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A B S T R A C T

The progress of digitization makes the integration of online and offline sales channels in-
creasingly necessary for retailers. Multichannel and omnichannel multi-echelon networks are
gradually more common in responding to customer demands, but their complexity makes
the optimization of replenishment and item allocation policies among different channels
challenging, especially if products have a short shelf life, as in the case of food retailers, where
customer behavior (e.g., first-/last- in-first-out selection) also plays a role. It is not always
possible to solve this problem exactly and heuristics are required. We propose a dynamic model
and jointly optimize allocation and replenishment policies in the case of perishable goods with
stochastic demand, uncertainty in customer selection preferences, and fixed lead times. We
study complexity and structure of optimal policies. Furthermore, we explore several intuitive
generalizations of base-stock policies over multi-echelon networks, analyzing the effect that
potential correlations and imbalances in demand volumes across channels generate on the
heuristics and identifying the pros and cons of such solutions. Results show that inventory-
pooling effects in multi-echelon models for perishable items are often combined with the
allocation of fresher products to offline channels. Generalizations of the well-known constant-
order or base-stock policies can be a viable solution that generates benefits and increases
system flexibility. They advantageously leverage negative channel correlation, but in the case
of unbalanced demand distributions, increased offline demand can impoverish the quality of
some heuristics.

. Introduction

The retail industry is rapidly evolving towards a combination of online and offline channels. Digitization is proceeding apace,
nd the number of customers buying online is growing. Moreover, the recent Covid-19 pandemic has increased product requests
hrough online channels (UNCTAD, 2022). One exception, however, is the grocery sector. Until a few years ago, it did not receive
uch customer pressure and only recently has been moving towards multichannel and omnichannel experiences (Eriksson et al.,
019b).

The growing importance of online channels generates new challenges in meeting diverse customer needs, requiring new logistics
odels and supply chain integration (Bell et al., 2014). For example, Hübner et al. (2016) gather empirical data of over 60

nternational executives from retail and logistics enterprises (with 16% from the grocery sector), analyzing the characteristics of
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retailers who deal with multichannel configurations. They find that retailers with multiple channels integrate inventory systems
to enhance flexibility. However, grocery retail requires further reflection. Indeed, while in non-food logistics the integration of
different channels is generally considered an advantage, in the case of grocery this is not evident (Wollenburg et al., 2018). Several
requirements need special attention. In particular, unlike technology and fashion online markets, orders generally consist of a large
number of items, and perishability of goods plays a key role. Nevertheless, some particular advantages make perishables suitable
and profitable in omnichannel operations. In fact, Song et al. (2021) point out how fresh products in physical stores are subject
to accelerated spoilage due to selection by customers and how the advantage given by ad-hoc product selection through online
channels can reduce extra losses and increase profits.

In the case of perishables in food retailing, several solutions have been implemented to handle the new opportunities of the online
arket. When dealing with small portions of demand, some retailers fulfill all orders through the inventory of the physical store.
owever, this solution creates cannibalization and low service levels due to timing misalignments for demands for the same items

hrough different channels and differences in customers’ behavioral patterns (Wollenburg et al., 2018). This solution is therefore
easible only in the case of low online demand. Other approaches use distribution centers dedicated to home delivery, where there is
o interaction between different outlets. In particular, several grocery retailers, in order to cope with differences in demand volume
nd interest more in picking efficiency than market considerations, have decided to handle online orders through special types of
istribution centers called Online Fulfillment Centre (OFCs) (Eriksson et al., 2019b).

The aging of perishables in physical inventories depends on the employed order policy and, in the case of distribution centers, on
ispatch policies (Akkaş and Honhon, 2022). Moreover, food produced for human consumption is lost or wasted when appropriate
tock management at the retail level is not in place (Rezaei and Liu, 2017). For this reason and with a view to new methodologies
or managing different channels in food retailing, we model, simulate and analyze inventory control for a single perishable product
f integrated multichannel networks with both online and offline customers, comparing them with separate single-echelon models
n which there is no interaction between the inventories of different retailers. We investigate the benefits of pooling inventory of
arious sales channels from the retailer’s perspective, optimizing their joint management, and studying their complexities. Initially,
imple structures from which optimal allocation and order policies can be derived by value iteration are considered. Then, we
resent models with larger demand volumes, more complex demand distribution types, and longer deterministic lead times, which
equire heuristic approaches. In particular, we use parametric strategies that are well-known in the perishable goods industry, both
n single- (Haijema and Minner, 2016, 2019; Gioia et al., 2023) and multi- (Van der Vorst et al., 2000; Van der Heijden et al.,
997; Noordhoek et al., 2018) echelon networks, also known to be asymptotically optimal on certain configurations (Bu et al.,
023). Demand is assumed stochastic and we consider different characteristics (i.e., coefficient of variation, correlation). As the
ystem becomes more complicated, the role of the flexibility of heuristics is examined. We evaluate the proposed policies in terms
f profits, waste, and number of stock-out events. We place special emphasis on cases where orders from suppliers are constrained
y a constant and fixed flow of items, where only the presence of a shared distribution center allows a flexible allocation between
hannels.

Despite ongoing developments of multichannel structures for joint online and offline sales of perishable food, a study that extends
nd investigates well-known approaches with lookup tables and parametric policies of classic inventory management literature is
acking. This study aims at answering the following questions:

• What benefits does pooling inventories for managing different online and offline channels produce with perishable items?
• Since multiple channels may entail correlated demand distributions, what effects are observed when online and offline channels

share the inventory in presence of correlation?
• How does the subdivision of demand among the channels (i.e., more online or more offline) affect a model in which a central

distribution center is shared, and what precautions are necessary for generating heuristics?
• Sometimes, regardless of the existence and computation of optimal replenishment policies, it is only possible to set up contracts

with constant quantities with producers. In this case, a distribution center would give the opportunity to implement flexible
allocation strategies after receiving a constant amount of supplies. How beneficial is this flexibility?

The paper is organized as follows. Section 2 reviews the related literature of inventory management for perishable items. Section 3
ntroduces the assumption and the dynamics of the model. Moreover, it defines the policies to solve the joint order and allocation
roblem. Section 4 reports the main experimental results, whereas Section 5 discusses conclusions and possible future work.

. Related literature

We address two problems that, in the literature of inventory management for perishable items, are treated both jointly and
ndependently. Specifically, regardless of the presence of a distribution center, we have to decide about the quantity of perishable
oods to order from the supplier. On the other hand, the possible presence of a distribution center and a multi-echelon structure
mplies decisions about the number of items to dispatch in the internal shipping process.

The literature on inventory systems for perishable items is quite extensive, and several literature reviews dealing jointly
ith perishability, obsolescence, and deterioration are available. Starting from the first comprehensive review on the problem of
etermining suitable ordering policies for both fixed lifetime perishable items and inventory subject to continuous decay made
y Nahmias (1982), Goyal and Giri (2001) review studies from the early 1990s to 2000. Bakker et al. (2012) update the state of
he art with studies from 2001 to 2011, followed by Janssen et al. (2016) from 2012 to 2016. Chaudhary et al. (2018) present
2

literature review on inventory models for perishable items from 1990 to 2016, focusing on assumptions and specifications of
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various studies, noticing the growing importance of multi-echelon structure with centralized information. A more specific review is
proposed by Karaesmen et al. (2011). They focus on models in which the quantity of perishables in inventory must be controlled
throughout a horizon, taking into account the demand and shelf life of items. In particular, our work falls into the class of problems
with stochastic demand with known and fixed shelf life, lead time greater than zero and periodic inventory review. Furthermore,
given the analytical difficulty, we proceed with simulation-based optimization, a widely used methodology for stock replenishment
problems (Jalali and Nieuwenhuyse, 2015; Deng et al., 2023) that allows tackling the complexities of real-world multi-echelon
structures, which are often intractable even for small instances (De Kok et al., 2018). Such techniques are already availed in food
contexts with multi-echelon models and heuristic solutions like Noordhoek et al. (2018), where the authors optimize (s,S) inventory
policies, applying them to different echelons of a supermarket supply chain.

