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Current deep neural networks are highly overparameterized (up to billions of connection weights) and nonlin-
ear. Yet they can fit data almost perfectly through variants of gradient descent algorithms and achieve unexpected
levels of prediction accuracy without overfitting. These are formidable results that defy predictions of statistical
learning and pose conceptual challenges for non-convex optimization. In this paper, we use methods from
statistical physics of disordered systems to analytically study the computational fallout of overparameterization
in non-convex binary neural network models, trained on data generated from a structurally simpler but “hidden”
network. As the number of connection weights increases, we follow the changes of the geometrical structure of
different minima of the error loss function and relate them to learning and generalization performance. A first
transition happens at the so-called interpolation point, when solutions begin to exist (perfect fitting becomes
possible). This transition reflects the properties of typical solutions, which however are in sharp minima and
hard to sample. After a gap, a second transition occurs, with the discontinuous appearance of a different kind
of “atypical” structures: wide regions of the weight space that are particularly solution-dense and have good
generalization properties. The two kinds of solutions coexist, with the typical ones being exponentially more
numerous, but empirically we find that efficient algorithms sample the atypical, rare ones. This suggests that the
atypical phase transition is the relevant one for learning. The results of numerical tests with realistic networks
on observables suggested by the theory are consistent with this scenario.

Machine learning has recently advanced in a totally unex-
pected way thanks to deep learning (DL), reaching unprece-
dented performance in many fields of data-driven research and
applications. Impressive spin-offs are emerging not only in
technological applications but also in a wide variety of basic
scientific fields, from molecular biology and language process-
ing, to the solution of partial differential equations for the study
of materials and fluids, to name a few recent examples. At the
same time theoretical research is trying to build a unifying
framework that explains deep learning performance, enables
its development based on first principles, and paves the way
towards interdisciplinary methodological and modeling con-
nections, including computational neuroscience.

Among the most disruptive aspects of deep learning mod-
els are their highly overparameterized and non-convex nature.
Both of these aspects are a common trait of all the DL mod-
els and have led to unexpected results for classical statistical
learning theory and non-convex optimization. Current deep
neural networks (DNN) are composed of millions (or even bil-
lions) of connection weights and the learning process seeks to
minimize the number of classification errors made by the DNN
over a training set. This optimization problem is highly non-
convex, and learning algorithms need to efficiently find good
minima in a space of extremely high dimensionality without
being trapped in local minima or saddle points for long times.
Good minima are those that have good generalization capa-
bilities, namely that do not suffer from overfitting given the
inherent noisiness in the data and the huge number of param-
eters that can be adjusted. Surprisingly, this goal can often be
achieved by relatively simple algorithms based on variants of
the gradient descent method.

We are thus facing of two conceptually stimulating facts: (i)
highly expressive neural network models can fit the training
data via simple variants of algorithms originally designed for

convex optimization; (ii) even if trained with little control over
their statistical complexity, these models achieve high levels
of prediction accuracy, contrary to what classical statistical
intuitions (such as the bias-variance tradeoff) would suggest.

In this paper, we focus on the computational fallout of over-
parameterization in non-convex models. As the number of
parameters increases, we study the changes in the geometric
structure of the different minima of the error loss function and
we relate this to learning performance.

Intuitively, one might be tempted to think that non-convex
neural network models become effectively convex (with most
of the weight volume of the minima associated to wide, acces-
sible ones) when the number of weights becomes sufficiently
large relative to the number of data to be classified. We will
show analytically that this is not the case already in a sim-
ple one-layer binary weights overparametrized model. To the
contrary, we find that an exponential number of sharp, iso-
lated solutions with poor generalization properties exist even
for very high levels of overparameterization. Indeed, these
kind of solutions are by far in the majority, and algorithms that
sample solutions with a flat measure find these typical ones (al-
most surely, in the limit of large system sizes); however, they
also take an exponential amount of time in doing so. Thus, in
practice, these typical solutions can only be found empirically
in rather small networks. Efficient algorithms, that scale poly-
nomially with the size of the problem, sample instead from
wide regions of the space of the weights that are particularly
dense with solutions and have good generalization properties.

Both kinds of solutions have been studied in simpler, non-
overparameterized models, using tools from statistical physics
of disordered systems: the typical solutions are the equilibrium
ones [1, 2], and the atypical, highly entropic ones can be
described by a large deviation technique [3–8] or by using a
robustness bias [9]. Those techniques are non-rigorous, but a
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few rigorous confirmation of some of the findings have been
obtained [10–12].

Here, we extend those techniques to the study of the effect of
overparameterization. We show that, contrary to what happens
in overparameterized convex models, there are two transition
points, separated by a gap. The first one is the information-
theoretic interpolation threshold of the model: this is the point
when zero-error solutions appear and perfect fitting of the data
becomes possible. This point is obtained from an equilibrium
computation and thus it is related to the typical, basically inac-
cessible solutions. The second transition point coincides with
the sharp appearance of the highly locally entropic atypical so-
lutions, that are attractive to learning algorithms. These dense
regions stem from the development of new solutions which
connect the preexisting ones.

We shall call this second transition the Local Entropy (LE)
transition. This type of phase transition is not usually encoun-
tered in statistical physics, as it is driven by the appearance of
rare structures in the solution space. Still it can be of basic
relevance for learning processes (even very simple ones) that
are not bound to try to sample from the dominating set of
minima (i.e. are not designed to have the Gibbs distribution
as stationary probability measure). This is indeed the case for
all algorithms used for learning, which are subject to external
perturbations, use ad hoc loss functions, and adopt peculiar
optimization and initialization strategies, see also ref. [13].

Interestingly, the phase transitions to rare states have simi-
larities to the localization phase transitions that are well known
in quantum mechanics [14]. This fact is also consistent with
the effectiveness of quantum annealing for learning problems
similar to those discussed in this paper [15].

The paper is organized as follows. In sec. I we review some
related literature, and introduce some basic non-convex ana-
lytically tractable versions of the random features models. In
sec. II we study analytically the geometric structure of the
loss landscape, derive Bayesian generalization bounds and the
phase diagram for the interpolation and LE transitions. In
sec. III, we report the results of numerical experiments on pro-
gressively less idealized and more realistic settings, validating
the analytical findings, and confirming in particular that when
the training algorithms start to be able to fit the data, they have
already passed the interpolation point, and that they sample
wide minima.

I. NON-CONVEX OVERPARAMETERIZED NEURAL
CLASSIFIERS

Related work. The effects of overparameterization and the
interpolation threshold have been recently studied in convex
neural classifiers in which the input data are projected in a ar-
bitrarily high dimensional space. These models are variants of
the Random Features Model (RFM) which was first introduced
as a tool to accelerate the training of Kernel machines [16–18].
More recently, the observation [19] that infinitely wide neu-
ral networks operate in the so-called “lazy regime”, where the

weights do not change much from their initial values during the
gradient descent training dynamics, suggested that the behav-
ior of neural networks can be approximated to some extent by
random feature models, where the randomness in the features
comes from the random initialization of the network weights
(see for example [20] for a recent review). In the absence of
specific regularization controls and for a given training set, as
the size of the model increases the training and testing errors
tend, initially, to decrease jointly. When the training error is
about to reach perfect interpolation of the data, the test error
begins to increase, giving rise to the famous U-shaped curve
that describes the so called bias-variance trade-off in classical
statistics. Not without surprise, if we keep adding parameters
to the model, the test error behaves in a non-monotonic way:
when the model exceeds the interpolation threshold, the train-
ing error remains zero and the test error starts to fall again,
and tends to an absolute minimum in the regime of extreme
overparameterization where the number of parameters is much
larger than the number of samples. This phenomenon, called
“double-descent” [21, 22], has been studied and reproduced
in a number of different frameworks, ranging from rigorous
computations [23] to statistical physics computations [24–27]
in simple models of neural nets, to realistic architectures, see
for example refs. [28, 29]. Subsequent numerical analysis of
the Hessian of largely overparameterized models [30] showed
that minimizers present many flat directions, and that it is not
hard to find a path of zero training error connecting two solu-
tions [31, 32]. In underparameterized neural networks, on the
other hand, the authors of [33] showed that the landscape is
very rough and dynamics is glassy. This led to think that the
landscape of overparameterized networks where the dynamics
is not glassy anymore, presents no “poor” minima at all [34].
According to our analysis, this is not the case. As we antici-
pated in the introduction, overparametrization has the effect of
letting those connected regions appear at the LE transition, not
letting “poor” minima completely disappear. Overparametriz-
ing the network even further it is possible to increase the size
of the connected region; “poor” or “sharp” solutions how-
ever remain the most numerous ones and dominate the Gibbs
measure.

Overparameterized non-convex tractable model. Here we
consider a non-convex RFM for binary classification with
two layers. We consider random weights in the first layer
(the “random features”) and a second layer with 𝑁 binary
weights 𝒘 ∈ {−1, 1}𝑁 that are learned. Indeed, using binary
weights suffices to make the overall learning problem highly
non-convex.

In the model, each pattern 𝝃 is generated on a hidden mani-
fold, of dimension 𝐷, and projected as a pattern 𝝃 on a visible
feature space of dimension 𝑁 . This models the common sit-
uation in which the raw input data is highly redundant, and
its effective dimensionality is much lower. The projection is
defined by:

b̃𝑖 = 𝜎

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b𝑘

)
(1)
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where 𝐹 is a 𝐷 × 𝑁 feature matrix and 𝜎(·) is a non-linear
activation function. In the following we will consider for def-
initeness 𝜎(𝑥) = sign(𝑥) and a feature matrix of the Gaussian
Orthogonal Ensemble (GOE) type, i.e. every element of 𝐹
is a standard normal Gaussian; however our analytical results
are valid for any 𝜎(·) and every matrix having independent
random entries with matching first and second moments, and
that satisfy the hypothesis of the Gaussian Equivalence theo-
rem [23, 24, 26, 35, 36]; see the details in the Supplementary
Information (SI).

The corresponding output of the network is:

𝑦out ≡ sign

(
1
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 b̃𝑖

)
(2)

We consider a training set composed of 𝑃 = 𝛼𝑁 random
patterns extracted from a standard normal distribution; the la-
bel 𝑦` corresponding to a given pattern 𝝃` is assigned by
a “teacher” network having random binary weights 𝒘𝑇 ∈
{−1, 1}𝐷 as 𝑦` = sign

(
1√
𝐷

∑𝐷
𝑘=1 𝑤

𝑇
𝑘
b
`

𝑘

)
. This intends to

model the situation in which the true labels depend in a simple
way from a latent representation, to which however the student
network does not have access. The learning task consists in
finding the weights 𝒘 that fit all the data in the training set and
that generalize well on the whole generative model.

II. GEOMETRY OF MINIMA VS
OVERPARAMETERIZATION: THRESHOLD PHENOMENA

In the following we consider the primitive loss function that
counts the number of misclassified patterns in the training set
whose stability is greater than a given margin of ^ ≥ 0. For
each pattern, the stability Δ` is defined as the product of the
pre-activation of the output unit _` (𝒘) and the binary label of
pattern 𝑦` = ±1:

Δ` (𝒘) ≡ 𝑦`_` (𝒘) (3)

where

_` (𝒘) ≡ 1
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 b̃𝑖 (4)

The loss function per pattern is defined as

ℓ𝑁𝐸 (−Δ` (𝒘); ^) = Θ (−Δ` (𝒘) + ^) (5)

where Θ(·) is the Heaviside step function: Θ (𝑥) = 1 if 𝑥 > 0
and zero otherwise. For ^ = 0 this loss reduces to the one that
counts the number of training errors; with a slight abuse of
language we call it “number-of-errors loss” even if the margin
is non-zero. For the analytical study, we will be interested in
the large-size limit, where our calculations can be performed
by asymptotic methods: 𝑁, 𝐷, 𝑃 → ∞ while keeping finite
the ratios

𝛼 ≡ 𝑃

𝑁
, 𝛼𝑇 ≡ 𝑃

𝐷
, 𝛼𝐷 ≡ 𝐷

𝑁
, (6)

with 𝛼 = 𝛼𝑇 𝛼𝐷 . In order to compute the typical properties of
the solution space, the key quantity of interest is the averaged
free entropy of the model, i.e.

𝜙 = lim
𝑁 ,𝑃,𝐷→∞

1
𝑁
〈ln 𝑍〉b ,𝐹 (7)

where we denoted with 〈•〉b ,𝐹 the average over both the pat-
terns (including the desired outputs and thus the teacher) and
the features. Here 𝑍 denotes the partition function of the model
which reads

𝑍 (𝛽) =
∑︁
𝒘

𝑒
−𝛽∑𝑃

`=1 ℓ𝑁𝐸 (−Δ` (𝒘);^) (8)

For generic 𝛽, 𝑍 (𝛽) is the generating function in the variable
𝑒−𝛽 of the number of errors. In the analytical computations
however we have only considered the large 𝛽 limit, where the
partition function reduces to counting the number of global
minima, i.e. zero-error configurations (solutions) when they
exist:

𝑍 =
∑︁
𝒘

𝑃∏̀
=1
Θ (Δ` (𝒘) − ^) ≡

∑︁
𝒘

Xb ,𝐹 (𝒘; ^) (9)

where Xb ,𝐹 is the indicator function on 𝒘 that all patterns are
being correctly classified with the required robustness.

The averages of the logarithm in eq. (7), give access to
the most probable number of solutions for a randomly cho-
sen training set, and can be computed by asymptotic methods
developed in the theory of disordered systems, either the so
called replica method or the cavity method [37].

A first basic result of the analysis is that, for fixed 𝛼𝑇 and
^, there is an 𝛼max (^, 𝛼𝑇 ) for which 𝜙 ≥ 0, signalling that,
with high probability, for 𝛼 > 𝛼max (^, 𝛼𝑇 ) solutions with
stability ^ or larger cease to exist. In this context, supposing
that the learning problem and thus 𝛼𝑇 was fixed and that we
are controlling the degree of overparameterization via 𝛼, the
“interpolation threshold” 𝛼𝑐 (𝛼𝑇 ) is the value of 𝛼 for which
all solutions disappear, i.e. 𝛼𝑐 (𝛼𝑇 ) = 𝛼max (0, 𝛼𝑇 ).

Conversely, we also define the maximum margin
^max (𝛼, 𝛼𝑇 ) for fixed values of 𝛼, 𝛼𝑇 as the value of ^ for
which 𝜙 = 0. The solutions with maximum margin play a
central role in our analysis, since they lie in the middle of
dense regions whose breakup (as 𝛼 increases) signals the LE
phase transition. It is useful to point out that even if the en-
tropy of the solutions vanishes at ^max, their typical overlap
(i.e. normalized dot product, also called cosine similarity) is
still strictly smaller than 1.

Phase diagram. Before diving into analytical details, we
anticipate how the geometry of the space of solutions changes
as we increase the degree of overparameterization. The phase
diagram of the model is reported in Fig. 1. The plane (𝛼𝑇 , 𝛼)
is divided into three distinct regions:

(1) an UNSAT region when the value of the density of
constraints exceeds the interpolation threshold: 𝛼 > 𝛼𝑐 (𝛼𝑇 ).
In this region there exists no configuration of weights that is
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Figure 1. SAT/UNSAT interpolation threshold and Local Entropy
transition versus 𝛼𝑇 for the binary non-convex model of random
features. For𝛼𝑇 → 0 we recover the critical capacity [1] and the local
entropy transition [9] of a non-overparameterized binary perceptron
trained on random patterns. In the inset we show the training error
of SA, fBP and SBPI versus the degree of overparameterization 1/𝛼
for 𝐷 = 201 and 𝛼𝑇 = 3. Points are averages over 20 independent
samples (except for fBP where we used 10 samples) and 5 independent
runs per samples (3 for fBP). None of those algorithms is able to find
solutions for 𝛼 > 𝛼LE.

able to the whole training set. This threshold is independent
of the learning algorithm, it depends only on the properties of
the training data and of the architecture. On the other hand
for 𝛼 < 𝛼𝑐 (𝛼𝑇 ) we have a SAT region, so in principle the
complexity of the model is sufficient to learn the data.

