
01 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Research, Implementation and Analysis of Source Code Metrics in Rust-Code-Analysis / Ardito, Luca; Ballario, Marco;
Valsesia, Michele. - ELETTRONICO. - (2023), pp. 497-506. (Intervento presentato al convegno 23rd International
Conference on Software Quality, Reliability, and Security (QRS) tenutosi a Chiang Mai (Thailand) nel 22-26 October
2023) [10.1109/QRS60937.2023.00055].

Original

Research, Implementation and Analysis of Source Code Metrics in Rust-Code-Analysis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/QRS60937.2023.00055

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983603 since: 2023-11-05T22:33:17Z

IEEE

Research, Implementation and Analysis
of Source Code Metrics in Rust-Code-Analysis

Luca Ardito, Marco Ballario, Michele Valsesia
Dept. of Control and Computer Engineering

Politecnico di Torino
Torino, Italy

luca.ardito@polito.it
s286154@studenti.polito.it
michele.valsesia@polito.it

Abstract—The software industry is proliferating at an unprece-
dented pace, with a massive volume of software being released
every day. Among the manifold challenges faced by software
engineering researchers, one of the most significant is maintaining
and enhancing software quality. Software metrics, designed to
quantify various aspects of software, are essential in achiev-
ing this goal. They provide developers with a comprehensive
snapshot of a codebase’s status throughout its evolution, thereby
facilitating timely intervention and continual improvement. Tools
like Rust-Code-Analysis (RCA), developed and maintained by
Mozilla, serve as crucial aids in this endeavour. RCA is a
static code analyser that scrutinises a source code without
executing it and computes a series of source code metrics, which
quantitatively assess code characteristics such as complexity,
maintainability, and robustness. The present article seeks to
contribute to this area by undertaking a threefold task. Firstly,
we intend to explore new source code Java metrics that can be
integrated into RCA. We have chosen Java language due to its
not yet declined pervasiveness in many industrial software and
world of smartphones. The metrics will be selected based on
their potential to provide valuable insights into codebase status
and facilitate optimisation. Once the new metrics have been
identified, the second part of our task involves implementing
these metrics within RCA’s library and also accessed through
its CLI. This involves the coding and integration of the metrics
using the modern Rust language, taking advantage of its unique
features like memory safety without garbage collection, and
data concurrency. Finally, to ascertain the effectiveness and
reliability of metrics, we conduct an evaluation using diverse Java
repositories. This involves studying the values generated by these
metrics across repositories of varying sizes and levels of activity.
From the smallest library to large-scale applications, our analysis
spans various types of repositories, ensuring comprehensive
coverage.

Index Terms—software engineering, software quality, software
metrics, static analysis

I. INTRODUCTION

In today’s digital age, where an increasingly massive
amount of software is continuously produced, executed and
maintained, software quality is more crucial than ever. Soft-
ware metrics are methods to quantitatively measure particular
aspects of software products, processes, and resources [1].
Measurements enable the evaluation of software quality in
the most objective way possible. However, each software
metric has restrictions and limitations, and an optimal overall
software quality indicator still does not exist.

Source code metrics are a subset of software metrics which
specifically focus on measuring particular source code char-
acteristics [2]. Software engineers widely use source code
metrics to identify complex or risky areas in the source
code, assess the quality and maintainability of a project over
time, evaluate software performance, optimise source code for
specific targets and improve team productivity. The history of
source code metrics can be divided into two main ages [3].
Before 1991, the first age of source code metrics, software
engineering researchers proposed metrics mostly based on
complexity, such as the number of lines of code (LOC) and
its derivative, McCabe’s Cyclomatic Complexity (CC) and the
Halstead metrics suite. After 1992, with the beginning of the
second age of source code metrics, new metrics started focus-
ing more on measuring object-oriented design and paradigm
aspects. In this period, Chidamber and Kemerer defined one
of the most adopted sets of object-oriented metrics of all
time, known in the literature as the CK metrics suite. Lorenz
and Kidd and the MOOD metrics suites are also some of
the results of this era. Static code analysers are automated
tools designed to analyse a source code without executing
it, making them particularly adapted to quickly computing
static source code metrics. Scientists started reasoning about
static code analysis even before the birth of digital computers
by analysing algorithms and programs on paper. However,
the development process of automatic static code analysis
tools only began in the late seventies, and its progression
can be split into three generations [4]. The first generation
of static code analysers, in the late seventies, focused only on
finding errors and bugs. A product of that generation is Lint,
a program to flag common mistakes and provide warnings
in a C language source code. Despite its excellent design,
however, the tool also produced a lot of false positives, which
required significant time to review. In the late nineties and
early years of the new century, the second generation of static
source code analysers introduced two new enhancements: path
analysis techniques and separation of the analysis engine
from the database of known issues. Path analysis techniques
refer to all those mechanisms capable of switching the focus
from reasoning about individual source code files to source
code file’s runtime interactions. Separating the analysis engine

from the database of known issues allows the two entities to
develop separately. One can be extended or improved without
the other being conceptually affected. However, despite the
improvements, these products presented scalability problems
and reported still many false positives. To overcome these
issues, later in the year two thousand, the third generation
of static code analysers started using abstract representations
of source code blocks: Abstract Syntax Trees (AST). An AST
representation captures the core logic of a program by remov-
ing language-specific details and treats source code blocks as
a series of nodes in relation to each other, leading the way for
the execution of more efficient analyses.