Related to the amount of goods that channels separately or jointly have to order, studies that assume the aforementioned demand
and shelf life characteristics are Haijema and Minner (2019, 2016). However, they involve single-echelon problems with a single
retailer. The authors suggest several parametric heuristics, studying both the possible benefits of more detailed inventory information
in decision-making and several variations on Base-Stock-Policies (BSP). Under similar assumptions, Minner and Transchel (2010)
focus on BSP and Constant-Order-Policies (COP) replenishment strategies with analysis related to multiple service level constraints.
Such parametric heuristics are also common in multi-echelon approaches for perishable items (Van der Vorst et al., 2000), along
with periodic review assumptions that are widely practiced in agri-food inventory systems (Kanchanasuntorn and Techanitisawad,
2006; Broekmeulen and Van Donselaar, 2019), in both macro- and micro-period planning (Janssen et al., 2018). We adapt such
heuristics to the multi-echelon online/offline setting in the case of large volumes of demand and complex distributions that make
exact or full lookup tables derived from dynamic programming approaches intractable. We compare the performance of connected
multi-echelon models with separated single-echelon networks where each channel is treated independently, following the original
versions of such heuristic policies. Regarding simpler instances where approximations are not necessary, similar to Hendrix et al.
(2019) and Haijema (2013), we optimize the policies by value iteration (Powell, 2022; Brandimarte, 2021).

After determining how to order products from the supplier, the focus of multi-echelon models shifts to the allocation of products
made by the distribution center (DC). Focusing on perishable products, much work has been done in the area of blood products
by Prastacos (1978), Federgruen et al. (1986). We assume a retention system, in which each retailer maintains the inventory assigned,

ithout returning the goods at the end of each period (i.e., rotation systems). However, we assume that the distribution center is an
FC and has an inventory that, while interacting with offline (physical) stores, actively serves the online channel of demand, thus
ot merely shipping and storing goods, but participating in the sales process. Inventory allocation in multi-echelon structures with
n active role of the distribution center is studied in systems with direct upstream demand. Axsäter et al. (2007) use a two-echelon
ystem in which customer demand occurs at both retailers and the DC, developing heuristics that decide how much inventory
o hold in an active distribution center. Berling et al. (2023) study multi-echelon networks with direct upstream demand from
n omnichannel and multichannel perspective, using order-up-to policies. However, these studies do not consider perishability.
oreover, they assume independent demand and continuous review of inventory.

For products with a fixed shelf life, Akkaş and Honhon (2022), similar to Prastacos (1978), analyze allocation policies with
focus on the remaining age of products shipped and they maximize the average long-run profit. In particular, their work deals
ith consumer packaged goods (CPGs) with a specific expiration date, following a specific type of vendor-managed inventory named
irect Store Delivery (DSD) and operating on pallets. They consider different patterns of behavior of end customers (First In First Out

FIFO) or Last In First out (LIFO)) and different internal strategies regarding both quantity and age of products. However, the scope
f their study diverges notably due to several factors. Firstly, their work cannot be characterized as omnichannel and multichannel
pplication but only as a multi-echelon study. In comparison, our research straddles both fields and we tackle issues with an active
ole of the distribution center as an online retailer that significantly shifts the problem, the application domain, and complexity.
urthermore, the inactive role of the depot in their study precludes the possibility of an analysis of correlation and pooling effects
cross different channels. We incorporate replenishment policies alongside allocation policies and consider an OFC to unpack and
reak down pallets, thus operating with customer units (Wollenburg et al., 2018). This assumption affects the type of demand
istribution and increases its cardinality with a considerably larger number of items.

When products are non-perishable, management of items flow in distribution centers with online and offline channels is studied
y Alawneh and Zhang (2018). They consider different levels of storage, in a two-echelon serial inventory control system, assuming
ontinuous review and backorders. The optimal allocation problem for integrated online/offline channels is addressed by Goedhart
t al. (2022). They approach the problem with value iteration, or by heuristics when the difficulty of the problem increases due to
he curses of dimensionality. However, products are not perishable and orders from the supplier occur with longer time windows
han the frequency of internal shipments. Conversely, perishability assumptions suggest more (daily) frequent orders (Broekmeulen
nd Van Donselaar, 2019). Handling multichannel and omnichannel retail infrastructure challenges for items with a short shelf life
s of practical interest to some of the largest e-commerce platforms of the world, such as Alibaba. Deng et al. (2023) present practical
mplementations and solutions based on simulation-based approaches, using heuristics of (s, S) type in single- and multi-echelon
tructures.

. Assumptions and dynamics of the problem

We model a network with an Online Fulfillment Center (OFC) and physical offline retailers, where these channels differ in the
ollowing characteristics:
3
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• Offline: Offline retailers always have their own inventory where, even in the case of interconnected inventory across channels,
it is not possible to return goods backward from the offline physical store to the distribution center. Moreover, it is not
possible to control the issuing policy when dealing with physical customers that make their own choices according to a
First-/Last-In-First-Out fashion (LIFO/FIFO), thus employing a stochastic percentage of LIFO and FIFO customers

• Online: For online orders, the OFC manages the issuing policy and sells products according to an optimal FIFO logic, thus
minimizing waste. Furthermore, if there is a multi-echelon structure, the OFC jointly fulfills online orders and manages the
dispatch to offline stores, using the center itself as both distributor and online supplier. Conversely, when the two channels
operate as single-echelons, it only serves online customers.

The way consumers select the age of products to purchase is a complicating factor in perishable goods inventory management.
Although from the retailer’s perspective a FIFO issuing policy, in which older items are purchased first, would be optimal, this is not
possible when the customer makes the choice offline. LIFO/FIFO mixtures are widely applied in the literature (Haijema and Minner,
2019, 2016) and observed empirically (Akkaş and Honhon, 2022; Deng et al., 2023). However, depending on the type of perishable
good, the proportion between these two extreme solutions (pure LIFO or pure FIFO) may vary. In general, for goods where the
expiration date is well defined like packaged products, it is reasonable to assume that LIFO sales are predominantly observed in
physical retailers. However, in other cases such as fruits and vegetables, the phenomena of random picking, awareness of more
sustainable behaviors, and preferences for specific degrees of product ripeness may lead customers to not always lean towards the
freshest product, even in the absence of a dedicated discount strategy.

3.1. Dynamics of the distribution center

Optimizing order policies and internal dispatching strategies requires a model that deals with sequential decisions under
conditions of uncertainty. Following Powell (2022), we describe the dynamics of the problem by defining the state and decision
(actions) variables and introduce the respective reward and transition functions. We first consider the multi-echelon network, in
which the OFC is the sole decision maker for the size of the orders from the supplier and acts as a distribution center for both
channels. Table 7 summarizes the notation.

State of the system and actions. Suppose that the scheduled orders arrive before sales, with their maximum shelf life (𝖲𝖫), after a
deterministic positive Lead Time (𝖫𝖳), and we immediately decide how many units of the same single product to send to the offline
retailers, also distinguishing with regards to the available shelf life in the inventory of the OFC. The dynamics of our model start
after the end of sales of the period and after the expired products are removed. At that time, we observe the following status of the
OFC:

𝖣𝖢𝑡 =
[

𝑂𝖫𝖳−𝟣
𝑑 ,… , 𝑂0

𝑑 |𝐼
𝖲𝖫−𝟣
𝑑 ,… , 𝐼1𝑑

]

. (1)

We label:

• 𝑂𝑙
𝑑 : Ordered items that will arrive in 𝑙 periods at the DC (𝑑). Therefore, 𝑂0

𝑑 represents the order delivered to the DC (with full
shelf life 𝖲𝖫) when the store reopens.

• 𝐼𝑟𝑑 : Current physical inventory of the DC (𝑑) with residual shelf life 𝑟.

We do not allow for back orders but assume lost sales in case of stock-outs. This assumption well represents retail applications,
where we typically cannot even observe the number of customers who found the shelf empty. In addition, we consider information
about the offline retailers 𝑘 ∈ {1,… , 𝐾}. We assume that it is possible to distribute products with different residual shelf life from
the OFC inventory as soon as the freshest ones (𝑂0

𝑑) are delivered, with their maximum shelf life. Thus, we have:

𝖱𝖳𝑘
𝑡 =

[

𝑂𝖱𝖫𝖳𝑘−1, 𝖲𝖫−𝖱𝖫𝖳𝑘
𝑘 ,… , 𝑂𝖱𝖫𝖳𝑘−1, 1

𝑘 ,… , 𝑂0,1
𝑘 |𝐼𝖲𝖫−𝖱𝖫𝖳𝑘−1𝑘 ,… , 𝐼1𝑘

]

, (2)

where we define:

• 𝖱𝖫𝖳𝑘: Retailer Lead Time is the deterministic delay between product delivery from the distribution center and arrival at the
physical store.