(2) for 𝛼LE (𝛼𝑇 ) < 𝛼 < 𝛼𝑐 (𝛼𝑇 ), despite the existence of
configurations of weights that fit all the training set, they are
either isolated or belong to minima that have a small character-
istic size. These solutions turn out to be not easily accessible
by learning algorithms.

(3) for 𝛼 ≤ 𝛼LE (𝛼𝑇 ) highly entropic wide minima start to
appear. These flat minima, though exponentially rare com-
pared to the isolated solutions, are accessible by simple, effi-
cient algorithms. The threshold 𝛼LE (𝛼𝑇 ) is thus the location
of the Local Entropy transition, which we interpret as an upper
bound for the effectiveness of learning algorithms.

As an experimental check of this picture, we show in the in-
set of Fig. 1 the train error of four algorithms that are represen-
tative of a spectrum of sampling strategies. On one extreme of
the spectrum, we used Simulated Annealing (SA) [38], which
samples from the equilibrium Gibbs distribution. On the op-
posite end, we used focusing Belief Propagation (fBP) [4],
which is a modified version of the message-passing Belief
Propagation (BP) algorithm [39] and is designed to target high
local entropy regions (if present). The goal of the original
BP algorithm is to perform statistical inference, and at conver-
gence its messages allow to derive the marginal probabilities

for each variable, computed for a uniform distribution over the
solutions of the training task. The modification introduced by
fBP consists in forcing the messages to progressively focus on
the most dense regions, until they become peaked on a sin-
gle configuration, thereby resulting in an efficient solver. The
focusing process is controlled by fixing an overall “strength”
𝑦 > 1 and by scheduling a parameter 𝛾 from 0 to ∞. Two
more heuristic algorithms are specifically designed to work
efficiently on binary architectures. One is the Stochastic BP-
inspired (SBPI) algorithm [40], which can be regarded as a
simple and fast approximate version of fBP. The other is Bina-
ryNet (BNet) [41], which is a modified version of Stochastic
Gradient Descent (SGD). As we can observe in the figure,
none of these algorithms can find solutions below 1/𝛼LE.

Typical solutions. Using the replica method in its replica
symmetric (RS) version (see SI), the averaged free entropy in
eq. (7) turns out to depend on the “order parameters” 𝑞, 𝑝,
𝑝𝑑 , 𝑟 and their conjugate Lagrange multipliers 𝑞, 𝑝, 𝑝𝑑 , 𝑟 .
Geometrically 𝑞 represent the typical overlap between a pair
of solutions; 𝑝 is the typical overlap between a pair of solutions
projected in the teacher space (which has dimension 𝐷), the
projection being performed simply by using the feature matrix
𝐹𝑘𝑖; 𝑝𝑑 is the typical squared norm of a projected solution
and finally 𝑟 denotes the typical overlap between a projected
solution and the teacher.

Eventually, 𝜙 can be found with the saddle point method, by
optimizing over eight order parameters

𝜙 = max
𝑞,�̂�, 𝑝, �̂�, 𝑝𝑑 , �̂�𝑑 ,𝑟 ,𝑟

𝜙𝑅𝑆 (𝑞, 𝑞, 𝑝, 𝑝, 𝑝𝑑 , 𝑝𝑑 , 𝑟, 𝑟) (10)

where 𝜙𝑅𝑆 is the RS expression for 𝜙 (see SI). Knowing the
order parameters for which the function 𝜙𝑅𝑆 is maximal allows
to compute not only the entropy but also other quantities of
interest, such as the generalization error 𝜖𝑔, defined as the
probability of wrongly classifying a new (unseen) pattern

𝜖𝑔 = Eb ℓ𝑁𝐸 (−Δ(𝒘); ^) . (11)

We find

𝜖𝑔 =
1
𝜋

arccos
(
𝑀

√
𝑄𝑑

)
(12)

where 𝑀 ≡ `1𝑟 , 𝑄𝑑 ≡ `2
★ + `2

1𝑝𝑑 , and `1, `★ are constants
that depend only on the nonlinear function 𝜎 (see SI for their
expressions). From the solutions of the saddle point equations
we can also compute the probability that the average of the
outputs of students sampled from the posterior on a random
new pattern has different sign than that given by the teacher
(see the SI for the definition); this turns out to be equivalent to
computing the generalization error of the barycenter of typical
solutions. All the details of the computation are reported in
the SI; here we report the final result

𝜖𝐵𝑔 =
1
𝜋

arccos
(
𝑀
√
𝑄

)
, (13)

where 𝑄 ≡ `2
★𝑞 + `2

1𝑝. In Fig. 2 we show the plot of the
generalization error of typical solutions with zero, non-zero
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Figure 2. (Left panel) Generalization error as a function of the degree of overparameterization 1/𝛼, for 𝛼𝑇 = 3. Vertical dashed lines
denote the SAT-UNSAT transition 𝛼−1

𝑐 , the local entropy transition 𝛼−1
LE, and the ^opt transition (𝛼∗)−1. We show the generalization error of

typical solutions with fixed margin ^ = 0, 0.107, 1 and with maximum margin ^max (𝛼, 𝛼𝑇 ). The dashed turquoise curve is the error of the
barycenter of typical solutions having zero margin, whereas the black line represents the generalization error of the “best” barycenter which
was found by optimizing the margin. In the inset we show that this optimal margin ^opt undergoes a transition when crossing 𝛼∗. We also show
numerical results (𝐷 = 201) of two representative algorithms: SA (violet points) and fBP (blue points). When SA is able to find solutions, the
corresponding generalization error is compatible to the one obtained by typical zero-margin configurations. In the large overparameterization
regime fBP behaves similarly to the generalization error of the barycenter of zero-margin solutions. Yellow points (error bars not shown for
clarity) represent the barycenter of zero margin solutions as computed by using the BP estimation of the posterior distribution. (Right panel)
Generalization error versus 𝛼𝑇 in the large overparameterization regime (𝛼 = 0.05, 𝐷 = 201). While SA gives the same generalization error
of typical zero-margin solutions, SBPI, BNet and fBP, that do not target or sample from the Gibbs measure, perform much better. All points
are averages over 5 independent samples, 2 independent runs per sample.

and maximum possible margin versus the degree of overpa-
rameterization 1/𝛼, together with the generalization error of
the barycenter of typical solutions having zero margin. All
those curves are monotonically decreasing.

Moreover we show that the margin ^opt that should be im-
posed in order to minimize the generalization error of the
barycenter undergoes a transition from zero (for 𝛼 > 𝛼∗) to
non-zero values (for 𝛼 < 𝛼∗) whenever we increase the degree
of overparameterization. The value of the optimal margin ^opt
is plotted in the inset of Fig. 2.

Numerical Checks. In order to corroborate the analytical
findings, we have performed some numerical experiments (see
Fig. 2) using the four algorithms mentioned above: SA, fBP,
SBPI and BNet. Similarly to what happens in spin glass mod-
els, we found that for sufficiently low 𝛼 (i.e. for relatively small
system sizes) SA is able to escape from local minima and find
solutions that have generalization error which matches the one
obtained by replica theory. We also found a perfect agreement
between the theoretical results and the numerical experiments
when we computed the distribution of the stabilities of typi-
cal configurations (see SI). We remark that the ability of SA
to find solutions for low values of 𝛼 is due to finite-size ef-
fects: indeed we show in the SI that scaling up the sizes while
keeping 𝛼, 𝛼𝑇 fixed, at a certain point SA is no longer able
to find solutions. We find that fBP, SBPI and BNet, despite
being mildly affected by finite-size effects as well, converge to
entropic states that have a much better generalization error, as
also predicted by the theory.

The entropy landscape around a typical solution. Having
established that algorithms find solutions with different gener-
alization properties, it remains to understand in which regions
of the landscape those solutions end up and how they arise in
terms of the degree of overparameterization.

A way to answer those questions is by studying the local
entropy landscape by the computation of the so-called Franz-
Parisi potential [42]. This technique has been introduced as a
tool to study the role of metastable states in spin glasses [42]
and recently [2, 5] it was used to show that, in one and two-layer
binary neural networks, typical solutions with zero margin
are organized as clusters with vanishing internal entropy, a
scenario that has been called frozen-1RSB.

Given a configuration �̃� with margin ˜̂ that we call the
“reference”, the local entropy is the log of the number of
configurations N(�̃�, 𝑑; ^) that are solutions with margin ^

and that are constrained to be at a given normalized Hamming
distance 𝑑 from �̃�:

N(�̃�, 𝑑; ^) =
∑︁
𝒘

Xb ,𝐹 (𝒘; ^) 𝛿
(
𝑁 (1 − 2𝑑) −

∑︁
𝑖

𝑤𝑖�̃�𝑖

)
.

(14)
The properties of the landscape around typical references can
then be investigated by studying their average local entropy,
which is called Franz-Parisi free entropy [2, 42]

𝜙FP (𝑑; ˜̂, ^) =
〈

1
𝑍

∑̃︁
𝒘

Xb ,𝐹 (�̃�; ˜̂) lnN(�̃�, 𝑑; ^)
〉
b ,𝐹

. (15)
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Figure 3. Local entropy of solutions with zero margin ^ = 0 as a
function of the distance 𝑑, evaluated for typical references having
different values of the margin ˜̂. Here 𝛼 = 0.5 and 𝛼𝑇 = 8. The
(barely visible) dotted gray line at the top represents the total num-
ber of configurations at that given distance, which is a geometrical
upper bound for the local entropy. The maximum margin that can
be imposed is ^max ' 0.847 and corresponds to the curve with the
largest local entropy. The inset refers to the entropy curves for small
distances (they are not complete due to numerical issues). For all
curves 𝜙FP (𝑑 = 0; ˜̂, ^) = 0, so for ˜̂ = 0 the curve is non-monotonic
in a neighborhood of 𝑑 = 0, while for ˜̂ > 0 the profiles shown are
all positive.

This quantity can be again computed by the replica method
with a double analytic continuation (details in the SI).

Here, following ref. [9], we are chiefly interested in the
behavior of this quantity when ^ = 0. For a given value of 𝛼 <
𝛼𝑐 , the local entropy curves of the references exhibit different
characteristics as ˜̂ varies. This is shown in Fig. 3. The overall
picture closely resembles that of simpler models [9], and we
point out some noteworthy results (here and in the following
we omit 𝛼𝑇 , which we consider to be fixed, for simplicity):

(1) Zero-margin references are isolated: 𝜙FP (𝑑; ˜̂ = 0, ^ =

0) is always negative in a neighborhood of 𝑑 = 0. This explains
the poor performance, both in terms of efficiency in finding
a solution and in terms of the generalization properties of the
solution it finds, of the SA algorithm, which directly targets
the Gibbs measure. Even for small non-zero values of ˜̂ the
local entropy is negative for some distances 𝑑, or it is non-
monotonic, denoting the existence of small isolated clusters of
solutions.

(2) Fixing a small enough value of 𝛼 and keeping increas-
ing the margin of the reference configuration one eventually
reaches a threshold value ˜̂ = ^𝑢 (𝛼) that separates a region
for ˜̂ < ^𝑢 (𝛼) where the local entropy is non-monotonic (as
described in the previous point) from a phase where the local
entropy is monotonic (for ˜̂ > ^𝑢 (𝛼)). This means that those
references are located inside a dense region of solutions that
extends to very large scales. The monotonic local entropy
phase extends up to ˜̂ = ^max (𝛼). As shown in Fig. 3, the
highest curve in terms of local entropy is found by the typical
configurations having maximum margin ˜̂ = ^max (𝛼). These

large-scale regions are apparently targeted by efficient solvers,
which also have lower generalization errors than SA.

Local Entropy transition. A fundamental question that re-
mains to be answered is how those (atypical) dense regions
change when increasing 𝛼. In previously studied convex mod-
els those regions tend to shrink continuously and they reduce to
a point at the SAT/UNSAT transition. This is not the case here:
similarly to what happens in previously studied teacher-student
non-convex models, those regions shrink when increasing 𝛼,
until a critical value 𝛼LE < 𝛼𝑐 is reached, beyond which they
fracture in multiple pieces. This is the LE transition. For
𝛼 > 𝛼LE no algorithm is seemingly able to find a solution
efficiently, whereas below it efficient algorithms with good
scaling properties only find solutions in non-isolated regions.
Thus, 𝛼LE can be regarded as a fairly good upper bound to the
algorithmic capacity for the most efficient algorithms.

Different approaches have been devised in order to estimate
analytically 𝛼LE. The first one is based on the use of a large
deviations analysis [3, 4] which however leads to a quite heavy
formalism for the models under study. We have thus adopted
a recently introduced simpler method [9] which gives similar
results to the large deviations approach. It is based on the
observation that, by definition of 𝛼LE, references located in
the large-scale dense region should not exist anymore when
𝛼 > 𝛼LE. We can therefore estimate 𝛼LE by the condition

^𝑢 (𝛼LE) = ^max (𝛼LE) (16)

meaning that 𝛼LE is the value of 𝛼 after which not even maxi-
mum margin solutions have a monotonic local entropy profile:
all ˜̂-margin solutions are located in disconnected balls in con-
figuration space (see Fig. 4). This is a stricter condition than
the one obtained from the large deviation analysis, which uses
the criterion that all solutions have non-monotonic profiles;
thus, it likely slightly under-estimates the true 𝛼LE, but this
difference is smaller than the resolution that can be detected
by our numerical experiments.

III. NUMERICAL EXPERIMENTS

In order to assess the relevance of the analysis presented
above to more realistic cases, we have performed a series of
numerical studies that consider progressively less idealized
scenarios. First, we investigated the simplest non-convex con-
tinuous overparameterized model, namely a tree-like commit-
tee machine trained on randomly generated and randomly pro-
jected data, again with labels provided by a random teacher.
Second, we moved to deeper networks: we studied a fully-
connected multi-layer network with a fixed number of variable-
width layers, trained with gradient descent using the popular
ADAM optimizer, and a deep convolutional networks trained
with both SGD and the ADAM optimizer. These deep models
have been trained respectively on the first 10 principal com-
ponents of a reduced version of the MNIST dataset and on
images of CIFAR10.
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Figure 4. Estimating the Local Entropy transition 𝛼LE by looking
to the local entropy profiles of maximum margin references and its
derivative with respect to distance (inset). Here 𝛼𝑇 = 2 and the
critical capacity is 𝛼𝑐 ' 1.045. For low values of 𝛼, e.g. 0.8, 0.85
and 0.9 typical references with maximum margin are located inside a
dense region extending to a very long scale, since the local entropy is
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develops a new zero for small distances. This signals a transition in
the geometrical structure of the dense regions. For 𝛼 > 𝛼LE, the local
entropy is not monotonic anymore, meaning that typical maximum
margin references (as well as all other typical solutions with smaller
margin) are located in disconnected balls in configuration space.

Across these tests, we found some common characteristics,
compatible with the analytical findings. In order to find a so-
lution, the networks require a minimum number of parameters
that is larger than the size of the input. When that degree
of overparameterization is achieved, we observe that indeed
we have already passed the “interpolation” point, since many
solutions exist (even after having accounted for the permuta-
tion and rescaling symmetries in the networks) and they are
located far apart from each other and belong to a flat region.
As we increase the amount of overparameterization, the solu-
tions that we found grow further apart in distance1, their local
landscapes become even flatter, and their generalization prop-
erties improve. We also observe that within such flat regions,
different algorithms sample solutions of different types, more
or less barycentric, and with a different flatness (as estimated
by their local energy profiles, defined below).

