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The success of deep learning has revealed the application potential of neural networks across the
sciences and opened up fundamental theoretical problems. In particular, the fact that learning algorithms
based on simple variants of gradient methods are able to find near-optimal minima of highly nonconvex
loss functions is an unexpected feature of neural networks. Moreover, such algorithms are able to fit the
data even in the presence of noise, and yet they have excellent predictive capabilities. Several empirical
results have shown a reproducible correlation between the so-called flatness of the minima achieved by the
algorithms and the generalization performance. At the same time, statistical physics results have shown that
in nonconvex networks a multitude of narrow minima may coexist with a much smaller number of wide flat
minima, which generalize well. Here, we show that wide flat minima arise as complex extensive structures,
from the coalescence of minima around “high-margin” (i.e., locally robust) configurations. Despite being
exponentially rare compared to zero-margin ones, high-margin minima tend to concentrate in particular
regions. These minima are in turn surrounded by other solutions of smaller and smaller margin, leading to
dense regions of solutions over long distances. Our analysis also provides an alternative analytical method
for estimating when flat minima appear and when algorithms begin to find solutions, as the number of
model parameters varies.
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Machine learning has undergone a tremendous accel-
eration thanks to the performance of deep networks [1].
Complex architectures are able to achieve unexpected
performance in disparate domains, from language process-
ing [2] to protein structure prediction [3,4], just to name a
few recent impressive results. A key aspect of all these
models is the nonconvex nature of the learning problem.
The learning process must be able to converge in a very
high-dimensional space and in the presence of a huge
number of local minima of the loss function which
measures the error rate on the data set. Surprisingly, this
goal can be achieved by algorithms designed for convex
problems with just few adjustments, such as choosing
highly parametrized architectures, using dynamic regulari-
zation techniques, and choosing appropriate loss functions
[5]. In practice, neural networks with hundreds of millions
of variables can be successfully optimized by algorithms
based on the gradient descent method [6].
The study of the geometric structure of the minima of the

loss function is essential for understanding the dynamic
phenomena of learning and explaining generalization
capabilities. Several empirical results have shown a repro-
ducible correlation between the so-called flatness of the
minima achieved by algorithms and generalization perfor-
mance [7–9]. In a sense that needs to be made rigorous, the
loss functions of neural networks seem to be characterized
by the existence of large flat minima that are both accessible
and well generalizable [10–13]. Moreover, similar minima

are found in the case of randomized labels [14] and different
data sets, suggesting that they are a robust property of the
networks.
This scenario is upheld by some recent studies based on

statistical physics methods [15–18], which show that in
tractable models of nonconvex neural networks a multitude
of minima with poor generalization capabilities coexists
with a smaller number of wide flat minima, always known
as high local entropy minima, that generalize close to
optimality [15]. These studies rely on large-deviation
methods that focus on minima surrounded at a given
distance by a very large number of other minima. The
analytical results are corroborated by numerical studies that
confirm the accessibility of wide flat minima by simple
algorithms that do not try to sample from the dominating
set of minima [19].
Here, we provide analytical results on the geometric

structure of these wide flat minima. We take as analytically
tractable nonconvex model a prototypical neural network
with N binary weights performing a binary classification
task, trained on P ¼ αN random patterns, investigated in
the thermodynamic limit of large N and large P, with
α ¼ P=N ¼ Oð1Þ. This model has been extensively studied
with mean field statistical physics methods [20] and by
rigorous techniques [21]. The solutions of the learning task
(zero-error configurations) can be characterized by their
robustness to local perturbations of the weights, called
margin and denoted by κ. All configurations within a radius
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proportional to κ
ffiffiffiffi
N

p
around a κ-margin solution are also

solutions. The number of κ-margin solutions is typically
exponential in N, i.e., exp ½Nϕðα; κÞ�. Since ϕðα; κÞ is
monotonically decreasing with κ, high-margin solutions are
exponentially rare compared to zero-margin solutions.
However, they tend to concentrate in particular regions,
and are in turn surrounded by other solutions of smaller and
smaller margin. This coalescence of minima results in
dense regions of solutions over distances of size OðNÞ.
This is illustrated in Fig. 1, which shows a two-dimensional
qualitative sketch of the picture that emerges from our
analysis of the geometric distribution of minima, for a not-
too-large value of α. As α increases, the solutions thin out,
their margin gets smaller, and above some critical α the large
connected structures break up and eventually disappear.
Our results provide a clearer picture regarding the