Rust is a modern programming language focused on per-
formance and safety, even in a concurrent environment. It has
been designed in 2006 by Graydon Hoare, a Mozilla Research
employee, as a personal project. After being announced by
Mozilla in 2010, Rust has grown fast thanks to its features,
gaining much attention worldwide, even from major software
engineering companies. The Mozilla Foundation, in particular,
is trying to adopt it for more and more of its projects, including
the Firefox browser. Rust-Code-Analysis1 (RCA) is a Rust
library and a command line project started by Mozilla and then
heavily expanded and improved, over the last three years, with
the contribution of the Department of Control and Computer
Engineering of Politecnico di Torino which has developed
most of the metrics present in the software, unit and integration
tests, and the Continuous Integration (CI) environment [5]. It
is a static code analyser able to extract several source code
metrics from various programming languages. The project is
open-source and it has been created with the aim of supporting
the Firefox browser development process, later explained in
this article. To avoid confusing this software with the Rust
programming language, henceforth, we are going to call it by
its own acronym: RCA. This research aims to extend RCA by
implementing in its library new source code metrics for the
Java language. We have chosen a set of six new metrics starting
from an analysis of the state-of-art, both from an academic
and market perspective, and considered their implementation
feasibility within RCA. As the next step, we have developed
the selected metrics in order to have a way to automatically
collect measures to study. Finally, we have analysed the
data generated by these metrics on codebases with different
characteristics with the goal of demonstrating the effectiveness
of these metrics on real source code repositories. The main
objective is to find answers to the following research questions:

• RQ1: Is the value N for a metric X good for a codebase
with K lines of code?

• RQ2: What do the X metric values for a codebase Y
show?

• RQ3: When can a codebase be considered maintainable?
• RQ4: What are the most valuable source code metrics?
• RQ5: What are the thresholds for each metric value?

1https://github.com/mozilla/rust-code-analysis

We have organised the rest of the paper as follows. Section
II describes the research process and the series of works we
have consulted to choose these six metrics. Section III reports
the definition of these metrics and describes their implemen-
tation process in detail. Section IV presents the procedure
followed to produce the research results. Section V details our
findings and reports both quantitative and qualitative results
through charts and tables, highlighting the most significant
discoveries as well as answering research questions. Finally,
Section VI summarises our work and its main outcomes.

II. RELATED WORK

Given the broad utility of software metrics in software
engineering, computer science researchers routinely engage
in the ongoing review and evaluation of existing metrics and
the proposal of modern ones. For our work, we have looked
at different software metrics from an academic and a market
perspective by reviewing several scientific papers and software
products. Combining these two approaches together, we were
able to evaluate both formal utility and practical feasibility in
choosing the metrics.

Our academic analysis started from a study which reports a
list of the most cited software metrics in literature in addition
to a list of tools to compute them [6]. The work mainly focuses
on software maintainability, defined as the ease with which
a software system or module can be modified in order to
be improved, corrected, or adapted to its environment. This
Sistematic Literature Review provided valuable information
for our research. Still, the research results value is strictly
related to software maintainability, which is only one of the
aspects considered in our study. Other works have instead
produced a list of the most reviewed software metrics in the
software engineering state-of-art considering separately static
metrics, obtainable from the source code, and dynamic metrics,
only retrievable from a compiled source code model or through
its execution [2] [7]. Given the nature of the tool we are
working with, we are only interested in static source code
metrics. These two articles point out exactly the difference
between the two kinds of metrics, in addition to providing
us with a trace for finding the optimal metrics to develop by
limiting the implementable choices. Object-oriented metrics
are among the most reviewed types of source code metrics
since they measure object-oriented software characteristics.
A recent study critically evaluates both static and dynamic
object-oriented metrics in depth and introduces a new concept
of hybrid metrics, a new class of metrics obtained from the
combined usage of both types of metrics [8]. In another
article, instead, the five CK metrics, plus some traditional
ones, are classified based on five determined properties in
order to demonstrate their usefulness in improving object-
oriented source code quality [9]. Given the broad usage of
this particular programming paradigm, there has undoubtedly
been an increasing interest in object-oriented metrics in recent
years. However, the most widely known and used object-
oriented metrics can only be computed straightforwardly via
dynamic analysis, leaving us with only a few possible options.

More recently some researchers have considered two modern
additional categories of software metrics: component-based
and aspect-based software metrics [10]. Software compo-
nents are the software equivalent of hardware components. In
component-based programming, application designers define
software components as independent entities to assemble to
form the whole software product. Aspects are an abstraction
that represents software requirements or functionality scattered
across multiple software modules. They are a recent concept
designed to ease the difficulty of implementing cross-cutting
concerns features in modern software projects. However, the
applications of both component-based and aspect-based soft-
ware metrics are restricted to more advanced software prod-
ucts developed exploiting these new types of programming
paradigms. Hence, compared to the object-oriented ones, they
are less adopted. Besides maintainability, programmers also
use software metrics to assess the security level of programs. A
plethora of articles propose specific security metrics alongside
examples of their computation [11] [12] [13]. Most of the
metrics proposed are related to object-oriented safety aspects
such as data hiding and error and exception handling, which
can cause security issues in the final software product if over-
seen. However, since they are strictly associated with objects,
some proposed metrics are only precisely implementable via
dynamic means. Furthermore, even if a static code analyser
would implement them, their usage would usually be not
advised for performance reasons. Static code analysers aim,
in fact, to compute source code metrics precisely and fast.