Overparameterized tree committee machine: We studied an
overparameterized tree-committee architecture with 𝐾 hidden
units, trained on random patterns. The teacher and the patterns
are generated in the same way as for the perceptron of eq. 2,
and in particular the device receives binary inputs 𝝃 of length
𝑁 obtained by projecting randomly-generated 𝐷-dimensional
inputs 𝝃 through a random matrix 𝐹 and a non-linearity 𝜎, as
in eq. (1). Again, we choose 𝜎 = sign. We now consider only

1 The distance appears to plateau at a value strictly lower than the geometrical
bound.

values of 𝑁 divisible by 𝐾 , and divide the inputs into groups
of 𝑁/𝐾 , each of which is fed to one of the 𝐾 hidden units; the
final output is then decided by majority voting, as:

𝑦out ≡ sign
©«
𝐾∑︁
ℎ=1

sign ©« 1√︁
𝑁/𝐾

ℎ 𝑁
𝐾∑︁

𝑖=(ℎ−1) 𝑁
𝐾
+1

𝑤𝑖 b̃𝑖
ª®®¬
ª®®¬ (17)

Beside the architecture, one major difference with the per-
ceptron case is that here the weights 𝒘 are assumed to be
continuous. Due to the sign activation function, each unit is
invariant to scaling, and thus we normalize the weights of the
units by fixing their norms to 1.

We consider two learning algorithms for this architecture.
The first one is a version of focusing-BP (fBP) that operates
with continuous weights [7]. The implementation exploits the
central limit theorem and thus it only works well for relatively
large values of 𝑁/𝐾; furthermore, even in the large 𝑁 limit, it
is only approximately correct on the tree-committee machine
architecture. Despite this, in practice it produces excellent
results.

The second algorithm is Stochastic Gradient Descent with
cross-entropy loss. Following ref. [7], we substituted the (non-
differentiable) units’ activation function in eq. 17, sign (Δ),
with tanh (𝛽Δ). The new parameter 𝛽 can be regarded as
taking the role of the norm of the unit’s weights, since we keep
the weights normalized at each step. We explicitly schedule
this parameter, letting it start from a small value and making
it diverge during the training, thereby recovering the original
sign activation at the end 2. Analogously, we also schedule
a parameter 𝛾 that has the role of the norm of the (fixed)
weights in the second layer, and that we can simply plug in the
cross-entropy (see the Materials and Methods).

Here, we report the result of tests performed on a commit-
tee machine with 𝐾 = 9 hidden units, trained on 𝑃 = 10005
patterns produced in 𝐷 = 2001 dimensions, thus at a fairly
large 𝛼𝑇 = 𝑃/𝐷 = 5, while varying the degree of overparam-
eterization 𝑁 = 𝑃𝛼−1 (see the Materials and Methods for the
details of the settings used for the training). Our results are
reported in Fig. 5. We found that both fBP and SGD fail to
find a solution below 𝛼−1 ≈ 0.36, which we thus take to be
a plausible estimate for the algorithmic threshold 𝛼−1

LE where
the phase of the robust solutions presumably changes. This
is corroborated by the study of the overlaps: for any given
training set, the SGD algorithm finds different solutions when
started from different random initial conditions (this is not
true for fBP due to its deterministic nature). We measured
the average overlap (cosine similarity) between the solutions,
〈𝑤𝑎 ·𝑤𝑏

𝑁
〉, and found that when reducing 𝛼−1 the overlap grows,

but it does not tend to 1 as 𝛼 tends to 𝛼LE, which one would
expect if the solutions shrank to a single interpolation point

2 Note that the divergence of the norms would occur naturally anyway in
standard SGD with the cross-entropy loss.
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Figure 5. Results for the overparameterized continuous tree-like
committee machine. Tests performed with 𝐷 = 2001, 𝛼𝑇 = 5,
𝐾 = 9. All points are averages over 5 samples, with 5 independent
runs per sample for SGD. Dashed red line: mean overlap between
two SGD solutions on the same sample, as a function of the number
of parameters 𝑁 . Solid lines: test error for BP and SGD. The vertical
dashed grey line at 𝑁 = 3600 (𝛼−1 ≈ 0.36) denotes the algorithmic
threshold below which the algorithms solve fewer than 50% of the
samples. The overlaps are still far from 1 at this point. Inset: Local
energy profiles, i.e. average train error as a function of the Euclidean
distance from a solution. The dashed lines are measured at 𝑁 = 3996
(𝛼−1 ≈ 0.4), the solid lines at 𝑁 ≈ 13500 (𝛼−1 ≈ 1.35).

like in convex models. The generalization error behaves as
expected, decreasing monotonically with 𝑁; SGD is slightly
worse than fBP in this regard. We also measured the flatness
of the minima found by the algorithm by plotting the "aver-
age local energy"3, i.e. the average training error profile of
the landscape surrounding each solution, as a function of the
distance. This can be estimated straightforwardly and robustly
by randomly perturbing the weights, with a varying degree of
multiplicative noise (the weights are still renormalized after
the perturbation). In Fig. 5, we show two sets of curves, one
at 𝛼−1 ≈ 0.4, close to 𝛼−1

LE, and one at 𝛼−1 ≈ 1.35, at the
opposite end. As expected, close to the threshold the minima
are generally sharper, but in all cases both SGD and fBP have
flat profiles for small distances, reflecting the fact that both
algorithms are inherently biased towards wide flat minima [7].
The bias is stronger for the fBP algorithm, which was explicitly
designed for this purpose, and its profiles are indeed flatter.

Overall, all the phenomenological features that we could
measure on this model are compatible with the theoretical anal-
ysis of the previous section on the binary perceptron, despite
the more complex architecture and the continuous weights,
even in the context of gradient-based learning.

Comparing solutions in Deep architectures: removing sym-
metries

3 Notice that the local energy of a configuration is highly correlated with its
local entropy, see e.g. [43]

When discussing the space of configurations of standard
multi-layer architectures, we need to be more careful compared
to the simple models discussed so far, due to the presence of
additional symmetries [44].

First, the ReLU activation function that is commonly used
in deep learning models has the property that ReLU (𝑎𝑥) =

𝑎 ReLU (𝑥), which implies that if we scale all the input weights
of a hidden unit by a factor 𝑎−1 and all its output weights by a
factor 𝑎 the network’s output will be unaffected. By setting the
factor 𝑎 to the norm of the input weights, one can normalize a
hidden unit by simply "pushing up" its norm to the next layer.
Furthermore, when a network is used for classification tasks,
the output label is determined by an argmax operation, which
is invariant to scaling. Thus, normalizing the last layer too is
possible without affecting the classification properties of the
network. In the full configuration space, each neural network
has infinitely many parameter representations, and the error
rate landscape has some trivially null directions. This issue can
be avoided by normalization, which can be performed simply
by starting from the first layer and moving up, as described
above.

There is also a second, discrete symmetry, since networks
are invariant to permutations of the units inside any hidden
layer. If we failed to take into account this, we could measure
a non-zero distance between networks which are just permuted
versions of each other and thus functionally equivalent. One
natural way to break this symmetry is to normalize and align
the networks before comparing their weights. In our tests, we
adopted again a sequential approach for aligning two given
networks. Starting from the first hidden layer, we find the
permutation of the second networks’ units that minimizes the
distance between the weights of the two networks for that
layer4, apply it, and proceed to the following layer.

In the following paragraphs, we present experiments on deep
architectures that have both these symmetries. We use stan-
dard techniques to train them, and thus do not explicitly keep
the norms and permutations under control. We do however
normalize and align them when we compare two solutions,
either to compare their error rates or to measure their distance.

Multi-layer neural network We studied a simple fully-
connected multi-layer perceptron inspired by ref. [29]. The
network has a fixed number 𝐻 of hidden layers (𝐻 = 5 in the
numerical experiments) whose width is varied in order to in-
crease the number of model parameters. The model is required
to perform a binary classification task on the parity of digits of
10000 MNIST images, using as inputs only the first 10 prin-
cipal components of each image. We trained the model using
full batch gradient descent with ADAM optimization, both
with random orthogonal initialization [45] and with adversar-
ial initialization [46]. The results are reported in Fig. 6 where
it can be seen that in general different optimization schemes

4 This can be accomplished by a matching algorithm, which is𝑂 (𝐻 3) if 𝐻
is the number of hidden units of the layer. In practical terms, it is typically
much quicker than the training.
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Figure 6. Train (full points) and test (empty points) error as a function
of the network parameters 𝑁 for a fully-connected network with 5
hidden layers. All points are averages over 10 independent runs.
The network is trained using full batch gradient descent with ADAM
optimization, with random orthogonal initialization (red curves) and
adversarial initialization (blue curves). When the algorithms start
finding zero errors solutions, the mean overlap between solutions
is far below 1 (dashed lines). Inset: local energy profiles for both
algorithms at two different values of the overparameterization (𝑁 '
9 · 103 (full lines) and 𝑁 ' 2 · 104 (dashed lines)).

lead to different generalization error plateaus and different al-
gorithmic thresholds. When the model starts to fit the training
set, the solution is not unique and as a consequence the mean
overlap between independent instances is lower than 1. The
inset shows that the solutions are indeed robust to noise per-
turbations even in the proximity of the algorithmic threshold,
and they become flatter as the overpameterization increases.

Convolutional networks As a second representative case of
deep architectures we analyze a 5-layer NN, with 4 convolu-
tional layers followed by a fully connected one, as in ref. [28].
After each 2d convolution, a batch normalization is performed
before applying a ReLU nonlinearity. The overparameteriza-
tion in this model is adjusted via a parameter 𝐶: in layer ℓ
there are 2ℓ ·𝐶, 3x3 convolutional filters. This CNN is trained
on CIFAR10 for 200 epochs, using two different learning al-
gorithms: ADAM with momentum and SGD with a learning
rate [ = 10−2. For real datasets like the one we considered,
while it is relatively easy to achieve a very low training error,
getting to precisely 0 error requires a disproportionate amount
of additional computation. For this reason, we consider as
solutions all configurations that misclassify at most 1 pattern
(<0.0017% training error), and estimate the algorithmic LE
threshold according to this criterion. In Fig. 7, train (dashed
line) and test (solid line) errors are shown for both optimiz-
ers. SGD and ADAM begin to fit the training set data at
𝐶 = 50 and 𝐶 = 60 respectively, while the generalization er-
ror is monotonically decreasing with the number of network
parameters. It is worth noticing that these architectures work
in a relatively lazy training regime: on one hand, the first
layer is less affected by the training, while the following layers
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SGD with 𝐶 = 54; blue: ADAM with 𝐶 = 64).

change progressively more; on the other hand, the distance
of the trained configurations from their initial conditions does
not drop to zero as the number of parameters diverges (see
details in the SI). Consistently with the analytical results, and
similarly to other networks we have studied, we find that the
learning algorithms, namely SGD and ADAM, find different
solutions depending on initial conditions. In particular, even
when we get close to the algorithmic threshold, we observe that
the overlaps, in contrast to what happens at the interpolation
threshold in convex networks, do not tend to their maximum
value of one (red curve in Fig. 7). The solutions found by
SGD and ADAM show similar geometric properties, i.e., they
belong to flat regions of the training error landscape. This can
be seen in the inset of Fig. 7, where we display the results of
the numerical analysis of the average (local energy) landscape
around a given solution. Like for the other models, this was
measured by random sampling, perturbing the solutions with
multiplicative noise (see the SI for details). The first derivative
at short distances is essentially zero.

IV. CONCLUDING REMARKS

Our results characterize the interplay between overparame-
terization and nonconvexity in neural networks learning data
generated by structurally different networks randomly chosen
from a natural distribution. In particular, we identify a new
phenomenon, namely the existence of a phase transition driven
by the appearance of solution sets that are statistically atypical
but which seem to be the ones targeted by learning algorithms.
For the same systems we are able to derive the generalization
error of different types of solutions and predict how to optimize
the Bayesian error. The analytical techniques also suggest a
number of numerical verifications that can be done on deep
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networks and for different learning algorithms. The consis-
tency of the results is very good, suggesting that the scenario
identified in the analytically tractable models, i.e., the essential
role played by highly entropic atypical solutions, may in fact
be general.

There are several natural future directions. On the one hand,
in-depth numerical studies of large deep networks should be
conducted, and algorithms should be further optimized build-
ing on the information derived from the structure of solutions.
Most algorithms already do this as a result of the tuning pro-
cess that has been put in practice during the last decade. Still
further progress appear to be possibile, and some steps in
this direction have already been taken. On the other hand,
it would be important to corroborate our results with rigor-
ous bounds, for more general data distributions, in order to
reach a more complete mathematical theory for learning in
non-convex overparameterized systems. Finally, a theoretical
confirmation that dynamics of a broad class of algorithms is
indeed attracted to these structures would be of great interest
(an analysis that shows that SGD is biased towards flat minima
can be found in [13], but some of the assumptions are justified
phenomenologically).

From a physics and modeling perspective, it seems to us that
having identified that atypical states play a key role in learning
processes opens the way toward a fertile connection between
out-of-equilibrium physics and modeling of learning systems.
Indeed, such states are inherently atypical with respect to al-
gorithmic dynamics that tend to sample energy with a Gibbs
measure and where the basic energy function, or loss function,
is defined directly on the data as the number of errors.
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Appendix A: Some preliminary definitions

We denote by 𝑤𝑇
𝑘

the weights of a teacher that lives in a 𝐷-dimensional space (𝑘 = 1, . . . , 𝐷). The teacher assigns to i.i.d.
standard normal random input variables b`

𝑘
(with ` = 1, . . . , 𝑃) a label, via

𝑦` = sign (𝑢`) = sign

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝑤𝑇𝑘 b
`

𝑘

)
. (A1)

The student sees a projection of the patterns in an 𝑁 dimensional space plus a non linearity 𝜎. The dimensionality of the space
𝑁 can either be higher or lower than the true dimension 𝐷. The projection is therefore identified by an 𝐷 × 𝑁 feature matrix 𝐹𝑘𝑖 ,
so that

b̃
`

𝑖
= 𝜎

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
`

𝑘

)
(A2)

The student then classifies the projected patterns with its weights as

�̂�` = sign (_`) = sign

(
1
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 b̃
`

𝑖

)
= sign

(
1
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 𝜎

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
`

𝑘

))
(A3)

Notice that we have denoted with 𝑢` and _` the preactivation of pattern ` for the teacher and the student respectively. The only
assumptions we make on the feature matrix are

1
𝐷

𝐷∑︁
𝑘=1

𝐹2
𝑘𝑖 = 1 , ∀𝑖 (A4a)

1
√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖𝐹𝑘 𝑗 = O(1) , ∀𝑖 ≠ 𝑗 (A4b)

𝑠
𝑎1 ,...,𝑎𝑛
𝑘1 ,...,𝑘𝑠

≡ 1
√
𝑁

𝑁∑︁
𝑖=1

𝑤
𝑎1
𝑖
. . . 𝑤

𝑎𝑛
𝑖
𝐹𝑘1𝑖 . . . 𝐹𝑘𝑠𝑖 = O(1) , ∀𝑛, 𝑠 ≥ 1 (A4c)

In particular the second requirement tells us that two different sub-perceptrons are almost uncorrelated. In general, choosing the
entries of the matrix 𝐹𝑘𝑖 to be random i.i.d. standard Gaussian random variables or random i.i.d. binary ones will do the job.

https://doi.org/10.1088/1742-5468/ac3ae8
https://doi.org/10.1088/1742-5468/ac3ae8
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1906.02613
https://doi.org/10.1088/0305-4470/21/1/030
https://doi.org/10.1088/0305-4470/21/1/031
https://doi.org/10.1088/0305-4470/21/1/031
https://doi.org/10.1088/0305-4470/22/12/004
https://doi.org/10.1103/PhysRevA.41.7097
http://arxiv.org/abs/1912.02178
https://openreview.net/forum?id=xjXg0bnoDmS
https://openreview.net/forum?id=xjXg0bnoDmS
https://doi.org/10.1007/s10955-009-9822-1


13

The partition function of the model is, therefore,

𝑍 =

∫ ∏
𝑖

𝑑𝑤𝑖 𝑃𝑤 (𝒘) 𝑒−𝛽
∑𝑃
`=1 ℓ (−𝑦`_`) (A5)

where ℓ(·) is a loss function per pattern and 𝑃𝑤 (𝒘) represents the prior over the weights and identifies their space of definition.
We will adopt a similar probability density 𝑃𝑤𝑇 (𝒘𝑇 ) for the teacher weights. In the following we will study analytically the non
convex “binary” problem, where both the teacher and the student are ±1; the “spherical”, problem where the weights live on the
sphere, is convex and has been already studied in the literature [26]. In this paper we will focus on the loss that simply counts the
number of patterns in the training set whose stability 𝑦`_` is larger than a given positive margin ^

ℓ𝑁𝐸 (−𝑥; ^) = Θ (−𝑥 + ^) (A6)

where Θ(·) is the Heaviside step function: Θ (𝑥) = 1 if 𝑥 > 0 and zero otherwise. For ^ = 0 this loss reduces to the one that
counts the number of errors; with a slight abuse of notation we call it number of errors loss even if the margin is non-zero. In the
following we will be interested in the binary weights case; we will compute the free entropy of solution in the thermodynamic
limit

𝑁, 𝐷, 𝑃 → ∞ fixing 𝛼 ≡ 𝑃

𝑁
and 𝛼𝑇 =

𝑃

𝐷
≡ 𝛼

𝛼𝐷
. (A7)

We will also limit ourselves to the case of random i.i.d. standard Gaussian features 𝐹𝑘𝑖 .

