6VH ; and we have that uz is the last column
in V and yz is the last column of U , corresponding to the
zero singular value of G(ζ ). For more details, see e.g., [31]
and [33].
Result 6 (Internal Stability of MIMO Feedback Sys-

tem [21]): With reference to the block diagram depicted in
Fig. 1, ifG is stable and has NMP transmission zero at zi with
output direction yzi , then the feedback system with controller
K will be internally stable if the following interpolation
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constraint is satisfied:

yHzi Twr (zi) = 0 (39)

In words, Result 6 states that M must have the same
transmission zeros of G in the same output direction. It is
important to notice that constraint (39) is a function of the
transmission zeros and has no direct relationship with the
zeros of the elements of G.
Remark 7: If the reference model M is diagonal (Mij =

0 ∀i ̸= j), the NMP transmission zeros will be present
in each element of M . Thus, for a diagonal structure of the
reference model, one does not need to be concerned with
the zero output direction since the constraint in the Result 6
will be satisfied because Twr (zi) = 0. For more details, see,
e.g., [16].

To detect and locate the transmission zeros and their output
direction, we introduce the notion of prospective plant for
MIMO systems.

Definition 11 (Prospective plant G∗(ρ)): Given a refer-
ence model with transfer function M and a controller with
transfer functions K(ρ), the prospective plant is defined as
the plant estimate given by the following transfer function

G∗(ρ) = M[K(ρ)(I −M)]−1. (40)

Based on the notion of the prospective plant, we propose
the following Two-Stage design in Algorithm (1), which
allows the user to detect if the designed controller could lead
to unstable pole-zero cancellation.

Algorithm 1 Two Stage Design
Stage 1

1.1. Compute K (ρ) as in Section III;
1.2. If the computed K (ρ) is stable, implement it.
1.3. If the computed K (ρ) is unstable, compute G∗(ρ) as in
Equation (40);
1.4. If G∗(ρ) is MP, implement the computed K (ρ).
1.5. IfG∗(ρ) is NMP systems and the transmission zeros are close
to the unstable poles of K (ρ), reject the computed controller and
proceed to Stage 2;

Stage 2

2.1. Diagonal reference model
2.1.1. Add all the NMP transmission zeros of G∗(ρ) to the
numerator of M as NMP transmission zeros;
2.1.2. Compute K (ρ), using the modified M, as in Section III.
2.2. Non-diagonal reference model
2.2.1. Add all the NMP transmission zeros of K (ρ) and their
directions to the numerator of the M;
2.2.2. Modify the NMP transmission zero of M to have an output
direction equal to the process and with a different input direction;
2.2.3. Move the effect of the NMP zero to a specific output using
e.g., block triangular structure or another suitable method (for
more details see [16]);
2.2.4. Compute K (ρ), using the modified M, as in Section III.

Remark 8: It is worth noting that, in case the prospective
plant G∗(ρ) shows the unstable poles of the controller as
zeros, this suggests that the unstable poles appeared in

the controller to match the selected reference model M .
Therefore, the chosen reference model has to be modified.
On the contrary, if G∗(ρ) doesn’t show unstable zeros
corresponding to the unstable poles in the designed controller
K , this suggests that the selected reference modelM did not
induce unstable zero-pole cancellations. Therefore, we don’t
need to modify the chosen reference model.
Remark 9: The main distinctive features of the pro-

posed approach (two-stage design) with respect to those
already available in the literature for NMP systems
(e.g., [1], [4], [17], [36], and [41]) are as follows: (i) no
a-priori information on the NMP zeros location is needed;
(ii) the proposed strategy does not involve the optimization
of the reference model.

V. DATA-DRIVEN STABILITY CERTIFICATION
In this section, we propose a data-driven approach, in the
same spirit as the controller certification paradigm discussed
in [20], to check if the designed controller provides closed-
loop stability. In particular, according to the approach
proposed in [42], we assume that a stabilizing controller K s
is a-priori known. Such a controller only provides stability
of the closed-loop system; it is not expected to solve the
model-matching problem formulated in Section II. Then,
we consider the matrix transfer function defined by