• 𝑂𝑙,𝑟
𝑘 : Dispatched items that will arrive in 𝑙 periods at retailer 𝑘 with residual shelf life 𝑟.

• 𝐼𝑟𝑘: Current physical inventory of retailer 𝑘 with residual shelf life 𝑟.

The complete state of the system after sales and after expired products are removed, before placing new orders, is:

𝑆𝑡 =
[

𝖣𝖢𝑡|𝖱𝖳
1
𝑡 ,… ,𝖱𝖳𝐾

𝑡
]

. (3)

If we consider daily orders with weekly seasonality, the day of the week should be taken into account in the state of the system.
The first decision 𝑋𝜋

0 (𝑆𝑡) concerns the quantity of the product ordered by the DC (i.e., OFC in the multi-echelon model) with
respect to a policy 𝜋 and the current state of the system 𝑆𝑡. Then, the orders with 0 residual lead time will have arrived and the
status of the distribution center will be updated as:

[ 𝜋 𝖫𝖳−𝟣 1 0 𝖲𝖫 𝖲𝖫−𝟣 1]
4

𝖣𝖢𝑡 = 𝑋0 (𝑆𝑡), 𝑂𝑑 ,… , 𝑂𝑑 |𝑂𝑑 = 𝐼𝑑 , 𝐼𝑑 ,… , 𝐼𝑑 . (4)
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The DC decides on the quantities to be sent to retailers, just after having received the supplies. The quantity of the product shipped
per available age 𝑟 and retailer 𝑘 (i.e., 𝑋𝑟,𝜋

𝑘 ) cannot exceed the stock availability, thus the following constraint follows:

𝑋𝑟,𝜋
𝑘 ∈ {0,… , 𝐼𝑟𝑑} s.t.

𝐾
∑

𝑘=1
𝑋𝑟,𝜋

𝑘 ≤ 𝐼𝑟𝑑 ∀𝑟 ∈ {1,… , 𝖲𝖫}. (5)

Complexity of the state space. The state vector 𝖣𝖢𝑡 has 𝖫𝖳 components (from 𝖫𝖳-1 to 0) that pertain to in-transit orders and 𝖲𝖫-1
components that pertain to physical inventory, where discarded items have already been removed at observation time. Hence, 𝖣𝖢𝑡
accounts for (𝖫𝖳 + 𝖲𝖫 − 𝟣) components in the complete state of the system. 𝖱𝖳𝑘

𝑡 has (𝖲𝖫 − 𝖱𝖫𝖳 − 𝟣) components for each offline retailer
𝑘 regarding physical inventory, where, differently from 𝖣𝖢𝑡, 𝖱𝖫𝖳 is subtracted to take into account the effect of transportation time
on maximum available shelf life. The remaining components of 𝖱𝖳𝑘

𝑡 regard in-transit dispatched items. When the freshest items are
allocated, the maximum residual shelf life items can have when delivered is 𝖲𝖫 − 𝖱𝖫𝖳𝑘, due to the internal lead time. Accordingly,
the minimum residual shelf life that shipped items must have to be saleable at their arrival depends on 𝖱𝖫𝖳𝑘. It follows that for each
in-transit period (1 to 𝖱𝖫𝖳), there are 𝖲𝖫 − 𝖱𝖫𝖳𝑘 possible residual shelf lives at delivery time, overall arranged in 𝖱𝖫𝖳𝑘(𝖲𝖫 − 𝖱𝖫𝖳𝑘)
components. If we consider a maximum amount of products that can be ordered (maxO) and assume that all retailers have the same
𝖱𝖫𝖳, the number of possible states (before decisions) is:

∼ (𝐦𝐚𝐱𝐎)(𝖫𝖳+𝖲𝖫−𝟣)+𝐾(𝖱𝖫𝖳)(𝖲𝖫−𝖱𝖫𝖳)+𝐾(𝖲𝖫−𝖱𝖫𝖳−𝟣). (6)

If 𝖱𝖫𝖳 = 𝟢 and K=1, the exponent is (𝖲𝖫 + 𝖫𝖳 − 𝟣) + (𝖲𝖫 − 𝟣), where the two addends concern the dynamics of the DC and the retailer’s
inventory only, with no variables for the queue of internal logistics of the system. However, the dimension will become rapidly
intractable with large volumes of demand.

Transition function. After ordering and dispatching, sales occur at retailers (offline) and at the distribution center (i.e., OFC). The
inventory of the OFC is updated according to the assumed FIFO issuing policy, as follows:

𝐼𝑟𝑑 =

[

𝐼𝑟𝑑 −
𝐾
∑

𝑘=1
𝑋𝑟,𝜋

𝑘 − [𝐷𝑑,𝑡 −
𝑟−1
∑

𝑟′=1
(𝐼𝑟

′

𝑑 −
𝐾
∑

𝑘=1
𝑋𝑟′ ,𝜋

𝑘 )]+
]+

∀𝑟 ∈ {1,… , 𝖲𝖫}, (7)

where 𝐷𝑑,𝑡 is the demand of period 𝑡 at the OFC (𝑑). Specifically, the number of stored items with remaining shelf life 𝑟 at the OFC
is updated by subtracting all the items with that age shipped to retailers (i.e., ∑𝐾

𝑘=1 𝑋
𝑟,𝜋
𝑘 ), along with those required to fulfill the

residual demand not yet met by products with shorter remaining shelf lives [𝐷𝑑,𝑡 −
∑𝑟−1

𝑟′=1(𝐼
𝑟′
𝑑 −

∑𝐾
𝑘=1 𝑋

𝑟′ ,𝜋
𝑘 )]+.

For offline retailers, FIFO and LIFO issuing policies are mixed stochastically by means of a parameter 0 ≤ 𝛾𝑘 ≤ 1. The LIFO
transition function of the inventory is

𝐼𝑟𝑘 =

[

𝐼𝑟𝑘 + 𝑂0,𝑟
𝑘 − [𝛾𝑘𝐷𝑘,𝑡 −

𝖲𝖫−𝖱𝖫𝖳𝑘
∑

𝑟′=𝑟+1
(𝐼𝑟

′

𝑘 + 𝑂0,𝑟′
𝑘 )]+

]+

∀𝑟 ∈ {1,… , 𝖲𝖫 − 𝖱𝖫𝖳𝑘},∀𝑘 ∈ 𝐾, (8)

and will involve a 𝛾𝑘 ⋅ 100% of the customers. The corresponding FIFO one is

𝐼𝑟𝑘 =

[

𝐼𝑟𝑘 + 𝑂0,𝑟
𝑘 − [(1 − 𝛾𝑘)𝐷𝑘,𝑡 −

𝗋−𝟣
∑

𝑟′=1
(𝐼𝑟

′

𝑘 + 𝑂0,𝑟′
𝑘 )]+

]+

∀𝑟 ∈ {1,… , 𝖲𝖫 − 𝖱𝖫𝖳𝑘},∀𝑘 ∈ 𝐾, (9)

and involves (1 - 𝛾𝑘) ⋅ 100% of the customers. Here 𝐷𝑘,𝑡 identifies the demand of period 𝑡 for each offline retailer 𝑘. This demand is
divided into two parts through the value 𝛾𝑘. The number of items with remaining shelf life 𝑟 is updated by summing the products
supplied by the distribution center and by satisfying the demand. We start fulfilling the demand from the oldest items (i.e., 𝑟 = 1)
in the FIFO case of Eq. (9), and from those with maximum possible remaining shelf life at a given retailer 𝑘 (i.e., 𝑟 = 𝖲𝖫 − 𝖱𝖫𝖳𝑘)
when LIFO assumptions hold in Eq. (8). Finally, indexes are shifted, expired items (𝐼0𝑑 , 𝐼

0
𝑘 ) are scrapped and we observe the new

state of the system 𝑆𝑡+1.

