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Abstract

Artificial Neural Networks (ANNs) can successfully be integrated into smart

models for energy prediction, but require large datasets for training. This inves-

tigation presents an innovative methodology for photovoltaic power generation

forecasting with ANNs, when only a limited amount of real data is available,

and has been tested and validated on a real-life photovoltaic installation. Fea-

ture selection identifies which meteorological features most impact photovoltaic

power generation. A simulator, which accurately models a real photovoltaic

installation, is used to create an artificial, but accurate and realistic, dataset

of power generation large enough to effectively train and test different ANNs.

These are then exploited on a portion of real, but limited, dataset of power gen-

erated by the real photovoltaic installation on which the simulator is modeled.

Finally, different transfer learning techniques are used to tune the ANN mod-

els with the remaining portion of the real, but limited, dataset of photovoltaic

power generation.
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Acronyms

1D-CNN 1 Dimensional Convolutional Neural Network.

ADAM Adaptive Moment Estimation.

ANN Artificial Neural Network.

ANNs Artificial Neural Networks.

APS Announced Pledges Scenario.

BiLSTM Bidirectional LSTM.

C-LSTM Constrained LSTM.

CLSTM Contextual LSTM.

CNN Convolution Neural Network.

GHI global horizontal irradiance.

GRU Gated Recurrent Unit.

IEA International Energy Agency.

LASSO Least Absolute Shrinkage and Selection Operator.

LSTM Long Short-Term Memory.

MAD Mean Absolute Difference.

MAPE Mean Absolute Percentage Error.

MI mutual information.

MSE Mean Squared Error.
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NAR Non-linear AutoRegressive.

NZE Net Zero Emissions.

PV photovoltaic.

R2 Coefficient of Determination.

RMSD Root Mean Square Difference.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.

SBS Sequential Backward Selection.

SFS Sequential Forward Selection.

STEPS Stated Policies Scenarios.

TL Transfer Learning.

TW Time Window.

UV ultraviolet.

VRE variable renewable energy.

1. Introduction

As highlighted by the International Energy Agency (IEA), in its 2022 World

Energy Outlook Report [1], with the world in the midst of a global energy cri-

sis, and faced with energy shortfalls and high prices, governments have rushed

to try and secure alternative energy sources and supplies, and accelerating the

flow of new renewables projects. Within this context, electricity accounts for

about 20% of the world’s total final consumption of energy, but its share of en-

ergy services is higher. Investments in clean electricity and electrification, along

3



with expanded and modernised grids, offer clear and cost-effective opportunities

to cut emissions more rapidly while bringing electricity costs down from their

current highs. In the most affected regions of this energy crisis, for example,

higher shares of renewables were correlated with lower electricity prices, and

more efficient homes and electrified heat have provided an important buffer for

some – but far from enough – consumers. Today’s growth rates for deployment

of solar photovoltaic (PV) and wind, if maintained, would lead to a much faster

transformation than projected in the Stated Policies Scenarios (STEPS), al-

though this would require supportive policies not just in the leading markets for

these technologies but across the world. Supply chains for some key technolo-

gies – including solar PV – are expanding at rates that support higher global

ambition. If all announced manufacturing expansion plans for solar PV see the

light of day, manufacturing capacity would exceed the deployment levels in the

Announced Pledges Scenario (APS) in 2030 by around 75% and approach the

levels required in the Net Zero Emissions (NZE) Scenario. These clean energy

supply chains are a huge source of employment growth, with clean energy jobs

already exceeding those in fossil fuels worldwide and projected to grow from

around 33 million today to almost 55 million in 2030 in the APS. Finally, it is

interesting to underline how the World Energy Outlook Report also highlighted

that demand-side measures have generally received less attention, but greater

efficiency is an essential part of the short- and longer-term response.

Within this framework, it is clear how the role of renewable energy sources

such as PV energy is becoming increasingly important. PV energy can be clas-

sified in the variable renewable energy (VRE) sources, due to its fluctuating

power output based on solar power. The variable nature of PV power poses

a challenge towards its use as a reliable energy source in power grids, whose

stability strongly depends on the balance between generation and consumption

of energy. According to the IEA, a power system is flexible, if it can, within

economic boundaries, respond quickly to high fluctuations in supply and de-

mand, ramping down a generation when demand decreases, and upwards when

it increases for scheduled and unpredictable events [2]. However, the flexibility
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of power systems has become a concept that needs to be redefined, due to the

increasing penetration levels of power generation from variable and hardly pre-

dictable sources such as wind and solar energy, which generate uncertainty on

the supply side [3].