1(ρc) = M s − (I −M s)GK(ρc) (41)

where M s
.
= (I + K sG)−1GK s is the complementary

sensitivity function obtained with the given stabilizing
controller K s. The following result provides a sufficient
condition for closed-loop stability.
Result 7: [Closed-Loop Stability] The closed-loop system

obtained with the designed central controller K(ρc) is stable
if 1(ρc, z) is BIBO stable and

∥1(ρc, z)∥∞ = sup
ω∈[0,∞)

σx

(
1(ρc, eiω)

)
< 1, (42)

where 1(ρc, z) denotes the transfer function of the system
1(ρc, q−1) in the Z-domain. ∥ · ∥∞ and σx(·) denote the
H∞ norm of a system and the maximum singular value of
a matrix, respectively.
This result directly follows from the application of the
small-gain theorem and it is an extension to the MIMO case
of the result presented in the work [42], where the reader
can find a detailed discussion and proof. Moreover, as shown
in [42], stability of 1(ρc, z) is ensured any time K(ρc) is
BIBO or contains the same number of poles in z = 1 as
(I −M s)−1.
Result 7 cannot be applied in practice in its original

form (42) since 1(ρc, eiω) depends on G which is unknown.
In order to overcome this problem, we propose here
a procedure to compute a data-driven upper bound on
σx
(
1(ρc, eiω)

)
for any ω ∈ �, where � is a finite subset of

[0, ∞). We also discuss how to construct� to ensure stability
despite the fact that � is a finite subset of [0,∞).
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First, let us describe the (i, j)-entry of the matrix
1(ρc, q−1) as a discrete-time transfer function of the
following form

[1(d, q−1)]ij =

∑n1

τ=0 d
[ij]
τ q−τ

1 +
∑n1

τ=1 d
[ij]
n1+τq−τ

(43)

where d is the vector of unknown transfer function param-
eters. Although the transfer function order n1 is not exactly
known, the following upper bound can be easily derived from
the definition of 1(ρc, eiω) given in (41):

n1 ≤

n∑
i,j=1

nG[i,j]
+ n[i,j]K + n[i,j]M (44)

where n[i,j]K , n[i,j]M are the orders of Kij(ρc) and [M s]ij, and
nG[i,j] is an upper bound of the true plant dynamic order.
We can formally state the data-driven estimation problem to
be solved as follows.
Problem 1 (Data-Driven Set-Membership Estimation of

σx
(
1(ρc, eiω)

)
):

Let 1(q−1) be an unknown matrix transfer function
satisfying Equation (41). Assume that:
(i) A set of input-output data are experimentally collected

on the plant G.
(ii) The collected output is corrupted by bounded noise

according to equations (15)–(17).
(iii) The entries of matrix 1(q−1) are described by the

parametric model in Equation (44).
Compute an upper bound on σx

(
1(ρc, eiω)

)
, ∀ω ∈ �.

The solution of Problem 1 is provided by the following
result.
Result 8: For each fixed value of ω, the solution to

Problem 1 can be obtained by computing the optimum of the
following optimization problem:

σx

(
1(ρc, eiω)

)
= arg max

d,U ,σ,V ,χ,η
σ1 (45a)

s.t.

1(d, eiω) = Udiag(σ )VH (45b)

UUH
= In, VVH

= In (45c)

1(d, q−1)χ (t) = M s(q−1)χ (t) − (I −M s)[y(t) − η(t)]

(45d)

K(ρc, q−1)χ (t) = r(t) (45e)

∥η(t)∥∞ ≤ 1η. (45f)

where AH denotes the conjugate transpose of A, σ is the
vector of singular values of 1(d, eiω) listed in decreasing
order, i.e., σi+1 < σi, diag(σ ) is a diagonal matrix with
the singular values on the diagonal, and U,V are complex
matrices of suitable dimension.

The proof of Result 8 is obtained by simply ana-
lyzing the meaning of the constraints added to the
problem. Constraints (45b) and (45c) ensure that the
minimizer (U∗,V∗, σ ∗) defines the singular value decom-
position (SVD) of 1(d∗, eiω). Constraints (45d) and (45e)

provide a data-based equivalent of condition (41) obtained by
applying the same procedure employed in the reformulation
of the extended feasible controller parameter set, as presented
in Appendix A.
Problem (45) is a polynomial optimization problem since

both the cost function and all the constraints are multivariate
polynomial functions of decision variables. In particular,
constraint (45b) is equivalent to 2n2 scalar polynomial equal-
ity constraints of degree 3. Notice that matrix optimization
variables U and V are complex; thus, we need 4n2 scalar real
variables to represent them as real polynomials.

