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ABSTRACT: 

 

The recent innovations in remote sensing technologies have given rise to the efficient mapping and monitoring of forests. The 

developments in the sensor implementation have mainly focused on optimizing the payload of the UAV system and allowed the 

users to acquire the data simultaneously with a range of active and passive sensors like high-resolution RGB cameras and 

multispectral cameras LiDAR (Laser Imaging Detection and Ranging). The main objective of this research contribution is to 

combine the Digital Elevation Model (DEMs) from quadcopter Unmanned Aerial Vehicles (UAVs), Fixed Wing UAV-based 

cameras, and iPhone datasets for the forest plots. The datasets from two vegetation seasons, namely leaf-off and leaf-on, were used to 

combine the Digital Elevation Models from different data acquisition platforms. This internship research work aims to create and 

experiment with new methods, techniques, and technologies for the applications of UAV photogrammetry and iPhone LiDAR in 

forest napping and inventory management. CHMs are also generated in this work which helps assess the conditions of the forests in 

the recreational areas, and the possibility of solutions like iPhone LiDAR and UAV photogrammetry would be highly efficient and 

economical. The leaf-off and leaf-on datasets were processed in Agisoft Metashape Professional software to generate dense point 

clouds for the forest plots. The point cloud from the leaf-on dataset was rasterized to generate a DSM whereas the leaf-off point 

cloud generated a DSM of the forest plots after ground filtering with Cloth Simulation Filter (CSF) plugin. The iPhone LiDAR point 

was also rasterized to a DTM product after pre-processing steps and noise removal. The Canopy Height Models (CHMs) were 

generated by subtracting UAV and iPhone LiDAR based DTMs from the UAV leaf on DSM. Finally, the accuracy assessment of 

CHMs from UAB datasets and their integration with iPhone LiDAR has been assessed using the accurate tree heights measured 

during the forest field visits. The proposed methodology can be used for forest mapping purposes where a moderate accuracy is 

requested. 

 

 

1. INTRODUCTION  

The advancements in aerial remote sensing solutions have 

supported the efficient mapping of large forest areas and their 

monitoring. For large-scale forests, aerial photogrammetry and 

satellite datasets have been used widely for recognition of the 

forest ecosystems (White et al., 2016). Low-cost tools such as 

UAVs have gained potential usage in forestry over the last 

decade as they can be used to collect geospatial information 

with multiple sensors simultaneously (Dainelli et al., 2021). 

UAVs used for forestry applications can vary in size as small, 

mini, and micro, depending upon data acquisition requirements. 

UAVs can also be categorized as fixed-wing, rotor-based, and 

hybrid UAV systems based on the wing type. Fixed-wing 

UAVs take off vertically from the base position and are suitable 

for large-scale monitoring of areas with a pre-defined flight 

path, but they need a wider space for operations during take-off 

and landing (Gómez et al., 2019). On the other hand, rotor-

based UAVs platforms are better in terms of mobility with 

easier take-off and landing operations as compared to fixed-

wing UAVs. Both fixed-wing and rotor-based UAVs are 

suitable for forestry applications (Torresan et al., 2017) but 

rotor-based UAVs were always a better choice for researchers 

as they are relatively cheaper and more flexible for scientific 

experiments (Pádua et al., 2017). The developments in the 

sensor implementation have mainly focused on optimizing the 

payload of the UAV system and allowed the users to acquire the 

data simultaneously with a range of active and passive sensors 

like high-resolution RGB cameras and multispectral cameras 

LiDAR (Laser Imaging Detection and Ranging). It can be 

highlighted that UAV platforms with RGB camera sensors are 

suitable for feature detection within a certain region, like tree 

crown size estimation and the estimation of the fractional 

vegetation cover (Riihimäki et al., 2019)). LiDAR sensors with 

penetration capabilities through the forest canopy can be used 

for accurate measurements of forest inventory and also for 

mapping the data below the forest canopy (Hyyppä et al., 2020). 

The advantages of LiDAR sensors come at a higher cost of this 

technology compared to the RGB camera sensors, and at the 

same time, RGB camera sensors are more economical than 

LiDAR (Cao et al., 2019; Ganz et al., 2019). Digital Elevation 

Models (DEMs) have been accepted widely as a source for 

modeling various landscapes and as a solution for various 

environmental problems (Grau et al., 2021). 