Appendix B: Replica Method

Introducing replicas we get

𝑍𝑛 =

∫ ∏
𝑖𝑎

𝑑𝑤𝑎𝑖 𝑃𝑤 (𝒘𝑎) 𝑒
−𝛽∑𝑃

`=1
∑𝑛
𝑎=1 Θ(−𝑦`_`𝑎+^) (B1)

We now enforce the definitions of the preactivations of the teacher and the student by using delta functions

E{𝝃` } [𝑍𝑛] =
∫ ∏
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𝑑𝑤𝑎𝑖 𝑃𝑊 (𝒘𝑎)
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𝑎
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))]
. (B2)

Notice that if the distributions of patterns and features are symmetric, we can perform the gauge transformation b`
𝑘
→ 𝑤𝑇

𝑘
b
`

𝑘
,

𝐹𝑘𝑖 → 𝑤𝑇
𝑘
𝐹𝑘𝑖 , so that we can consider 𝑤𝑇

𝑘
= 1, ∀𝑘 , without loss of generality.

1. Average over the disorder: Gaussian equivalence theorem

When 𝜎 is linear, the average can be easily computed by using the integral representation of the delta function. When 𝜎 is
non-linear the computation of the average is more involved. We can, however, compute the moments of the variables 𝑢` and
_
`
𝑎 as defined in equation (B2). One can show that in the thermodynamic limit (A7), the moments are those of a multivariate

Gaussian random variable [23, 24]. This result is equivalent to the central limit theorem that is easy to derive in the classical
models without (random) feature projections [47–50] and has been renamed as “Gaussian equivalence theorem”. In the following
we will compute explicitly the first two moments of the random variables 𝑢` and _`𝑎 , and we will refer to [24] for the computation
of the fourth moment.

We start defining the following useful quantities

`0 =

∫
𝐷𝑧 𝜎(𝑧) (B3a)

`1 =

∫
𝐷𝑧 𝑧 𝜎(𝑧) =

∫
𝐷𝑧 𝜎′(𝑧) (B3b)

`2 =

∫
𝐷𝑧 𝜎2 (𝑧) (B3c)

`2
★ = `2 − `2

1 − `
2
0 (B3d)
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where 𝐷𝑧 ≡ 𝑒−𝑧
2/2

√
2𝜋
𝑑𝑧. The mean of 𝑢` is trivial

E𝝃 [𝑢`] = 0 (B4)

whereas that of _`𝑎 is

E𝝃`
[
_
`
𝑎

]
=

∫ 𝑁∏
𝑖=1

𝑑𝑣
`

𝑖
𝑑�̂�
`

𝑖

2𝜋
𝑒𝑖

∑
𝑖 �̂�
`

𝑖
𝑣
`

𝑖

[
1
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑎𝑖 𝜎
(
𝑣
`

𝑖

) ] ∏
𝑘

Eb `
𝑘
𝑒
−𝑖

b
`

𝑘√
𝐷
(∑𝑖 �̂�`𝑖 𝐹𝑘𝑖)

=

∫ 𝑁∏
𝑖=1

𝑑𝑣
`

𝑖
𝑑�̂�
`

𝑖

2𝜋
𝑒𝑖

∑
𝑖 �̂�
`

𝑖
𝑣
`

𝑖

[
1
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑎𝑖 𝜎
(
𝑣
`

𝑖

) ]
𝑒
− 1

2
∑
𝑖 𝑗 ( 1

𝐷

∑
𝑘 𝐹𝑘𝑖𝐹𝑘 𝑗) �̂�`𝑖 �̂�`𝑗

(B5)

We now use (A4a) and (A4b) obtaining

E𝝃`
[
_
`
𝑎

]
=

1
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑎𝑖

∫
𝑑𝑣`𝑑�̂�`

2𝜋
𝑒𝑖 �̂�`𝑣`𝜎

(
𝑣`

)
𝑒−

�̂� 2̀

2 = `0
1
√
𝑁

∑︁
𝑖

𝑤𝑎𝑖 . (B6)

The second moment of 𝑢` is

E𝝃`
[
𝑢2
`

]
=

1
𝐷

𝐷∑︁
𝑘=1

(
𝑤𝑇𝑘

)2
= 1 (B7)

whereas that of _`𝑎 is

E𝝃`
[
_𝑎`_

𝑏
`

]
=

∫ 𝑁∏
𝑖=1

𝑑𝑣
`

𝑖
𝑑�̂�
`

𝑖

2𝜋
𝑒𝑖

∑
𝑖 �̂�
`

𝑖
𝑣
`

𝑖

[
1
𝑁

∑︁
𝑖 𝑗

𝑤𝑎𝑖 𝑤
𝑏
𝑗𝜎

(
𝑣
`

𝑖

)
𝜎

(
𝑣
`

𝑗

)]
𝑒
− 1

2
∑
𝑖 𝑗 ( 1

𝐷

∑
𝑘 𝐹𝑘𝑖𝐹𝑘 𝑗) �̂�`𝑖 �̂�`𝑗 . (B8)

Now we split 𝑖 = 𝑗 and 𝑖 ≠ 𝑗 contributions. Because of (A4b), 1
𝐷

∑
𝑘 𝐹𝑘𝑖𝐹𝑘 𝑗 with 𝑖 ≠ 𝑗 is of order 1/

√
𝐷; we can therefore

expand the exponential. We have

𝑒
𝑖 �̂�
`

𝑖
𝑣
`

𝑖
+𝑖 �̂�`

𝑗
𝑣
`

𝑗
−( 1

𝐷

∑
𝑘 𝐹𝑘𝑖𝐹𝑘 𝑗) �̂�`𝑖 �̂�`𝑗 ' 𝑒𝑖 �̂�

`

𝑖
𝑣
`

𝑖
+𝑖 �̂�`

𝑗
𝑣
`

𝑗

[
1 − 1

2

(
1
𝐷

∑︁
𝑘

𝐹𝑘𝑖𝐹𝑘 𝑗

)
�̂�
`

𝑖
�̂�
`

𝑗

]
=

[
1 +

(
1
𝐷

∑︁
𝑘

𝐹𝑘𝑖𝐹𝑘 𝑗

)
𝑑

𝑑𝑣
`

𝑖

𝑑

𝑑𝑣
`

𝑗

]
𝑒
𝑖 �̂�
`

𝑖
𝑣
`

𝑖
+𝑖 �̂�`

𝑗
𝑣
`

𝑗

(B9)

so that, performing the integrals we have

E𝝃`
[
_𝑎`_

𝑏
`

]
= `2

1
𝑁

∑︁
𝑖

𝑤𝑎𝑖 𝑤
𝑏
𝑖 +

1
𝑁

∑︁
𝑖≠ 𝑗

𝑤𝑎𝑖 𝑤
𝑏
𝑗

∫
𝐷𝑣

`

𝑖
𝐷𝑣

`

𝑗
𝜎

(
𝑣
`

𝑖

)
𝜎

(
𝑣
`

𝑗

) [
1 +

(
1
𝐷

∑︁
𝑘

𝐹𝑘𝑖𝐹𝑘 𝑗

)
𝑣
`

𝑖
𝑣
`

𝑗

]
=

(
`2 − `2

1 − `
2
0

) 1
𝑁

∑︁
𝑖

𝑤𝑎𝑖 𝑤
𝑏
𝑖 +

`2
0
𝑁

∑︁
𝑖

𝑤𝑎𝑖

∑︁
𝑗

𝑤𝑏𝑗 + `2
1

1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘 𝑠
𝑏
𝑘

(B10)

where we have defined the “projected” weights 𝑠𝑎
𝑘

as

𝑠𝑎𝑘 ≡ 1
√
𝑁

𝑁∑︁
𝑖=1

𝐹𝑘𝑖𝑤
𝑎
𝑖 . (B11)

The covariance is therefore

E𝝃`
[
_𝑎`_

𝑏
`

]
− E𝝃`

[
_𝑎`

]
E𝝃`

[
_𝑏`

]
= `2

★

1
𝑁

∑︁
𝑖

𝑤𝑎𝑖 𝑤
𝑏
𝑖 + `2

1
1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘 𝑠
𝑏
𝑘 . (B12)

We also define the “projected” teacher weights as

𝑠𝑇𝑖 ≡ 1
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖𝑤
𝑇
𝑘 . (B13)
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Using again assumptions (A4a) and (A4b) we get for the cross term

E𝝃`
[
𝑢`_

𝑎
`

]
=

∫ ∏
𝑖

𝑑𝑣
`

𝑖
𝑑�̂�
`

𝑖

2𝜋
𝑑𝑢`𝑑�̂�`

2𝜋
𝑒𝑖

∑
𝑖 �̂�
`

𝑖
𝑣
`

𝑖
+𝑖�̂�`𝑢`

[
𝑢`√
𝑁

∑︁
𝑖

𝑤𝑎𝑖 𝜎
(
𝑣
`

𝑖

) ]
𝑒
−
�̂�2̀

2 − 1
2
∑
𝑖 𝑗 ( 1

𝐷

∑
𝑘 𝐹𝑘𝑖𝐹𝑘 𝑗) �̂�`𝑖 �̂�`𝑗 −�̂�`

∑
𝑖 �̂�
`

𝑖
𝑠𝑇
𝑖

=
1
√
𝑁

∑︁
𝑖

𝑤𝑎𝑖

∫
𝑑𝑣`𝑑�̂�`

2𝜋
𝑑𝑢`𝑑�̂�`

2𝜋
𝑒𝑖 �̂�`𝑣`+𝑖�̂�`𝑢`

[
𝑢`𝜎

(
𝑣`

) ]
𝑒−

�̂�2̀

2 −
�̂� 2̀

2 −�̂�` �̂�`𝑠𝑇𝑖

= `1
1
√
𝑁

∑︁
𝑖

𝑤𝑎𝑖 𝑠
𝑇
𝑖 = `1

1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘𝑤
𝑇
𝑘 .

(B14)

The distribution of random variables 𝑢` and _`𝑎 therefore can be written as a multivariate Gaussian. The final result reads

𝑃
(
𝑢`,

{
_
`
𝑎

})
=

1
√

2𝜋 detΣ
𝑒
− 1

2
∑𝑛
𝛾,𝛿=0 (Υ`𝛾−𝜌𝛾) (Σ−1)𝛾𝛿 (Υ`𝛿−𝜌𝛿) (B15)

where Υ`0 ≡ 𝑢` and Υ
`
𝑎 ≡ _`𝑎 , ∀𝑎 = 1, . . . , 𝑛. The mean vector is 𝜌0 = 0 and 𝜌𝑎 =

`0√
𝑁

∑
𝑖 𝑤

𝑎
𝑖

for 𝑎 = 1, . . . , 𝑛; the covariance is

Σ ≡
(

1 𝑀𝑎

𝑀𝑎 𝑄𝑎𝑏

)
(B16)

where

𝑀𝑎 = `1
1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘𝑤
𝑇
𝑘 ≡ `1𝑟𝑎 (B17a)

𝑄𝑎𝑏 = `2
★

1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑎𝑖 𝑤
𝑏
𝑖 + `2

1
1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘 𝑠
𝑏
𝑘 ≡ `2

★𝑞𝑎𝑏 + `2
1𝑝𝑎𝑏 (B17b)

The average over the replicated partition function therefore takes the form

E{𝝃` } [𝑍𝑛] =
∫ ∏

𝑖𝑎

𝑑𝑤𝑎𝑖 𝑃𝑤 (𝒘𝑎)
∫ ∏̀

𝑑𝑢`
∏̀
𝑎

𝑑_
`
𝑎 𝑒

−𝛽∑𝑃
`=1

∑𝑛
𝑎=1 Θ(−sign(𝑢`)_`𝑎+^)𝑃

(
𝑢`,

{
_
`
𝑎

})
(B18)

or, equivalently

E{𝝃` } [𝑍𝑛] =
∫ ∏

𝑖𝑎

𝑑𝑤𝑎𝑖 𝑃𝑤 (𝒘𝑎)
∫ ∏̀ 𝑑𝑢`𝑑�̂�`

2𝜋

∏̀
𝑎

𝑑_
`
𝑎𝑑_̂

`
𝑎

2𝜋
𝑒
−𝛽∑𝑃

`=1
∑𝑛
𝑎=1 Θ(−sign(𝑢`)_`𝑎+^)

×
∏̀

𝑒𝑖𝑢
` �̂�`+𝑖∑𝑎 (_`𝑎−𝜌𝑎)_̂`𝑎− (�̂�` )2

2 − 1
2
∑
𝑎𝑏 𝑄𝑎𝑏 _̂

`
𝑎_̂
`

𝑏
−∑

𝑎 𝑀𝑎 �̂�
` _̂
`
𝑎 .

(B19)

Therefore the analytical expression of the average over patterns is similar to the one of the non-overparameterized teacher-student
scenario [49, 50], except for two important differences. Firstly, 𝑀𝑎, i.e. the overlap between the teacher and the student with
replica index 𝑎 has a different definition (see eq. (B17a)) since the two architectures live in spaces with different dimensions.
Secondly, also the definition of the overlap matrix 𝑄𝑎𝑏 changes (see eq. (B17b)). In particular notice that an additional matrix
of overlaps 𝑝𝑎𝑏 appears; this represents the overlap between the projection (in the teacher space) of the weights of two students
with replica indexes 𝑎 and 𝑏.

