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ABSTRACT

The power of artificial neural networks to determine the quality and properties of olive oil was proven by several
studies in the last years. Less clear is, however, how the neural network is able to extract useful information from
the input data. This work investigates the learning mechanism of one-dimensional convolutional neural networks
(1D-CNNs) trained to predict the physicochemical properties of olive oil from single fluorescence spectra. Such a
1D-CNN can successfully predict the parameters relevant to the quality assessment: acidity, peroxide value, and
UV absorbance. To go beyond a simple quality assessment algorithm, it is important to identify which spectral
features in the measured spectra are correlated with each chemical parameter and therefore with the quality
of olive oil. To obtain this information, explainability techniques can be used by studying the latent feature
space generated by the intermediate layers of the one-dimensional trained convolutional neural network. This
work analyses in detail the common features that are used by the 1D-CNN to predict the two physicochemical
parameters: acidity and Kass.

Keywords: Fluorescence spectroscopy; olive oil; machine learning; artificial neural networks; quality control;
explainability; convolutional neural networks

1. INTRODUCTION

Artificial neural networks have shown significant capabilities in a wide range of fields, including fluorescence and
Raman spectroscopy' ® and are known for the undiscussed capability to automatically extract relevant features
from data,*® eliminating the need for manual preprocessing. However, the "black-box” nature of these models®
is a point of criticism that undermines the credibility of the results and limits the full exploitation of their
potential for practical applications. Even when neural networks are able to predict certain quantities with high
accuracy, it is often unclear which input information is used to make the prediction, and whether it is possible
to extract this information from the model itself. Additionally, understanding which features are relevant in the
input data can provide new insights into the underlying physical or chemical processes.

In spectroscopic applications of neural networks the input data are one or two dimensional long arrays of real
numbers, representing, for example, the light intensity at different wavelengths. Depending on the spectroscopic
characteristics, the relevant features may be more or less broad, therefore, covering certain ranges and not
individual pixels. This makes it difficult to apply standard feature importance analysis methods, such as forward
or backward selection.” Various approaches have been proposed to overcome this challenge, such as interval
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partial least squares,® genetic algorithms,’ among others, but all have been criticized for various downsides!'® !

such as low reproducibility, overfitting and the loss of important features.

This work presents an in-depth study of the latent features of one-dimensional convolutional neural networks
(1D-CNNs) trained to extract two chemical parameters from raw spectra of olive oil samples. This work expands
on a previous preliminary work in which 1D-CNN networks were used to extract the UV-spectroscopy parameter
K35 adding an additional one, the acidity'? and analyzing and comparing results on the entire dataset composed
of multiple olive oil samples. The output of the first convolutional layer (the feature maps) is analyzed and
visualized to show which spectroscopic features (identified by wavelength ranges) are considered relevant by
the network for the final prediction. To achieve this, feature maps are compared with the raw spectra, which
highlight wavelength windows that the trained neural network considers important. Since these spectral regions
are common to all the oils, it can be concluded that the learning is robust and that the 1D-CNN identifies
physically significant regions of the fluorescence spectrum successfully.

The main contributions of this work are two: the study of latent features for a complete dataset of olive oil
samples, and the identification, discussion and comparison of the wavelength ranges identified as relevant by the
trained models for the two parameters K535 and acidity.

2. MATERIAL AND METHODS
2.1 Dataset

The dataset used for this work contains fluorescence spectra and chemical parameters of 24 olive oils from
the 2019-2020 harvest and provided by the Conde de Benala producer, Granada, Spain. The fluorescence
spectrum of each olive oil was acquired using a miniaturized low-cost sensor, which was described in detail in
a previous work.'® From the raw fluorescence spectra only the background (dark counts) was subtracted, and
then the spectra were normalized. Therefore, the signal at each pixel is the measured fluoresce intensity after
the background subtraction, and normalisation to have an average of zero and a standard deviation of one was
applied. This normalisation was applied to make the values of the input data small enough to avoid numerical
problems during the training phase of neural networks.!* All the fluorescence measurements in this work were
made on undiluted samples under identical conditions.