Consequently, Problem 1 can be solved to the global
optimum by means of suitable convex relaxation techniques
by selecting a sufficiently large order or relaxation; for low
values of the order of relaxation, a conservative upper bound
is obtained (see the discussion in Section III-D). Applying
this procedure for all ω ∈ � allows us to over-bound
σx(1(ρc, eiω)) in the set of frequencies �.
The condition σx(1(ρc, eiω)) < 1 for all ω ∈ � is a

reliable approximation of the stability condition in (7) when
� is sufficiently rich (i.e., the points are selected with a fine
grid and in such a way to covers a wide range of frequencies).
However, the condition becomes rigorously sufficient only
when� = [0, ∞), but this leads (both in the presented setting
and in the approach considered in [42]) to the formulation
of semi-infinite optimization problems (i.e., with an infinite
amount of constraints), which are intractable in general.

To overcome this difficulty, we introduce the following
assumption:
Assumption 1 (Lipschitz Continuity of the Maximum Sin-

gular Value): The maximum singular value σx(1(ρc, ejω))
is Lipschitz continuous in ω, and an upper bound Lb on the
Lipschitz constant is available.
Under this assumption, ∥1(ρc, z)∥∞ is over-bounded by

∥1(ρc, z)∥∞ ≤ max
ω∈�

(σx(1(ρc, eiω))) + δωLb (46)

where δω represents the maximum distance between two
consecutive frequencies in �. Therefore if

max
ω∈�

(σx(1(ρc, eiω))) < 1 − δωLb (47)

then K(ρc) stabilizes the unknown plant.
Remark 10: In general, the constant Lb is not available

a-priori. However, we remark that this value can always
be chosen as a very large conservative value. In this case,
we must select the frequency gridding parameter δω small
enough to maintain the product δωLb small enough.
Remark 11: If condition (47) is not satisfied, a possible

countermeasure is to redesign the controller using a larger
amount of experimentally collected data. Increasing the
number of input-output data will reduce the size of the
feasible controller parameter set. Consequently, the distance
between the central estimate and the ideal controller becomes
smaller and, in turn, ∥1(ρc)∥∞ decreases.
Remark 12: Differently from the approach proposed

in [42]:
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(i) We do not impose stability constraints during the
controller design phase; condition (42) is only used
a-posteriori to check if the central controller K(ρc)
provides closed-loop stability

(ii) We do not assume any statistical property on the noise.
Thus, we do not rely on the assumption that reference
signal and noise are not correlated;

(iii) We do not assume that the number of available data
samples tends to infinity, i.e., we check condition (42)
using a finite amount of data.

Remark 13: We remark that the proposed approach is,
to the best of the author’s knowledge, the first fully
data-driven method for controller certification enjoying the
following properties:
(i) Stability is certifiedby using a finite amount of data
(ii) The stability certification is robust to bounded noise

affecting the data in the sense that it is based on the
computation of the worst-case singular value estimate
over the set of all possible noise sequences

(iii) A single open-loop experiment is required.

VI. SIMULATION EXAMPLES AND DISCUSSION
In this section, the effectiveness of the presented approach is
shown by means of different simulation examples.

A. EXAMPLE 1
In this example, the proposed approach (SM-EIV) is
employed to tune a SISO controller to be compared with the
standard NCbT introduced in [42] and the VRFT approach
(see e.g., [19]). The plant considered in this example has the
following transfer function

G(q−1) =
0.09516 q−1

+ 0.02 q−2
+ 0.05 q−3

− 0.04q−4

1 − 0.9048 q−1 + 0.2 q−2 − 0.5 q−3 + 0.4q−4

while the assigned reference model is given by

M1(q−1) =
0.4q−1

1 − 0.6q−1

As to the SM-EIV approach, a random signal with unity
amplitude is used as input, r(t), to the system. The output
of the plant is disturbed by a bounded random noise, with
uniform distribution in the range [−1η,+1η], such that the
signal-to-noise ratio of the open-loop experiment, given by

SNRw = 10 log10

(∑N
t=1 w

2
t∑N

t=1 η2t

)
,

is about 15 dB. Results are given for 100 experimental data.
While, for VRFT and NCbT, a PRBS signal of 255 samples
with unity amplitude is used as input to the system. Four
periods of this signal are used to design the controller, N =