These difficulties however can be overcome with the support of technologi-

cal innovations such as smart grids, which allow to improve management and

stability of existing power grids by integrating them with modern distributed

computing facilities and communication networks [4]. Within the smart grid

framework, innovative applications can be implemented in order to better coor-

dinate power demand and supply, for example real time forecasting or demand

response [5], which can adapt the power consumption in order to align power

demand with supply. For such applications to work effectively though, the abil-

ity to effectively forecast both power demand and supply with different forecast

horizon has become increasingly important. Within this framework, specific

attention can be given to the effective forecasting of PV power generation [6].

According to [7], [8] and [9], artificial intelligence techniques have become

an excellent tool for wind generation and PV generation forecasting. [10] dis-

cuss how forecasting based on Artificial Neural Network (ANN), which have

been used in a variety of fields since [11] first published his comprehensive book

of many neural network techniques from an engineering perspective, is one of

the most effective methods for PV generation forecasting. However, [10] also

highlight some main drawbacks of ANNs such as the fact that they require a

large amount of data for the training process, a random initial dataset that

may reduce the reliability of the forecasted results, and the challenge and time

required for accurate development of the model architecture. Nonetheless, dif-

ferent ANN solutions have been investigated for long-, medium- and short-term

PV generation forecasting.

For long-term prediction horizons, [12] used different ways to forecast PV

power from 0h to 48h ahead, based on spatial clustering of the PV fleet and an

ensemble of multilayer perceptron using satellite and numerical weather predic-

tion data. For mid-term prediction horizons, [13] and [14] investigate different
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approaches for forecasting of PV power generation up to 24h ahead, each us-

ing different ANNs and meteorological inputs, with results showing how the

latter increase the prediction performance. [15] also investigate forecasting PV

power generation up to 24h ahead, using PV simulation software to generate the

data inputs to their model, with results showing how their generalized model

could effectively forecast PV power generation in both normal (clear-sky) and

abnormal days (cloudy or rainy days), and also in various seasons and different

abnormal weather conditions. For shorter prediction horizons, [16]investigate

one step and multi step ahead PV power generation forecasting for 1 min, 5

min, 30 min and 60 min, by using Long Short-Term Memory (LSTM), Bidi-

rectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), Bidirectional GRU,

Convolution Neural Network (CNN), and hybrid architecture. Different model

architectures are tested and their performance compared to that of a Non-linear

AutoRegressive (NAR) neural network and a Elman recurrent neural network.

Results show that the best performance is obtained with LSTM and GRU based

models, with LSTM presenting the best accuracy and simplicity of implemen-

tation.

After the main LSTM paper was published in the journal Neural Compu-

tation in 1997 [17], this ANN has been used successfully in a variety of fields,

and after it started showing interesting performance when applied to PV power

generation forecasting, different authors investigated its performance in this

field. [18] experiment with different LSTM model parameters (number of hid-

den nodes, activation function, number of input variables), and also by chang-

ing the division of the dataset, with their results showing good performance in

forecasting the daily PV power generation, while again also highlighting how

increasing the number of input variables does not produce better results. [19],

propose three different models for PV power forecast: CNN, LSTM and Contex-

tual LSTM (CLSTM). Their results shows that all of the models have a positive

performance, with CLSTM outperforming the others in terms of accuracy while

GRU presents the shortest training time. Finally, [20] also present an investiga-

tion leveraging neural networks for PV power prediction, including GRU, which
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provides the best prediction accuracy.

[21] instead investigate PV power forecasting using the global horizontal

irradiance (GHI) measured by sensors and GHI in clear sky condition. The

authors evaluate the effectiveness of exogeneous inputs together with different

machine learning models (Feedforward, Echo State, 1D-Convolutional, Long

Short-Term Memory neural networks and Random Forest) for short term solar

radiation forecasting. The investigation’s results show that best model is GRU,

and that exogenous inputs significantly improve the forecasting performance for

prediction horizons greater than 15 min, while for very short prediction horizons

(i.e. 15 min) the improvements are negligible.

Regardless the range of prediction, one of the main challenges posed tech-

niques belonging to the field of machine learning and artificial intelligence, par-

ticularly those related to ANNs, is that they require significant amounts of data

in order to be trained effectively and produce acceptably accurate results. [19],

for example, in their work with CNN, GRU and CLSTM, recommend to select

a data length of at least 3 years.