internal structure of the flat minima and allow us to define
an alternative analytical method for estimating the thresh-
old at which they disappear and up to which algorithms are
able find solutions efficiently. We show that, for sufficiently
small values of α, the zero-error solutions have the
following properties: (1) The Hamming distance between

typical solutions is a rapidly decreasing function of their
margin κ. Despite being exponentially less numerous (inN)
compared to the κ ¼ 0 solutions, the κ > 0 solutions tend to
have small mutual distance. (2) Typical solutions with a
prescribed margin κ̃ > 0 are always surrounded at OðNÞ
Hamming distance by an exponential number of smaller
margin solutions. By increasing κ̃, we make sure to target
higher local entropy regions.
While the notion of margin has been developed in the

context of shallow networks where it can be directly linked
to generalization, the notion of flatness, or high local
entropy, applies also to deep networks for which there is
no straightforward way to define the margin for the hidden
layer units. High local entropy minima are stable with
respect to perturbations of the input and of the internal
representations.
The model.—For simplicity, we discuss here the results

of our study by considering a single-layer [22] network
with N binary weights w ∈ f−1; 1gN , which is perhaps the
simplest to define nonconvex neural network endowed with
a nontrivial geometric structure of solutions. In the
Supplemental Material (SM) [23] we detail the analytical
results for models with one hidden layer, which lead to a
qualitatively similar geometric scenario, and also report
numerical results for deep networks.
Given a (binary) pattern ξ ∈ f−1; 1gN as input to the

network, the corresponding output is computed as
σout ¼ signðw · ξÞ. We consider a training set composed
of μ ¼ 1;…; P ¼ αN independent identically distributed,
unbiased random binary patterns ξμ ¼ f−1; 1gN and labels
σμ ¼ f−1; 1g [25,26]. The learning problem consists in
finding weights that realize all the input-output mappings
of the training set. In this Letter, we are interested in locally
robust solutions. We quantify this by imposing that for
every pattern in the training set, the weights should have
stabilityΔμ ≡ ðσμ= ffiffiffiffi

N
p Þw · ξμ, larger than a given margin κ,

which therefore represents the distance from the classi-
fication boundary in the direction of the correct label.
The flat measure over these configurations is proportional
to Xξ;σðw; κÞ ¼

Q
P
μ¼1Θ½ðσμ=

ffiffiffiffi
N

p ÞPN
i¼1 wiξ

μ
i − κ� where

Θð·Þ is the Heaviside theta function; this quantity is 1 if
the weights w classify correctly all the patterns with margin
κ, and 0 otherwise. The number of κ-margin solutions is
given by

Z ¼
X

fwi¼�1g
Xξ;σðw; κÞ; ð1Þ

where we have dropped the dependence of Z on ξ and σ to
lighten the notation. Indeed, Z is the partition function of a
flat measure over the κ-margin solutions, which in turn is
the zero-temperature limit of an equilibrium Gibbs mea-
sure, with the number of violated patterns as the energy.
The corresponding Gibbs entropy of the solutions can be
obtained as

FIG. 1. Representation of a portion of the space of network
configurations. The dots represent solutions (zero-error configu-
rations) with different κ margins. Red arrows indicate four
examples of typical solutions. Yellow arrows indicate three
examples of the type of atypical solutions found around the
typical ones with a larger margin. Low-margin solutions are more
numerous than high-margin solutions. Typical low-margin solu-
tions are isolated and distant from each other. Typical high-
margin solutions are also distant from each other, but less so, and
tend to be surrounded by (atypical) low-margin solutions. Thus,
the higher-margin solutions are rare, but they lie within dense,
extended regions that result from the coalescence of the low-
margin solutions.
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ϕðα; κÞ ¼ lim
N→∞