The quality evaluation according to the current European regulation for the commercial classification into
EVOO, virgin olive oil (VOO), and lampante olive oil (LOO) categories!® was performed by the producer. The
chemical parameters were determined by accredited laboratories using the procedures described in the European
Commission regulation and its amendment.!%: 16

For the list of oil samples, their chemical and quality characteristics the reader is referred to the work.!” The
dataset is publicly available available.'®

2.2 Convolutional Neural Network

The 1D-CNN architecture was previously described!® and will only be minimally discussed here for clarity. The
1D-CNN consists of one convolutional layer (6 filters of size 40), one max pooling layer (size 8), one convolutional
layer (4 filters of size 20), one dropout layer (rate 0.5), two subsequent dense layers (4 neurons) and a final output
neuron for regression. The network is shown in Figure 1. Apart from the output neuron that uses the identity
activation functions, all other layers use the Rectified Linear Unit (ReLU) activation function. The network
architecture can be seen in 1 and details in the previous paper.® The size of the filters was chosen to be 40
pixels, slightly larger than the spectrometer resolution.

The loss function used for the training is the mean squared error (MSE),'* as reported in Equation 1, where
[i]

measured

yr[ﬁedicted is the predicted and y is the measured parameter value of the i** input respectively.

N
1 i i
MSE(X) = N Z(yl[n]rcdictcd - yr[n]casurcd)Q' (1)

=0

N indicates the size of the dataset on which the metric is being evaluated. The 1D-CNN was trained using the
optimiser Adam'® and the code was implemented using the TensorFlow 7™ Python library. All the models were
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Figure 1. Schematic representation of the 1D-CNN used in this paper. The blue layers are convolutional ones, the green
max pooling layers and the yellow marked ones are dense layers. The output layer has 1 neuron with the identity
activation function. The orange box indicates the output of the first convolutional layer (indicated with (A)), also called
latent features. The analysis of the those arrays and their visualisation is used in this work to study the learning of the
network. The output of layer (A) consist of 6 arrays, each of 1005 values.

trained with back-propagation. The network was trained for 5000 epochs with a mini-batch size of 64. Due to
the small size of the data set, a leave-one-out cross-validation approach was used.?? This means that at the end
22 models will be trained, each trained on a slightly different training dataset.

2.3 Explainability Approach

The explainability approach for the neural network involves understanding and interpreting the inner workings
of the model, particularly with regards to how it processes input data and produces output predictions. One
way to achieve this is through visualizing latent features, which are the underlying representations learned by
the model during training. In particular, this work considers the output of the first convolutional layer, that is
indicated with (A) in Figure 1. The output consist of 6 arrays, each having 1005 values.

The visualisation was realized with the following steps.

1. All the outputs of the (A) convolutional layer were concatenated. This results in a 2-dimensional array of
(1005) arrays.

2. The arrays were sorted in ascending order of the position of the maximum of each array.

3. The sorted array were then used to generate a heatmap.

The results for the two parameters analyzed, the acidity and the Ks30, two figures are shown. One obtained
with the unmodified values, and the other re-scaled with the tanh(-) function. The tanh(-) is equal to one
for large values of its input, and thus normalizes all the arrays to have values less than one. As discussed in
Section 3, the use of the scaling with the tanh(-) makes it easier to identify regions where the latent features are
significantly different than zero.
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3. RESULTS AND DISCUSSION

The raw fluorescence spectra of selected EVOOQOs, VOOs, and LOOs under excitation at 365 nm and 395 nm are
shown in Figure 2. The spectra in all panels are just one single spectrum with the dark background subtracted,
without averaging or smoothing. In the figure, the dashed lines mark the maxima of the strong chlorophyll
contributions.
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Figure 2. Fluorescence emission spectra of the measured olive oils excited at 365 nm and 395 nm nm divided in the quality
classes EVOO, VOO and LOO. Each curve shows a single spectrum without averaging or smoothing. Reproduced from.'”

The heatmap of the latent features realized as described in Section 2.3 is shown in Figure 3. The heatmaps
are obtained with the latent features from the models trained to predict the acidity and Ko3s parameter (in the
top and bottom panels respectively). The left panels are obtained with unmodified data, and the right ones with
the data transformed with tanh(-). In Figure 3 the wavelengths of the excitation LED and of the two spectral
maxima at 678 nm and 722 nm are also marked to facilitate the interpretation of the results.