1020. The periodic output is disturbed by a zero-mean white
noise such that the signal-to-noise ratio is about 15 dB.

The general LTI controller structure in (19) for the SM-EIV
approach is considered here, where na = nb = n and the
controller order n = 4 is selected by trial starting from

n = 1 and by increasing n until the feasible set is not empty.
The final selected controller structure is as follows

K (ρc, q−1) =
b0 + b1q−1

+ b2q−2
+ b3q−3

+ b4q−4

1 + a1q−1 + a2q−2 + a3q−3 + a4q−4

The controller structure for NCbT and VRFT is chosen as
follows,

K (ρ, q−1) =
b0 + b1q−1

+ b2q−2
+ b3q−3

+ b4q−4

1 − q−1

Note that, the controller structure for VRFT and NCbT
is chosen to be linearly parameterized with a fixed known
denominator according to [19] and [26].

Central estimates for the parameters of the SM-EIV
controller have been computed by exploiting the approach
proposed in the paper. For the NCbT and the VRFT method,
the length of the instrumental variable l is found to be
15 by trial and error. Fig. 3 and 4 display the comparison
between the reference model and the obtained closed-loop
system in terms of the magnitude frequency response and the
step responses respectively for SM-EIV, VRFT and NCbT
methods.

FIGURE 3. Comparison of frequency responses: designed feedback
control system with SM-EIV (solid thick-line), NCbT method(solid
thin-line), VRFT method(dashed) and reference model (dotted).

FIGURE 4. Comparison of step responses: designed feedback control
system with SM-EIV (solid thick-line), NCbT method(solid thin-line), VRFT
method(dashed) and reference model (dotted).

From the comparison, we see that the controlled system
obtained with the proposed method performs better than the
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NCbT and VRFT methods both in the frequency and in the
time domain.

B. EXAMPLE 2
In this example, we present a comparison between the
SM-EIV approach proposed in this paper, the VRFT method
proposed in [19] and the method proposed in [18]. The plant
transfer function used for generating the data is given by

G(q−1) =


0.09516q−1

(1 − 0.9048q−1)
0.03807q−1

(1 − 0.9048q−1)

−0.02974q−1

(1 − 0.9048q−1)
0.04758q−1

(1 − 0.9048q−1)


while the assigned non-symmetric reference model M2 is
considered for the same plant, given by

M2(q−1) =


0.1148q−1

− 0.0942q−2

1 − 1.79q−1 + 0.8106q−2 0

0
0.4q−1

1 − 0.6q−1


The input signal for the SM-EIV method is defined

as r(t) = [s1(t), s2(t)]⊤, where si(t) is a random signal
uniformly distributed in the range [−1,+1] with length N =

100, for i = 1, 2. The input signal for the VRFT method is
u(t) = [A1(t),A2(t)], where Ai(t) is a random signal with
length N = 5000, for i = 1, 2. Finally, the input signals for
the method proposed in [18] are two random input sequences
u1 and u2 with length N = 5000 such that, the sequence u1 is
used to feed the first channel, then the same input is switched
to the second channel and u2 is used to separately feed the two
channels, analogously towhat has been done for u1. Note that,
for the SM-EIV and the VRFTwe need one experiment while
for the method proposed in [18] we need n× n experiments,
where in this example n = 2.
To establish a fair comparison with the method of [19]

and [18] two different tests have been done, one with bounded
noise uniformly distributed in the range [−1η,+1η] and
another one with stochastic zero-mean white noise, such
that both systems are characterized by SNRw ∼= 25 dB.
Nonetheless, it should be noticed that the quality of the step
response of all the previous methods is the same for both
tests (stochastic and bounded noise) in terms of overshoot,
performance in channel decoupling, settling time and overall
shape.