In this research work, DTMs were generated from leaf-off 

datasets where the part of the ground can be observed and 
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DSMs from leaf-on datasets to capture the top elevation of the 

forest plots. CHMs represent the tree heights above the ground 

surfaces and are thus, obtained by raster subtraction of the DTM 

raster from DSM raster. The focus of this research work is to 

develop cheaper, more accurate, and faster solutions for 

mapping and monitoring the forest ecosystem with the use of 

iPhone LiDAR and UAV photogrammetry. 

 

2. STUDY AREA AND DATASET ACQUISITION 

SYSTEMS 

The study area for this research work was the forest plots in the 

outskirts of the city of Zvolen in Slovakia. The data was 

collected for the two forest plots of 50 m * 50 m for this 

research work. The geographical location of the forest plots is 

represented below in Figure 1. 

 

 
 

Figure 1: Location of study area forest plots. 

 

Figure 2 represents the schema of the established forest plots in 

the study area in Zvolen. From the forest plots schema in Figure 

2, The two sub-plots ABGH and CDEF have been considered 

for the data acquisition with UAV photogrammetry and iPhone 

LiDAR. 

 

 
 

Figure 2: Forest plots schema considered for the research 

work. 
We have used two datasets from two vegetation seasons: leaf 

off with Fixed Wing (FW) UAV photogrammetry and iPhone 

LiDAR whereas leaf on with Quadcopter (QC) UAV 

photogrammetry. Leaf off is the fall season without leaves with 

ground visible in aerial images whereas leaf on is the season 

when forests are full of vegetation. The leaf-off dataset was 

collected with an ebee plus fixed-wing UAV with an RGB 

camera sensor onboard. For leaf-on datasets, quadcopter-based 

Phantom4K was employed in RTK mode. iPhone 13 Pro Max 

was used for the acquisition of the ground-based datasets for the 

forest plots with 3D modeler software. Figure 3 shows the 

different dataset systems used for the acquisition of the data 

acquisition for the forest plots. 

 

 
 

Figure 3: Dataset acquisition systems used in the research 

work. 

 

In total, 686 images were collected for each forest plot for leaf 

off vegetation season whereas 486 images for each forest plot in 

leaf on vegetation season. 

 

3. METHODOLOGY 

3.1 Processing of Quadcopter UAV-based leaf on dataset 

Leaf-on datasets were collected during the full vegetation 

season with full vegetation cover in the forest plots. This leaf-on 

dataset acquisition aims to create Digital Surface Models 

(DSMs). In the case of Leaf-on UAV datasets, we can only 

capture the top elevation of the vegetation cover without almost 

zero-intervention of the ground surface, which can be used as an 

efficient solution for DSM generation for large and remote areas 

like forest plots. It was also challenging to align and process the 

leaf-on dataset image because the extent of homogeneity was 

very high in the case of leaf-on datasets due to the dense canopy 

and similar features in the consecutive images. 

The leaf-on dataset images were processed in Agisoft 

Metashape Professional software (Agisoft, 2021) to generate 

dense point clouds for both forest plots. As mentioned earlier, It 

was quite challenging to obtain the alignment of the entire 

dataset due to the homogeneity of the features in the areas, even 

with reference image exposure information from GNSS. After 

obtaining the dense point cloud, the noise and outliers were 

removed from raw point clouds using the ‘Noise Filter’ and 

‘Segment’ tools in Cloud Compare software. 

After point cloud filtering, Digital Surface Models (DSMs) are 

generated from leaf-on point clouds obtained from Agisoft 

Metashape processing. For the leaf-on datasets, only canopy 

features are visible with images, so DSM is the elevation/height 

model of all the tree features in the scenario. To compare the 

elevation models with similar grid size and other parameters, 

the OpalsDSM tool from the OPALS modular program was 

used to generate Digital Surface Models (Pfeifer et al., 2014). 

The parameters used in OpalsDSM are: 

• DSM Gridsize:20 cm 

• Minimum number of neighbors for grid interpolation: 2 

• maximum search radius for selection of points: 25 

Figure 4 shows the overall methodology that has been used for 

the generation of DSM from the quadcopter UAV-based leaf-on 

dataset. 