1

N
hlnZiξ;σ; ð2Þ

where h…iξ;σ denotes the average over random patterns
and labels. In the following, we set σμ ¼ 1 for every μ ¼
1;…; Pwithout loss of generality, since we can perform the
transformation ξμi → σμξμi , without affecting the probability
measure of the patterns. Since the model is discrete, the
entropy has a lower bound of 0. In the limit of large N the
model exhibits a sharp transition at the critical capacity
αcðκÞ, defined as the maximum α with nonvanishing
entropy: ϕ½αcðκÞ; κ� ¼ 0. For α < αcðkÞ the probability
that an instance of the problem has a solution is 1, but it
sharply drops to zero beyond this threshold [27] (see also
[21] for a recent rigorous proof of the value for zero
margin αcð0Þ ≃ 0.833).
Distances between typical solutions.—We have com-

puted the entropy of solutions, Eq. (2), using the replica
method (details in the SM [23]). As shown in Fig. 2, we
find that the Hamming distance between solutions that
arises from the replica calculation is a rapidly decreasing
function of the margin. The entropy is also a decreasing
function of the margin (see SM [23]), meaning that
solutions with a larger margin are exponentially fewer,
but are much less dispersed. The closest solutions are those
with maximum margin κmaxðαÞ, defined as the largest κ
with nonvanishing entropy: ϕ½α; κmaxðαÞ� ¼ 0.
Isolated and nonisolated solutions.—A key question is

how, below the critical capacity, the solutions are arranged
and how the structure of solution space affects the perfor-
mance of learning algorithms. As discussed in [27,28] the
structure of typical zero-margin solutions in the whole phase
below αcðκ ¼ 0Þ consists of isolated clusters of vanishing
entropy (so-called frozen-one-step replica symmetry break-
ing scenario). This means that one has to flip an extensive
number of weights in order to find the closest solution. This
scenario was recently confirmed also in simple one-hidden

layer neural networks with generic activation functions [17]
(but see also [29]) and also rigorously for the symmetric
perceptron [30,31]. This type of landscape with point
solutions would suggest that finding such solutions is a
hard optimization problem, in contrast to more recent
algorithmic evidence [32,33]. This seeming contradiction
was resolved in [15,19,34] where it was shown that there
exist rare dense regions of solutions that are accessible by
simple algorithms. Subsequent work has suggested that the
architectures and algorithms used for deep networks exploit
the properties of these dense flat minima [16,17,35,36].
Here, we want to understand the geometry of the dense

regions, in particular how they relate to the κ > 0 solutions
(see [17] for a discussion of the distribution of the stabilities
inside a high-local-entropy region). We begin by analyzing
in which part of the landscape high-margin solutions tend
to be concentrated. Given a configuration w̃, that we call
the “reference,” we define the local entropy of w̃ as the
logarithm, divided by N, of

N ξðw̃;d;κÞ ¼
X
w

Xξðw;κÞδ
�
Nð1− 2dÞ−

XN
i¼1

w̃iwi

�
: ð3Þ

This expression counts the number of κ-margin solutions w
which lay at normalized Hamming distance d from the
reference w̃. Studying the local entropy profile as we vary
d allows to characterize the density of solutions (with
given κ) in an extensive neighborhood of any given con-
figuration. We are interested in describing the surroundings
of typical solutions of given margin κ̃, as sampled from the
Gibbs measure Eq. (1). Thanks to the self-averaging
property, for sufficiently large N the local entropy profile
around a typical w̃ can be computed as the double average
over the choice of the reference solution and of the training
set, i.e., by the so-called Franz-Parisi (FP) entropy [28,37]:

ϕFPðd;α; κ̃;κÞ ¼
1

N

�
1

Z

X
w̃
Xξðw̃; κ̃Þ lnN ξðw̃;d;κÞ

�
ξ

: ð4Þ

This quantity can be calculated using the Laplace method.
We performed the calculations in the so-called replica
symmetric (RS) ansatz for the order parameters, taking care
to check its stability with respect to replica-symmetry-
breaking effects (see SM [23] for details). Within the RS
ansatz, negative entropies may appear, signaling that the
number of solutions N ξ is 0 [27].
We found that, for any value of α in the range