Finally, for our market analysis, we have investigated soft-
ware metrics produced by a small set of proprietary and open-
source code analysers used daily by developers worldwide
by inspecting their documentation. The five products selected
for this documental analysis are SonarQube, NDepend, Visual
Studio, JaSoMe2 and CK3. This market-focused investigation
made emerge practical utility of aspects which have not
been considered previously. Among them are the detection of
duplicated code, the usage of a database of known issues, and
test-related metrics. Duplicated code is commonly subjected
to accidental mistakes by programmers since it is easy to
forget to update all occurrences of duplicated source code
when maintaining a codebase [14]. Using a database of known
issues is especially profitable for detecting security threats in
the source code. The database consists of a giant list of well-
known security issues consultable during the analysis to spot
the most common mistakes quickly, working similarly to Lint
but on a larger scale. At last, test-related metrics allow users
to verify the formal correctness of the inner logic of software
quantitatively by performing runtime tests [15].

III. METRICS DEFINITION AND IMPLEMENTATION

Analysing academic works and market products resulted in
a list of theoretical candidate software metrics to implement.
Before including any of those metrics inside RCA, though,

2https://github.com/rodhilton/jasome
3https://github.com/mauricioaniche/ck

we have performed a feasibility analysis task to determine
the most fitting ones. We have performed this practical ex-
amination by considering the RCA software architecture, the
Rust language capabilities, and the programming languages on
which each candidate metric is applicable. RCA can generate
metrics at different levels of granularity, adapting metrics
computation to the input programming language. To better
understand this, we introduce as an example the source code
of a ”Hello World” Rust program. The following Rust code is
composed of a main function whose sole purpose is to print
out the well-known string.

fn main() {
println!("Hello World!");

}

The measurement process is made possible by traversing and
reviewing in a pre-order fashion the nodes of an intermediate
representation of the input source code, the Abstract Syntax
Tree (AST), internally generated by the Tree-Sitter library.
Figure 1 shows, as graphical evidence, the AST produced by
parsing the ”Hello World” Rust program. On top of the AST,

Fig. 1. AST graphical representation of a ”Hello World” Rust program.

RCA builds another abstraction by dividing the source code
into blocks called spaces. A space represents any structure in
the source code which could contain a function declaration,
such as a class or a namespace. Spaces abstraction allows the
library to generate metrics at different levels of granularity and
export the relative measures into some of the most common
data-serialisation formats, such as JSON. In the following
source code, we have reported the JSON spaces structure of
the ”Hello World” Rust program. A space type is characterised
by its ”kind” field, which represents its type. In this structure,
we define as:

• Outer space: a space containing another space.
• Inner space: a space contained in another space.

In the JSON spaces structure below, for instance, ”main.rs”
is the outer space associated with the whole source code file,
while ”main” is the inner space associated with the program
main function.

{
"name": "main.rs",
"start_line": 1,
"end_line": 3,
"kind": "unit",
"spaces": [

{
"name": "main",
"start_line": 1,
"end_line": 3,
"kind": "function",
"spaces": [],
"metrics": {...}

}
],
"metrics": {...}

}

We have excluded all dynamic and language-specific metrics
from our selection because their implementation would be
highly complex and poorly precise. They are born to be
computable by dynamic code analysers, which can analyse the
program during its execution. At this stage, dynamic informa-
tion about the runtime behaviour of applications is directly
accessible since a compiler has already elaborated the source
code. Extracting dynamic data without executing a program
would often require emulating what the compiler does, which
is a highly complex task for a static code analyser meant to
be quick such as RCA. Moreover, an approximate emulation
of a compiler’s behaviour would produce less accurate results
than a dynamic code analyser. Given object-oriented metric
relevance in the academic and market fields, we have then
established to base our implementation on the Java language.
If needed, the RCA modular structure allows developers to add
these metrics for other programming languages as well since
the logic of each metric is confined to a specific Rust module
within the library. The selected six metrics are subdivided
into three classes: size metrics, object-oriented metrics, and
security metrics. Every metric provides some information
about distinct software attributes. Size metrics determine the
size of a source code or an entire codebase. Object-oriented
metrics assess how good the design of a software is according
to specific object-oriented programming principles. Lastly,
security metrics provide insight into the safety level of a
source code.The implementation process has followed a strict
review pipeline, including automatic and human controls of
changes introduced in RCA. Automated compilation tests on
both Linux and Windows have been performed by an automatic
Continuous Integration (CI) system. Once the automatic tests
are passed, the changes are eventually evaluated by RCA
maintainers and improved until the final approval. When every
aspect has been positively evaluated, changes are merged into
the repository master branch. As a preliminary task, we have
also implemented a set of integration tests on the whole
library4. Moreover, each implemented metric comes with an

4https://github.com/mozilla/rust-code-analysis/pull/724

adequate collection of unit tests to verify the correct metrics
computation for the most common cases and some rare corner
cases. These unit tests also help new contributors understand
how a metric is computed on source code, making a new
metric comprehension process more straightforward.