 
Figure 4: Methodology for generation of DSM from Leaf-on 

datasets 
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3.2 Processing of Fixed-Wing UAV-based Leaf off dataset 

Fixed Wing (FW) UAVs are also very useful when it comes to 

UAV applications for large-scale time-efficient mapping of 

forests. FW UAVs can only fly forward and therefore, they 

cannot offer the same levels of maneuverability as quadcopter 

UAVs. Leaf-off datasets were collected during the fall season 

without any vegetation cover. This dataset acquisition aims to 

create Digital Terrain Models (DTMs). In the case of Leaf-off 

UAV datasets, some parts of the ground can be seen through the 

forest canopy, which can be used as an efficient solution for 

DTM generation for large and remote areas. Leaf-off datasets 

are highly homogenous such that it is too hard to find the 

distinguishable features (tie points) between pairs of images. 

The leaf-off dataset was processed in Agisoft Metashape 

Professional software (Agisoft, 2021)to generate dense point 

clouds for both plots. DTM cannot be generated with leaf-on 

datasets as UAV photogrammetry cannot penetrate through the 

canopy and ground cannot be seen through the dense canopy. In 

the case of leaf on datasets, almost 100% of a pixel’s 

contribution comes from the canopy cover and there is no 

possibility to extract information for the surface below the 

canopy. After processing leaf-off dataset images in Agisoft 

Metasshape Professional (Agisoft, 2021) software, the point 

clouds were filtered with ‘Noise Filter’ and ‘Segment’ tools in 

Cloud Compare software for removal of noise and outliers. 

In the next step, the Cloth Simulation Filter (CSF) plugin was 

used to filter out the ground points from point cloud data. It is 

based on cloth simulation which is a 3D computer graphics 

algorithm. In this approach, the point cloud is inverted and then 

a rigid cloth is used to cover the inverted surface. By analyzing 

the interactions between the cloth nodes and the corresponding 

LiDAR points, the locations of the cloth nodes can be 

determined to generate an approximation of the ground surface 

(Zhang et al., 2016). The parameters used for ground filtering 

with the CSF plugin are summarised in Table 2. 

 

Table 1: Description of the parameters used in the CSF 

plugin for ground points filtering. 
 

Parameter Description Selected Value 

in CSF plugin 

Scene Type of terrain steep 

slope/relief /flat 

Cloth 

Resolution 

grid size of cloth for the 

terrain 

1.0 

Max. 

Iterations 

number of iterations for the 

cloth simulation 

500 

Classification 

threshold 

ground points classification 

threshold based on the 

distances between points 

and the simulated terrain 

2.0 

 

Ground points filtered were used in the subsequent step to 

generate Digital Terrain Models (DTMs) from ground points 

filtered leaf off point cloud datasets. Python-based OpalsDTM 

(Pfeifer et al., 2014) module was used for generating a high-

quality DTM with regular grid and structure lines (OPALS, 

2016). The parameters used in OpalsDTM are summarised in 

Table 2. 

 

 

Table 2: Description of parameters and their value used in 

OpalsDTM for generating DTM. 

 

Parameters Values used in OpalsDTM 

DSM Grid Size 20 cm 

Interpolation method kriging 

Minimum number of 

neighbours for grid 

interpolation 

2 

maximum search radius for 

selection of points: 

25 

 

The overall methodology for the generation of DTMs from 

Leaf-off datasets has been shown in Figure 5. 

 

 
 

Figure 5: Methodology for generation of DTM from Leaf-off 

datasets 

 

3.3 Processing of iPhone LiDAR dataset 

Two forest plots of 50 m * 50 m were scanned with an iPhone 

13 pro max equipped with a Gimbal stabilizer for the support 

and stabilization of the iPhone during the data acquisition. The 

scanning was done in a similar way as of UAV flight path with 

an overlap between two consecutive strips. During the iPhone 

LiDAR data acquisition, the 3D modeller software navigates 

through the features which have been scanned so far, helpful in 

data acquisition for further strips. The scanning was done along 

the four reference points (fixed) in each forest plot whose 

coordinates were known with precision. The range of iPhone 

LiDAR scanning was 5 m. 

After data collection, the data acquired was imported from 

iPhone device as 3D object files (.obj) and converted to point 

cloud format in MeshLab software. As the iPhone dataset was 

in an arbitrary coordinate system, it must be transformed into a 

Local Coordinate System like UAV photogrammetry datasets. 