Notice that equation (B18) can be obtained starting from (B2), also by using the following mapping (Gaussian covariate model)

b̃
`

𝑖
= 𝜎

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
`

𝑘

)
= `0 +

`1√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
`

𝑘
+ `★[`𝑖 (B20)

where [𝑖 ∼ N(0, 1) are i.i.d. standard Gaussian random variables. This means that in the thermodynamic limit (A7), the
statistical properties of the random feature model are equivalent to a Gaussian covariate model, in which each projected pattern
�̃�
` is a linear combination of the patterns components b`

𝑘
plus noise. The strength of the noise depends on the degree of

non-linearity of the activation function 𝜎. This was already noticed in [23].
In the following we will limit ourselves to the case 𝜎(𝑥) = sign(𝑥), but our analytical results are valid to the class of functions

𝜎(·) for which `0 = 0; this will also impose 𝜌𝑎 = 0, reducing the number of terms in the calculations.
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2. Average over features and introduction of the order parameters

Inserting the definition of the projected weights (B11) using delta functions it becomes easy to perform the average over
random Gaussian features. We get a terms of the following form∫ ∏

𝑘𝑎

𝑑𝑠𝑎
𝑘
𝑑𝑠𝑎
𝑘

2𝜋
𝑒𝑖

∑
𝑘𝑎 𝑠

𝑎
𝑘
𝑠𝑎
𝑘

∏
𝑘𝑖

E𝐹𝑘𝑖

[
𝑒
−𝑖 𝐹𝑘𝑖√

𝑁

∑
𝑎 𝑠

𝑎
𝑘
𝑤𝑎
𝑖

]
=

∫ ∏
𝑘𝑎

𝑑𝑠𝑎
𝑘
𝑑𝑠𝑎
𝑘

2𝜋
𝑒𝑖

∑
𝑘𝑎 𝑠

𝑎
𝑘
𝑠𝑎
𝑘
− 1

2
∑
𝑎𝑏,𝑘 𝑠

𝑎
𝑘
𝑠𝑏
𝑘 ( 1

𝑁

∑
𝑖 𝑤

𝑎
𝑖
𝑤𝑏
𝑖 ) . (B21)

Next we can safely impose the definitions of the order parameters

𝑞𝑎𝑏 ≡ 1
𝑁

∑︁
𝑖

𝑤𝑎𝑖 𝑤
𝑏
𝑖 , 𝑝𝑎𝑏 ≡ 1

𝐷

∑︁
𝑘

𝑠𝑎𝑘 𝑠
𝑏
𝑘 , 𝑟𝑎 ≡ 1

𝐷

∑︁
𝑘

𝑠𝑎𝑘𝑤
𝑇
𝑘 , (B22)

Notice that 𝑞𝑎𝑎 = 1 since we have binary weights. Denoting by · · · the average over both patterns and random features, the final
result reads

𝑍𝑛 =

∫ ∏
𝑎<𝑏

𝑑𝑞𝑎𝑏𝑑𝑞𝑎𝑏

2𝜋

∏
𝑎≤𝑏

𝑑𝑝𝑎𝑏𝑑𝑝𝑎𝑏

2𝜋

∏
𝑎

𝑑𝑟𝑎𝑑𝑟𝑎

2𝜋
𝑒𝑁 𝜙 (B23)

where

𝜙 = −
∑︁
𝑎<𝑏

𝑞𝑎𝑏𝑞𝑎𝑏 −
𝛼𝐷

2

∑︁
𝑎𝑏

𝑝𝑎𝑏𝑝𝑎𝑏 − 𝛼𝐷
∑︁
𝑎

𝑟𝑎𝑟𝑎 + 𝐺𝑆𝑆 + 𝛼𝐷𝐺𝑆𝐸 + 𝛼𝐺𝐸 (B24a)

𝐺𝑆𝑆 = ln
∫ ∏

𝑎

𝑑𝑤𝑎 𝑃𝑤 (𝑤𝑎) 𝑒
1
2
∑
𝑎≠𝑏 �̂�𝑎𝑏𝑤𝑎𝑤𝑏 (B24b)

𝐺𝑆𝐸 = ln
∫ ∏

𝑎

𝑑𝑠𝑎𝑑𝑠𝑎

2𝜋
𝑒𝑖

∑
𝑎 𝑠𝑎𝑠𝑎+

∑
𝑎 𝑟𝑎𝑠𝑎+ 1

2
∑
𝑎𝑏 �̂�𝑎𝑏𝑠𝑎𝑠𝑏− 1

2
∑
𝑎𝑏 𝑞𝑎𝑏𝑠𝑎𝑠𝑏 (B24c)

𝐺𝐸 = ln
∫ ∏

𝑎

𝑑_𝑎𝑑_̂𝑎

2𝜋
𝑑𝑢𝑑�̂�

2𝜋
𝑒𝑖𝑢�̂�+𝑖

∑
𝑎 _𝑎_̂𝑎−𝛽

∑
𝑎 Θ(−sign(𝑢)_𝑎+^)− �̂�

2
2 − 1

2
∑
𝑎𝑏 𝑄𝑎𝑏 _̂𝑎_̂𝑏−�̂�

∑
𝑎 𝑀𝑎_̂𝑎 (B24d)

and 𝑀𝑎, 𝑄𝑎𝑏 are defined in terms of 𝑞𝑎𝑏 , 𝑝𝑎𝑏 , 𝑟𝑎 in (B17), and as usual 𝛼𝐷 ≡ 𝐷/𝑁 . Notice that 𝐺𝑆𝑆 is the usual “entropic”
contribution in a perceptron storing random patterns, whereas 𝐺𝐸 is the usual “energetic” contribution in the teacher student
setting. 𝐺𝑆𝐸 is a new term that we call “entropic-energetic” since it depends on both overlaps 𝑞𝑎𝑏 and conjugated ones 𝑝𝑎𝑏 , 𝑟𝑎.
Notice that 𝐺𝑆𝐸 can be computed analytically, since it contains only Gaussian integrals. It reads

𝐺𝑆𝐸 = −1
2

ln det (I − 𝑞𝑝) + 1
2

∑︁
𝑎𝑏

𝑟𝑎
[
(I − 𝑞𝑝)−1 𝑞

]
𝑎𝑏
𝑟𝑏 . (B25)

3. Replica-Symmetric ansatz

We impose a Replica-Symmetric (RS) ansatz for the order parameters: 𝑞𝑎𝑏 = 𝛿𝑎𝑏 + 𝑞 (1 − 𝛿𝑎𝑏), 𝑞𝑎𝑏 = 𝑞 (1 − 𝛿𝑎𝑏);
𝑝𝑎𝑏 = 𝑝𝑑𝛿𝑎𝑏 + 𝑝 (1 − 𝛿𝑎𝑏), 𝑝𝑎𝑏 = −𝑝𝑑𝛿𝑎𝑏 + 𝑝 (1 − 𝛿𝑎𝑏) and 𝑟𝑎 = 𝑟 , 𝑟𝑎 = 𝑟 .

We obtain

G𝑆𝑆 ≡ 𝑞

2
+ lim
𝑛→0

𝐺𝑆𝑆

𝑛
=

∫
𝐷𝑥 ln 2 cosh

(√︁
𝑞𝑥

)
(B26a)

G𝑆𝐸 ≡ lim
𝑛→0

𝐺𝑆𝐸

𝑛
= −1

2
𝑞

1 − 𝑞 − 1
2

ln [1 + (𝑝 + 𝑝𝑑) (1 − 𝑞)] + 1
2
(𝑝 + 𝑟2) (1 − 𝑞) + 𝑞

1−𝑞
1 + (𝑝 + 𝑝𝑑) (1 − 𝑞) (B26b)

G𝐸 ≡ lim
𝑛→0

𝐺𝐸

𝑛
= 2

∫
𝐷𝑥 𝐻

(
− 𝑀𝑥√︁

𝑄 − 𝑀2

)
ln𝐻𝛽

(
^ −

√
𝑄𝑥

√
𝑄𝑑 −𝑄

)
(B26c)

where 𝑀 ≡ `1𝑟 , 𝑄 ≡ `2
★𝑞 + `2

1𝑝, 𝑄𝑑 ≡ `2
★ + `2

1𝑝𝑑 . We have also defined

𝐻 (𝑥) ≡ 1
2

Erfc
(
𝑥
√

2

)
, (B27a)

𝐻𝛽 (𝑥) ≡ 𝑒−𝛽 +
(
1 − 𝑒−𝛽

)
𝐻 (𝑥) . (B27b)
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Figure 8. Plot of the entropy as a function of 𝛼 for fixed 𝛼𝑇 = 3 (left panel) and as a function of 𝛼𝑇 for fixed 𝛼 = 1 (right panel) for different
values of the margin ^.

The free entropy of the system is

𝜙 = −𝑞
2
(1 − 𝑞) + 𝛼𝐷

2
(𝑝𝑑 𝑝𝑑 + 𝑝𝑝) − 𝛼𝐷𝑟𝑟 + G𝑆𝑆 + 𝛼𝐷G𝑆𝐸 + 𝛼G𝐸 . (B28)

The order parameters 𝑞, 𝑝, 𝑝𝑑 , 𝑟 , 𝑞, 𝑝, 𝑝𝑑 , 𝑟 are found by saddle point equations

𝑞 = 1 − 2
𝜕G𝑆𝑆
𝜕𝑞

, 𝑝 = −2
𝜕G𝑆𝐸
𝜕𝑝

, 𝑝𝑑 = −2
𝜕G𝑆𝐸
𝜕𝑝𝑑

, 𝑟 =
𝜕G𝑆𝐸
𝜕𝑟

,

𝑞 = −2𝛼𝐷
𝜕G𝑆𝐸
𝜕𝑞

− 2𝛼
𝜕G𝐸
𝜕𝑞

, 𝑝 = −2𝛼𝑇
𝜕G𝐸
𝜕𝑝

, 𝑝𝑑 = −2𝛼𝑇
𝜕G𝐸
𝜕𝑝𝑑

, 𝑟 = 𝛼𝑇
𝜕G𝐸
𝜕𝑟

,

(B29)

As in the simple binary perceptron [1], the “interpolation threshold” or critical capacity is found by looking to the value of 𝛼
for which the RS free entropy vanishes. We show in 8 the behaviour of the entropy (i.e. the free entropy in the 𝛽 → ∞ limit) as
a function of 𝛼 (for a fixed value of 𝛼𝑇 ) and 𝛼𝑇 (for a fixed value of 𝛼) for different margins.

a. Generalization error

To compute the generalization error, we extract a new pattern 𝝃★ and label 𝑦★ and we compute the average number of errors.
Denoting by 〈·〉 the ensemble average, we have

𝜖𝑔 ≡ 〈E𝝃★Θ
(
−𝑦★�̂�★

)
〉

=

∫
𝑑𝑢𝑑_Θ (−𝑢_) E𝝃★

〈
𝛿

(
𝑢 − 1

√
𝐷

𝐷∑︁
𝑘=1

𝑤𝑇𝑘 b
★
𝑘

)
𝛿

(
_ − 1

√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 𝜎

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
★
𝑘

))〉
=

∫
𝑑𝑢𝑑�̂�

2𝜋
𝑑_𝑑_̂

2𝜋
Θ (−𝑢_) 𝑒𝑖𝑢�̂�+𝑖__̂− �̂�

2
2 − 1

2𝑄𝑑 _̂
2−𝑀�̂�_̂ = 2

∫ ∞

0
𝐷𝑢 𝐻

(
− 𝑀𝑢√︁

𝑄𝑑 − 𝑀2

)
.

(B30)

Performing the last integral we finally obtain

𝜖𝑔 =
1
𝜋

arccos
(
𝑀

√
𝑄𝑑

)
, (B31)

which is nothing but the standard formula of the generalization error for the classical teacher-student problem, but written in
terms of the “projected” overlap with the teacher 𝑀 and the “projected” norm of the weights 𝑄𝑑 .
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Figure 9. Generalization error in the large overparameterization limit (𝛼 → 0) versus 𝛼𝑇 = 𝑃/𝐷 for different values of the margin ^. The
dotted lines represent the corresponding generalization error of the barycenter of typical solutions (see section D)

b. Storage problem

When the dimension of the teacher is much larger than the number of patterns in the training set 𝛼𝑇 = 𝑃
𝐷

� 0, the problem is
as if the student sees random patterns. Indeed the saddle point equations (B29) reduce in the limit 𝛼𝑇 → 0 to

𝑞 = 1 − 2
𝜕G𝑆𝑆
𝜕𝑞

, 𝑝 = 𝑞 , 𝑝𝑑 = 1 , 𝑟 = 0 ,

𝑞 = −2𝛼
𝜕G𝐸
𝜕𝑞

, 𝑝 = 0 , 𝑝𝑑 = 0 , 𝑟 = 0 .
(B32)

Therefore 𝑄 =
(
`2
★ + `2

1
)
𝑞, 𝑄𝑑 = `2

★ + `2
1 and the free entropy reduces to

𝜙 = −𝑞
2
(1 − 𝑞) + G𝑆𝑆 + 𝛼G𝐸 . (B33)

with

G𝑆𝑆 =

∫
𝐷𝑥 ln cosh

(√︁
𝑞𝑥

)
(B34a)

G𝐸 =

∫
𝐷𝑥 ln𝐻𝛽

(
−
√︂

𝑞

1 − 𝑞 𝑥
)
. (B34b)

This is exactly the free entropy of the storage problem as derived by Gardner [47, 48]. Notice that this limit is achieved
independently of the non-linearity 𝜎(·) used.

c. Overparameterization limit

Here we want to address analytically the infinite overparameterization limit, i.e. 𝛼 → 0 for a fixed value of 𝛼𝑇 . In this limit
also 𝛼𝐷 = 𝛼

𝛼𝑇
is vanishing, therefore from saddle point equations (B29) we see that 𝑞 → 0 and consequently 𝑞 → 0, meaning

that typical solutions are uncorrelated in the space of the students. However there is still information about the teacher, so the
corresponding overlap in the space of the teacher is not zero. Furthermore we can eliminate all other conjugated parameters 𝑝,
𝑝𝑑 and 𝑟 by expressing them in terms of the other order parameters. The entropy can be written as

𝜙 ' ln 2 + 𝛼

𝛼𝑇
𝛿𝜙 (B35)
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where

𝛿𝜙 =
1
2

(
1 − 𝑝𝑑 −

𝑟2

𝑝𝑑 − 𝑝

)
+ G𝑆𝐸 + 𝛼𝑇 G𝐸 (B36a)

G𝑆𝐸 =
1
2

(
𝑝

𝑝𝑑 − 𝑝
+ ln(𝑝𝑑 − 𝑝)

)
(B36b)

G𝐸 = 2
∫

𝐷𝑥 𝐻

(
− 𝑟𝑥√︁

𝑝 − 𝑟2

)
ln𝐻𝛽

©«
^ − √

𝑝𝑥√︂
`2
★

`2
1
+ 𝑝𝑑 − 𝑝

ª®®®®¬
(B36c)

Notice that G𝐸 apart for the dependence on 𝜎(·) is identical to the energetic term of the classical teacher-student problem. Instead
G𝑆𝐸 is identical to the entropic term of a spherical perceptron storing random patterns.

By solving the corresponding saddle point equations, we are able to numerically compute the plateau of the generalization
error; this is plotted as a function of 𝛼𝑇 in Fig. 9 for different values of the margin.

d. Stability distribution

The stability of the weights 𝒘 given a pattern b` and its corresponding label 𝑦` is defined as

Δ` ≡ 𝑦`_` =
𝑦`
√
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝜎

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
`

𝑘

)
. (B37)

We restrict for simplicity to the case of zero margin ^. Once the saddle point equations (B29) are solved, we can compute the
stability distribution

𝑃(Δ) ≡ 〈𝛿 (Δ − Δ`)〉 = 1
𝑍

∫ ∏
𝑖

𝑑𝑤𝑖 𝑃𝑤 (𝒘) 𝑒−𝛽
∑𝑃
`=1 Θ(−𝑦` �̂�`)

𝛿 (Δ − Δ`) (B38)

using the replica method. We obtain

𝑃(Δ) = lim
𝑛→0

∫
𝑑𝑢𝑑�̂�

2𝜋

∏
𝑎

𝑑_𝑎𝑑_̂𝑎

2𝜋
𝑒𝑖𝑢�̂�+𝑖

∑
𝑎 _𝑎_̂𝑎− �̂�

2
2 −𝛽∑

𝑎 Θ(−𝑢_𝑎)− 1
2
∑
𝑎𝑏 𝑄𝑎𝑏 _̂𝑎_̂𝑏−�̂�

∑
𝑎 𝑀𝑎_̂𝑎𝛿 (Δ − sign(𝑢)_1) , (B39)

that in the RS ansatz reduces to

𝑃(Δ) = 2𝑒−𝛽Θ(−Δ)
√
𝑄𝑑 −𝑄

∫
𝐷𝑥 𝐺

(
Δ −

√
𝑄𝑥

√
𝑄𝑑 −𝑄

) 𝐻

(
− 𝑀𝑥√

𝑄−𝑀 2

)
𝐻𝛽

(
−
√︃

𝑄

𝑄𝑑−𝑄 𝑥

) , (B40)

where 𝐺 (𝑥) ≡ 𝑒−𝑥
2/2

√
2𝜋

.
In Fig. 12 we show the distribution of stabilities of typical solutions for different values of 𝛼𝑇 . The maximum of the distribution

appears to be near the origin, especially for low values of 𝛼𝑇 ; this has been already noted to be a characteristic of “sharp” solutions
in one-layer [51] and two-layer neural networks [5] in contrast to “flat” or high local entropy ones, for which it is usually noted
that a low probability of having a small stability (i.e. targeting high local entropy regions induces a soft margin).

