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Abstract—Embedded systems, such as automotive applications,
are increasingly used in safety-critical systems. The correct and
reliable implementation of such systems depends on many factors,
including the design of the system hardware, software, fault-
tolerance mechanisms, and the choice of programming language,
followed by the test, verification, and validation techniques
employed. Even well-designed systems are not exempt from
having defects that stem from their physical properties, and
these imperfections can cause unforeseen and dangerous actions
in safety critical systems. This paper focuses on isolating or
mitigating the effects of Random Hardware Failures(RHFs).
Hardening strategies are employed to mitigate RHFs in em-
bedded systems, either by adding specialized hardware or us-
ing Software-Implemented Hardware Fault Tolerance (SIHFT)
methods. SIHFT methods are applied to various applications to
harden them against Control Flow Errors (CFEs). This paper
presents a guideline for applying a subset of SIHFT methods
called Control Flow Checking (CFC) methods to application code
written in C language. The motivation is that in the literature
few guidelines can be found that provide insight on implementing
CFC methods with high-level programming languages. Most
proposals implement CFC methods in low-level languages such
as assembly. The rationale behind developing high-level language
implementations lies in the pursuit of architecture independence
as well as the inadequacy of a certified compiler for the target
platform that can conveniently incorporate Certified Functionally
Correct into the compiled assembly/machine language code.

Index Terms—control flow checking, automotive applications,
software reliability

I. INTRODUCTION

Embedded systems are becoming increasingly common in a
variety of industries. These systems must be reliable and safe.
These characteristics of the system depend on both system
hardware and software. Several techniques can be applied to
improve reliability and safety, including hardware and software
redundancy to harden systems. Hardening the system generally
means adding redundancy. It can be implemented in two ways:
(i) adding extra hardware components or (ii) adding software
instructions in the application code. Hardware redundancy
requires replicated hardware modules or custom hardware with
fault detection mechanisms. Software redundancy, on the other
hand, executes additional instructions without modifying any

hardware components and allows tracking the proper execution
of the application. In addition, software redundancy techniques
are much more adaptable and economical solutions for error
detection.

Software-Implemented Hardware Fault Tolerance (SIHFT)
methods are more flexible and cost-effective as they do not
require adding any special hardware components, because
they exploit what is already available in common Commercial
Off The Shelf (COTS) products. They add extra code to the
application to monitor its correct execution.
Among various SIHFT methods, this paper focuses on Control
Flow Checking (CFC) methods [3-12]. CFC methods check
the application’s control flow to ensure it is executing correctly.

Implementing CFC methods can be challenging, and their
effectiveness needs to be assessed. The literature on CFC
methods provides most examples written in Assembly lan-
guage. This is usually considered the most suitable strategy
since compilers can automatically add the hardening method
instructions to the application. However, for some embedded
applications, using Assembly language is not the preferred
development flow, since functional safety standards (part 6
of ISO 26262 Standard [1]) mandate the use of high-level
programming languages such as C whenever possible as
well as, use of certified compilers. Moreover, the automotive
industry production chains are typically complex because
different companies develop software components that are then
integrated into the system, especially within the AUTOSAR
framework. This leads to the need to guarantee a minimum
acceptable hardening level regardless of the platform chosen
to run the integrated products.

This paper presents a set of guidelines for implementing
CFC methods using C programming language. We evaluate the
effectiveness of the proposed approach in two case studies. Our
results show that our approach regarding the implementation
of the CFC in C language is maintaining the effectiveness of
the CFC method in detecting RHFs in the embedded systems.
Hence, our approach is a viable alternative to implementing
traditional hardening techniques.

This work is organized as follows: Section II discusses the
significance of C in the automotive industry as well as provides978-8-3503-3757-0/23/$31.00 © 2023 IEEE



an overview of Software-Implemented Hardware Fault Toler-
ance. In Section III, the article expounds on implementation
best practices, while Section IV delves into the efficacy of the
technique as measured through experiments. Lastly, Section V
provides conclusions.

II. BACKGROUND

A. Using the C language in automotive industry applications

C programming language is extensively utilized in the auto-
motive industry due to its flexibility, support, and portability,
making it suitable for high-speed, low-level input/output op-
erations and complex applications that require high efficiency.