Reward function. We define a reward function by computing the value of the cash flow that occurred in the current period

𝐶(𝑋𝜋 , 𝑆,𝐷) = min

{

𝖲𝖫
∑

𝑟=1
(𝐼𝑟𝑑 −

𝐾
∑

𝑘=1
𝑋𝑟,𝜋

𝑘 ), 𝐷𝑑

}

𝑝𝑂𝑛 +
𝐾
∑

𝑘=1
min

{

𝖲𝖫−𝖱𝖫𝖳𝑘
∑

𝑟=1
(𝐼𝑟𝑘 + 𝑂0,𝑟

𝑘 ), 𝐷𝑘

}

𝑝𝑘+

+ 𝑔𝑂𝑛𝐼
0
𝑑 +

𝐾
∑

𝑘=1
𝑔𝑘𝐼

0
𝑘 − 𝑐𝑋𝜋

0 , (10)

where 𝑝𝑘, 𝑔𝑘 and 𝑝𝑂𝑛, 𝑔𝑂𝑛 are the sales prices and the salvage values (or disposal costs if negative), 𝑐 is the unit cost per ordered
item and 𝑋𝜋 contains all the actions made with respect to a decision policy 𝜋. The 𝑡 index is hidden for the sake of notational
clarity. Similar to Buisman et al. (2020), Haijema and Minner (2019, 2016), we assume that holding and fixed transportation costs
are negligible because perishable products are usually frequently restocked along with many others, thus sharing holding and fixed
transportation costs among all these products.

The aim of the optimization is to find a policy 𝜋, such that we maximize the expected cash flow.
5
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3.2. Dynamics of the single-echelon model

When there is not a shared distribution center and the OFC acts as a single-echelon, the system status after sales and after expired
roducts are removed is:

𝖱𝑘𝑡 =
[

𝑂𝖫𝖳−𝟣
𝑘 ,… , 𝑂0

𝑘|𝐼
𝖲𝖫−𝟣
𝑘 ,… , 𝐼1𝑘

]

, (11)

where 𝑘 ∈ K = {1,… , 𝐾} ∪ {OFC}, set of the offline retailers that now includes the OFC, treated as an independent retailer.
The dimensionality of the state space and the number of decision variables are reduced. Specifically, the number of possible

states is ∼ (𝐦𝐚𝐱𝐎)(𝖫𝖳+𝖲𝖫−𝟣) for each retailer 𝑘 ∈ K. The only decision variable will involve the order size 𝑋0,𝑘(𝖱𝑘𝑡 ) for each retailer.
The transition function will no longer include internal shipments, thus reducing to:

𝐼𝑟𝑘 =

[

𝐼𝑟𝑘 − [𝐷𝑘,𝑡 −
𝖲𝖫
∑

𝑟′=𝑟+1
𝐼𝑟

′

𝑘 ]+
]+

, (12)

for a LIFO issuing policy and

𝐼𝑟𝑘 =

[

𝐼𝑟𝑘 − [𝐷𝑘,𝑡 −
𝗋−𝟣
∑

𝑟′=1
𝐼𝑟

′

𝑘 ]+
]+

, (13)

for a FIFO one. The cash flow is now separable and becomes:

𝐶(𝑋𝜋 , 𝑆,𝐷) =
∑

𝑘∈K
𝐶(𝖱𝑘, 𝐷𝑘) =

∑

𝑘∈K

(

min
{

𝖲𝖫
∑

𝑟=1
𝐼𝑟𝑑 , 𝐷𝑘

}

𝑝𝑘 − 𝑔𝑘𝐼
0
𝑘 − 𝑐𝑋𝜋

0,𝑘
)

. (14)

3.3. Decision policies

Similar to Haijema (2013), we iterate a value function evaluated on all possible states, using the transition function 𝜔 that
updates the state based on the sales (which depend on overall demand 𝐷) according to (7), (8), (9),(12) and (13). The Bellman
equation is:

𝑉𝑛(𝑆) = max
𝑋

{

E[𝐶(𝑋,𝑆,𝐷) + 𝑉𝑛−1(𝜔(𝑋,𝑆,𝐷))]
}

.

from which we derive the optimal policy 𝑋opt (Brandimarte, 2021).

Heuristics. In the case of a single-echelon network, we introduce the well-known Base-Stock Policy (BSP) and Constant Policy (COP)
to decide the size of the orders. Both depend on a single parameter 𝛼𝑘 to be optimized for each retailer 𝑘 ∈ K. The COP represents
a constant flow of items through each channel, while the BSP allows orders to vary according to the on-hand inventory and the
number of products in the queue. Namely, we define:

𝑋𝙱𝚂𝙿

0,𝑘 (𝖱𝑘𝑡 |𝛼𝑘) =

[

𝛼𝑘 −
𝖲𝖫−𝟣
∑

𝑟=1
𝐼𝑟𝑘 −

𝖫𝖳−𝟣
∑

𝑙=0
𝑂𝑙
𝑘

]+

∀𝑘 ∈ K, (15)

the base stock policy, and

𝑋𝙲𝙾𝙿

0,𝑘 (𝖱𝑘𝑡 |𝛼𝑘) = 𝛼𝑘 ∀𝑘 ∈ K, (16)

the COP one.
For multi-echelon systems, where the OFC dispatches items to offline retailers, we consider two different adaptations of the BSP

and COP logic. Starting with the decision of the OFC on the size of orders, we define a Full Pull (FPL) order policy

𝑋𝙵𝙿𝙻
0 (𝑆𝑡|𝛼0) =

[

𝛼0 −
∑

𝑟

(

𝐼𝑟𝑑 +
∑

𝑘
𝐼𝑟𝑘
)

−
∑

𝑙

(

𝑂𝑙
𝑑 +

∑

𝑘,𝑟
𝑂𝑙,𝑟
𝑘
)

]+
, (17)

and a Semi Push (SP) one

𝑋𝚂𝙿

0 (𝑆𝑡|𝛼0) = 𝛼0. (18)

The values where 𝑟 and 𝑙 vary depend on 𝑅𝐿𝑇𝑘 for each retailer 𝑘 and are not made explicit to maintain readable notation. Similar
to BSP in the single-echelon case, orders placed by the distribution center take into account the current stock availability of both
echelons in the FPL case. Conversely, orders are made of a continuous flow of products as in COP in the SP case. We consider a
flexible BSP internal dispatch policy for both ordering policies:

𝑋𝙵𝙿𝙻∕𝚂𝙿
𝑘 (𝑆𝑡|𝛼𝑘) = min

{

[

𝛼𝑘 −
𝖲𝖫−𝖱𝖫𝖳𝑘−1

∑

𝑟=1
𝐼𝑟𝑘 −

𝖱𝖫𝖳𝑘
∑

𝑙=0

𝖲𝖫−𝖱𝖫𝖳𝑘
∑

𝑟=1
𝑂𝑙,𝑟
𝑘
]+,

𝖲𝖫
∑

𝑟=1
𝐼𝑟𝑑 −

∑

𝑘′≠𝑘
𝑋𝑘′

}

∀𝑘 ∈ {1,… , 𝐾}, (19)

where retailer 𝑘 makes requests according to a BSP logic ([𝛼𝑘 −
∑𝖲𝖫−𝖱𝖫𝖳𝑘−1

𝑟=1 𝐼𝑟𝑘 −
∑𝖱𝖫𝖳𝑘

𝑙=0
∑𝖲𝖫−𝖱𝖫𝖳𝑘

𝑟=1 𝑂𝑙,𝑟
𝑘 ]+) and those are fulfilled taking
6

into account the current inventory available in the OFC. If the number of retailers 𝐾 is larger than one, it is necessary to decide on
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Table 1
Summary of the investigated heuristics. Order and allocation parts of the policies are summarized for each heuristic.

Single-echelon Multi-echelon

COP BSP SP FPL SC FPC SP2K FPL2K

Order Constant Base-Stock Constant Base-Stock Constant Base-Stock Constant Base-Stock

Allocation – – Base-Stock Base-Stock Base-Stock Weighted
+ min OFC inventory Base-Stock

N params 𝐾 + 1 𝐾 + 1 𝐾 + 1 𝐾 + 1 𝐾 + 2 𝐾 + 2 4𝐾 + 1 4𝐾 + 1

an execution priority or rationing policy (e.g., Lagodimos, 1992; Akkaş and Honhon, 2022). Moreover, regardless of K, the dispatch
can follow a FIFO (f) or LIFO (l) allocation logic with respect to the available inventory of the OFC. For this reason, we define FPL_l,
SP_l, FPL_f, and SP_f, where FPL_l and SP_l allocate products starting with the freshest and FPL_f and SP_f with the oldest.

