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Abstract 

Among the chemical substances of Particulate Matter 

(PM), there is a considerable quantity of black carbon 

(BC), which is linked to adverse public health effects and 

climate change. This study aims to develop an innovative 

method for the source apportionment of BC inside the 

PM, using Raman spectroscopy and machine learning 

techniques. 

Different BC sources, including biomass ashes and 

vehicle emissions, and different PM samples from air 

quality monitoring stations have been analyzed with a 

Raman spectrometer. The PM samples used in the present 

study are collected from two different locations: an urban 

environment (Turin, Italy) and an alpine valley context 

(Oulx, Italy). 

To each obtained spectrum, which presents the 

characteristic G and D bands, a five-band fitting has been 

applied to gather information that can lead to the 

identification of the different BC sources. Machine 

learning techniques, including the K-Nearest Neighbors 

(KNN) algorithm, have been applied to calculate the 

cluster resolution through a value of accuracy. Finally, 

the same algorithm, trained on the BC emission sources' 

data, tries to associate each BC in the PM to its source. In 

particular, a large amount of BC from diesel engine car 

exhaust emissions is found in all the considered PM 

samples. 

Keywords: Fossil fuel, Biomass burning, Source 

apportionment, D Band, G Band 

1. Introduction 

Black Carbon is a well-known pollutant produced fossil 

fuel, biomass and biofuels combustion. It is the second 

strongest contributor to global warming only after carbon 

dioxide (Ramanathan & Carmichael, 2008). Still the 

impact of BC on the climate is different from the other 

greenhouse gases: it has a short lifetime in the 

atmosphere (Bond et al., 2013), of about 1 week 

(Mingjiang et al, 2014 ), and it has the capacity to absorb 

solar radiation. This causes a modification of the 

atmospheric radiative properties resulting in a substantial 

warming climate effect. Furthermore, BC can affect the 

meteorological condition by modifying the air relative 

humidity causing a decrease in precipitation (Ramanathan 

& Carmichael, 2008). A secondary impact on the climate 

is the deposition of BC on ice and glaciers that reduce 

their albedo effect and consequently enhance their 

melting (Ramanathan & Carmichael, 2008) (Bond et al., 

2013). 

PM adverse effects are widely established and depend on 

size, chemical composition and concentration. Likewise, 

BC physical and chemical properties affect human health. 

In addition, it can also carry other toxic substances, like 

polycyclic aromatic hydrocarbons (PAHs), that cause 

significant negative effects on human health ranging from 

normal respiratory transient to cardiovascular problems, 

morbidity and mortality (Ali et al., 2021). 

The most widely used optical instrument for BC 

measurements is the aethalometer which can estimate the 

concentration in real-time by measuring the light 

transmittance (Mingjiang et al., 2014). Furthermore, 

using different wavelengths, a model can be applied to 

perform a source apportionment to distinguish BC from 

biomass burning and fossil fuel combustion (Mousavi et 

al., 2019). It has been reported that biomass burning 

contributes to BC contributions more in rural and 

suburban areas than in urban centers; moreover, in the 

cold season the BC contribution is also higher due to the 

increase of wood burning from residential heating 

(Mousavi et al., 2019). 

A new way to perform and improve the source 

apportionment of BC can be with the use of Raman 



spectroscopy. In fact, in the last decade, Raman 

spectroscopy has been widely used to investigate the 

single particle composition of aerosol PM. In particular, 

this technique can provide an unambiguous identification 

of the different PM chemical species correlating their 

characteristic vibrational modes to the resulting Raman 

spectra (Doughly & Hill, 2020). Among the PM chemical 

substances, BC can be easily recognized by its darkness 

and the resulting Raman spectra, which, as most of the 

Carbon-based material, is characterized by two 

overlapped bands: the G-band (1580 cm-1) and the D band 

(1360 cm-1). The G band is due to the stretching vibration 

of pairs of sp2 carbon atoms, while the D band arises 

when defects or impurities are present. (Russo & Ciajolo, 

2015). The shape of these two bands, or their 

deconvolution, can provide information about the type of 

fuel used, the fuel/oxygen ratio, and the treatment 

temperature (Ge et al., 2019). Raman spectra combined 

with a statistical analysis method promises to be an 

effective tool for source apportionment of atmospheric 

BC particles. 

The present study investigates, through Raman 

spectroscopy and machine learning techniques, the BC 

characteristics coming from different emission sources to 

develop a possible source apportionment tool. Hence, the 

goal is to identify the emission source for several BC 

particles within a PM sample and estimate their 

contribution quantitatively.  