Appendix C: Agreement with numerical simulations

We have performed some numerical simulations in order to corroborate analytical results of typical solutions. We have used
very simple algorithms that have the Gibbs distribution as stationary probability measure such as the zero-temperature Monte
Carlo (MCT0) and the Simulated Annealing algorithm (SA) [38].

Both algorithms have difficulties in finding solutions since the dominant set of minima consist of isolated point like clusters
with vanishing internal entropy. Nevertheless, for finite size systems, in the highly overparameterized regime those algorithms
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Figure 10. Train (left panel) and test error (right panel) of the SA algorithm as a function of 1/𝛼. Different colors represent the result of the
simulations with different values of 𝐷, while maintaining fixed 𝛼𝑇 = 3. The points are averages over 40 samples for 𝐷 = 51, 101, 20 samples
for 𝐷 = 201, 401, and 2 independent runs per sample. Approaching the thermodynamic limit, it is harder to find a solution. Nonetheless for a
fixed system size we can reach zero or sufficiently small the training errors in the overparameterized regime. The corresponding generalization
error matches the replica theory result (dotted horizontal line).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10

tr
ai

n
 e

rr
or

1/𝛼

MCT0 𝜅=0
MCT0 𝜅=0.3
MCT0 𝜅=0.8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10

te
st

 e
rr

or

1/𝛼

MCT0 𝜅=0
MCT0 𝜅=0.3
MCT0 𝜅=0.8

Figure 11. Train (left panel) and test error (right panel) of zero-temperature Monte Carlo algorithm as a function of 1/𝛼 for different values of
margins. In the simulations we fixed 𝐷 = 201 and 𝑃 = 603 i.e. 𝛼𝑇 = 3, and we ran the algorithm for a fixed number of sweeps (200). Points
are averages over 10 samples and 2 random restarts for each sample. We show also in dashed the analytical predictions coming from replica
theory.

are able to find solutions (see left panel of Fig. 10 for the behaviour of the train error as a function of 1/𝛼 obtained by using the
SA algorithm for different system sizes). The statistical properties of those solutions are in agreement with the predictions of
the replica theory (see right panel of Fig. 10). The same results hold for MCT0: in Fig. 11 we show that the generalization error
obtained by replica theory for several values of the margin is in perfect agreement with that obtained by numerical simulations.
Notice how increasing the margin makes finding the solution more difficult (since they are rarer); however when solutions start
to be accessible, increasing the margin increases the accuracy on the test set. This is consistent with the fact that even if high
margin solutions lie in flat regions of the loss landscape (see main text) they are still isolated between each other. Finally in
Fig. 12 we show the agreement between the analytical (see equation (B40)) and numerical distribution of stabilities for different
values of 𝛼𝑇 obtained by MCT0.

Appendix D: Bayesian generalization error

We want to compute the average probability that the ensemble of students generalizes correctly with respect to the teacher, i.e.
the probability that the average of the outputs of the students on a random new pattern has different sign than that given by the
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Figure 12. Histograms of the distribution of stabilities for zero temperature Monte Carlo solutions for 𝛼𝑇 = 1.4 (top left), 𝛼𝑇 = 5 (top right)
and 𝛼𝑇 = 10 (bottom). The algorithm was ran until a solution is found or a maximum number of sweeps (200) is reached. The histograms are
averaged over 40 samples and 2 random restarts for each sample. The full line is the replica prediction of the distribution for typical solutions
in the thermodynamic limit given by equation (B40).

teacher:

𝜖𝐵𝑔 = E𝝃★ Θ
(
−𝑦★〈�̂�★〉𝒘 | {𝝃` }

)
(D1)

In the previous equation 𝝃★, 𝑦★ are respectively a test pattern and its corresponding label (computed using equation (A1)); �̂�★
is the output of the student given input 𝝃★ as in (A3); · · · is the average over training patterns {𝝃`} and random features 𝐹,
and finally 〈·〉𝒘 | {𝝃` } is the average over the posterior distribution, namely the average over the probability distribution of student
weights given training data

〈�̂�★〉𝒘 | {𝝃` } =
1
𝑍

∫ ∏
𝑖

𝑑𝑤𝑖 𝑃𝑤 (𝒘) sign

(
1
√
𝑁

∑︁
𝑖

𝑤𝑖𝜎

(
1

√
𝐷

∑︁
𝑘

𝐹𝑘𝑖b
★
𝑘

))
× 𝑒−𝛽

∑
` Θ

[
−
(

1√
𝐷

∑
𝑘 b

`

𝑘

) (
1√
𝑁

∑
𝑖 𝑤𝑖𝜎

(
1√
𝐷

∑
𝑘 𝐹𝑘𝑖 b

`

𝑘

))]
(D2)

We have used again 𝑤𝑇
𝑘
= 1 without loss of generality. We start the computation by extracting the definitions �̂�★ by using delta

functions

𝜖𝐵𝑔 =

∫
𝑑𝑥𝑑𝑥

2𝜋
𝑒𝑖𝑥 �̂� E𝝃★Θ

[
−

(
1

√
𝐷

∑︁
𝑘

b★𝑘

)
𝑥

]
𝑒−𝑖 �̂� 〈𝑦

★〉𝒘 |{𝝃` } . (D3)

Next, we use the following identity

𝑒
−𝑖 �̂�〈𝑦★〉𝒘 |{𝝃` } =

∞∑︁
𝑠=0

(−𝑖𝑥)𝑠
𝑠!

〈
𝑦★

〉𝑠
𝒘 | {𝝃` } , (D4)
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which enables us to perform the average over training patterns and random features. Two replica indexes are needed: the first
one is due to the factor 𝑍−1 in equation (D2) which can be re-written as 1

𝑍
= lim
𝑛→0

𝑍𝑛−1; the second one is due to the power 𝑠
in (D4). We use as before 𝑎, 𝑏 ∈ [𝑛], whereas indexes 𝑙, 𝑚 ∈ [𝑠] for the new replicas. We have〈

𝑦★
〉𝑠
𝒘 | {𝝃` } = lim

𝑛→0

∫ ∏
𝑙

𝑑ℎ𝑙𝑑ℎ̂𝑙
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𝑙 ℎ𝑙 ℎ̂𝑙

∏
𝑙

sign(ℎ𝑙)
∫ ∏

𝑖𝑎𝑙

𝑑𝑤𝑙𝑎𝑖 𝑃𝑤 (𝒘𝑙𝑎)
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∑
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−( 1
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∑
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`

𝑘 )
(

1√
𝑁

∑
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𝐷
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𝑖
𝜎
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𝐷
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𝑘 𝐹𝑘𝑖 b

★
𝑘

)
(D5)

The average over patterns and features is now straightforward using the central limit theorem of section B 1. We finally get

〈𝑦★〉𝑠𝒘 | {𝝃` } = lim
𝑛→0

∫ ∏
𝑙

𝑑ℎ𝑙𝑑ℎ̂𝑙

2𝜋
𝑒𝑖

∑
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∏
𝑙

sign(ℎ𝑙)

×
∫ ∏

𝑎<𝑏
𝑙𝑚

𝑑𝑞𝑙𝑚
𝑎𝑏
𝑑𝑞𝑙𝑚

𝑎𝑏

2𝜋

∏
𝑎≤𝑏
𝑙𝑚

𝑑𝑝𝑙𝑚
𝑎𝑏
𝑑𝑝𝑙𝑚

𝑎𝑏

2𝜋

∏
𝑎𝑙

𝑑𝑟 𝑙𝑎𝑑𝑟
𝑙
𝑎

2𝜋
𝑒𝑁 𝜙

′
(D6)

where we have defined

𝜙′ = −
∑︁
𝑎<𝑏

∑︁
𝑙𝑚

𝑞𝑙𝑚𝑎𝑏𝑞
𝑙𝑚
𝑎𝑏 −

𝛼𝐷

2

∑︁
𝑎𝑏

𝑝𝑙𝑚𝑎𝑏𝑝
𝑙𝑚
𝑎𝑏 − 𝛼𝐷

∑︁
𝑎

𝑟 𝑙𝑎𝑟
𝑙
𝑎 + 𝐺𝑆𝑆 + 𝛼𝐷𝐺 ′

𝑆𝐸 + 𝛼𝐺𝐸 (D7a)

𝐺𝑆𝑆 = ln
∫ ∏

𝑎𝑙

𝑑𝑤𝑙𝑎 𝑃𝑤 (𝑤𝑙𝑎) 𝑒
1
2
∑
𝑎≠𝑏 �̂�

𝑙𝑚
𝑎𝑏
𝑤𝑙𝑎𝑤𝑚𝑏 (D7b)

𝐺 ′
𝑆𝐸 =

1
𝐷

∑︁
𝑘

ln
∫ ∏

𝑎𝑙

𝑑𝑠𝑙𝑎
𝑘
𝑑𝑠𝑙𝑎
𝑘

2𝜋
𝑒
𝑖
∑
𝑙𝑎 𝑠

𝑙𝑎
𝑘
𝑠𝑙𝑎
𝑘
+∑𝑙𝑎 𝑟 𝑙𝑎𝑠𝑙𝑎𝑘 + 1

2
∑
𝑎𝑏

∑
𝑙𝑚 �̂�

𝑙𝑚
𝑎𝑏
𝑠𝑙𝑎
𝑘
𝑠𝑚𝑏
𝑘

− 1
2
∑
𝑎𝑏

∑
𝑙𝑚 𝑞

𝑙𝑚
𝑎𝑏
𝑠𝑙𝑎
𝑘
𝑠𝑚𝑏
𝑘

−𝑖
`1 b

★
𝑘√
𝐷

∑
𝑙 ℎ̂𝑙𝑠

𝑙1
𝑘 (D7c)

𝐺𝐸 = ln
∫ ∏

𝑙𝑎

𝑑_𝑙𝑎𝑑_̂𝑙𝑎

2𝜋
𝑑𝑢𝑑�̂�

2𝜋
𝑒𝑖𝑢�̂�+𝑖

∑
𝑙𝑎 _𝑙𝑎_̂𝑙𝑎−𝛽

∑
𝑙𝑎 Θ(−𝑢_𝑙𝑎)− �̂�

2
2 − 1

2
∑
𝑎𝑏

∑
𝑙𝑚𝑄

𝑙𝑚
𝑎𝑏
_̂𝑙𝑎_̂𝑚𝑏−�̂�

∑
𝑙𝑎 𝑀

𝑙
𝑎_̂𝑙𝑎 (D7d)

Apart for the different numbers of replicas 𝐺𝑆𝑆 and 𝐺𝐸 have the same expression as before, see equations (B24). The entropic-
energetic term instead is the same as before apart for an additional term that depends on the test pattern 𝝃★; for this reason we
denote it with a prime index,

𝐺 ′
𝑆𝐸 = 𝐺𝑆𝐸 + 1

𝐷
𝛿𝐺𝑆𝐸 (D8)

where 𝐺𝑆𝐸 is given in (B24c) and

𝛿𝐺𝑆𝐸 ≡
∑︁
𝑘

ln〈〈𝑒−
`1 b

★
𝑘√
𝐷

∑
𝑙 ℎ̂𝑙𝑠

𝑙1
𝑘 〉〉𝑘 (D9a)

〈〈•〉〉𝑘 ≡

∫ ∏
𝑎𝑙

𝑑𝑠𝑙𝑎
𝑘
𝑑𝑠𝑙𝑎
𝑘

2𝜋
𝑒𝑖

∑
𝑙𝑎 𝑠

𝑙𝑎
𝑘
𝑠𝑙𝑎
𝑘
+∑𝑙𝑎 𝑟 𝑙𝑎𝑠𝑙𝑎𝑘 + 1

2
∑
𝑎𝑏

∑
𝑙𝑚 �̂�

𝑙𝑚
𝑎𝑏
𝑠𝑙𝑎
𝑘
𝑠𝑚𝑏
𝑘

− 1
2
∑
𝑎𝑏

∑
𝑙𝑚 𝑞

𝑙𝑚
𝑎𝑏
𝑠𝑙𝑎
𝑘
𝑠𝑚𝑏
𝑘 •∫ ∏

𝑎𝑙

𝑑𝑠𝑙𝑎
𝑘
𝑑𝑠𝑙𝑎
𝑘

2𝜋
𝑒𝑖

∑
𝑙𝑎 𝑠

𝑙𝑎
𝑘
𝑠𝑙𝑎
𝑘
+∑𝑙𝑎 𝑟 𝑙𝑎𝑠𝑙𝑎𝑘 + 1

2
∑
𝑎𝑏

∑
𝑙𝑚 �̂�

𝑙𝑚
𝑎𝑏
𝑠𝑙𝑎
𝑘
𝑠𝑚𝑏
𝑘

− 1
2
∑
𝑎𝑏

∑
𝑙𝑚 𝑞

𝑙𝑚
𝑎𝑏
𝑠𝑙𝑎
𝑘
𝑠𝑚𝑏
𝑘

(D9b)

Given that at first order in 𝐷, 𝐺 ′
𝑆𝐸

is equal to 𝐺𝑆𝐸 , we therefore have the same saddle point equations for every ansatz over
replicas, as expected. Next, we can expand for large 𝐷 equation (D9a)

𝛿𝐺𝑆𝐸 = ln
∏
𝑘

[
1 − 𝑖 `1√

𝐷
b★𝑘

∑︁
𝑙

〈〈𝑠𝑙1𝑘 〉〉𝑘 ℎ̂𝑙 −
`2

1
2𝐷

(b★𝑘 )
2
∑︁
𝑙𝑚

〈〈𝑠𝑙1𝑘 𝑠
𝑚1
𝑘 〉〉𝑘 ℎ̂𝑙 ℎ̂𝑚

]
. (D10)

As can be seen from (D7), the measure 〈〈•〉〉𝑘 is related to the derivatives of 𝐺𝑆𝐸 ; therefore we can use the saddle point equations
and substitute the complicated integral expression with corresponding order parameters

〈〈𝑠𝑙𝑎𝑘 〉〉𝑘 =
𝜕𝐺𝑆𝐸

𝜕𝑟 𝑙𝑎
= 𝑟 𝑙𝑎 (D11a)

〈〈𝑠𝑙𝑎𝑘 𝑠
𝑚𝑏
𝑘 〉〉𝑘 =

𝜕𝐺𝑆𝐸

𝜕𝑝𝑙𝑚
𝑎𝑏

= 𝑝𝑙𝑚𝑎𝑏 (D11b)



23

Notice how the right-hand expressions do not depend on 𝑘 anymore, since 𝐺𝑆𝐸 is factorized over this index. We obtain

𝛿𝐺𝑆𝐸 = ln
∏
𝑘

[
1 − 𝑖 `1√

𝐷
b★𝑘

∑︁
𝑙

𝑟 𝑙1 ℎ̂𝑙 −
`2

1
2𝐷

(b★𝑘 )
2
∑︁
𝑙𝑚

𝑝𝑙𝑚11 ℎ̂𝑙 ℎ̂𝑚

]
' −𝑖`1

(
1

√
𝐷

∑︁
𝑘

b★𝑘

) ∑︁
𝑙

𝑟 𝑙1 ℎ̂𝑙 −
`2

1
2

(
1
𝐷

∑︁
𝑘

(b★𝑘 )
2

) ∑︁
𝑙𝑚

(
𝑝𝑙𝑚11 − 𝑟 𝑙1𝑟

𝑚
1

)
ℎ̂𝑙 ℎ̂𝑚 .