Since it is not always possible to have enough flexibility to change the size of orders on a daily basis with the supplier, the OFC
llows flexible allocations through the internal BSP dispatch policy even if the size of the orders is constant (SP). When comparing
he different models and their respective heuristics, it may be useful to directly compare a policy based on constant values (COP)
or the single-echelon with the SP in the multi-echelon setting. The aim of this comparison is to quantify the benefit of inventory
hen BSP is not possible on the supplier side and is implemented only after the arrival of orders.

We also investigate versions of such heuristics that maintain a minimum inventory in the OFC, avoiding complete emptying in
ase of internal requests that saturate the central inventory capacity. This adjustment is inspired by Axsäter et al. (2007). Analytically
e define an allocation policy:

𝑋𝖥𝖯𝖢∕𝖲𝖢
𝑘 (𝑆𝑡|𝛼𝑘, 𝛼𝐶 ) = min

{

[

𝛼𝑘 −
𝖲𝖫−𝖱𝖫𝖳𝑘−1

∑

𝑟=1
𝐼𝑟𝑘 −

𝖱𝖫𝖳𝑘
∑

𝑙=0

𝖲𝖫−𝖱𝖫𝖳𝑘
∑

𝑟=1
𝑂𝑙,𝑟
𝑘
]+,

𝖲𝖫
∑

𝑟=1
𝐼𝑟𝑑 −

∑

𝑘′≠𝑘
𝑋𝑘′ − 𝛼𝐶

}

, ∀𝑘 ∈ {1,… , 𝐾}. (20)

here 𝛼𝐶 ≥ 0 is the minimum number of items to maintain in the OFC. Consistent with the policies introduced earlier, we call these
euristics FPC and SC for a BSP and constant replenishment strategy, respectively.

Lastly, since the problem considers perishable goods with different residual shelf life, we weigh inventories by age adapting the
SP-W2Sk policy from Haijema and Minner (2019) to our Full Pull and Semi Push multi-echelon strategies. In this regard, we define
PL2K and SP2K, where the allocation policy is

𝑋𝙵𝙿𝙻𝟸𝙺∕𝚂𝙿𝟸𝙺
𝑘 (𝑆𝑡|𝛼𝑘, 𝑤

𝗇𝖾𝗐
𝑘 , 𝑤𝗈𝗅𝖽

𝑘 , 𝑣𝑘) =

min
{

[

𝛼𝑘 −𝑤𝗈𝗅𝖽
𝑘

𝖲𝖫−𝖱𝖫𝖳𝑘−𝑣𝑘
∑

𝑟=1
𝐼𝑟𝑘 −𝑤𝗇𝖾𝗐

𝑘

𝖲𝖫−𝖱𝖫𝖳𝑘−1
∑

𝑟=𝖲𝖫−𝖱𝖫𝖳𝑘−𝑣𝑘+1
𝐼𝑟𝑘 −

𝖱𝖫𝖳𝑘
∑

𝑙=0

𝖲𝖫−𝖱𝖫𝖳𝑘
∑

𝑟=1
𝑂𝑙,𝑟
𝑘
]+,

𝖲𝖫
∑

𝑟=1
𝐼𝑟𝑑 −

∑

𝑘′≠𝑘
𝑋𝑘′

}

∀𝑘 ∈ {1,… , 𝐾}.

(21)

𝑘 ∈ {1,… , 𝖲𝖫 − 𝖱𝖫𝖳𝑘} divides the inventory into old and new products, assigning a weight of 𝑤𝗇𝖾𝗐
𝑘 ∈ [0, 1] and 𝑤𝗈𝗅𝖽

𝑘 ∈ [0, 1] to the
tems on-hand for each offline retailer 𝑘.

A summary of the heuristics is provided in Table 1.

. Numerical experiments

The complexity due to the number of decision variables and the dimensionality of the problem (6) makes solutions of real-size
nstances through exact approaches impractical. Therefore, in the first part of this experimental section, we analyze a small example,
hich is useful for understanding the structure of the optimal policy. We use the insights in the second part, where heuristics are
sed.

.1. Design of experiments and optimal policy

We consider a simple case where there is only one offline retailer 𝐾 = 1, one DC/OFC and the following parameters:

• A lead time of two periods (𝖫𝖳= 2) and a maximum shelf life of three periods (𝖲𝖫= 3).
• A zero internal lead time (𝖱𝖫𝖳= 0), assuming that the facilities reside in the same urban area.
• A discrete uniform distribution of demand, identically and independent for both channels 𝐷𝑘,𝑡 ∼ 𝑈 [0, 1, 2, 3], ∀𝑘 ∈ K, ∀𝑡,

following a pure FIFO assumption online and a pure LIFO offline.
• Three different newsvendor ratios, equal for both channels. Ratios are set with reference to the classical newsvendor model.

Specifically, setting the salvage value to 0, we consider as critical fractile 𝗇𝖾𝗐𝗌𝖱 = 𝑝−𝑐
𝑝 . We fix 𝑝𝑘 = 5 ∀𝑘 ∈ K, varying the cost

as 𝑐 = 3.75, 2.5, 1.25. This results in 𝗇𝖾𝗐𝗌𝖱 = 0.25, 0.5, 0.75. Such values are related to empirically observed gross margin for
grocery retailers. Common values for fruit and vegetables are around 25%, increasing for dairy and bakery up to 50% circa (O’
Riordan, 1993). However, we cover also a higher value to provide a full picture of the effects on optimal policies.
7
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Table 2
Optimal policy results. The expected profit and waste per period and stock-out percentage in the two channels are presented.

newsR Echelon Profit Waste Stk-out(OFC) Stk-out(Offline)

0.25 multi- 2.1 0.2 1.5% 44.0%
single- 2.1 0.2 19.1% 32.3%

0.5 multi- 5.8 0.6 0.2% 22.1%
single- 5.5 0.6 8.0% 11.8%

0.75 multi- 10.2 0.6 0.0% 7.8%
single- 9.8 0.9 2.0% 5.2%

Table 3
Orders and dispatches of the optimal policy in the multi-echelon system. The times a given quantity was ordered are shown as a
percentage of the total number of decisions. As for dispatches, their percentages are categorized according to the remaining shelf life
(rsl) at the time of delivery. ‘–’ means that all values are zero.

newsR OFC activity n. of items

0 1 2 3 4 5

0.25

ordered 0.7 8.1 30.8 56.4 4.0 0

dispatched (rsl = 1) 100 0 0 0 – –
dispatched (rsl = 2) 97.4 1.7 0.9 0 – –
dispatched (rsl = 3) 44.5 27.6 27.6 0.3 – –

0.5

ordered 0.2 6.1 12.1 49.7 31.7 0.2

dispatched (rsl = 1) 99.5 0.5 0 0 – –
dispatched (rsl = 2) 94.6 3.6 1.1 0.7 – –
dispatched (rsl = 3) 32.4 28.3 22.3 17.0 – –

0.75

ordered 0 2.8 9.9 35.5 40.5 11.3

dispatched (rsl = 1) 99.0 0.9 0.1 0 – –
dispatched (rsl = 2) 90.6 5.3 2.3 1.8 – –
dispatched (rsl = 3) 22.9 26.0 28.3 22.8 – –

Table 4
Orders of the optimal policy in the single-echelon system. The times a given quantity of product was ordered are shown as a
percentage of the total number of decisions.

newsR Retailer n. of items

0 1 2 3 4

0.25 OFC 0 64.4 35.6 0 0
Off 66.7 0 0 33.3 0

0.5 OFC 0 41.8 58.2 0 0
Off 33.4 0 33.3 33.3 0

0.75 OFC 2.1 24.7 66.7 6.5 0
Off 33.4 0 33.3 0 33.3

Discussion of results. Table 2 presents the numerical results through three different performance measures. Specifically, the (Profit)
alue concerns the expected profit per period. Then, we report the scrapped items per period (Waste) and the (empirical) probability
f stock-out (Stk-out) in the two channels. These values are calculated by applying the optimal policy 𝑋opt, obtained through value
teration, to an out-of-sample horizon of 7000 steps, sufficient to have accurate estimates of the metrics.