2. Materials and methods 

The analysis is divided into two subsequent stages to 

evaluate the BC source emission in PM. In the first stage, 

samples from different BC emission sources are analyzed 

to collect representative spectra. Instead, in the second 

stage, PM samples are collected from two different air 

quality stations by the Regional Environmental Protection 

Agency (Agenzia Regionale per la Protezione Ambientale 

Piemonte) to assign at each BC particle its emission 

source.  

Two distinct locations were chosen for the sampling to 

represent both urban and rural contexts to highlight the 

different BC sources. The first station is located in the 

center of the metropolitan city of Turin in “Piazza Conti 

di Rebaudengo” near a busy road and in an industrial and 

residential area. The city of Turin is a high-density urban 

center, the second largest in the Po valley, and one of the 

most polluted Italian cities. The poor air quality is due to 

the city itself and its orographic context. The Alps and 

hills that surround the city do not allow pollutant dilution. 

This phenomenon is enhanced in winter because this 

region (Po valley) is subject to the formation of an 

inversion layer resulting in a higher air pollution 

concentration (Pernigotti et al., 2012).  

The second location considered is the municipality of 

Oulx, in the Alps, 80 km from Turin, with a population of 

about 3000 people. The air quality station is placed near a 

state road in a residential area.  

The measurements were performed in winter, during 

February, when the BC concentration is usually higher, 

mostly due to the increase in biomass burning for 

domestic heating (Mousavi et al, 2019). 

2.1. Apparatus and measurement parameters 

The BC and aerosol PM particles were analyzed using a 

Renishaw inVia Raman spectrophotometer coupled with 

a LEICA confocal microscope. Measurements were 

performed using a 532 nm diode pumped solid state 

(DPSS) laser, set to a power of 150 μW (0,5 % of the 

maximum power) to avoid beam damage of the sample, 

and focusing the beam via a 50x LWD objective (NA 

0.4).  

An 1800 lines/mm grating was used in static mode and 

positioned to cover the spectral range from 115 cm-1 to 

1881 cm-1  is chosen. The acquisition time was set to 12 

seconds and each spectrum was integrated over 5 

accumulations. 

2.2. Emissive sources studies: Single sources of BC and 

the two PM samples 

BC in the PM is mainly produced by biomass burning and 

traffic. The considered urban sources of BC are: 

- Wood/biomass ashes  

- Soot from vehicle engine (gasoline, diesel, LPG and 

methane) 

In Table 1 the number and typology of BC spectra 

analyzed both for BC emission sources and for BC 

particle from PM are shown. 

Table 1. Number and typology of BC spectra 

BC emission source Number of spectra 

Biomass burning 54 

Gasoline vehicle emission 56 

Diesel vehicle emission 63 

LPG vehicle emission 60 

Methane vehicle emission 59 

BC particle from PM  Number of spectra 

Rebaudengo 28 

Oulx 28 

2.3. Data analysis 

Once the Raman spectra are obtained from both the 

source emissions and the PM sample, the following post-

processing is applied: screening, smoothing, baseline 

removal and deconvolution.  

For the screening process both measurements with high 

fluorescence and measurements that detect other species 

are excluded. Specifically, the presence of hematite’s 

presence could alter D peak’s intensity because it is 

characterized by a broad band at around a Raman shift of 

1320 cm-1 (Doughly & Hill, 2020). Because of that, all 

the measurements that show other peaks (such as iron 

oxide and calcite) than the D and G bands are removed 

from this analysis.  

The smoothing is performed using the Savitzky-Golay 

algorithm to improve the signal to noise ratio (SNR).  

The baseline removal is performed using a straight line 



that connects the points at a Raman shift of 1000 cm-1 and 

1778 cm-1, as performed by Laumer et al. (2016). 

The deconvolution is made using five bands (G, D1, D2, 

D3 and D4), as proposed by Sadezky et al. (2005), that is 

the combination of one Gaussian (D3) and four 

Lorentzian curves (G, D1, D2 and D4). 

Each curve is characterized by the position and maximum 

intensity of the peak, the area and the Full Width at Half 

Maximum (FWHM). 

Hence, for each measurement, 17 parameters are returned 

as a single value (position of the peak) and as ratio 

(intensity, area and FWHM) where the parameter 

associated with the G band is always at the denominator. 