0 < α < αcðκÞ, there are several phases depending on
the value of κ̃ (shown in Fig. 3): (1) For κ̃ ¼ 0 we recover
the results of [28]: ϕFPðdÞ is always negative in a
neighborhood of d ¼ 0, meaning that the solutions are
isolated, and it has only one maximum, located at the
typical distance between solutions with margin κ̃ and κ).
(2) When 0 < κ̃ ≤ κ̃maxðαÞ there always exists a neighbor-
hood of d ¼ 0 where the average local entropy is positive,

FIG. 2. Normalized Hamming distance between typical solu-
tions as a function of their margin, for α ¼ 0.2, 0.3, 0.4, 0.6, and
0.8 (top to bottom). The lines become dashed when the entropy of
solutions becomes negative, i.e., when κ > κmax (see text).
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meaning that typical solutions with nonzero margin are
always surrounded by an exponential number of solutions
having zero margin. Furthermore, for small distances the
local entropy is nearly indistinguishable from the geometric
upper bound: almost all configurations around the reference
solution are themselves solutions, up to a small, but still
OðNÞ, Hamming distance. This means that the cluster is
dense. (3) There exists a κ̃minðαÞ > 0 such that if 0 < κ̃ <
κ̃minðαÞ the local entropy is negative in an interval of
distances d ∈ ½d1; d2� not containing the origin. This means
that no solutions can be found in a spherical shell of radius
d ∈ ½d1; d2�. (4) There exists a κ̃uðαÞ > 0 such that if
κ̃minðαÞ < κ̃ < κ̃uðαÞ the local entropy is positive, but it
is nonmonotonic. Notice that for 0 < κ̃ < κ̃u the local
entropy develops a secondary maximum at short distances.
This means that typical solutions with such κ̃ are immersed
within small regions that have a characteristic size—they
can be described as isolated (for κ̃ < κ̃min) or “entropically”
isolated (for κ̃ > κ̃min) balls. (5) When κ̃ > κ̃uðαÞ [which
can only happen if κ̃uðαÞ < κ̃maxðαÞ] the local entropy is
monotonic up to the global maximum, at large distances.
This suggests that typical solutions with large enough κ̃ are
immersed in dense regions that do not seem to have a
characteristic size and may extend to very large scales: the

high-local-entropy regions. We speculate that this property
is related to the accessibility of such regions by algorithms.
The picture described above stays qualitatively the same

if we take κ > 0 and κ̃ ≥ κ. In particular, it is interesting to
note that typical solutions with a given margin κ̃ are isolated
with respect to solutions with the same margin κ ¼ κ̃.
However typical solutions with margin κ̃ are always
surrounded by an exponential number of solutions with
lower margin κ < κ̃. We conclude that even though the
high-margin solutions are completely isolated from each
other, they tend to be closer to and concentrated in the rare
regions of high local entropy of lower margin solutions.
These regions can then be seen as the union of typical
isolated configurations that have a nonzero margin; these
are in turn surrounded by solutions with smaller and
smaller margin κ < κ̃.
Dense cluster threshold.—It has been previously dis-

cussed, using a large-deviation approach, how the geo-
metrical structure of the high-local-entropy cluster changes
with the number of patterns αN [15,34]. It was found that
the cluster fractures above a certain value αu. Numerical
experiments show that this geometrical transition strongly
affects the behavior of algorithms: αu is conjectured to be
an upper bound for the capacity of efficient learning of
algorithms [19].
As discussed in point 5 above, a similar situation occurs

when considering typical high-margin solutions. Let us
define the value α0u as the largest α for which the “large-
scale” phase exists. It is characterized by the property
κ̃uðα0uÞ ¼ κ̃maxðα0uÞ. Beyond this value, only the “isolated
balls” phase (points 3 and 4 in the previous section)
remains. Indeed, we found this α0u to be only slightly
smaller than the upper bound αu derived from the large-
deviation analysis. Thus, α0u can be used to provide an
easier estimate for the algorithmic upper bound.
This is illustrated in Fig. 4, where we show some plots of