The Assignments, Branches and Conditions (ABC) metric
is a size metric proposed by Jerry Fitzpatrick in 1997 as a
way to count the essential operations performed by a source
code [16]. The author proposed the ABC as an alternative
code metric to the Halstead and the LOC metrics since, at
the time, the Halstead metrics were still highly disputed and
not much adopted, while LOC metrics were not objectively
defined. The ABC metric is a three-dimensional vector where
each component is a counter of three fundamental operations
in imperative languages: storage, branching, and testing. The
objective is to measure the size of software in terms of the
number of basic operations it performs. Imperative program-
ming languages allow the exact counting of the number of
basic operations a program performs since they describe ex-
actly how it behaves using statements. In contrast, declarative
programming languages hide low-level operations and only
describe an application by expressing its expected results. The
ABC can also be represented by the magnitude of the vector
using the following formula:

ABC =
√
A2 +B2 + C2

As a reference for our implementation, we used the source
code of GMetrics5, an open-source static code analyser for
source codes written in Groovy: a programming language
alternative to Java for the Java platform. The project source
code and its many tests provided a better understanding of how
the ABC metric should be computed for the most common
cases. We also have added specific implementation details to
the metric definition in order to cover unique and complex use
cases6: a common practice when applying software metrics
to real complex scenarios. In particular, for example, we
have avoided counting constant declarations as assignment
operations, as clearly stated by the ABC definition. On the
other hand, since the original paper has not specified further
indication, we have introduced our mechanism for counting
unary conditional expressions as conditions. This decision
has allowed us to improve the metric precision and detect
additional conditions. The idea is to increment the conditions
counter with expressions proven to be boolean based on their
location, even without knowing their runtime type. With it,
we can count the following elements without resorting to
advanced dynamic analysis techniques to resolve types:

• Conditions inside other conditions
• Conditions preceded by a ”not” boolean unary operator

inside:
– Method invocation arguments
– Assignment operations
– Returned values in return statements

5https://github.com/dx42/gmetrics
6https://github.com/mozilla/rust-code-analysis/pull/836

– Returned values in implicit return statements
in lambda expressions

– Ternary expressions elements
The Weighted Methods per Class or Weighted Method Count

(WMC) is an object-oriented metric announced by Chidamber
and Kemerer in 1994 as one of the metrics of the CK
object-oriented suite [17]. The WMC was born to measure
the complexity of object-oriented source code and can be
computed using different complexity measures. However, the
most common way to calculate the WMC, and also the way we
have chosen to implement it7, relies on Cyclomatic Complexity
(CC), as defined by McCabe [18]. The general metric formula
defines the WMC as the sum of CCs of the methods declared
in a class:

WMC =

n∑
i=1

CCi

Despite the WMC being the sum of the CCs of the methods
defined inside a class, the two metrics have two notable key
differences. Firstly, the WMC is associated with classes, so its
value cannot propagate from inner spaces to outer spaces in
the same way as it happens for the CC. Secondly, the CC for
a class takes into account all the complexity enclosed inside a
class declaration, including any complexity coming from class
properties initialisation, such as when using a ternary operator
to initialise a class attribute, for example. Instead, the WMC
only considers the complexity of the declared methods. Since
RCA already computes the CC, our implementation makes
use of its value and carefully propagates it from inner to outer
spaces only when requested. This happens in the case of a
local inner class, i.e. when a class is declared inside another
class method.

The Number of Public Methods (NPM) and the Number
of Public Attributes (NPA) are two object-oriented metrics
which count respectively the number of public methods and
the number of public attributes declared inside a class [19].
We refer to NPM and NPA also as visibility metrics because
they measure the exposure of class members to the outside
classes. The Java language defines three levels of accessibility
for class methods and attributes: public, protected and private.
Private members are only accessible inside the class, protected
members are accessible from subclasses and classes in the
same package, and lastly, public members are accessible from
everywhere. Public class members are, therefore, the most
exposed members of a class in Java. Specifically, a high NPM
value for a class may be used as an indicator for two kinds of
problems:

• A class has many responsibilities and is performing too
many tasks, thus making the class very complex, as in the
case of a utility class. In this scenario, it can be helpful to
check the WMC value of the class to understand whether
it is genuinely complex.

• A class presents high coupling toward the other classes
of the project. Class coupling defines the strength of the

7https://github.com/mozilla/rust-code-analysis/pull/807

relationships between classes and should be reduced to
improve class maintainability and reusability [20].

Similar observations can also be made for the NPA metric.
Therefore, having classes with low NPA inside a project can
be a reasonable strategy to reduce complexity and coupling
and increase data safety within classes. Having many public
attributes in a class, in fact, could mean that a class is
performing many complex tasks, and if it is relying on other
classes, it is also exposing many of its data to external security
threats. Our implementations for the NPM8 and NPA9 metrics
deal with a specific propagation of the metrics from inner
to outer spaces similar to the one introduced for the WMC.
Alongside the NPM and NPA measures, we have also included
the counts of the total Number of Methods (NM) and total
Number of Attributes (NA) of a class. These two metrics are
also reported in the literature, respectively, as NOM and NOA
[21]. Still, we have decided to use the two-letter acronyms
since RCA already contains an implementation for the NOM
metric. The difference between the two RCA implementations
of the NOM and NM metrics is that the NOM acts on all types
of spaces, while the NM is computed only for spaces having
the field ”kind” set to class or interface. All the included
measures have then been reported and split among classes and
interfaces to give the end user more detailed information.