However, programming errors are relatively easy to make,
and the language lacks proper support for error detection, pos-
ing a potential danger to safety-critical systems. Consequently,
several constraints, such as the MISRA C guidelines [2],
have been developed, limiting the use of problematic language
features. In addition, various tools and techniques like static
analysis tools, code reviews, and unit testings are available to
enhance the security of C codes. Nonetheless, C language’s
weaknesses, like incomplete type checking, lack of exception
handling mechanisms, and limited run-time error checking,
increase the need to incorporate SIHFT to the code written
in C to guarantee safety even after eliminating programming
defects.

B. Software-Implemented Hardware Fault Tolerance

In safety-critical systems, it is important to use techniques
that can detect and mitigate Random Hardware Failures
(RHFs). RHFs can lead to control flow errors (CFEs) that
can cause wrong execution order of instructions. CFC is
a SIHFT method that can detect wrong execution order of
instructions. The first step of adding CFC instructions, is to
create the Control Flow Graph (CFG) of the program. The
CFG is a directed graph that shows the possible execution
paths through the program: the source code is divided into
Basic Blocks (BBs). Each BB is comprised of lines of code
in which no jump or branch instructions exist, except the
last instruction of the BB which can be a jump or branch
instruction to jump to another BB. BBs are the nodes of the
CFG. After the BBs are determined, the code is statically
analyzed to find all the possible transitions between the BBs.
These transitions are the edges of the CFG. Once the CFG is
complete, CFC is implemented by inserting extra instructions
into the source code to check if CFG is respected. In case a
transition which is not present in the CFG occurs, a Control
Flow Error (CFE) has happened. A common way to implement
the extra instructions for CFC methods is signature monitoring.
Signature monitoring works by assigning a unique signature
to each BB in the program. Extra instructions inserted into
the program, can compute the signature of the current BB.
The computed signature is then compared to the expected
signature of the BB. If the signatures do not match, then
a CFE is detected. CFC has several advantages. It is a
low-cost, low-power technique that can be implemented on
any COTS device. It can also be complemented by other

hardening techniques, such as watchdogs. However, CFC also
has some drawbacks. For example, it adds some overheads to
the program, such as an increase in the size of the occupied
program memory due to the CFC instructions and execution
time overhead. Despite its disadvantages, CFC is a valuable
technique for detecting CFEs in safety-critical systems.

Examples of CFC methods include Enhanced Control Flow
Checking using Assertions (ECCA) [3], CFC by Software
Signature (CFCSS) [4], Control-flow Error Detection through
Assertions (CEDAs) [5], Assertion for CFC (ACFC) [6],
and Yet Another Control-Flow Checking using Assertions
(YACCA) [7]. All these approaches are based on comparisons
of the value of the signatures computed at run-time with
their expected values assigned to each BB at the design or
compile-time. It allows the detection of incorrect behavior.
Relationship Signatures for Control Flow Checking (RSCFC)
[8], signature monitoring methods, for instance, YACCA [7],
CFCSS [4], CEDA [5], and ECCA [3]; address illegal inter-
block jumps during application execution by monitoring run-
time signatures with compile-time signatures at the BB level.
To improve previous methods by covering illegal intra-block
jumps, instruction monitoring methods, such as RSCFC [8],
Software Implemented Error Detection (SIED) [9], and Ran-
dom Additive Control Flow Error Detection (RACFED) [10]
have been developed to check that instructions are executed
in the correct order. The essential differences among these
methods are in the way signatures are computed and checks
are performed.

III. IMPLEMENTATION GUIDELINES

Implementation guidelines are a set of rules or suggestions
that can be used for the implementation of CFCs by taking into
account the specific features of C programming language. We
adopted the algorithms described in [11] and [10], commonly
known as YACCA, and RACFED. We chose these methods
because they are based on different philosophies (bit mask
vs. random numbers) and have different detection capabilities
(inter-block vs. intra-block). The YACCA [11] method gives
each BB entry and exit point a distinct signature. The ad-
vantage of this method is in the capability of detecting CFEs
that happened when the program flow jumped from inside of
one BB to one of its legal successors, even if the successive
BB gives back the control to the BB affected by the wrong
jump. This is possible because the signature is re-evaluated
prior to each branch instruction to eliminate the CFE for the
incorrect successor. To identify both inter-block and intra-
block CFEs, RACFED [10] was created based on Random
Additive Signature Monitoring (RASM) method [12]. Two
gradual signature updates and one signature verification for
each BB are used in RASM which is a signature monitoring
method. Using gradual updates means that all updates on a
specific, intentional path are linked together, acting as one
update. Skipping one gradual update implies that the run-time
signature can never hold the correct value again. Of course,
compiler optimization can also affect these gradual signature
updates, making it act as a single update in the compiled



Fig. 1: Instructions on how to read the Control Flow Graphs
represented in this paper.

application. However, RACFED extends this functionality by
inserting gradual signature updates after each instruction inside
the Run Time Signature (RTS) variable. To under-
stand this guideline, Figure 1 explains how to read Control
Flow Graphs. The control graph is a visual representation of
the control flow of a program. The nodes in the graph represent
the statements in the program, and the edges represent the
control flow between the statements.