The controller order for the SM-EIV method is selected by
trial starting from n = 1 and by increasing n until the feasible
set is not empty. Since the feasible set is not empty for n = 1,
we select the following controller structure

K(q−1) =


b[11]0 + b[11]1 q−1

1 + a[11]1 q−1

b[12]0 + b[12]1 q−1

1 + a[12]1 q−1

b[21]0 + b[21]1 q−1

1 + a[21]1 q−1

b[22]0 + b[22]1 q−1

1 + a[22]1 q−1



While, the controller structure for the VRFT and for
the approach proposed in [18] is chosen to be lin-
early parameterized with a fixed known denominator, as
follows

K(q−1) =


b[11]0 + b[11]1 q−1

1 − q−1

b[12]0 + b[12]1 q−1

1 − q−1

b[21]0 + b[21]1 q−1

1 − q−1

b[22]0 + b[22]1 q−1

1 − q−1


A closed-loop noiseless experiment with the controller

given by the proposed approach and the one returned by
MIMO VRFT and the one proposed in [18] is illustrated
in Figure 5. As can be seen from Fig. 5, the proposed
approach (SM-EIV) provides a perfect decoupling, ensuring
that the closed-loop system is diagonalized, thanks to the
diagonal reference model. The implementation relies on the
simplified description of the extended feasible controller
parameter set provided in Appendix B. On the contrary,
the VRFT method for MIMO systems and the method
proposed by [18] don’t guarantee decoupling because using
a finite amount of data introduces a bias in the controller
estimate.

FIGURE 5. Step responses: designed feedback control system with the
SM-EIV approach (solid thick-line), the VRFT method (dashed), the
method proposed by [18] (solid thin-line), reference model
(dashed-dotted) and reference signals (dotted). Notice that
dashed-dotted and solid lines are perfectly overlapped.

C. EXAMPLE 3
In this example, the proposed approach is employed to
tune an NMP SISO controller to be compared with the
standard NCbT introduced in [42] and the VRFT approach
(see, e.g., [19]) when suitable convex stability constraint is
imposed (see, e.g., [42]). The plant considered in this example
is taken from [37] and has the following transfer function

G(s) =
s− 0.5

s2 + 2s+ 1
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FIGURE 6. Step responses: designed feedback control system with the
SM-EIV approach (solid-thick), the NCbT method (dashed-dotted), the
VRFT method (dashed), reference model (dotted) and the modified
reference model obtained (solid-thin). Notice that, dashed-dotted and
solid-thick lines are perfectly overlapped.

while the assigned reference model has a transfer function

M (s) =
1

s2 + 1.1s+ 1
.

The system is excited by a random input signal r(t)
uniformly distributed in the range [−1,+1]. The plant output
signal w(t) is corrupted by a random additive noise η(t),
uniformly distributed in the range [−1η,+1η]. The chosen
error bound 1η is such that the signal-to-noise ratio is 26 dB.
Input-output samples are collected with a sampling time Ts =

0.1 s and, discrete-timemodels ofG(s) andM (s) are obtained,
for simulation purposes, through ZOH discretization method,
according to [37].

In this example the controller K (ρ) is obtained by
computing the central estimate ρcj = (ρc

j
+ρcj )/2 through the

convex relaxation approach proposed in [9] for a relaxation
order δ = 2. The general LTI controller structure in (19) is
considered here where na = nb = n and the controller order
n = 2 is selected by trial and error starting from n = 1 and
by increasing n until the feasible set is not empty. The final
selected controller structure is as follows

K (q−1) =
b0 + b1q−1

+ b2q−2

1 + a1q−1 + a2q−2

where, by taking the central estimate of the controller
parameters the following controller transfer function is
obtained

K (q−1) =
0.054807(1 + 0.9527q−1)(1 − 0.9189q−1)

(1 − 1.0515q−1)(1 − q−1)
.

Since the obtained controller has an unstable pole, accord-
ing to the Two-Stage procedure presented in Section IV,
we have to compute the prospective plantG∗ in Equation (40)
the equation can be derived, as shown at the bottom of next
page.

Since G∗ has one NMP zero, we can conclude that the
unknown plant G is an NMP system and the NMP zero of G∗

(i.e., the unstable pole in K ) is expected to be a good estimate
of the NMP zero of G. Therefore the unstable pole of K (ρ) is
added to the reference modelM as an NMP zero. Finally, the
problem is solved by exploiting the modified reference model
with a controller order n = 3. The final obtained controller
transfer function (corresponding to the central estimate of the
controller parameters) is the following

K (q−1)

=
−1.0638(1+0.9633q−1)(1−1.809q−1

+0.8186q−2)
(1 − q−1)(1−0.6435q−1)(1−0.1474q−1)

As for VRFT and NCbT, a PRBS signal of 255 samples
with unity amplitude is used as input to the system. Four
periods of this signal are used to design the controller, N =

1020. The periodic output is disturbed by a zero-mean white
noise such that the signal-to-noise ratio is about 26 dB. The
length of the instrumental variable l and the rectangular
window l2 (used for computing theH∞ norm estimate for the
stability constraint) are found to be 10 and 120 respectively,
by trial-and-errors.