(D12)

In the RS ansatz we get

𝛿𝐺𝑆𝐸 ' −𝑖`1

(
1

√
𝐷

∑︁
𝑘

b★𝑘

)
𝑟
∑︁
𝑙

ℎ̂𝑙 −
`2

1
2

(
1
𝐷

∑︁
𝑘

(b★𝑘 )
2

) 
(
𝑝 − 𝑟2

) (∑︁
𝑙

ℎ̂𝑙

)2

+ (𝑝𝑑 − 𝑝)
∑︁
𝑙

ℎ̂2
𝑙

 . (D13)

so that

〈𝑦★〉𝑠𝒘 | {𝝃` } =

∫ ∏
𝑙

𝑑ℎ𝑙𝑑ℎ̂𝑙

2𝜋
𝑒
𝑖
∑
𝑙

(
ℎ𝑙−`1𝑚

★
b
𝑟

)
ℎ̂𝑙− 1

2

(
`2
★ (1−𝑞)+`2

1𝜎
★
b
(𝑝𝑑−𝑝)

) ∑
𝑙 ℎ̂

2
𝑙
− 1

2

(
`2

1𝜎
★
b (𝑝−𝑟2)+`2

★𝑞

)
(∑𝑙 ℎ̂𝑙)2 ∏

𝑙

sign(ℎ𝑙) (D14)

where

𝑚★b ≡ 1
√
𝐷

∑︁
𝑘

b★𝑘 , (D15a)

𝜎★b ≡ 1
𝐷

∑︁
𝑘

(
b★𝑘

)2
. (D15b)

Using an Hubbard-Stratonovich transformation we finally obtain

〈𝑦★〉𝑠𝒘 | {𝝃` } =

∫
𝐷𝑧

[∫
𝑑ℎ𝑑ℎ̂

2𝜋
𝑒
𝑖

(
ℎ−`1𝑚

★
b
𝑟−

√︃
`2

1𝜎
★
b (𝑝−𝑟2)+`2

★𝑞 𝑧

)
ℎ̂− 1

2

(
`2
★ (1−𝑞)+`2

1𝜎
★
b
(𝑝𝑑−𝑝)

)
ℎ̂2

sign(ℎ)
] 𝑠

=

∫
𝐷𝑧

[∫
𝐷ℎ sign

(
`1𝑚

★
b 𝑟 +

√︃
`2
★(1 − 𝑞) + `2

1𝜎
★
b
(𝑝𝑑 − 𝑝) ℎ +

√︃
`2

1𝜎
★
b

(
𝑝 − 𝑟2) + `2

★𝑞 𝑧

)] 𝑠
=

∫
𝐷𝑧

erf
©«
`1𝑚

★
b
𝑟 +

√︃
`2

1𝜎
★
b

(
𝑝 − 𝑟2) + `2

★𝑞 𝑧√︃
2`2
★(1 − 𝑞) + 2`2

1𝜎
★
b
(𝑝𝑑 − 𝑝)

ª®®¬

𝑠

(D16)

Inserting this expression into (D4) and (D3) we find

𝜖𝐵𝑔 =

∫
𝐷𝑧 E𝝃★Θ

−𝑚
★
b erf

©«
`1𝑚

★
b
𝑟 +

√︃
`2

1𝜎
★
b

(
𝑝 − 𝑟2) + `2

★𝑞 𝑧√︃
2`2
★(1 − 𝑞) + 2`2

1𝜎
★
b
(𝑝𝑑 − 𝑝)

ª®®¬


=

∫
𝐷𝑧𝐷𝑢Θ

[
−𝑢

(
`1𝑟𝑢 +

√︃
`2

1
(
𝑝 − 𝑟2) + `2

★𝑞 𝑧

)]
= 2

∫ ∞

0
𝐷𝑢 𝐻

©«
`1𝑟𝑢√︃

`2
1
(
𝑝 − 𝑟2) + `2

★𝑞

ª®®¬
=

1
𝜋

arccos
©«

`1𝑟√︃
`2

1𝑝 + `
2
★𝑞

ª®®¬ =
1
𝜋

arccos
(
𝑀
√
𝑄

)
(D17)

Notice that if we want to compute the generalization error of the barycenter of typical solutions with a given margin ^, the formula
above remains the same. The only dependence on the margin is implicit in the order parameters 𝑞, 𝑝 and 𝑟.

The behaviour of the generalization error of the barycenter of typical solutions with vanishing and non-vanishing margins can
be found in Fig. 9. As shown in the main text the barycenter achieving the minimal generalization error has a margin ^opt that
undergoes a transition when crossing the value 𝛼 = 𝛼∗: ^opt = 0 for 𝛼 > 𝛼∗ whereas it becomes larger then zero when 𝛼 < 𝛼∗.
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Appendix E: Local entropy lanscape of solutions

1. Analytical approach: Franz-Parisi entropy

To study the local entropy landscape of solutions around a given typical configuration we use the Franz-Parisi approach [2, 42].
The Franz-Parisi free entropy is defined as

Φ𝐹𝑃 (𝑡1) =
1
𝑍

∫ ∏
𝑖

𝑑�̃�𝑖 𝑃𝑤 (�̃�)𝑒−𝛽
∑
` ℓ𝑁𝐸 (−𝑦` _̃` ; ˜̂) lnN(�̃�, 𝑡1) (E1)

where N(�̃�, 𝑡1) is the number of configurations 𝒘 extracted from the Gibbs measure that have an overlap 𝑡1 with the reference
configuration �̃�

N(�̃�, 𝑡1) ≡
∫ ∏

𝑖

𝑑𝑤𝑖 𝑃𝑤 (𝒘)𝑒−𝛽
∑
` ℓ𝑁𝐸 (−𝑦`_` ;^)𝛿

(∑︁
𝑖

𝑤𝑖�̃�𝑖 − 𝑁𝑡1

)
. (E2)

In order to compute the Franz-Parisi free entropy, we introduce two sets of replicas, one for the partition function 𝑍 in the
denominator of (E1) (replica index 𝑎 = 1, . . . , 𝑛), and the other one for the logarithm in the same equation (replica index
𝑐 = 1, . . . , 𝑠)

Φ𝐹𝑃 (𝑡1) = lim
𝑛→0

lim
𝑠→0

𝜕𝑠

∫ ∏
𝑖𝑎

𝑑�̃�𝑎𝑖

𝑛∏
𝑎=1

𝑃𝑤 (�̃�𝑎)𝑒−𝛽
∑
`𝑎 ℓ𝑁𝐸 (−𝑦` _̃`𝑎 ; ˜̂)N 𝑠 (�̃�𝑎=1, 𝑡1)

= lim
𝑛→0
𝑠→0

𝜕𝑠

∫ ∏
𝑖𝑎

𝑑�̃�𝑎𝑖

∫ ∏
𝑖𝑎

𝑑𝑤𝑐𝑖

𝑛∏
𝑎=1

𝑃𝑤 (�̃�𝑎)
𝑠∏
𝑐=1

𝑃𝑤 (𝒘𝑎)
∏
𝑐

𝛿

(∑︁
𝑖

𝑤𝑐𝑖 �̃�
1
𝑖 − 𝑁𝑡1

)
× 𝑒−𝛽

∑
`𝑎 ℓ𝑁𝐸 (−𝑦` _̃`𝑎 ; ˜̂)−𝛽∑

`𝑐 ℓ𝑁𝐸 (−𝑦`_`𝑐 ;^)

(E3)

The computation is more involved, but proceeds in the same way as before; first of all we extract the teacher and student
preactivations (both for the reference and constrained configurations)

Φ𝐹𝑃 (𝑡1) = lim
𝑛→0
𝑠→0

𝜕𝑠

∫ ∏̀ 𝑑𝑢`𝑑�̂�`

2𝜋

∏̀
𝑎

𝑑_̃
`
𝑎𝑑

ˆ̃_`𝑎
2𝜋

∏̀
𝑐

𝑑_
`
𝑐 𝑑_̂

`
𝑐

2𝜋

∏̀
𝑒𝑖𝑢` �̂�`+𝑖

∑
𝑎 _̃

`
𝑎

ˆ̃_`𝑎+𝑖
∑
𝑐 _

`
𝑐 _̂
`
𝑐

×
∫ ∏

𝑖𝑎

𝑑�̃�𝑎𝑖

∏
𝑖𝑎

𝑑𝑤𝑐𝑖

𝑛∏
𝑎=1

𝑃𝑤 (�̃�𝑎)
𝑠∏
𝑐=1

𝑃𝑤 (𝒘𝑎)
∏
𝑐

𝛿

(∑︁
𝑖

𝑤𝑐𝑖 �̃�
1
𝑖 − 𝑁𝑡1

)
×

∏̀
𝑒
−𝛽∑

𝑎 ℓ𝑁𝐸 (−𝑦` _̃`𝑎 ; ˜̂)−𝛽∑
𝑐 ℓ𝑁𝐸 (−𝑦`_`𝑐 ;^)−𝑖�̂�` 1√

𝐷

∑
𝑘 𝑤

𝑇
𝑘
b
`

𝑘
−𝑖∑𝑎 ˆ̃_`𝑎 1√

𝑁

∑
𝑖 𝑤

𝑎
𝑖
b̃
`

𝑖
−𝑖∑𝑐 _̂`𝑐 1√

𝑁

∑
𝑖 𝑤

𝑐
𝑖
b̃
`

𝑖 .

(E4)

Then we average over the patterns and features, using the central limit theorem of Section B 1. We finally find

Φ𝐹𝑃 (𝑡1) = lim
𝑛→0
𝑠→0

𝜕𝑠

∫ ∏
𝑎<𝑏

𝑑𝑞𝑎𝑏𝑑 ˆ̃𝑞𝑎𝑏
2𝜋

∏
𝑐<𝑑

𝑑𝑞𝑐𝑑𝑑𝑞𝑐𝑑

2𝜋

∏
𝑎≤𝑏

𝑑𝑝𝑎𝑏𝑑 ˆ̃𝑝𝑎𝑏
2𝜋

∏
𝑐≤𝑑

𝑑𝑝𝑐𝑑𝑑𝑝𝑐𝑑

2𝜋

∏
𝑎

𝑑𝑟𝑎𝑑 ˆ̃𝑟𝑎
2𝜋

∏
𝑐

𝑑𝑟𝑐𝑑𝑟𝑐

2𝜋

×
∫ ∏

𝑎𝑐

𝑑𝑘𝑎𝑐𝑑�̂�𝑎𝑐

2𝜋

∏
𝑐,𝑎≠1

𝑑𝑡𝑎𝑐𝑑𝑡𝑎𝑐

2𝜋
𝑒𝑁 𝜙𝐹𝑃

(E5)
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where

𝜙𝐹𝑃 = −
∑︁
𝑎<𝑏

𝑞𝑎𝑏 ˆ̃𝑞𝑎𝑏 −
𝛼𝐷

2

∑︁
𝑎𝑏

𝑝𝑎𝑏 ˆ̃𝑝𝑎𝑏 − 𝛼𝐷
∑︁
𝑎

𝑟𝑎 ˆ̃𝑟𝑎 −
∑︁
𝑐<𝑑

𝑞𝑐𝑑𝑞𝑐𝑑 −
𝛼𝐷

2

∑︁
𝑐𝑑

𝑝𝑐𝑑 𝑝𝑐𝑑 − 𝛼𝐷
∑︁
𝑐

𝑟𝑐𝑟𝑐 (E6a)

− 𝛼𝐷
∑︁
𝑎𝑐

𝑘𝑎𝑐 �̂�𝑎𝑐 −
∑︁
𝑎𝑐

𝑡𝑎𝑐𝑡𝑎𝑐 + 𝐺𝑆𝑆 + 𝛼𝐷𝐺𝑆𝐸 + 𝛼𝐺𝐸

𝐺𝑆𝑆 = ln
∫ ∏

𝑎

𝑑�̃�𝑎 𝑃𝑤 (�̃�𝑎)
∫ ∏

𝑐

𝑑𝑤𝑐 𝑃𝑤 (𝑤𝑐) 𝑒
1
2
∑
𝑎≠𝑏

ˆ̃𝑞𝑎𝑏 �̃�𝑎 �̃�𝑏− 1
2
∑
𝑎≠𝑏 �̂�𝑐𝑑𝑤𝑐𝑤𝑑+

∑
𝑎𝑐 𝑡𝑎𝑐 �̃�𝑎𝑤𝑐 (E6b)

𝐺𝑆𝐸 = ln
∫ ∏

𝑎

𝑑𝑠𝑎𝑑 ˆ̃𝑠𝑎
2𝜋

∏
𝑐

𝑑𝑠𝑐𝑑𝑠𝑐

2𝜋
𝑒𝑖

∑
𝑎 𝑠𝑎 ˆ̃𝑠𝑎+𝑖

∑
𝑐 𝑠𝑐𝑠𝑐+

∑
𝑎

ˆ̃𝑟𝑎𝑠𝑎+
∑
𝑐 𝑟𝑐𝑠𝑐+ 1

2
∑
𝑎𝑏

ˆ̃𝑝𝑎𝑏𝑠𝑎𝑠𝑏+ 1
2
∑
𝑐𝑑 �̂�𝑐𝑑𝑠𝑐𝑠𝑑 (E6c)

× 𝑒− 1
2
∑
𝑎𝑏 �̃�𝑎𝑏 ˆ̃𝑠𝑎 ˆ̃𝑠𝑏− 1

2
∑
𝑐𝑑 𝑞𝑐𝑑𝑠𝑐𝑠𝑑+

∑
𝑎𝑐 �̂�𝑎𝑐𝑠𝑎𝑠𝑐−

∑
𝑎𝑐 𝑡𝑎𝑐 ˆ̃𝑠𝑎𝑠𝑐

𝐺𝐸 = ln
∫ ∏

𝑎

𝑑_̃𝑎𝑑
ˆ̃_𝑎

2𝜋

∏
𝑎

𝑑_𝑐𝑑_̂𝑐

2𝜋
𝑑𝑢𝑑�̂�

2𝜋
𝑒𝑖𝑢�̂�+𝑖

∑
𝑎 _̃𝑎

ˆ̃_𝑎+𝑖
∑
𝑐 _𝑐 _̂𝑐−𝛽

∑
𝑐 Θ(−sign(𝑢)_̃𝑐+ ˜̂)−𝛽∑

𝑎 Θ(−sign(𝑢)_𝑎+^) (E6d)

× 𝑒− �̂�
2

2 − 1
2
∑
𝑎𝑏 �̃�𝑎𝑏

ˆ̃_𝑎 ˆ̃_𝑏− 1
2
∑
𝑐𝑑 𝑄𝑐𝑑 _̂𝑐 _̂𝑑−�̂�

∑
𝑎 �̃�𝑎

ˆ̃_𝑎−�̂�
∑
𝑐 𝑀𝑐 _̂𝑐−

∑
𝑎𝑐 𝑇𝑎𝑐

ˆ̃_𝑎_̂𝑐

All the order parameters appearing in the previous formulas are

𝑀𝑐 = `1𝑟𝑐 , 𝑟𝑐 =
1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑐𝑘 , 𝑠𝑎𝑘 =
1
√
𝑁

𝑁∑︁
𝑖=1

𝐹𝑘𝑖𝑤𝑖

�̃�𝑎 = `1𝑟𝑎 , 𝑟𝑎 =
1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘 , 𝑠𝑎𝑘 =
1
√
𝑁

𝑁∑︁
𝑖=1

𝐹𝑘𝑖�̃�𝑖

𝑄𝑐𝑑 = `2
1𝑝𝑐𝑑 + `

2
★𝑞𝑐𝑑 , 𝑝𝑐𝑑 =

1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑐𝑘 𝑠
𝑑
𝑘 , 𝑞𝑐𝑑 =

1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑐𝑖 𝑤
𝑑
𝑖

�̃�𝑎𝑏 = `2
1𝑝𝑎𝑏 + `

2
★𝑞𝑎𝑏 , 𝑝𝑎𝑏 =

1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘 𝑠
𝑏
𝑘 , 𝑞𝑎𝑏 =

1
𝑁

𝑁∑︁
𝑖=1

�̃�𝑎𝑖 �̃�
𝑏
𝑖

𝑇𝑎𝑐 = `
2
1𝑘𝑎𝑐 + `

2
★𝑡𝑎𝑐 , 𝑘𝑎𝑐 =

1
𝐷

𝐷∑︁
𝑘=1

𝑠𝑎𝑘 𝑠
𝑐
𝑘 , 𝑡𝑎𝑐 =

1
𝑁

𝑁∑︁
𝑖=1

�̃�𝑎𝑖 𝑤
𝑐
𝑘 .