The Class Operation Accessibility (COA) and the Class
Data Accessibility (CDA) metrics are an adaptation of the
Classified Operation Accessibility (also abbreviated with COA)
and Classified Class Data Accessibility (CCDA) metrics for
methods and attributes which are not classified, which means
they do not need unconventional security protection [12]. We
propose these two adaptations of two existing security metrics
because the two original definitions strongly rely on the
concepts of classified methods and classified attributes, which
are rare to find in mainstream codebases and are concepts
related to a specific representation of software called UMLsec.
UMLsec is an extension of the Unified Modelling Language
(UML) which allows the integration of security information
inside a traditional UML diagram. It is employed to design
secure software applications and control better security charac-
teristics such as confidentiality, access control, and information
flow. A classified attribute is a class property defined as
secrecy in the UMLsec. A classified method is a class method
interacting with at least one classified attribute. Classified
Operation Accessibility (COA) is the ratio of the number of
classified public methods to the number of classified methods
in a class. Classified Class Data Accessibility (CCDA) is the
ratio of the number of classified class public attributes to the
number of classified attributes in a class. These two metrics
aim to discover security issues at an early stage by allowing
software designers to compare the security of program designs
and can be expressed with the following formulas:

COA =
CPM

CM
CCDA =

CCPA

CA

8https://github.com/mozilla/rust-code-analysis/pull/857
9https://github.com/mozilla/rust-code-analysis/pull/861

Where CPM is the number of Classified Public Methods
declared in the class, CM is the total number of Classified
Methods declared in the class, CCPA is the number of Classi-
fied Class Public Attributes, and CA is the number of Classified
Attributes declared in the class. To make the metrics more
beneficial for the average programmer, not used to managing
classified class members, we have adapted the original two
definitions to all methods and attributes, whether classified or
not. The two new definitions provide the user with two new
metrics to perform a security evaluation of a class in terms of
exposed operations and data, effectively assessing the attack
surface of an object of that class. As a reference, we can derive
and calculate the two new metrics using the formulas:

COA =
NPM

NM
CDA =

NPA

NA

Where NPM is the Number of Public Methods, NM is the
Number of Methods, NPA is the Number of Public Attributes,
and NA is the Number of Attributes. The implementation of
the COA and CDA in RCA has been integrated inside the
NPM and NPA modules, which provided the NPM and NPA
measures and the counts of total methods and attributes per
class: the only inputs necessary to compute these two metrics.

IV. METHODOLOGY

To test out implementations, we have applied our metrics
on some well-known and maintained Java projects of different
sizes chosen from the most popular projects, at the time of
the research, of diverse categories of application available on
the Maven Central Repository which we have reported in
Table I. We have decided to collect data from Java codebases
because of the considerable popularity of the programming
language and its numerous modern applications, both web
and mobile, in many industrial and commercial fields. The
Maven Central Repository is a public and reliable collec-
tion of repositories accessed by the Apache Maven build
automation and dependency management tool for resolving
Java dependencies and building Java projects. By creating a
Maven project, developers can import external Java libraries
into their projects by adding the corresponding dependency
link to the Maven Central Repository. The repository contains
many popular Java projects used by programmers worldwide
and is continuously maintained. Using those repositories as
inputs, our metrics analysis10 has been conducted in two parts:

• spatial analysis: An analysis focused on project size,
performed on measures obtained from repositories of
various sizes pinned to a specific version.

• temporal analysis: An analysis focused on project evo-
lution over time, performed on metric values computed
from several versions of the same codebases.

We have conducted both analyses using metrics data produced
by RCA, obtained from the selected repositories. The raw
measures have then been further elaborated and reported into
graphs and tables using custom Python scripts. The Python

10https://github.com/marco-ballario/metrics-analysis

TABLE I
REPOSITORIES SELECTED FOR THE ANALYSIS.

Name Size Version Java Files
mockito Very large 4.7.0 949
spring-kafka Large 2.9.0 502
gson Medium 2.9.1 218
Java-WebSocket Medium 1.5.3 175
java-jwt Small 4.0.0 75
FastCSV Small 2.2.0 39

visualisation package, Matplotlib, has then been employed to
produce all graphs of the two analyses. To produce the graphs
and tables of the spatial and temporal analyses starting from
the RCA library, we have developed three different Python
scripts, each of them with a specific purpose:

1) data-production.py
2) spatial-analysis.py
3) temporal-analysis.py

The data-production.py script automatically fetches all repos-
itory data from the internet, using Git, downloads the RCA
library, and calls the RCA CLI over all fetched codebases
source codes in order to produce JSON files containing the
measures needed for the spatial and temporal analysis. The
spatial-analysis.py script computes cumulative sums, maxi-
mums and average values from the JSON files produced by
RCA. Cumulative minimums values have not been computed.
All the implemented metrics are, in fact, designed to highlight
anomalies with high values, and low metric values are, in this
case, not considered an issue. The Python script then uses these
three cumulative values to create spatial analysis graphs. The
code computes the cumulative values in the following way:

sumc(mf , n) =

n∑
f=1

mf

maxc(mf , n) = max(m1, · · · ,mn)

avgc(mf , n) =
1

n

n∑
f=1

mf

In the previous formulas, n is the total number of JSON files
analysed for a codebase c, and mf is the metric value for
the file f of the same codebase, read from the outermost
space in the JSON file. The temporal-analysis.py script pro-
duces graphs and tables using information about classes and
interfaces defined in the projects, in addition to the same data
computed by the previous script. Class and interface names,
along with their relative metrics values, are extracted from the
JSON measures files generated by RCA and stored in specific
collections. The script computes this information by applying
the previous formulas and the following one:

mc(ms,mt, n) = ms −
n∑

t=1

mt

In this additional formula, mc is the true class metric value,
ms is the metric value of the class read from its relative JSON

file space of ”kind” class, n is the number of terminal classes
contained in the space of ”kind” class considered, and mt

is the metric value of the terminal class t. In this context,
we define a terminal class as a class that does not contain
any additional class declarations inside its declaration body.
So a space of ”kind” class related to a terminal class already
contains its true class metric value. This formula is valid for
both classes and interfaces for WMC, NPM and NPA. Class
or interface ABC is already available in spaces of those kinds.
Class or interface COA and CDA are computed using their
respective class or interface NPM, NM, NPA, and NA. If a
class or interface has NM or NA equal to zero, its COA or
CDA is set to zero to avoid introducing infinite values.

V. RESULTS

For the spatial analysis, we have produced three different
types of bar graphs, each focused on various metrics and
aspects of the measured codebases:

1) Cumulative metrics bar graphs
2) Metric comparisons bar graphs
3) Visibility metrics bar graphs

In the cumulative metrics bar graphs, for each codebase, we
have represented the three cumulative measures discussed in
the previous section: cumulative sum, maximum metric value
across every measure file, and cumulative average. Figure
2 illustrates this type of bar graph for the ABC metric.
The metric comparisons bar graphs compare some of our
metrics with some of those already implemented in RCA. The
metrics visualised are the ones that share the most similarities
between them in terms of objectives and usage. The purpose
is to demonstrate the reliability of our metrics and analyse
their behaviour in comparison to similar existing trustworthy
metrics. They are reported below in Figure 3 and Figure 4. The
visibility metrics bar graphs display the visibility properties
of class measures to show how repositories of different sizes
can manage the visibility of their operations and data. Figure
5 shows the percentage of public methods over each declared
method in a codebase. Figure 6 shows the percentage of public
attributes over each declared attribute in a codebase.

For the temporal analysis, we have produced tables, line and
bar charts to visualise the measures of the newly implemented
metrics on the selected repositories over time. For this analysis,
we have generated:

1) Cumulative metrics line charts
2) Files and classes rankings tables
3) Metrics thresholds bar graphs

The Cumulative metrics line charts report the trend of averages
and maximums cumulative measures for each version of the
considered codebase to visualise how metrics evolve in time
within a codebase. Figure 7 shows that the size and complexity
of average cumulative measures present a similar trend over
time for the Java JWT project. Figure 8 displays, instead, the
trend of average cumulative visibility measures for the Java
JWT project. The Files and classes rankings tables show the
top three files and classes with the highest metrics values over

Fig. 2. ABC cumulative measures.

Fig. 3. Size measures comparison.

time. Table II shows the most complex classes for the Java
JWT project for what concerns the WMC metric. Table III
illustrates the classes with the highest NPM present in the
Java JWT project. The column on the left contains the class
name. The columns on the right contain the metric values for
each version or range of versions of the codebase. The Metrics
thresholds bar graphs illustrate the number and percentage of
files and classes which exceed each metric’s known thresholds
over time. Figure 9 shows the number of source code files
exceeding the ABC threshold for the Spring for Apache Kafka
project, which is increasing over time. Similarly, Figure 10
displays the same information as percentages.

Fig. 4. Complexity measures comparison.

Fig. 5. Percentages of public methods.

Fig. 6. Percentages of public attributes.

TABLE II
TOP 3 Java JWT CLASSES WITH HIGHEST WMC VALUES.

Class v1 - v8 v9 v10
BaseVerification 86
ECDSAAlgorithmTest 101 112 102
ECDSABouncyCastleProviderTests 87 87
JWTVerifierTest 79 79 94

Fig. 7. Java JWT average measures - Part 1.

Fig. 8. Java JWT average measures - Part 2.

TABLE III
TOP 3 Java JWT CLASSES WITH HIGHEST NPM VALUES.

Class v1 - v8 v9 v10
ECDSAAlgorithmTest 84 91 81
ECDSABouncyCastleProviderTests 84 84 74
JWTVerifierTest 77 77 92

VI. DISCUSSION

The graph in Figure 2 shows that the ABC metric can
be used to assess a codebase size by counting the number
of fundamental operations it performs (RQ2). We can notice
that the ABC cumulative sum for the Mockito project is lower
than the Spring for Apache Kafka project one, despite Mockito
having more source code files than Spring for Apache Kafka
(RQ3). Furthermore, the ABC cumulative average for Mockito
is smaller than that of Spring for Apache Kafka repository.
These measures indicate that, considering the ABC metric

Fig. 9. ABC threshold measures for Spring for Apache Kafka.