ϕFP½d; α; κ̃maxðαÞ; κ�, and its derivative with respect to the

FIG. 3. Local entropy profiles (with κ ¼ 0) of typical solutions
at α ¼ 0.5 as a function of the distance, for various values of κ̃.
The dashed line is the geometric upper bound obtained by
counting all the configurations. The inset shows a detail of the
three curves for κ̃ ¼ 0.02, 0.03, and 0.04 in the small-d range. We
observe that for κ̃ ¼ 0 the solutions are isolated (the curve is
missing for small distances due to numerical issues, but see [28]).
For 0 < κ̃ < κ̃min ≃ 0.03 the entropy has a small positive dense
region at small d and there is an interval where it is negative (see
the κ̃ ¼ 0.02 curve). For κ̃min ≤ κ̃ < κ̃u ≃ 0.04 the profiles are all
positive, but there is a local maximum (see the κ̃ ¼ 0.03 curve).
For larger κ̃, they grow monotonically up to the global maximum
located at a large distance d�ðκ̃Þ (not visible). The entropy is a
monotonic function of κ̃ for all distances up to d�ðκ̃maxÞ ≃ 0.285,
and the highest curve is the one for κ̃max ≃ 0.418. The points with
error bars show the results of numerical experiments (ten samples
at N ¼ 2001 obtained with the focusing-BP (FBP) algorithm,
which by design seeks high-local-entropy solutions; local entropy
estimated by belief propagation, see SM [23]).

FIG. 4. Local entropy profiles (with κ ¼ 0) of typical maximum
margin solutions (left panel) and its derivative (right panel) as a
function of the distance, for different values of α. For α ¼ 0.71
and 0.727 the entropy is monotonic, i.e., it has a unique
maximum at large distances (not visible). For α ¼ α0u ≃ 0.729
the local entropy starts to be nonmonotonic (its derivative with
respect to the distance develops a new zero). The entropy
becomes negative at larger α [i.e., κ̃maxðαÞ < κ̃minðαÞ] in a given
range of distances.
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distance, for several values of α. At α ¼ α0u ≃ 0.73 the
derivative develops a new zero. In this case αu ≃ 0.77.
The discrepancy between the two thresholds can be

mainly ascribed to the fact that in the derivation of α0u only
typical (albeit high margin) solutions are considered. On
the other hand, the fact that αu ≈ α0u suggests that maxi-
mally dense solutions are not too dissimilar and not too
far from maximum-margin solutions. To test this, we
performed numerical experiments by sampling solutions
found with the focusing-BP algorithm [19], which by
design seeks maximally dense solutions, and measured
their average local entropy using belief propagation (see
SM [23] for details). We found that its local entropy profile
is only slightly higher than that of the typical κ̃max solutions,
as shown in Fig. 3. This also agrees with previous findings
concerning the distribution of stabilities of wide and flat
minimizers [17] and the impact of certain losses, such as
the cross-entropy [16], which induce a certain degree of
robustness during training.
The fracturing transition that sets in when the curves

become nonmonotonic is a complex phenomenon. It was
first observed in the aforementioned large-deviations ana-
lysis as a transition in α. The current scheme allows us to
detect the same transition by observing the space around
typical solutions. In addition, we can also observe a
transition in κ̃, where it intersects the value κ̃uðαÞ, and a
transition in κ for fixed κ̃ > κ̃uðαÞ. These transitions can be
understood as the appearance of a characteristic distance
identified by an entropic barrier beyond which the solutions
sparsify dramatically.
Discussion and conclusions.—We have shown that the

dense clusters of solutionswhich are accessedby algorithms in
a nonconvexmodel of neural network coincidewith regions of
theweight spacewhere high-margin solutions coalesce.While
in these regions solutions with the same margin remain
mutually isolated, they are connected through solutions of a
smaller margin. These results shed light on accessibility and
generalization properties, and hopefully can help in develop-
ing rigorous mathematical results for nonconvex neural net-
works. We have verified that similar phenomena take place in
one-hidden-layer neural networks with binary and continuous
weights (in the latter case, also with rectified linear unit
activation functions; SM [23] Sec. III) and that numerical
results on deeper networks corroborate the scenario (see
SM [23] Sec. IV). Also, we refer to [38] for an analysis on
a model with a nontrivial correlated pattern structure, which
shows similar qualitative phenomena.
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