A. Functions or macros needed in C language

The YACCA and RACFED algorithms use different meth-
ods for performing the TEST and SET operations, with
algorithm 1 used for TEST in YACCA and algorithm 2 used
for RACFED, and algorithm 3 used for SET in YACCA
and algorithm 4 used for RACFED. In RACFED, the Run
Time Signature (RTS) is updated after each basic block
statement by summing a random number, and the total of these
random numbers is subtracted before signature checking to
allow for intra-block detection capabilities. The SET operation
is conducted in two phases within the actual algorithm. To
optimize YACCA, the predecessor’s mask is retrieved from
the last TEST call in the implementation, as TEST always
occurs before SET. For more details on CFC methods, see
[13], which provides implementation examples.

Algorithm 1 TEST operation (YACCA)

1: TEST(RTS, predecessors mask)
2: if RTS ∧ (¬ predecessors mask) then

CFE detected
end

3: Continue normal execution

B. Switch-case construct

For a switch-case construct, Figure 2 shows the positions
of the TEST and SET statements for the entry BB which
is indicated with the switch(...) statement. Meanwhile,
Figure 3 shows the positions of the TEST and SET statements
for the exit BB which is indicated with a } character.

Algorithm 2 TEST operation (RACFED). bb represents the ID
of the BB which is calling TEST(). RTS is an array containing
the compile-time signature of every BB.

1: TEST(bb)
2: if RTS ̸= CTS[bb] then

CFE detected
end

3: Continue normal execution

Algorithm 3 Set operation (YACCA)

1: SET(RTS, predecessors mask,BB ID)
2: RTS = RTS ∧ ¬predecessors mask
3: RTS = RTS ∨ (1 << BB ID)

It is important to note that in cases where there is no default
case for the entry BB, its inclusion is necessary. We address
this by adding a default case to the original algorithm used
in implementing the CFC. Lastly, an optimized diagnostic
coverage for exit BB can be achieved by testing the signature
of its only legal predecessors for each switch case. This is due
to the presence of diverse paths in this construct.

switch (…)
{

case ….:

break;
case ….:

break;
case ….:

break;
default:

break;
}

TEST (BB0 pred.)
0

1

2

3

4

5

SET (BB0)

SET (BB0)

SET (BB0)

SET (BB0)

BB0 pred.

Fig. 2: Positions of the TEST and SET operations for inter-
block CFE detection inside the switch-case constructs for
the entry block (indicated as 0, in blue.)

C. If-else construct

For the if-else construct, Figure 4 illustrates the posi-
tions of the TEST and SET statements for the entry BB, which
is indicated with the if(...) statement. While Figure 5

Algorithm 4 Set operation (RACFED). bb represents the
current BB, while bb+1 its expected successor. subRanPrevVal
and CTS are arrays (with lengths equal to the number of
BBs) containing respectively the random number sums and
the compile-time signature for every BB.

1: SET(bb, bb+1)
2: RTS = RTS - subRanPrevVal[bb]
3: adjVal = (CTS[bb]+subRanPrevVal[bb]) +

(CTS([bb+1]+subRanPrevVal[bb+1]
4: RTS = RTS + adjVal



switch (…)
{

case ….:

break;
case ….:

break;
case ….:

break;
default:

break;
}

0

1

2

3

4

5

TEST (BB5)

BB0 pred.

TEST (BB5)

TEST (BB5)

TEST (BB5)

SET (BB5)

Fig. 3: Positions of the TEST and SET operations for inter-
block CFE detection inside the switch-case constructs for
the exit block (indicated as 5, in green.)

if (…)
{

}
else if (…)
{

}
else if (…)
{

}
else
{

}

TEST (BB0 pred.)

SET (BB0)

SET (BB0)

SET (BB0)

SET (BB0)

0

2

3

4

5

BB0 pred.

F

F

F

T

T

T

1

Fig. 4: Positions of the TEST and SET operations for inter-
block CFE detection inside the if-else constructs for the
entry block (indicated as 0, in blue.)

displays the positions of the TEST and SET statements for
the exit block which is indicated with a } character.