The multi-echelon network generates higher or at least equal profits, because, in the worst case, it replicates single-echelon
olicies without actively using the inventory of the OFC. Waste follows the same pattern. For stock-outs, the OFC’s shared inventory
educes stock-outs for online customers regardless of the newsvendor ratio. It also increases offline stock-outs, with smaller gaps
ith increasing critical ratio 𝗇𝖾𝗐𝗌𝖱. The complexity of a LIFO issuing policy in offline retailers makes the multi-echelon model
rioritize demand saturation in the online channel, where it can be served in a simpler FIFO logic. The system gains the possibility
f internally shipping products with different residual shelf life and the advantage of risk-pooling, allowing orders for different
hannels to be aggregated.

Tables 3 and 4 provide a statistical analysis of the optimal policy. In the multi-echelon case, the first row of Table 3 indicates
he percentage of times that a specific number of items were ordered by the policy under consideration, while the other rows
ndicate the times that a number of items for a specific remaining shelf life were shipped to offline retailers. For example, the row
‘dispatched (rsl=1)’’ for 𝗇𝖾𝗐𝗌𝖱 = 0.25 means that items with a remaining shelf life of 1 were never shipped to the offline retailer
100% on the zero column). On the other hand, the next row ‘‘dispatched (rsl=2)’’ indicates that in 97.4% of the cases no items
ith a remaining shelf life of 2 were shipped, in 1.7% of the shipments one item with 2 rsl periods was dispatched, and in 0.9%,
items were dispatched. We note that the OFC in the multi-echelon case seldom assigns expiring products to the offline retailer.
8

his is logical because of the different behavioral patterns of customers. In case it dispatches items with low remaining life, these
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would not be preferred to newer items under the offline LIFO assumption, producing waste. The internal shipping policy resembles
a LIFO issuing policy between the OFC and the retailer. As for the risk-pooling effects generated by the aggregation of orders,
the multi-echelon structure orders about 2–3 items per period and gradually moves to 3–4 as the profit margin increases. Table 4
presents the percentage that a specific quantity is ordered by the independent single-echelon structure. Decisions fluctuate more
vigorously in handling orders, especially for the offline channel, jumping between either 3 or 0 items in the 𝗇𝖾𝗐𝗌𝖱 = 0.25 instance.
For 𝗇𝖾𝗐𝗌𝖱 = 0.75, the offline channel takes advantage of high margins, and the order size may exceed 3 items. With this decision,
t manages LIFO demand by favoring the purchase of items with non-maximum shelf life in later periods.

.2. Design of experiments and results of the heuristic approaches

Since we are interested in demand distributions with larger volumes and more complex interactions, we now consider parametric
euristic policies. Given a parameter 𝜶, we optimize the following problem:

max
𝜶

E
[

𝐶(𝑋𝜋 (𝑆|𝜶), 𝑆,𝐷)
]

,

y simulation-based optimization, using an off-the-shelf surrogate optimization software (Eriksson et al., 2019a). We evaluate the
bjective function for an initial subset of points by sampling according to a Latin Hypercube design. We construct a surrogate model
f the objective function with the evaluated points by means of radial basis functions (Regis and Shoemaker, 2007) and then use the
urrogate model to decide where to evaluate the function based on a weighted-distance merit balance between the distance from
reviously evaluated points and the prediction of the value made by the surrogate. Since small changes in the 𝜶 parameter produce
mall changes in the inventories and do not produce large jumps in the value of the objective function, through the use of a surrogate
odel we can exploit previously observed values, also dealing with multiple local optima. We set the maximum number of function

valuations to max[200, 100 ⋅ Nparams] and the number of points in the initial explorative subset to max[20, 10 ⋅ Nparams]. Other
esponse-surface-based optimization methodologies are possible as well and applied to practical inventory management problems
or perishable items (Deng et al., 2023).

Since the stochastic problem is ergodic in nature, the estimate of the expected value can be calculated by simulation over a
ufficiently long horizon. To ensure that the estimate of this value is accurate, we apply two precautions:

• Since there is an initial transient where the inventory is empty because of the lead time, we do not measure any statistics for
an initial time window three times as long as the sum of lead time and shelf life. 3 ⋅ (𝖲𝖫 + 𝖫𝖳).

• To decide that the estimate is sufficiently accurate, we use a 35-period sliding window. If the difference between the maximum
and minimum value of the estimated expected value of profit in that window is less than 0.02% of the current estimation, we
stop the simulation. To ensure multiple inventory cycles, the length of the sliding window is at least 7 times longer than the
maximum shelf life of the products considered in our experiments.

esign of experiments. We assume a negative binomial distribution for demands. This distribution and its generalizations have
umerous applications in marketing (Ehrenberg, 1959; Driesener and Rungie, 2022) and have proven to be a suitable solution in
any real-world cases of purchasing scenarios. Furthermore, a negative binomial can be interpreted both as a Poisson distribution
ith parameters distributed according to gamma or as a compound Poisson process with geometrically distributed purchases
uantity (Agrawal and Smith, 2015), providing a flexible choice for modeling retail sales. We parameterize the demand distribution
hrough the mean and standard deviation (𝜇 and 𝜎) and we manage their relationship through the coefficient of variation (cv = 𝜎

𝜇 ).
We consider two different coefficients equal to 0.6 and 0.9. The range of these values is modeled by empirical estimations made
by Broekmeulen and Van Donselaar (2019) from 3 large fresh food retailers in Europe, ruling out phasing-in, phasing-out, or
promoted items, where such values may vary. Regarding the shelf life of the products, we consider 𝖲𝖫 = 3 and 5, values common
for, e.g., fruits and vegetables or bread. The choice is motivated by the fact that for inventory managers in retail, the product
can be handled as a nonperishable when the shelf life is longer (Hendrix et al., 2019). Then, to better focus on the value of the
multi-echelon structure rather than on rationing policies, we still consider a single offline retailer and an OFC. We simulate the
behavioral pattern of offline customers through a beta distribution to represent the share of LIFO customers. Namely, we use 𝛾Off ∼
Beta(2,2) and 𝛾Off ∼ Beta(9,1). The first assumption represents symmetric uncertainty on the LIFO/FIFO balance, while the other
option entails a LIFO-dominated issuing policy, where 90% of the offline consumers choose the freshest items on average. Other
than a beta distributed LIFO/FIFO balance, it is also possible to simulate the residual shelf life of each purchased item singularly,
by means of discrete choice models (Gioia et al., 2023). However, it requires a substantial number of parameters and it proves to
be more adequate when discount strategies based on the age of the products are allowed in the model. The lead time is set 𝖫𝖳= 3,
while the retailer lead time is assumed 𝖱𝖫𝖳= 0, thus assuming a warehouse close to retailers. Concerning the newsvendor ratio, we
explore two different cases. Namely, we define Low Margin and High Margin experiments when 𝗇𝖾𝗐𝗌𝖱 = 0.25 or 0.75 respectively.
These configurations are applied to positively/negatively correlated, and independent scenarios. We assume symmetrical volumes
of demand (𝜇 = 100) in the two channels and also unbalanced scenarios in which demand is assigned 80% to one channel and the
remaining 20% to another (i.e., 𝜇OFC = 160 and 𝜇Off = 40 and vice versa).

Correlation between demands is generated by bivariate Gaussian copulas (Nelsen, 2006) having negative binomial marginals
with mean and variance consistent with the aforementioned configurations. Specifically, the copula is generated by a bivariate
Gaussian distribution with a linear correlation coefficient 𝜌 equal to −0.5 in the case of negative correlation and 0.5 in the case of
positive correlation.

Since the optimal policy structure in the multi-echelon model analyzed in often allocates fresher products first, having a LIFO
(i.e., _l) or FIFO (i.e., _f) version available for each heuristic, we do not present results with FIFO internal allocation. In our
9

configurations, these heuristics perform worse than their FIFO counterparts and do not add managerial insights.
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Discussion of results. Table 5 shows the average profit and waste divided by subsets of parameters and normalized with respect to
the single-echelon constant policy (COP). Specifically, given 𝛱𝑠

𝙲𝙾𝙿
, the profit or waste per period of COP on configuration 𝑠, for each

ther heuristic 𝜋, we present
(

∑𝑆
𝑠=1 𝛱

𝑠
𝜋

∑𝑆
𝑠=1 𝛱

𝑠
𝙲𝙾𝙿

− 1

)

× 100.

he average of COP is not normalized and is given to clarify the magnitude of the results. Moreover, since half of the results come
rom high margin scenarios and half from low margin ones, when focusing on profits, such visualization may overrepresent high
argin scenarios, where profits are inherently higher, contributing more to the averaged cumulative values. For this reason, we

lso present the percentage of the relative improvement per scenario in Table 6. Namely,
(

1
𝑆

𝑆
∑

𝑠=1

𝛱𝑠
𝜋

𝛱𝑠
𝙲𝙾𝙿

− 1

)

× 100.