Fig. 10. ABC threshold percentages for Spring for Apache Kafka.

definition, the Mockito codebase is better managed than the
Spring for Apache Kafka one. Despite having more files,
Mockito source code files perform fewer operations, making
the codebase less complex and more maintainable. The graph
in Figure 3 proves that the ABC metric is, in fact, a valid
size metric for a codebase with a determined number of lines
of code (RQ1). We can assert that because the ABC cumu-
lative sum value bar behaves similarly to other metrics bars,
which implies a relation of direct proportionality between the
reported size metric, including SLOC, a metric which counts
the number of lines in a code. A similar aspect is noticeable in
Figure 4, which compares WMC cumulative sums with their
respective CC cumulative sums in the codebase. However, this
picture shows that WMC cumulative sums bars are always
lower than the CC ones. As already explained in a previous
section, the WMC shows the complexity of a codebase is
only based on the complexity of class and interface methods
without considering some details that the CC includes (RQ2).
The graphs in Figure 5 and Figure 6 allow us to discuss the
behaviour of our implemented visibility metrics. A significant
NPM value may indicate a large attack surface area for security
threats and high complexity. Similarly, a significant NPA value
may indicate the number of data the application needs to
protect and its overall internal complexity. The NPM and NPA
measures are unrelated to the codebase size (RQ1). The graphs
show that the NPA percentage values are far smaller than
the NPM ones, and this is a sign of particular care for safe
class data management and less consideration for the safety of
class operations (RQ2). Among all other implemented metrics,
NPM and NPA, and consequently the derived COA and CDA,
are certainly important metrics to assess the security of a
project because they directly measure the exposure of class
operations and class data outside a class (RQ4). However, the

security context is particularly relevant when managing class
operations and data visibility metrics.

The four graphs represented in Figure 7 display some
interesting similarities. The Java JWT repository is more
maintainable for versions where the four metrics assume
their lowest values because the codebase is both small and,
therefore, not very complex. Cyclomatic Complexity can, in
fact, also be interpreted as an advanced technique to measure
source code size since it essentially counts the number of
linearly independent paths in a source code (RQ2, RQ3 and
RQ4). To interpret the six graphs reported in Figure 8, it
is important to note that COA and CDA trends cannot be
derived from NPM, NM, NPA, and NA graphs since these four
metrics report aggregated values relative to all project files and,
thus, unrelated to individual classes. These graphs determine
a way to comprehend class data and operation security and
operation over time (RQ2) and show that the NPM and NM
average values and NPA and NA average values of the project
follow a similar trend. This aspect may indicate that most of
the methods and attributes declared in the project are public.
We can also deduce that programmers have performed more
changes on method declarations than attribute declarations
since the number of source code files does not vary much
over time. COA and CDA average values are more difficult
to evaluate, and it is essential to inspect them with the aid
of the metrics on which they depend. The tables Table II and
Table III report classes or interfaces with exceptionally high
metric values over different project versions. Developers can
focus on specific files and classes with high metric values to
understand the cause of those anomalies, mitigate them, and
consequently better maintain a repository (RQ3). A developer
can also simultaneously consult multiple tables to spot classes
with discordant values for more than one metric and evaluate
them from different perspectives. For example, in this case,
one can notice that the top three classes with high NPM values
are also the ones with the highest WMC values and deduce
that these classes are very complex, but their methods are not
much protected. The graphs in Figure 9 and Figure 10 allow
us to reason about metrics thresholds. By setting thresholds,
we can identify instances where a particular characteristic of
the project deviates from our desired standard. Specifically,
the thresholds have been set to the following values (RQ5):

• 60 for the ABC, based on previous implementations of
the metric in Ruby and Java and the analysis of empirical
results found on two blogs1112.

• 34 for the WMC, following a modern study based on a
dataset of about one hundred systems [22].

• 40 for the NPM and 10 for the NPA, in accordance with
a recent article based on a huge program collection [23].

• 1 for both COA and CDA. Since we have defined and
implemented those metrics, after an empirical analysis,
we came up with a threshold value of 1 which represents
the worst-case value for both of them.

11https://jakescruggs.blogspot.com
12https://tenpercentnotcrap.wordpress.com

In general, we have selected these thresholds since they come
from some of the most recent sources available at the moment
of our research and are based on a large number of Java
programs with different purposes. Over time, the project has
maintained an almost constant percentage of files exceeding
the ABC threshold because, along with the number of files
exceeding the ABC threshold, the total number of files in the
project has also slightly increased over time.

Considering a possible theoretical real-case scenario for
RCA usage, on one hand, this software can be integrated
into an IDE as a front-end plugin with the aim of providing
information which can increase code quality during the code-
writing process, while on the other hand, RCA can be inserted
as an initial step of a Continuous Integration workflow, with
the precise purpose of uniforming the code added by different
programmers to a determined quality level decided by project
maintainers. Therefore, the results provided by RCA metrics
become of fundamental importance in reviewing program-
mers’ contributions. As a practical real-case scenario instead,
RCA metrics have been used as inputs for machine learning
algorithms, specifically for those models which attempt to
estimate a patch risk which is going to be merged into a
codebase, and in this case, the Firefox codebase [24]. The
innovative insights of this article are not mainly based on
the implementation of these metrics but on the possibility of
having an open-source software which computes them in an
acceptable amount of time on repositories of various sizes.
Furthermore, defining a way to interpret these values from
a developer’s perspective provides the possibility to control
their outcomes, hence changing the code accordingly. Having a
rapid execution also allows a developer to obtain an immediate
feedback on the code quality aspect highlighted by these
metrics.