If there is no else statement, an else statement should
be included. In this situation, it is strongly recommended to
add a comment clarifying that the else statement was inserted
to the initial algorithm to facilitate the implementation of the
CFC.

D. Function calls

Figure 6 illustrates that a function call is considered a basic
block (BB) since the call and return statements act as jumps.
Each function has its own return to subroutine Run Time
Signature (RTS) so its TEST and SET functions operate
on two different signatures: one for the caller and another for
the called function. The blue operations refer to operations
on the caller’s Run Time Signature (RTS), while the
yellow operations refer to operations on the function’s Run
Time Signature (RTS). The BBs are also color-coded.
Within a function call, there are generally three BBs, includ-
ing:

• the previous BB of the caller (p c),
• the function call (f),
• and the BB following the function call (f c).

if (…)
{

}
else if (…)
{

}
else if (…)
{

}
else
{

}

0

2

3

4

5

BB0 pred.

F

F

F

T

T

T

TEST (BB5)

TEST (BB5)

TEST (BB5)

TEST (BB5)

SET (BB5)

1

Fig. 5: Positions of the TEST and SET operations for inter-
block CFE detection inside the if-else constructs for the
exit block (indicated as 5, in green.)

Meanwhile, in a called function, we can define at least two
BBs, including the (i) initial BB (i f ) and (ii)final BB (f f ).
The two BBs may be merged if the called function has only
one BB or if its source code is unavailable.

The following implementation steps are taken:

1) Before the function call, we insert the SET operation for
the caller BB (p c) signature.

2) Then, the function call BB starts. As usual, the signature
of the predecessor BB is tested with the TEST operation
for the caller BB (p c) signature.

3) Now, the SET operation is called for the signature of
the i f BB. If the function has been already called
in other points of the program, the signature remains
set to the signature of the f f BB, generating a false
CFE. The signature of the i f BB is the signature of
the function wrapper, while the signature of the f f
BB is the signature expected at the end of the function
call. Hence, the signatures of the i f and f f BBs are
different if the function is hardened, equal otherwise.

4) The function is executed (with possible hardening) and
terminates. The signature of the f f BB is tested with
the TEST operation.

5) The wrapper sets the signature to the signature of the f
BB. (since it is a normal BB of the function call) as its
last instruction.

6) The BB following the function call tests the signature
against the signature of the caller BB (f ).

If the compiler decides to inline the function, the proposed
strategy behaves correctly (since the TESTs/SETs order is
kept). If a function is impossible to harden (for example, using
standard libraries or Application Programming Interfaces) or
the function contains only a single BB, it is treated as a normal
statement.

If a function is called from different locations within the
code, separate wrappers must be utilized, each with the appro-
priate TEST and SET operations. Finally, if the application is
multi-threaded, it is critical to avoid having the Run Time
Signature (RTS) and predecessor masks of the function



Fig. 6: Positions of the TEST and SET operations for inter-
block CFE detection for a function call.

for(int i = 0;i < N;i++)
{

if(i == 0){ }
else { }

}

if(i == 0){ }
else{ }

TEST (BB0 pred.) 0

1

2

SET (BB0)

BB0 pred.

TEST (BB1)
TEST (BB0)

SET (BB1)

SET (BB0) TEST (BB0)
TEST (BB1)

The programmer starts with a TEST

Fig. 7: Positions of TEST and SET operations to detect inter-
block CFEs for a for loop.

as static variables to avoid conflicts. Local variables are
used in this case.

E. For loops

To implement a hardened for loop, the structure depicted
in Figure 7 must be employed, along with the if...else
structures shown in gray. It should be noted that these struc-
tures are not separate basic blocks (BBs), as they are not
present in the original algorithm but are necessary to properly
call the TEST/SET functions in the correct order. If the body
of the for loop statement (denoted by the orange square
in the figure) contains more than one BB, they should be
hardened as usual, ensuring that the last BB places the same
tested signature in the else statements (identified as BB1
in the figure). For handling a break statement within a for
loop, as demonstrated in Figure 8, it is impossible to know
if the break has been executed. Therefore, the only way is
to refrain from performing the TEST and SET operations on
BB2 (which is disregarded in the implementation). The reason
is that the break is the sole means of reaching BB5 without
executing BB4; hence, BB1 is a legal predecessor of BB5.