Values are estimated out-of-sample over a 7000-period-long horizon, ensuring a maximum variation lower than the 0.02% in the
mpirical confidence of interval over the 35-period sliding window. Single-echelon models only observe marginal distributions, not
arying with respect to the copula-induced correlation, thus correspondent values are presented without distinguishing by correlation
oefficient. Simulations related to a multi-echelon network with pooled inventories are identified by their policy names (e.g., SP_l
nd FPL_l). Similarly, simulations related to a single-echelon structure are identified by the policy names (i.e., COP and BSP).

Focusing on unbalanced demand volumes between the two channels, when demand is dominantly online, where customers
ollow a FIFO behavior, profits increase and waste reduces for all configurations. Differences between single- and multi-echelon
odels reduce compared to the symmetric case. The more demand moves toward the offline channel, the more the higher share

f LIFO consumers affects the complexity of dynamics, being older items more likely to be scrapped. COP is more robust and
his effect confirms the results already pointed out by Minner and Transchel (2010), where constant approaches in the case of
articularly complex configurations are valuable options. Under symmetric hypotheses, all multi-echelon policies perform better
han single-echelon ones, both in profits and waste. However, having a minimum inventory constraint to be maintained in the OFC
elps heuristics (FPC and SC). When demand is mainly offline, multi-echelon heuristics without any minimum stock level (i.e., FPL,
PL2K, SP, and SP2K) worsen remarkably with respect to symmetric and online dominant cases. The reason for such low performance
s not poor management of the offline channel, but rather the lack of products in the OFC, which assigns most items to the physical
tore to cope with large internal base-stock values and peaks of the offline demand, generating many stock-outs in online (OFC)
rders if compared with the single-echelon heuristics. The presence of a minimum stock level at the OFC avoids excessive dispatches
ue to large demands from the offline retailer. However, when only a small part of the demand is online, multi-echelon structures
ail to provide benefits, thus it may be appropriate to fulfill online orders directly from physical offline retailers (Wollenburg et al.,
018).

Negative correlation aids the multi-echelon structure, allowing the OFC to exploit these characteristics, improving profits and
educing waste. When orders are constant, a base-stock allocation policy managed by the OFC (SP, SP2K, and SC) improves a simple
OP, where no tailored allocations are possible. On the contrary, positive correlation negatively affects multi-echelon policies.
ince single-echelon structures do not observe correlation, in the case of zero correlation, values concerning single-echelon policies
COP, BSP) summarize all the configurations. The challenge of negative binomial demands, stochastic consumer behavior, and
ong lead times renders a more flexible single-echelon approach (BSP) unprofitable due to problem complexity. Notably, these
esults are closely tied to the shelf life of products. For a shelf life of five periods, BSP becomes better than COP, differing by
.4% and significantly reducing waste by 23% when considering the percentage of relative improvement. Conversely, short shelf
ives have a significant negative impact on statistics of BSP on all the subsets. Shelf life emerges as a crucial factor also for multi-
chelon structures, with shorter shelf lives hindering allocation flexibility and performance of the OFC, while Full Pull policies
FPL/FPl2K/FPC) take advantage of higher shelf life. However, all the multi-echelon policies outperform single-echelon approaches
hen the shelf life is five periods.

When the offline LIFO share increases, waste increases as well. Moreover, policies that consider a minimum stock level at the OFC
re more effective in cases of higher offline LIFO values, where demand distributions are more complex. Nevertheless, the primary
eterminant of waste is the newsvendor ratio. The flexibility of the multi-echelon structure helps minimize losses and enhance
erformance when margins are low, compared to single-echelon approaches. In scenarios with a high coefficient of variation, policies
ith constant order quantity yield better results (i.e., COP, SP2K, SC).

Policies with varying weights for different ages in a Full Pull strategy (FPL2K) improve performance compared to their simpler
ounterpart (FPL) in cases of negatively correlated demand across channels (cv = 0.6) and exhibit superior responsiveness to
revalent offline demand. On the other hand, when age-based weights are applied to the Semi Push approach (SP2K), the
mprovement with respect to (SP) is noticeable in all the subsets but the 80/20 unbalanced case, where the allocation policy has a
ower impact due to the prevalent online demand. Lastly, even if age-weighted policies are a generalization of their non-weighted
ounterpart and are theoretically able to reproduce them by fixing all additional parameters to 1, their optimization is considerably
10

ore complex, and local optima are common.
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Table 5
Average profit and waste (Profit|Waste) per period with respect to different subsets of parameters and policies. Values normalized w.r.t. COP (profit, higher =
etter|waste smaller = better). COP values presented raw.

Subset Single-echelon Multi-echelon

COP BSP FPL_l FPC_l FPL2K_l SP_l SC_l SP2K_l

On/Off
80/20 429 | 25.4 −1.7 | −1.5 0.1 | −10.2 0.2 | −10.0 0.0 | −10.8 0.7 | −7.1 0.9 | −6.9 0.7 | −14.6
50/50 417 | 27.6 −2.2 | −7.2 0.2 | −10.2 0.9 | −16.2 0.1 | −2.0 1.4 | −9.4 1.9 | −17.1 1.5 | −4.7
20/80 406 | 31.1 −3.8 | −0.5 −4.0 | −9.3 −1.8 | −8.2 −3.5 | −3.2 −2.1 | −5.5 −0.6 | 1.0 −0.9 | −1.7

𝜌
−0.5 – – 0 | −16.3 1.4 | −16.5 0.7 | −15.2 1.5 | −12.5 2.0 | −16.1 1.8 | −17.1
0 417 | 28.1 −2.5 | −3.2 −1.1 | −7.4 −0.3 | −12.2 −1.2 | −4.1 0.0 | −9.1 0.8 | −5.2 0.6 | −6.3
0.5 – – −2 | −6.5 −1.6 | −6.0 −2.6 | 3.4 −1.2 | −0.8 −0.3 | −1.4 −0.8 | 2.9

LIFO/FIFO 50/50 425 | 26.1 −2.2 | −7.5 −1.7 | −9.9 −0.8 | −10.4 −1.6 | −2.6 −0.6 | −4.2 0.1 | −3.8 0.0 | −7.1
90/10 410 | 30.0 −3.1 | 0.9 −0.7 | −9.9 0.3 | −12.3 −0.7 | −7.3 0.5 | −10.0 1.4 | −10.5 0.9 | −6.3

cv 0.6 440 | 21.8 −1.3 | −14.9 −0.2 | −23.4 0.6 | −22.3 0.1 | −20.4 0.1 | −18.4 0.8 | −16.4 0.6 | −13.7
0.9 395 | 34.4 −4.1 | 4.2 −2.2 | −5.4 −1.3 | −7.9 −2.5 | 0.6 0.1 | −8.8 0.8 | −5.7 0.4 | −4.8

SL 3 402 | 31.7 −5.2 | 10.2 −3.6 | 0.2 −2.3 | 2.0 −3.5 | 5.4 −0.4 | −1.8 0.4 | −3.6 0.1 | −2.5
5 433 | 24.4 −0.2 | −20.3 1.1 | −23.0 1.7 | −28.8 1.0 | −18.8 0.3 | −14.4 1.0 | −12.3 0.7 | −12.0

𝗇𝖾𝗐𝗌𝖱
0.75 662 | 47.3 −2.5 | −1.4 −1.6 | −7.9 −0.8 | −9.4 −1.5 | −2.2 −0.3 | −4.1 0.2 | −3.6 0.1 | −3.7
0.25 173 | 8.9 −2.8 | −12.6 0.4 | −21.4 1.9 | −23.0 0.2 | −21.8 1.2 | −25.2 2.8 | −28.6 1.7 | −23.6

Table 6
Percentage of relative improvement of profit and waste (Profit|Waste) per period with respect to different subsets of parameters and policies. Values normalized
w.r.t. COP (profit, higher = better|waste smaller = better). COP values presented raw.