We have understood that 𝑡1𝑐 ≡ 𝑡1 as this condition is imposed by the delta function in equation (E2).

Notice that, as in Section B 2, the entropic-energetic term𝐺𝑆𝐸 is Gaussian, so it can be readily solved. Defining the quantities

𝑟𝛼 ≡
( ˆ̃𝑟𝑎, 𝑟𝑐 ) ∈ R𝑛+𝑠 , (E7a)

𝑞𝛼𝛽 ≡
(
𝑞𝑎𝑏 𝑡𝑎𝑐
𝑡𝑎𝑐 𝑞𝑐𝑑

)
∈ R(𝑛+𝑠)×(𝑛+𝑠) (E7b)

�̂�𝛼𝛽 ≡
( ˆ̃𝑝𝑎𝑏 𝑘𝑎𝑐
𝑘𝑎𝑐 𝑝𝑐𝑑

)
∈ R(𝑛+𝑠)×(𝑛+𝑠) (E7c)

it can be seen that (E6c) can be written in the same way as (B24c) in terms of 𝑟𝛼, 𝑞𝛼𝛽 and �̂�𝛼𝛽 , so that

𝐺𝑆𝐸 = −1
2

ln det
(
I − 𝑞 �̂�

)
+ 1

2

∑︁
𝛼𝛽

𝑟𝛼

[(
I − 𝑞 �̂�

)−1
𝑞

]
𝛼𝛽

𝑟𝛽 . (E8)
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a. RS ansatz

We impose an RS ansatz over the order parameters:

𝑞𝑎𝑏 = 𝛿𝑎𝑏 + 𝑞 (1 − 𝛿𝑎𝑏) 𝑞𝑎𝑏 = 𝑞 (1 − 𝛿𝑎𝑏) (E9a)
𝑝𝑎𝑏 = 𝑝𝑑𝛿𝑎𝑏 + 𝑝 (1 − 𝛿𝑎𝑏) 𝑝𝑎𝑏 = −𝑝𝑑𝛿𝑎𝑏 + 𝑝 (1 − 𝛿𝑎𝑏) (E9b)
𝑟𝑎 = 𝑟 𝑟𝑎 = 𝑟 (E9c)
𝑘𝑎𝑐 = 𝑘1𝛿𝑎1 + 𝑘0 (1 − 𝛿𝑎1) �̂�𝑎𝑐 = �̂�1𝛿𝑎1 + �̂�0 (1 − 𝛿𝑎1) (E9d)
𝑡𝑎𝑐 = 𝑡1𝛿𝑎1 + 𝑡0 (1 − 𝛿𝑎1) 𝑡𝑎𝑐 = 𝑡1𝛿𝑎1 + 𝑡0 (1 − 𝛿𝑎1) (E9e)

A similar ansatz is imposed for the tilde order parameters.

b. Entropic-Entropic and Energetic terms

Let us start from the entropic-entropic contribution. This term is exactly equal to the entropic contribution of a storage
problem [2]. It is equal to

G𝑆𝑆 ≡ 𝑞

2
+ lim
𝑛→0
𝑠→0

𝜕𝑠𝐺𝑆𝑆 =

∫
𝐷𝑥

∑
�̃�=±1 𝑒

√
ˆ̃𝑞�̃� 𝑥

∫
𝐷𝑦 ln 2 cosh

(√︂
𝑞 − 𝑡20

ˆ̃𝑞 𝑦 +
𝑡0√

ˆ̃𝑞
𝑥 + (𝑡1 − 𝑡0)�̃�

)
2 cosh

(√︁
ˆ̃𝑞𝑥

) (E10)

The energetic term is a bit more involved. It is however equal (apart for a redefinition of order parameters) to the energetic term
that is obtained in a classic teacher-student problem. It is equal to

G𝐸 ≡ lim
𝑛→0
𝑠→0

𝜕𝑠𝐺𝐸 = 2
∫

𝐷𝑥𝐷𝑦
𝐻𝛽 (𝑢(𝑥, 𝑦))
𝐻𝛽 (ℎ(𝑥))

∫ ∞

ℎ (𝑥)
𝐷𝑧 ln𝐻𝛽 (𝑣(𝑥, 𝑦, 𝑧)) (E11)

with

𝑢(𝑥, 𝑦) ≡ �̃�
√
Γ (𝑏𝑦 − 𝑎𝑥) − 𝑀

√︁
�̃�𝑦√︁

(�̃� − �̃�2) (Γ − 𝑀2) − (𝑇0 − 𝑀�̃�)2
(E12a)

𝑣(𝑥, 𝑦, 𝑧) ≡
^ −

√
Γ(𝑎𝑦 + 𝑏𝑥) − 𝑇1−𝑇0√

�̃�𝑑−�̃�
𝑧

√
𝑄𝑑 −𝑄

(E12b)

ℎ(𝑥) ≡ ˜̂ −
√︁
�̃�𝑥√︁

�̃�𝑑 − �̃�
(E12c)

Γ ≡ 𝑄 − (𝑇1 − 𝑇0)2

�̃�𝑑 − �̃�
(E12d)

𝑏 ≡ 𝑇0√︁
�̃�Γ

, 𝑎 ≡
√︁

1 − 𝑏2 (E12e)
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c. Entropic-Energetic term

Following a series of algebraic manipulations, the entropic-energetic term reads

G𝑆𝐸 ≡ lim
𝑛→0
𝑠→0

𝜕𝑠𝐺𝑆𝐸 = −1
2

ln [ + 1
2[

[(
𝑝 + 𝑟2

)
(1 − 𝑞) − (𝑝𝑑 + 𝑝) 𝑞

]
+

+ 1
2[[̃

{
(1 − 𝑞) ( �̂�1 − �̂�0)2

[
1 − 𝑞 + 1

[̃

(
(1 − 𝑞)2 ( ˆ̃𝑝 + ˆ̃𝑟2) + 𝑞

)]
+ 2( �̂�1 − �̂�0)

[
(1 − 𝑞) (1 − 𝑞) ( �̂�0 + 𝑟 ˆ̃𝑟) + 𝑡0

]}
+ 1

2[[̃

{
(𝑝𝑑 + 𝑝) (𝑡1 − 𝑡0)2

[
ˆ̃𝑝𝑑 + ˆ̃𝑝 − 1

[̃

(
ˆ̃𝑝 + ˆ̃𝑟2 + ( ˆ̃𝑝𝑑 + ˆ̃𝑝)2𝑞

)]
+ 2(𝑡1 − 𝑡0)

[
(𝑝𝑑 + 𝑝)

( ˆ̃𝑝𝑑 + ˆ̃𝑝
)
𝑡0 + �̂�0 + 𝑟 ˆ̃𝑟

]}
+ ( �̂�1 − �̂�0) (𝑡1 − 𝑡0)

[[̃

[
1 + 1

[̃

[
(1 − 𝑞)

(
ˆ̃𝑝 + ˆ̃𝑟2

)
− ( ˆ̃𝑝𝑑 + ˆ̃𝑝)𝑞

] ]
(E13)

where we have defined the quantities

[ ≡ 1 + (𝑝𝑑 + 𝑝) (1 − 𝑞) (E14a)
[̃ ≡ 1 + ( ˆ̃𝑝𝑑 + ˆ̃𝑝) (1 − 𝑞) (E14b)

d. Final expression of the free entropy

The RS Franz-Parisi free entropy is finally

Φ𝐹𝑃 (𝑡1) = −𝑞
2
(1 − 𝑞) + 𝛼𝐷

2
(𝑝𝑑 𝑝𝑑 + 𝑝𝑝) − 𝛼𝐷𝑟𝑟 − 𝛼𝐷 (𝑘1 �̂�1 − 𝑘0 �̂�0) − 𝑡1𝑡1 + 𝑡0𝑡0 + G𝑆𝑆 + 𝛼𝐷G𝑆𝐸 + 𝛼G𝐸 (E15)

The tilde order parameters being those one characterizing the reference configuration will satisfy the RS saddle point equation
analyzed in Section B 3. The order parameters 𝑞, 𝑞, 𝑝𝑑 , 𝑝𝑑 , 𝑝, 𝑝, 𝑟 , 𝑟 , 𝑘1, �̂�1, 𝑘0, �̂�0, 𝑡1, 𝑡0 and 𝑡0 are found by solving the saddle
point equations obtained by taking the corresponding derivatives of the Franz-Parisi entropy and imposing them to be equal to
zero.

2. Numerical experiments

Local energy curves. To compare the geometrical structure of solutions found by different algorithms, we computed the
local energy profiles [52, 53]. For all the architectures we have analyzed in the main text (continuous tree committee machine,
multi-layer perceptrons, CNN), we have computed the local energy as follows. Given a solution to the learning problem, we
perturbed it using a multiplicative Gaussian noise that acts on the network weights as follows

𝑊 −→ 𝑊 (1 + [)

where 𝑊 is a weight of the network while the variance of the noise [ is tuned to obtain perturbed vectors that have increasing
distance from 𝑊 . After the perturbation, the networks are normalized as explained in the main text, and we measure their
Euclidean distance from the original solution. We repeatedly perturb every solution for each level of noise, and collect the
distances and training errors. The “local energy” curve is the average training error rate displayed as a function of the average
distance.

In the main text we show curves for the multi-layer perceptron architecture and for the CNN.
Here we show in Fig. 13 the local energy curves for three different algorithms trained on the (binary) overparameterized

perceptron: MCT0, SBPI and BP. In general one can argue that overparameterizing the network leads to higher flatness; however
for the MCT0 algorithm, the solution is always sharp, as predicted by the replica theory.

Lazy regime description for CNNs trained on CIFAR10 dataset. These big architectures have been shown to work in the
so-called lazy training regime: the initial layers changes less than the following ones. This can be quantified numerically
studying the overlap between the single layer weight configuration at epoch 0 and at epoch 𝑡, as shown in Fig. 14. The overlap
decreases for every layer, with a drop rate that depends on the layer position.
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Figure 13. Local energy 𝛿𝐸 as a function of distance from the reference solution in the overparameterized perceptron model fixing 𝛼𝑇 = 5, for
different values of 𝛼 and for MCT0, SBPI and BP solutions. Train and test error are depicted in the insets. While MCT0 solutions are sharp,
even in the 𝛼 → 0 limit, other algorithms find solutions whose flatness increases as the student is more overparameterized.
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Figure 14. Overlap of a solution with its initial condition (epoch 0) as a function of the number of epochs. The overlap is represented layer by
layer and it refers to ADAM optimizer, a number of filters proportional to 𝐶 = 20, and a 𝑙𝑟 = 0.01.
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Appendix F: Material and Methods

Gaussian Equivalence theorem. It has been shown by [23], that in the thermodynamic limit (A7), the statistical properties of
the random feature model are equivalent to a Gaussian covariate model, in which each projected pattern 𝝃` is a linear combination
of the patterns components b`

𝑘
plus noise. The strength of the noise depends on the degree of non-linearity of the activation

function 𝜎. In mathematical terms the following mapping between different models holds

b̃
`

𝑖
= 𝜎

(
1

√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
`

𝑘

)
= `0 +

`1√
𝐷

𝐷∑︁
𝑘=1

𝐹𝑘𝑖b
`

𝑘
+ `★[`𝑖 (F1)

where [𝑖 ∼ N(0, 1) are i.i.d. standard Gaussian random variables and `0 =
∫
𝐷𝑧 𝜎(𝑧), `1 =

∫
𝐷𝑧 𝑧 𝜎(𝑧), `2 =

∫
𝐷𝑧 𝜎2 (𝑧),

`2
★ = `2 − `2

1 − `
2
0 with 𝐷𝑧 ≡ 𝑒−𝑧

2/2
√

2𝜋
. We provide a sketch of the proof, based on the explicit computations of the moments, in

the SI and refer to [23, 24] for more details.
Numerical Experiments on the Binary Perceptron. Here we report the details for the numerical experiments performed on

the overparameterized binary perceptron. (SA) Simulated Annealing, based on a standard Metropolis algorithm that attempts
one weight flip at a time, is run until either a solution is found or a maximum number of sweeps (4000) is reached, where a sweep
consists of 𝑁 attempted moves. We used an initial inverse temperature 𝛽 = 1.0 that is increased at every sweep with a linear
increment Δ𝛽 = 5 · 10−3. (SBPI) For a complete description of the SBPI algorithm see ref. [54]. In the numerical experiments
we set the maximum number of allowed iterations to 500 and used a threshold \m = 2 and a probability 𝑝s = 0.3 of updating the
synapses with a stability 0 ≤ Δ` ≤ \m. (BP) We used a standard BP implementation with damping 𝛿 = 0.5 and a maximum
number of updates fixed to 200. The magnetization are randomly initialized with a uniform distribution in the interval [−𝜖, 𝜖]
with 𝜖 = 10−2. (fBP) For the focusing BP algorithm we used the same initialization of BP, and a damping factor 𝛿 = 0.9. We
set the number of virtual replicas to 𝑦 = 10 and update the messages until convergence for 30 steps, each time increasing the
coupling strength 𝛾 according to 𝛾 = atanh (𝑖/29) where 𝑖 = 0, . . . , 29 (using by convention 𝛾 = 10 for the last step). (BNet)
We used the standard implementation of BinaryNet (see. ref [41]) using sign activation function and cross-entropy loss, without
using batch normalization. We fixed the learning rate [ = 5 · 10−3 and ran a full batch gradient update for 2000 epochs.

Numerical Experiments on the committee machine. Here we report the details for the numerical experiments performed
on the overparameterized continuous tree-like committee machine, for the two algorithms used. (fBP) In all experiments,
we set 𝑦 = 10 and ranged 𝛾 between 0.5 and 30 with an exponential schedule divided into 30 steps; at each step, the
algorithm was run (with damping 𝛿 = 0.1) until convergence (with a convergence criterion set to 𝜖 = 10−2) or at most 200
iterations. (SGD) The expression for the cross-entropy loss in the binary classification case, with a scale parameter 𝛾, is:
𝑓𝛾 (𝑥) = − 𝑥2 + 1

2𝛾 log (2 cosh (𝛾𝑥)). This is just the standard expression but with the input 𝑥 scaled by 𝛾 (which is equivalent to
setting the norm of the input weights to 𝛾) and the output scaled by 1/𝛾 (equivalent to scaling the gradients by 1/𝛾). In all the
experiments, we set the batch size to 100, the maximum number of epochs to 700, and the learning rate to 10−2. The weights
were initialized from a uniform distribution and then normalized for each unit. The norm parameters 𝛾 and 𝛽 were initialized at
the values 𝛾 = 10, 𝛽 = 1 and multiplied by 1 + 10−4, 1 + 10−2, respectively, after each epoch. The algorithm stopped as soon
as it found a solution (this was determined using the desired architecture with sign activation and output functions, which is
equivalent to letting 𝛽, 𝛾 → ∞ and checking for a zero-error).

Numerical Experiments on the Multi-layer neural network Our implementation follows closely the one of ref. [29]. We
set the learning rate to 10−4 and train the model with full batch gradient descent with ADAM optimization for a fixed number of
epochs (5000). In all the simulations we used ReLU non-linearities and the square-hinge loss with a margin fixed to 1. In order to
train the model with the adversarial initialization, we first trained the network using SGD with a fixed number of epochs (5000)
(with minibatches of size 128 and learinig rate set to 5 · 10−3) on a modified train set in which the labels have been randomized,
then we used the resulting weights as the initial condition for ADAM.

Numerical Experiments on CNNs. We used standard PyTorch initialization (HE for ReLU activation function) and the
cross-entropy loss function for all the experiments. We took 5 independent samples for both optimizers: SGD with momentum
and ADAM. In all experiments, the learning rate was 10−2, the batch size 50 and the number of epochs was 200. For SGD the
momentum was set to 0.3. All the additional parameters were taken as in the default Pytorch settings. The number of network
parameters was controlled by the value to 𝐶 as defined in the main text.
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