For this transformation, the “Fine registration” tool from 

CloudCompare was used to register iPhone datasets with fixed-

wing UAV datasets. Before fine registration, fixed-wing 

datasets were clipped to the extents of the plots which were 

scanned with iPhone LiDAR.  Post transformation to the local 

coordinate system, the ground points were filtered from point 

cloud datasets with the CSF plugin and used as input in 

OpalsDTM to generate DTMs for all the subplots. The 

parameters for ground filtering were different here as the 

ground points classification threshold should be lower in the 

case of ground-based iPhone LiDAR datasets. Figure 5 

represents the methodology used for the generation of DTM 

from iPhone LiDAR datasets. 

 

 

 
 

Figure 6: Methodology used for processing of iPhone 

LiDAR point cloud dataset. 
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3.4 Combining UAV photogrammetry and iPhone LiDAR  

The Canopy Height Models (CHMs) are generated by 

subtracting DTMs from multiple FW UAV, and iPhone LiDAR 

datasets from UAV DSM. CHMs represent the tree heights 

above the ground surfaces and are thus, obtained by raster 

subtraction of the DTM raster from DSM raster. The DSM from 

the UAV was combined with DTM from iPhone LiDAR to 

generate the CHMs for both forest plots.  

CHM = (RasterDSM - RasterDTM) 

 

 
 

Figure 7: CHMs from the integration of iPhone LiDAR and 

UAV photogrammetry 

 

3.5 Accuracy Assessment of generated CHMs 

The accuracy of CHMs was assessed by using the accurate tree 

heights measured during the forest field visits. A total of 20 

trees were identified from each of Plot 1 and Plot 2 for the 

accuracy assessment of the proposed methodology. The 

coordinates and height data of the trees in these plots were 

already collected from the earlier field visits. The trees' height 

from the validation data and CHMs were compared to analyze 

the accuracy of the proposed methodology for forest monitoring 

inventory management. 

4. RESULTS 

4.1 DSM generated from Quadcopter UAV-based leaf on 

dataset 

The DSM was generated from quadcopter UAV leaf on datasets 

using the OpalsDSM module from the OPALS package. The 

parameters like grid size (20 cm), searchRadius, and nearest 

neighbors were kept the same as OpalsDTM to keep it a 

standard elevation model for comparison and CHM generation. 

The alignment in the leaf on datasets was perfect, and so was 

the quality of DSMs obtained from them. 

 

 
(a) 

 

 
(b) 

 

Figure 8: DSM generated from leaf-on datasets for (a) Plot 1 

(b) Plot 2 

 

4.2 DTM generated from Fixed Wing UAV-based leaf off 

dataset 

Ground points filtered through the CSF plugin in Cloud 

Compare were used as input for OpalsDTM. Even after using 

the best possible parameters for generating dense point clouds, a 

few areas of the plots were still missing from the dense point 

clouds. In order to fill up the area gaps, a larger value of search 

radius (25 & 40) and a lesser value of a minimum number of 

neighbors (2) for interpolation were considered. DTMs 

generated from FW UAV photogrammetry point clouds have 

been represented below in Figure 9. 

 

 
(a) 

 

 
 

(b) 
 

Figure 9: DTM generated from FW UAV-based leaf-off 

datasets for (a) Plot 1 and (b) Plot 2. 
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4.3 DTMs generated from the iPhone LiDAR dataset 

The DTMs were generated from the iPhone LiDAR dataset after 

filtering the ground points. The iPhone DTMs are visualized in 

the below in Figure 10 below. 

 

        
(a) 

 

 
(b) 

 

Figure 10: DTM generated from iPhone LiDAR leaf-off 

datasets for (a) Plot 1 (b) Plot 2 

 

4.4 Canopy Height Models (CHMs) from the integration of 

UAV datasets and iPhone LiDAR 

The Canopy Height Models (CHMs) are generated by 

subtracting DTMs from multiple datasets from UAV DSM. 

CHMs represent the tree heights above the ground surfaces and 

are thus, obtained by raster subtraction of the DTM raster from 

DSM raster. The DSM generated from the Quadcopter UAV 

leaf-on dataset has been used to generate CHMs for fixed-wing 

UAV photogrammetry, quadcopter UAV photogrammetry, and 

iPhone LiDAR datasets. The quality of CHM directly depends 

on the accuracy of the source. DSM and DTM. The accuracy of 

CHMs can be assessed by using the accurate tree heights 

measured during the forest field visits. The CHMs are 

visualized below in Figure 11 and Figure 12. 