VII. CONCLUSIONS

In conclusion, we conducted a comprehensive research on
the state-of-the-art of various software metrics from both
academic and market perspectives. Subsequently, we imple-
mented six Java metrics into RCA, a Mozilla static analyser
written in Rust. As next step, we applied these metrics to
actively maintained Java repositories and analysed the obtained
results, over space and time, providing answers to the proposed
research questions and emphasising their potential usage.
We also provided some theoretical and practical real-case
scenarios in which a developer might adopt to integrate RCA
in a project, starting from a quick code quality analyser until
its usage within the Mozilla ecosystem. For future work, it
could be worth extending these metrics to additional object-
oriented languages, such as C++ and Python, and since RCA
is an open-source project, other contributors could decide to
take up the task. Another possible improvement could be
to expand our research on a greater amount of repositories,
hence providing a quantitative, and not only a qualitative,
analysis. This work was partially supported by the SIFIS-
Home project, funded by the H2020 program of the European
Union (Grant Agreement No. 952652), within the context of

WP2 Guidelines and Procedures for System and Software
Security and Legacy Compliance, Task 2.2 Dynamic Code
Quality/Security Evaluation.

REFERENCES

[1] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC press, 2014.

[2] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martı́nez-Perez, and
C. Soubervielle-Montalvo, “Source code metrics: A systematic mapping
study,” Journal of Systems and Software, vol. 128, pp. 164–197, 2017.

[3] A. L. Timóteo, A. Álvaro, E. S. De Almeida, and S. R. de Lemos Meira,
“Software metrics: A survey,” Sl: sn, 2008.

[4] E. Lebanidze, “The need for fourth generation static analysis tools for
security–from bugs to flaws,” in Application Security Conference, 2008.

[5] L. Ardito, L. Barbato, M. Castelluccio, R. Coppola, C. Denizet, S. Ledru,
and M. Valsesia, “rust-code-analysis: A rust library to analyze and ex-
tract maintainability information from source codes,” SoftwareX, vol. 12,
p. 100635, 2020.

[6] L. Ardito, R. Coppola, L. Barbato, and D. Verga, “A tool-based perspec-
tive on software code maintainability metrics: A systematic literature
review,” Scientific Programming, vol. 2020, pp. 1–26, 2020.

[7] J. Kumar Chhabra and V. Gupta, “A survey of dynamic software
metrics,” Journal of computer science and technology, vol. 25, pp. 1016–
1029, 2010.

[8] R. Ponnala and C. Reddy, “Object oriented dynamic metrics in software
development: A literature review,” International Journal of Applied
Engineering Research, vol. 14, no. 22, pp. 4161–4172, 2019.

[9] L. H. Rosenberg and L. E. Hyatt, “Software quality metrics for object-
oriented environments,” Crosstalk journal, vol. 10, no. 4, pp. 1–6, 1997.

[10] R. S. Chhillar and S. Gahlot, “An evolution of software metrics: a
review,” in Proceedings of the International Conference on Advances
in Image Processing, 2017, pp. 139–143.

[11] I. Chowdhury, B. Chan, and M. Zulkernine, “Security metrics for source
code structures,” in Proceedings of the fourth international workshop on
Software engineering for secure systems, 2008, pp. 57–64.

[12] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for object-
oriented class designs,” in 2009 Ninth International Conference on
Quality Software. IEEE, 2009, pp. 11–20.

[13] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Software design
metrics for object-oriented software.” J. Object Technol., vol. 6, no. 1,
pp. 121–138, 2007.

[14] M. Rieger, S. Ducasse, and M. Lanza, “Insights into system-wide
code duplication,” in 11th Working Conference on Reverse Engineering.
IEEE, 2004, pp. 100–109.

[15] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage metrics
for formal verification,” in Correct Hardware Design and Verification
Methods: 12th IFIP WG 10.5 Advanced Research Working Conference,
CHARME 2003, L’Aquila, Italy, October 21-24, 2003. Proceedings 12.
Springer, 2003, pp. 111–125.

[16] J. Fitzpatrick, “Applying the abc metric to c, c++, and java,” More c++
gems, pp. 245–264, 1997.

[17] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp.
476–493, 1994.

[18] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[19] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc., 1994.

[20] J. Al Dallal, “Object-oriented class maintainability prediction using in-
ternal quality attributes,” Information and Software Technology, vol. 55,
no. 11, pp. 2028–2048, 2013.

[21] D. Wu, L. Chen, Y. Zhou, and B. Xu, “A metrics-based comparative
study on object-oriented programming languages,” State Key Laboratory
for Novel Software Technology at Nanjing University, Nanjing, China,
DOI reference number, vol. 10, 2015.

[22] T. G. Filó, M. Bigonha, and K. Ferreira, “A catalogue of thresholds
for object-oriented software metrics,” Proc. of the 1st SOFTENG, pp.
48–55, 2015.

[23] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida, “Identifying thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, no. 2, pp. 244–257, 2012.

[24] M. Böck, “Machine learning for interactive performance prediction,”
Thesis - Diploma Thesis, p. 74, 2022.