Fig. 6 displays the comparison between the reference
model and the obtained closed-loop system in terms of
step responses respectively for SM-EIV, VRFT and NCbT
methods. From the comparison, we see that the controlled
system obtained with the proposed method performs better
than the NCbT and VRFT methods.

D. STABILITY CERTIFICATION EXAMPLE
In this example, we apply the data-driven controller certifica-
tion method proposed in Section V to the controller obtained
in Example 1 (Section VI-A). The central estimate controller
to be certified is

K (ρc, z)

=
4.176 z4 − 3.68 z3 + 0.7055 z2 − 2.006 z+ 1.644
z4 − 0.7755 z3 + 0.314 z2 − 0.9413 z+ 0.4028

.

To apply the proposed procedure, we assume to know
the complementary sensitivity function Ms achieved by a
stabilizing controller Ks. As discussed in [42], if the plant is
stable andminimumphase, then for any stableMs, there exists
a stabilizing ideal controller Ks. Moreover, 1(ρc, z) is stable
thanks to the fact that (1−Ms(z))−1 andK (ρc, z) both one and
have only one pole in z = 1. As a direct consequence of those
observations, we select M , defined in Example 1, as a good
candidate for Ms. Furthermore, we assume the knowledge
of an upper bound on the Lipshitz constant of σx(1(eiω)).
As discussed in Remark 10, estimating this quantity is
hard. However, any sufficiently large quantity can be safely
assumed if the upper bound on σx(1(eiω)) is computed
for a sufficiently large set of frequencies. Accordingly,
we select 15 logarithmically equispaced frequencies between
1 × 10−2 rad s−1 and 2.154 rad s−1, and we assume that the
Lipshitz constant of σx(1(eiω)) is at most 200 dB/dec.
We evaluate the solution to (45) for all selected frequencies

using the same data used in Example 1 to estimate the
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controller parameters. Then, using the information about the
Lipshitz constant, we get a bound for all frequencies not
considered in the optimization. Figure 7 shows the obtained
results.

FIGURE 7. Bode plot of σx (ω): true value computed using the unknown
plant (solid line), data-driven estimated upper bound (dashed), and point
evaluated though the solution of optimization problems (45) (asterisks).

According to Equation (46), we get that the upper bound
on σx(1(eiω)) is −9.8 dB ≈ 0.3236. Since this value is well
below 1, we conclude thatKc is a stabilizing controller for the
unknown plant.

We remark that the computed upper bounds on σx(1(eiω))
can be made less conservative by increasing the number
of samples used in the formulation of optimization prob-
lem (45), at the cost of increased computational complexity.
Moreover, checking the stability of controllers provided
in Example 2 and Example 3 consists of the same pro-
cedure, provided that some appropriate Ms and Lb are
selected.

VII. EXPERIMENTAL RESULTS AND DISCUSSION
The algorithm presented in Section III, has also been tested on
the experimental input-output data collected on a test bench
MIMO electronic filter with 2 inputs and 2 outputs. Fig. 8
shows the experimental setup used to collect the data.

The system structure is reported in the block diagram
depicted in Fig. 9, where G11 is the transfer function of
a second-order low-pass filter with two complex-conjugate
poles, characterized by a natural frequency of 95Hz and
a damping factor of 0.6. The transfer function has been
practically built in the form of a Sallen-Key circuit. G21 is
a transfer function of a third-order low–pass filter with a

FIGURE 8. The experimental MIMO system used as a test bench.

couple of complex conjugated poles with a natural frequency
120Hz and a damping factor of 0.5, and a real pole at
160Hz. The physical realization was done by means of
a Sallen-Key circuit implementing the complex conjugated
poles pair, and an RC circuit, for the additional real pole. G12
is the transfer function of a high–pass filter with a pair of
complex conjugated zeros with a natural frequency of 17Hz
and damping factor of 0.2, and a pair of complex conjugated
poles with a natural frequency of 83Hz and a damping factor
of 0.5. The transfer function was implemented by means of
a Tow–Thomas circuit. G22 is the transfer function of a first
order low–pass filter with a real pole at 80Hz built in the form
of a standard RC filter.