The analysis shows that there are mainly four relevant spectral regions that are schematically illustrated in
Figure 4.

e The region from up to ca. 640 nm and above 750 nm (indicated with (A) in Figure 4): in this region the
latent features are not so intense (as it can be seen in left panel of Figure 3) indicating that the networks
do not consider this spectral region very useful for the predictions.

e The region immediately to the left of the first peak (between ca. 640 nm and 678 nm) (indicated with
(B) in Figure 4): in this region the latent features have the highest intensity, indicating that the networks

Proc. of SPIE Vol. 12438 1243800-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



consider this spectral window very important. This region can be interpreted as the ascending part of the

first peak.

e The region between the first peak at 678 nm and the second one at 722 nm (indicated with (C) in Figure 4):
a portion of the latent features have also a high intensity. This region can be interpreted as the descending
part of the first peak and the shoulder up to the second peak (see Figure 2).

e The region between the second peak at 722 nm and ca. 750 nm (indicated with (D) in Figure 4): this part
coincides with the descending part of the second peak. Also this region is considered important.

Acidity

Data transformed with tanh(-)

Unmodified Data

Led
395 nm

Sl el i o

Feature Maps

350 395 441 487 534 582 630 678 727 776 350 395 441 487 534 582 630 678 727 776
wavelength (nm) wavelength (nm)

K232
Unmodified Data Data transformed with tanh(-)
Led

Led
395 nm

395 nm

DL RILL

Feature Maps

350 395 441 487 534 582 630 678 727 776 350 395 441 487 534 582 630 678 727 776
wavelength (nm) wavelength (nm)

Figure 3. Latent features heatmap for the models trained to predict the acidity parameter. The left panel shows the
heatmap obtained with the unmodified data. The one on the right the heatmap obtained by transforming the data with
the function tanh(-). Note that the z-axis is not linear in nm since the raw data are arrays of pixels that are then converted

in wavelengths with a cubic function.
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Figure 4. An overview of relevant spectral regions used by the networks for the prediction of the two physicochemical
parameters acidity and K232 and a typical fluorescence spectrum of olive oil.

It is interesting to see how neural networks that are trained to predict the Ks3o parameter tend to give
much less importance to the spectral region after the first peak (after 678 nm). To predict the acidity, at least
according to the trained networks, the spectral region with wavelengths greater than 678 nm is more important
than the same region to predict the Ko35 parameter. This indicates that the trained networks use different
spectral regions in different ways, also indicating that different spectral windows contains different information
correlated to different chemical parameters.

4. CONCLUSION

In conclusion, studying the latent features of the trained 1D-CNN, allows to identify the relevant spectral features
with explainability and visualisation techniques. Even if the dataset is small using the leave-one-our validation
method it is possible to obtain robust results. Not only that, but the approach described in this work allows to
check if all the different trained models (remember that in leave-one-out one trains as many models as different
observations) identify the same spectral regions, increasing the trust in the relevance of the identified spectral
regions. Networks trained to predict different chemical parameters identify the same main spectral regions, but
give different weights to them. The fact that models trained to perform different tasks identify the same spectral
window (although with different weights) gives us a strong evidence that the regions are the ones that contains
the relevant information correlated to the different chemical properties of the olive oil.

ACKNOWLEDGMENTS

This work was supported by the projects: “VIRTUOUS” funded by the European Union’s Horizon 2020 Project
H2020-MSCA-RISE-2019 Grant No. 872181; ”SUSTAINABLE” funded by the European Union’s Horizon 2020
Project H2020-MSCA-RISE-2020 Grant No. 101007702.

REFERENCES

[1] Yuanyuan, C. and Zhibin, W., “Quantitative analysis modeling of infrared spectroscopy based on ensemble
convolutional neural networks,” Chemometrics and Intelligent Laboratory Systems 181, 1-10 (2018).

[2] Acquarelli, J., van Laarhoven, T., Gerretzen, J., Tran, T. N., Buydens, L. M., and Marchiori, E., “Con-
volutional neural networks for vibrational spectroscopic data analysis,” Analytica chimica acta 954, 22-31
(2017).