Subset Single-echelon Multi-echelon

COP BSP FPL_l FPC_l FPL2K_l SP_l SC_l SP2K_l

On/Off
80/20 429 | 25.4 −1.7 | −11.7 0.5 | −16.0 0.6 | −14.8 0.2 | −15.9 1.6 | −10.9 1.8 | −12.6 1.5 | −17.5
50/50 417 | 27.6 −2.8 | −10.1 0.8 | −13.6 1.8 | −20.2 0.7 | −11.0 2.4 | −16.0 3.1 | −19.3 2.4 | −10.0
20/80 406 | 31.1 −4.6 | −4.7 −3.8 | −13.4 −1.3 | −13.4 −3.6 | −9.7 −2.5 | −10.9 0.2 | −9.4 −1.0 | −7.7

𝜌
−0.5 – – 1 | −19.7 2.7 | −21.8 1.7 | −20.0 2.8 | −20.5 3.3 | −22.0 2.7 | −24.6
0 417 | 28.1 −3.0 | −8.9 −0.7 | −11.2 0.3 | −16.0 −1.1 | −14.0 0.1 | −13.9 1.6 | −10.1 1.1 | −9.3
0.5 – – −3 | −12.2 −1.9 | −10.5 −3.2 | −2.7 −1.4 | −3.4 0.1 | −9.2 −0.8 | −1.3

LIFO/FIFO 50/50 425 | 26.1 −2.7 | −10.7 −1.4 | −16.5 −0.2 | −16.2 −1.3 | −11.5 −0.1 | −9.4 0.7 | −9.6 0.4 | −9.6
90/10 410 | 30.0 −3.4 | −7.0 −0.2 | −12.1 1.0 | −16.0 −0.4 | −13.0 1.1 | −15.8 2.6 | −18.0 1.6 | −13.8

cv 0.6 440 | 21.8 −1.1 | −18.1 0.4 | −18.2 1.5 | −18.4 0.6 | −16.6 0.2 | −9.1 1.3 | −12.9 0.8 | −10.7
0.9 395 | 34.4 −4.9 | 0.4 −2.0 | −10.4 −0.7 | −13.8 −2.4 | −7.8 0.8 | −16.1 2.1 | −14.7 1.2 | −12.7

SL 3 402 | 31.7 −6.4 | 5.3 −3.9 | −1.4 −2.3 | −0.6 −3.8 | 1.8 0.3 | −6.1 1.5 | −9.7 0.9 | −6.3
5 433 | 24.4 0.4 | −23.0 2.3 | −27.2 3.0 | −31.6 2.1 | −26.3 0.7 | −19.1 1.8 | −17.8 1.1 | −17.1

𝗇𝖾𝗐𝗌𝖱
0.75 662 | 47.3 −2.7 | −4.5 −1.7 | −8.7 −0.9 | −10.4 −1.6 | −2.7 −0.4 | −2.3 0.1 | −2.8 0.1 | −3.2
0.25 173 | 8.9 −3.4 | −13.2 0.1 | −20.0 1.7 | −21.8 −0.1 | −21.7 1.4 | −22.9 3.2 | −24.7 1.9 | −20.3

5. Conclusions and future works

We present models of multichannel structures for retailers that handle perishable goods both online and offline. We focus on the
nalysis of simple networks with a single offline retailer and an online fulfillment center, thus isolating the effects of the two different
hannels and not addressing the optimal management of rationing policies in cases where the number of retailers to be served is
arger. When assumptions about demand volume, distribution type, and product characteristics allow for exact optimization, we
ptimize allocation and replenishment policies through value iteration. We address our first research question on the benefits of
nventory pooling and we show that the OFC often allocates fresh products to offline retailers and handles online orders with older
tems. The multi-echelon model reduces online stock-outs because it gives priority to channels where the customer behavior is
ptimal (FIFO), increasing the offline ones, where customers make LIFO selections. The different customer behavior of the channels
s exploited by the multi-echelon system together with the inventory-pooling effect, increasing the profit and reducing waste.

When model complexity and assumptions do not allow the problem to be solved optimally, we present generalizations of base-
tock policies that are widely used in inventory management problems. Since the problem assumptions are particularly complex, a
onstant replenishment policy is advantageous for both multi-echelon and single-echelon models. However, although this result is
lready highlighted in Minner and Transchel (2010), the additional flexibility given by BSP-oriented internal allocations (SP) after
onstant orders (COP) often generates an advantage, making a multi-echelon allocation strategy beneficial when setting up contracts
ith a constant quantity from producers. As shelf life increases, the multi-echelon model and the proposed heuristics generate the
ighest profits, reducing waste. In fact, a longer shelf life allows a more flexible allocation policy to take advantage of products with
shorter remaining life, but enough to be shipped and sold in the offline channel. When offline and online channels have correlated
emands, the proposed multi-echelon heuristics benefit from negative correlations, producing an advantage over the corresponding
euristics in single-echelon models. However, positively correlated demand is not exploited particularly well by simple extensions
11
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Table 7
Notation.

Symbols

𝖲𝖫 Full shelf life of the product

𝖫𝖳 Lead time from suppliers to OFC

𝖱𝖫𝖳𝑘 Lead time from OFC to physical store 𝑘

𝖣𝖢𝑡 State variable of the OFC at time 𝑡 in the multi-echelon system

𝑆𝑡 Complete state vector of the multi-echelon system at time 𝑡

𝖱𝖳𝑘
𝑡 State vector of retailer 𝑘 at time 𝑡 in the multi-echelon system

𝖱𝑘
𝑡 State vector of retailer 𝑘 at time 𝑡 in the single-echelon system

𝑂𝑙
𝑑 Ordered items that will arrive in 𝑙 periods at the OFC (𝑑) with full shelf life

𝑂𝑙,𝑟
𝑘 Dispatched items that will arrive in 𝑙 periods at retailer 𝑘 with residual shelf life 𝑟

𝐼 𝑟
𝑑 Current physical inventory of the OFC (𝑑) with residual shelf life 𝑟

𝐼 𝑟
𝑘 Current physical inventory of retailer 𝑘 with residual shelf life 𝑟

𝑋𝜋
0 Quantity ordered by the OFC according to decision policy 𝜋

𝑋𝑟,𝜋
𝑘 Quantity sent to retailer 𝑘 per residual shelf life 𝑟 according to decision policy 𝜋

𝐷𝑑,𝑡 Demand of period 𝑡 at the OFC (𝑑)

𝐷𝑘,𝑡 Demand of period 𝑡 for retailer 𝑘

𝛾𝑘 LIFO/FIFO stochastic mixing parameter for retailer 𝑘

𝑝𝑘 , 𝑔𝑘 Sales prices and salvage values (disposal costs) for retailer 𝑘 per unit

𝑐 Unit cost per ordered item

𝜇𝑘 , 𝜎𝑘 Mean and standard deviation of the demand distribution for retailer 𝑘

𝜌 Correlation coefficient between online and offline channel demand

of base stock heuristics in the multi-echelon model because of the difficulties arising from filling base-stock-based internal requests
after simultaneous peaks of demands. We show how the subdivision of demand among the channels affects model performance. If the
online channel has higher volumes, the problem is simplified due to the larger share of FIFO consumers and the proposed heuristics
perform adequately, but in the opposite case, with predominantly offline demands, base-stock allocation policies in the multi-echelon
model generate frequent stock-outs in the OFC, allocating too many items to the offline channel, even if order quantities from the
supplier are similar to the single-echelon case. One possible solution is a minimum level of stock in the distribution center, that
proves to be profitable for almost all configurations. However, the implication is that different demand balances between online and
offline channels require specific attention in creating heuristics for multi-echelon models. The extension of base-stock or constant-
order policies in multi-echelon models with perishable goods is not trivial and requires understanding interactions and balance
between online and offline channels. Policies with age-weighted inventories are investigated and they provide improvements on
their non-weighted counterparts but increase optimization complexity.

Rationing policies are necessary when more offline retailers are included, increasing the complexity. Future studies should address
uch complications and the modeling of substitutions in the case of multiple products in the assortment. Another limitation of
he present study and possible direction for future research is the non-seasonal demand. Inventory pooling under asynchronous
easonality across channels can improve the performance of multichannel networks, however, the dimensionality of the problem
hat will grow needs to be treated carefully. Furthermore, we assume that the frequency of orders received by the OFC and that of
nternal shipments within the model coincide, but the latter can also be more frequent per replenishment cycle.
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