FIGURE 9. Block-diagram description of the MIMO circuit considered in
the experimental test bench section.

We point out that, in this example, we do not assume any
a-priori information on the plant G.

G∗(q−1) =
0.087901(1 + 0.964q−1)(1 − 1.0515q−1)(1 − 0.2495q−1)

(1 + 0.9527q−1)(1 − 0.9189q−1)(1 − 0.8912q−1)(1 − 0.2384q−1)
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In order to achieve reasonable tracking and decoupling
between y1(t) and y2(t), we select the following discrete-time
reference model

M4(q−1) =


0.0008671q−1

1 − q−1 0

0
0.0008671q−1

1 − q−1


The system has been excited with the input signal,

r(t) = [s1(t), s2(t)]⊤, where si(t) is a random sequence
of 200 samples, uniformly distributed within the range
[−1, +1]V, for i = 1, 2. A National Instruments PXI
equipped with a NI–6221 DAQ board has been used to
generate the input signals si(t) and to collect the signals
r(t) and y(t) at a sample rate of 4 kHz. The upper bound
on the measurement errors is derived from the precision
of the measurement equipment which is given by 1η =

8 mV. The software sparsePOP and MOSEK has been used
to solve the underlying optimization problems. The central
estimate of the controller parameters for the SM-EIV method
(ρcSM−EIV ) has been obtained by exploiting the convex
relaxation approach proposed in [9] for a relaxation order
δ = 2.
The controller order for the SM-EIV method is selected by

trial starting from n = 1 and by increasing n until the feasible
set is not empty. Since the feasible set is not empty for n = 1,
we select the following structure for the controller

K(q−1) =


b[11]0 + b[11]1 q−1

1 + a[11]1 q−1

b[12]0 + b[12]1 q−1

1 + a[12]1 q−1

b[21]0 + b[21]1 q−1

1 + a[21]1 q−1

b[22]0 + b[22]1 q−1

1 + a[22]1 q−1


The final controller parameters for the SM-EIV (ρcSM−EIV )

method are reported in Table 1. As far as the parameters value
of a[ij]1 , ∀i, j = 1, 2 are concerned in the SM-EIV technique,
the computed central estimated for these parameters are equal
to −1.

TABLE 1. Controller parameters for the SM-EIV (ρc
SM−EIV ) method.

A comparison between the reference model and the
obtained closed-loop system for the SM-EIV method
(by setting the value of the parameter to the central
estimate ρcSM−EIV ) in terms of the step response is pre-
sented in Fig. 10, from which we see, using 200 sam-
ples data corrupted by noise, that the output of the
controlled response for the SM-EIV approach and the
desired output from the reference model are practically
indistinguishable.

FIGURE 10. Step responses: designed feedback control system with the
SM-EIV approach (solid), reference model (dashed) and reference signals
(dashed-dotted). Notice that, dashed and solid lines are perfectly
overlapped.

VIII. CONCLUSION
In this work, we have proposed an original approach to
the problem of designing linear multiple-input multiple-
output (MIMO) controllers directly from a set of input-output
data experimentally collected on the plant to be controlled.
Assuming that a bounded noise affects the output measure-
ments, we have formulated the controller design problem as
a peculiar input-error set-membership identification problem
solved by adapting previous results on errors-in-variables
identification proposed by some of the authors of this
work. The presented method has many advantages over
previously proposed non-iterative direct data-driven design
algorithms. Firstly, we are not bounded to consider linearly
parametrized controller structures. Secondly, we can deal
with diagonal and non-diagonal MIMO reference models,
and thirdly, we do not need prior information on the location
of possible non-minimum phase transmission zeroes. The
proposed approach can be extended straightforwardly to
non-square systems. Thanks to these distinctive features,
the approach considered here is significantly more flexible
than the previously available ones. We have shown the
effectiveness of the proposed approach through simula-
tion examples and the application to a laboratory test
bench.
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APPENDIX A
PROOF OF RESULT 5
Consider the discrete-time linear-time invariant (LTI)
multi-input multi-output (MIMO) feedback control scheme
depicted in Fig. 1, where K (ρ, z) ∈ Cn×n,M (z) ∈ Cn×n