[3] Zhang, X., Lin, T., Xu, J., Luo, X., and Ying, Y., “Deepspectra: An end-to-end deep learning approach for
quantitative spectral analysis,” Analytica chimica acta 1058, 48-57 (2019).

Proc. of SPIE Vol. 12438 1243800-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[4] Malek, S., Melgani, F., and Bazi, Y., “One-dimensional convolutional neural networks for spectroscopic
signal regression,” Journal of Chemometrics 32(5), e2977 (2018).

[5] Ni, C., Wang, D., and Tao, Y., “Variable weighted convolutional neural network for the nitrogen content
quantization of masson pine seedling leaves with near-infrared spectroscopy,” Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy 209, 32-39 (2019).

[6] Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B., “Definitions, methods, and applications
in interpretable machine learning,” Proceedings of the National Academy of Sciences 116(44), 2207122080
(2019).

[7] James, G., Witten, D., Hastie, T., and Tibshirani, R., [An introduction to statistical learning], vol. 112,
Springer (2013).

[8] Ngrgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., and Engelsen, S. B., “Interval partial
least-squares regression (i pls): A comparative chemometric study with an example from near-infrared
spectroscopy,” Applied spectroscopy 54(3), 413-419 (2000).

[9] Arakawa, M., Yamashita, Y., and Funatsu, K., “Genetic algorithm-based wavelength selection method for
spectral calibration,” Journal of Chemometrics 25(1), 10-19 (2011).

[10] Yun, Y.-H., Bin, J., Liu, D.-L., Xu, L., Yan, T.-L., Cao, D.-S., and Xu, Q.-S., “A hybrid variable selection
strategy based on continuous shrinkage of variable space in multivariate calibration,” Analytica chimica
acta 1058, 58-69 (2019).

[11] Zhang, J., Yan, H., Xiong, Y., Li, Q., and Min, S., “An ensemble variable selection method for vibrational
spectroscopic data analysis,” RSC advances 9(12), 6708—6716 (2019).

[12] Venturini, F., Michelucci, U., Sperti, M., Gucciardi, A., and Deriu, M. A., “One-dimensional convolutional
neural networks design for fluorescence spectroscopy with prior knowledge: explainability techniques applied
to olive oil fluorescence spectra,” in [Optical Sensing and Detection VII|, 12139, 326-333, SPIE (2022).

[13] Venturini, F., Sperti, M., Michelucci, U., Herzig, I., Baumgartner, M., Caballero, J. P., Jimenez, A., and
Deriu, M. A., “Exploration of spanish olive oil quality with a miniaturized low-cost fluorescence sensor and
machine learning techniques,” Foods 10(5), 1010 (2021).

[14] Michelucci, U., [Applied Deep Learning - A Case-Based Approach to Understanding Deep Neural Networks],
APRESS Media, LLC (2018).

[15] “Commission regulation (eec) no. 2568/91 of 11 july 1991 on the characteristics of olive oil and olive-residue
oil and on the relevant methods of analysis official journal 1 248, 5 september 1991,” Offic. JL 248, 1-83
(1991).

[16] “Commission implementing regulation no 1348/2013 of december 17 2013,” Official Journal of the European
Union 338, 31-67 (2013).

[17] Venturini, F., Sperti, M., Michelucci, U., Gucciardi, A., Martos, V. M., and Deriu, M. A., “Extraction of
physicochemical properties from the fluorescence spectrum with 1d convolutional neural networks: Appli-
cation to olive oil,” Journal of Food Engineering 336, 111198 (2023).

[18] Venturini, F., Sperti, M., Michelucci, U., Gucciardi, A., Martos, V., and Deriu, M. A., “Dataset of
Fluorescence Spectra and Chemical Parameters of Olive Oils.” https://data.mendeley.com/datasets/
thkcz3h6n6/6 (Dec. 2022).

[19] Kingma, D.P.; Ba, J. A., “Adam: A method for stochastic optimization. in proceedings of 3rd.,” In Pro-
ceedings of 3rd International Conference on Learning Representations, ICLR 2015 , 1-15 (2015).

[20] Michelucci, U. and Venturini, F., “Estimating neural network’s performance with bootstrap: A tutorial,”
Machine Learning and Knowledge Extraction 3(2), 357-373 (2021).

Proc. of SPIE Vol. 12438 1243800-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