 

 
 

(a) 

 

 
(b) 

 

Figure 11: CHM generated for Plot 1 with (a) FW UAV + QC 

UAV dataset and (b) iPhone LiDAR + QC UAV dataset. 

 

 
(a) 

 

 
 

Figure 12: CHM generated for Plot 2 with (a) FW UAV + QC 

UAV dataset and (b) iPhone LiDAR + QC UAV dataset. 

 

4.5 Accuracy Assessment of CHM generated from 

integration of UAV and iPhone LiDAR datasets. 

The accuracy of the CHMs generated from UAV datasets and 

integration of UAV and iPhone LiDAR datasets was compared 

to analyze the application of iPhone LiDAR for forest mapping 

and inventory management applications. For the accuracy 

assessment of CHMs, the tree heights of 20 trees each from Plot 

1 and Plot 2 were validated with measurements from the field 

visits. Let's say the height of a tree from CHM at a coordinate 

(x,y) is hchm, and the tree height at the same coordinate from 

field measurement is hmeasured, then the error is (hmeasured - hchm)- 

Similarly, the average of the tree heights of 20 trees from CHMs 

was calculated individually from CHMs and compared with 

actual tree height measurements. The results from the accuracy 

assessment indicate a Root Mean Square Error (RMSE) of 

1.325 m for CHMs generated from FW UAV and QC UAV 

datasets, RMSE of 2.406 m for CHMs generated from iPhone 

LiDAR and QC UAV datasets, and 2.091 m for all the CHMs 

obtained from iPhone LiDAR, FW UAV, and quadcopter UAV 
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datasets. The accuracy assessment results are summarised below 

in Table 3. 

 

Table 3: Summary of the accuracy assessment results of CHMs 

from multiple sources 

 

Plot 

no. 

Source Average 

tree height 

for 20 

trees from 

CHMs 

Average 

measured 

tree heights 

of 20 trees 

from the 

field visits 

Root Mean 

Square 

Error in the 

estimated 

tree heights 

(herror) 

Plot 1 UAV FW 

+ UAV 

QC 

32.216 m 30.925 m 1.417 m 

Plot 2 UAV FW 

+ UAV 

QC 

31.419 m 29.489 m 1.328 m 

Plot 1 UAV and 

iPhone 

LiDAR 

32.572 m  30.925 m 1.876 m 

Plot 2 UAV and 

iPhone 

LiDAR 

32.553 m 29.489 m 2.937 m 

 

5. CONCLUSIONS 

The primary objective of this research work is to explore the 

combined potential of UAV photogrammetry and iPhone 

LiDAR datasets for forestry applications. The purpose of the 

Fixed Wing UAV-based photogrammetry datasets from leaf-off 

vegetation season was to generate the DTM after ground points 

filtering. DSM was obtained from a quadcopter UAV-based 

camera dataset acquired in leaf off-vegetation season. The point 

clouds were filtered from point cloud datasets with the CSF 

plugin tool in CloudCompare. Canopy Height Models (CHMs) 

were derived from raster subtraction of the DTMs generated 

from fixed-wing UAV, iPhone LiDAR datasets from leaf off 

vegetation season, and DSM from quadcopter UAV leaf on 

dataset. CHMs were generated from the raster subtraction of 

DTM from DSM for both the forest plots. 

From the results, it can be concluded that the higher the ground 

points with the distribution of the points, the better would be the 

quality of DTM and CHM. The accuracy assessment of DTMs 

generated from multiple data sources was done with the 

measurement of tree heights from the forest field visits. From 

the accuracy assessment results, it was found that CHMs from 

the DSM of QC UAV and DTM of FW UAV have lower 

RMSE as compared to the CHM obtained from iPhone DTM 

and QC DSM. The overall RMSE for the CHMs was found to 

be 2.091 m which means the error in the tree height estimated 

from the proposed methodology was around this range. So, the 

proposed workflow can be used in projects or work where 

moderate accuracy is requested. The proposed workflow can be 

used with iPhone LiDAR as an alternative and economical 

solution to TLS scanning where moderate accuracy is 

acceptable. 
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