and G(z) ∈ Cn×n. From Fig. 1, we can derive the following
equations

w(t) = G(q−1)u(t) (48)

u(t) = K(ρ, q−1)e(t) (49)

e(t) = r(t) − w(t) (50)

w(t) = M(q−1)r(t) (51)

by substituting (50) into (49)

u(t) = K(ρ, q−1)[r(t) − w(t)] (52)

and, by substituting (52) into (48) we obtain

w(t) = [I + G(q−1)K(ρ, q−1)]−1G(q−1)K(ρ, q−1)r(t)

(53)

finally, by substituting (53) into (51)

M(q−1)[I −M(q−1)]−1r(t) = G(q−1)K(ρ, q−1)r(t) (54)

Introducing the signal a(t) ∈ Rn as the signal such that

K(ρ)χ (t) = r(t) (55)

and noting that (54) holds true for any signal r(t), we replace
r(t) with χ (t) in (54) obtaining

M(q−1)[I −M(q−1)]−1χ (t)

= G(q−1)K(ρ, q−1)χ (t)

= G(q−1)r(t) = w(t) = y(t) − η(t). (56)

Let us now denote the entry (i, j) ofM(q−1)[I −M(q−1)]−1

as [
M(I −M)−1

]
ij

=

∑nL
j=0 β

[i,j]
j q−j

1 +
∑nL

j=1 α
[i,j]
j q−j

(57)

and consider the controller model class defined in
Equation (30). Then introducing the partial outputs Zij(t) ∈

Rn for t = 1, . . . ,N , Equation (56) is equivalent to

Zij(t) +

nL∑
f=1

α
[i,j]
f Zij(t − f ) =

nL∑
f=0

β
[i,j]
f χ j(t − f )

n∑
j=1

Zij(t) = yi(t) − ηi(t) (58)

where χj(t) denotes the j−th element of a(t). Similarly,
we reformulate Equation (55) introducing slack variables
Qij(t) ∈ Rn for t = 1, . . . ,N as

Qij(t) +

n[ij]a∑
f=1

a[ij]f Qij(t − f ) =

n[ij]b∑
f=0

b[ij]f χ j(t − f )

n∑
j=1

Qij(t) = ri(t) (59)

APPENDIX B
DECOUPLING CONSTRAINTS
The reference model must be diagonal to guarantee decou-
pling controllers for MIMO systems; i.e., Mij = 0, ∀i ̸= j.
As a direct consequence of this condition, it also[

M(I −M)−1
]
ij

= 0 (60)

for all i ̸= j. Thus,

Zij(t) = 0, ∀t = 1, . . . ,N , ∀i ̸= j. (61)

Moreover
n∑
j=1

Zij(t) = Zii(t) = yi(t) − ηi(t). (62)

Based on these considerations, we realize that slack variables
Zi,j(t) are not necessary for the problem reformulation in
the interesting case when decoupling has to be enforced.
In particular, the description of the extended feasible
controller parameter set is simplified to

Dρ = {(ρ,Qij, η, a) ∈ Rnρ+(2n+n2)N
:[

M(I −M)−1
]
ii

=

∑nL
j=0 β

[i,i]
j q−j

1 +
∑nL

j=1 α
[i,i]
j q−j

yi(t) − ηi(t) +

nL∑
f=1

α
[i,i]
f (yi(t − f ) − ηi(t − f )) =

nL∑
f=0

β
[i,i]
f ai(t − f ) ∀i = 1, . . . , n, t=nL + 1, . . . ,N

|ηi(t)| ≤ 1η, ∀t=1, . . . ,N

Qij(t) +

n[ij]a∑
f=1

a[ij]f Qij(t − f ) =

n[ij]b∑
f=0

b[ij]f χ j(t − f )

n∑
j=1

Qij(t) = ri(t), ∀i, j = 1, . . . , n

∀t = max(n[ij]a , n[ij]b ) + 1, . . . ,N }

(63)

Notice that, thanks to the selection of a decoupling
reference model only, the number of optimization variables
falls from nρ + (2n+ 2n2)N to nρ + (2n+ n2)N .
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