IV. TESTING AND VALIDATION APPROACH

This section compares implementations of two established
CFC methods in C language, YACCA and RACFED. We
have implemented both methods in C and run them on two
benchmarks: (i) Timeline Scheduler (TS) and (ii) Tank Level

for(int i = 0;i < N;i++)
{

if(i == 0){ }
else { }

if(something)
{

break;
}
else
{

}

}
if(i == 0){ }
else{ }

TEST (BB0 pred.)

0

1

5

SET (BB0)

BB0 pred.

TEST (BB1)
TEST (BB0)

SET (BB1)

SET (BB0) TEST (BB0)
TEST (BB1 OR BB4)

2

3

4

T

F

TEST (BB1)

TEST (BB1)

SET (BB3)

TEST (BB3)

SET (BB4)

Fig. 8: Positions of TEST and SET operations to detect inter-
block CFEs for a for loop containing a break instruction
inside it.

Controller (T). The benchmarks were compiled using the GNU
RISC-V toolchain and simulated at the instruction set level
using QEMU. We used the fault injection system presented in
[15] to inject permanent faults affecting the program counter.
We chose this register because it directly affects the instruction
flow. Two classes of detected faults were considered:(i) safe
and (ii) just detected. Safe faults cannot lead to safety viola-
tions, while just detected faults are those that are detected but
could potentially lead to a safety violation. The experimental
results comply with ISO 26262 automotive functional safety
standards [14] .Table I shows the diagnostic coverage (DC)
of each CFC method for the two benchmarks. DC is defined
as the ratio of the total number of faults detected to the total
number of faults injected. The results reveal that RACFED
outperforms YACCA in terms of DC for both benchmarks.
This is attributed to the fact that RACFED can detect intra-
block faults, while YACCA can only detect inter-block faults.
Additionally, Table II presents the overhead of each method.
In this work, two types of overheads are taken into account:
(i) the increasing Text Segment Size (TSS), a measure of the
amount of program memory that has been occupied as a result
of the CFC instructions that were added to the program’s
instructions after the hardened program was compiled. As a
result, the embedded system’s flash memory needs to be larger.
(ii) Execution time overhead, calculated as the additional
number of machine instructions (# exec. instr.) required to
run the hardened program given the ISA-level simulation used
to run the campaigns. The overhead has been calculated,
comparing the parameters measured for the hardened versions
to those measured for the non-hardened versions. Although
the RACFED overheads are slightly higher than YACCA’s,
both methods show low overhead levels suitable for real-time
applications. In summary, our results show that RACFED is
a more effective CFC method than YACCA. RACFED has
higher DC and lower overheads, making it a better choice for
safety-critical systems.



TABLE I: ISO 26262-compliant classification of the cumulative results obtained from the fault injection campaigns on the
benchmarks. [14].

Detected Undetected False Pos.
CFC method Benchmark Safe Detected Latent Residual

YACCA TS 0.00% 67.49% 11.59% 20.92% 0.00%
YACCA T 4.00% 2.80% 88.30% 4.90% 0.00%

RACFED TS 0.00% 56.80% 7.67% 35.53% 0.00%
RACFED T 5.2% 0.3% 94.50% 0.00% 0.00%

TABLE II: Data regarding memory occupation and executed instruction.T = Tank Level, TS = Timeline Scheduler, and TSS
= Text Segment Size. Vanilla refers to the application that is not hardened from its original form. [14].

CFC method Benchmark Compiler Optimization TSS Overhead # exec. instr. Overhead
Vanilla T O0 9012 42593
YACCA T O0 10512 (+16.6%) 44668 (+4.9%)

RACFED T O0 10966 (+21.7%) 43864 (+3.0%)
Vanilla TS O0 1736 3991
YACCA TS O0 2496 (+43.8%) 16689 (+318.17% )

RACFED TS O0 6271 (+261.23%) 5770 (+44.58%)

V. CONCLUSIONS

This paper presents a comprehensive set of guidelines to as-
sist in the development of safe and reliable embedded systems
written in C while employing CFC hardening methods.

Following the proposed guideline is not mandatory, but
it is designed to offer a practical approach to developing
critical safety embedded systems. The effectiveness of this
guideline has been demonstrated through a series of case
studies, where reliable embedded systems were developed and
deployed in safety-critical situations. The experimental results
emphasize the applicability of the guidelines in automotive
industry contexts due to their successful employment in this
automotive industry scenario.

In conclusion, it would be valuable to investigate the appli-
cability of this method to C++ compilers, especially given the
current prevalence of embedded systems using C++ code. This
could be a potential avenue for future research in the field of
embedded systems.
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