(Feng et al, 2019). Two additional parameters (R2 and 

R3) are calculated as indicated by Feng et al. (2019).  

2.4. Machine learning 

Machine learning techniques have been applied to 

identify data patterns and carry out predictive analysis on 

PM samples. The written algorithm is supervised as the 

input data (parameter values) are already associated with 

the correct output (type of BC emission source). With ML 

it has been possible to recognize in a bi-dimensional 

diagram, which has the parameters as axes, clusters of the 

different BC emission sources. The algorithm used for the 

classification is the K-Nearest Neighbors (KNN) which 

allows the class determination of one data according to 

the mutual position. Specifically, the data class is 

assigned as the most common class from the K data 

around the original data. The value of K used is 3. 

All the data are divided into two datasets to evaluate the 

cluster resolution: 80% of the data from the different BC 

emission sources as the training dataset and 20% as the 

test dataset. The training dataset is used to create with the 

KNN algorithm the prediction of every single value in the 

test dataset. Then, the predicted class is confronted with 

the actual class for each value in the test dataset. From 

this comparison, prediction accuracy is calculated in 

percentage points. The possible division between the 

training and test datasets can affect the accuracy; 

therefore, several casual divisions have been considered 

and an average accuracy is obtained. 

3. Results 

3.1. Analytical determination of accuracy 

In order to train the algorithm, two different combinations 

have been explored. The first combination takes into 

account all the different BC emission sources. The 

highest accuracies obtained are equal to 74% and 70%. A 

reduction of the number of classes was carried out to 

improve the value of obtainable accuracy. For the Turin 

province, 90% of vehicles are powered by diesel and 

gasoline while LPG, methane (and electric) accounts only 

for 10% (ACI website). Hence, the second combination 

only considers three emission sources: gasoline and diesel 

vehicle emissions and biomass burning. The accuracy 

obtained is 90% for 6 different couples of parameters. As 

an example, two couples of parameters are shown in 

Figure 1.  

3.2. Class prediction 

Using the trained algorithm on all the data from the 

considered BC emission source, a class prediction can be 

obtained for each BC particle. For each combination, BC 

particle and couple of parameters, a class can be assigned. 

The class is assigned only if most of the couples 

considered indicate the same class; otherwise, the BC 

particle is classified as not identified. 

In Table 2 and Table 3 the class prediction of BC for 

Turin and Oulx air quality stations obtained for the 

different algorithm prediction (Combination 1 and 2) are 

shown. 

Table 2. Class prediction of BC in Turin Rebaudengo 

Combination Diesel  Biomass Others Not 

identified 

1 61% 0% 0% 39% 

2 71% 25% 0% 4% 

 

Table 3. Class prediction of BC in Oulx 

Combination Diesel  Biomass Others Not 

identified 

1 61% 0% 0% 39% 

2 57% 35% 0% 7% 

4. Discussion and conclusion 

The results from the station of Turin Rebaudengo (Table 

2) show a considerable amount of BC from diesel car 

emissions for both combinations. Concerning the second 

combination, the class of almost all the non-identified BC 

particles can be determined thanks to the higher accuracy 

gained during the algorithm training. The same 

consideration on the two different combinations can be 

applied to the result from Oulx (Table 3).  

The high share of BC from Diesel vehicle emissions can 

be associated with the high traffic volume for both 

stations as they are placed in front of busy roads, 

especially for Turin Rebaudengo. Even if the percentage 

of diesel and gasoline vehicles is more or less the same 

for the Turin province (ACI website), it has been reported 

that the Diesel vehicles produce much more BC than 

gasoline vehicles (Bond et al., 2013). For that reason, the 

non-identification of gasoline vehicle emissions even for 

the second combination can be explained. As expected, 

the percentage of biomass is higher in the rural context 

compared to the urban context as expected (Mousavi et 

al., 2019). Furthermore, the percentage of biomass 

burning BC found can be coherent with the mean value of 

33% obtained by applying the aethalometer model in the 

same winter in another station in the city of Turin 

(Ballato & Sacco, 2022).  



Due to the climate and health effects of BC, providing a 

method to classify and investigate the source of 

atmospheric BC aerosol can be useful for obtaining 

effective information and applying meaningful air quality 

management . Raman spectroscopy and machine learning 

techniques show promising results for the BC source 

apportionment and can identify the different percentages 

of biomass and diesel vehicle emissions within a PM 

sample. 

 

 

Figure 1. Couple of parameters with highest accuracy (combination 2) 
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