In recent years, Transfer Learning (TL) has been increasingly investigated

as a possible solution to overcome the challenge posed by lack of large and

reliable enough data in a variety of fields. After [22] published the first paper

addressing Transfer Learning (TL) in neural network training, this methodology

has been investigated and applied in a variety of fields. Its application has also

been investigated in PV power forecasting but, to the best of our knowledge,

research availability on such topic is still scarce.

[23], for example, propose a method to transfer the knowledge obtained

with historical solar irradiance data to the PV power output prediction, using

an GRU model which is first trained using historical solar irradiance data, and

then fine-tuned with the PV output data. The author use 6 months of historical

solar irradiance data and 45 days of historical output data, with a sampling

interval of 10 min. The results show that although the amount of training data

is insufficient to generate accurate results, TL does improve the performance

of the prediction, with Mean Absolute Percentage Error (MAPE) improving an
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average of 23% and Root Mean Square Error (RMSE) improving an average of

10%, for predictions up to 40 min ahead.

In another investigation, [24] focus on newly-constructed PV plants and on

their challenge to effectively execute hourly day-ahead PV power generation, by

applying a Constrained LSTM (C-LSTM) model together with two parameter-

transferring strategies, thus combining TL and deep learning models. The re-

sults show how standard GRU models are outperformed by C-LSTM models in

terms of forecasting accuracy, and also how variability and accuracy issues due

to different sky conditions can be improved by the application of the proposed

combination of C-LSTM and TL strategies.

[25] also developed a model based on TL to predict PV power generation,

with their experimental results showing how traditional learning methods are

outperformed by the proposed TL model. The model they developed leverages

the variation of solar altitude angles in a year to identify the season, combine it

with the meteorological factors hidden in the data collected from a PV system,

and use it as input for online learning models based on both traditional learning

and TL approaches to predict power generation.

Within this framework, the purpose of this investigation is therefore to

present an innovative methodology for PV power generation forecasting with

ANNs, when only a limited amount of real data is available. Feature selection is

first used to investigate different meteorological features, such as GHI, humidity,

air temperature, and so on, in order to identify those which most impact the

accuracy of data prediction forecast. The PV power generation simulator pre-

sented by [26], which is accurately modeled to replicate real PV installations, is

then used. As a case study, we selected a PV system installed in the rooftops of

some buildings in our University campus, located in Turin, north west of Italy.

Thus, the PV power generation simulator has been applied to these rooftops to

create an artificial, but accurate and realistic, dataset of PV power generation

large enough to effectively train and test different ANNs. Moreover, for these

real world PV system, we also collected measurements of real power generated,

as a second dataset. It is worth noting that real and simulated PV installations
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are coincident. In the proposed methodology, the simulated dataset, together

with the meteorological features previously selected, is used for the initial train-

ing and testing of the ANNs. The resulting ANN models, trained and tested

on the simulated dataset, are then exploited on a portion of the real dataset to

evaluate their prediction performance against real data. Finally, different TL

techniques are used to tune the ANN models with the remaining portion of the

real dataset investigating their effectiveness to improve the prediction perfor-

mance of PV power generation always against the same real data. As already

mentioned, the whole methodology has been tested and validated on a real-life

PV installation in our university campus.

The novelty of this investigation lies in the exploitation of a PV power gen-

eration simulator, which accurately models a real PV installation, to create

an artificial, but accurate and realistic, dataset of PV power generation large

enough to effectively train and test different ANN models, which are then ex-

ploited on a portion of real, but limited, dataset of the real power generated by

the real PV installation on which the simulator is modeled, to evaluate their

prediction performance against real data. Further novelty is brought by the ap-

plication of different TL techniques to tune the ANN models with the remaining

portion of the real, but limited, dataset of PV power generation, investigating

their effectiveness to improve the prediction performance of PV power genera-

tion always against the same real data. The ANNs used in this investigation

are: GRU, which is a well-established ANNs in PV power generation forecast-

ing; and 1 Dimensional Convolutional Neural Network (1D-CNN), which is a

variation of CNN, which have occasionally been used in PV power generation

forecasting.

The results of the investigation conclude that after the feature selection pro-

cess, the variables which most impact power prediction are global horizontal

irradiance, humidity, temperature, dew point, ultraviolet index, sunshine du-

ration and time of the day; the best prediction performance, up to 4 hours,

is given by GRU neural networks; the TL techniques can successfully improve

short-term forecasting performance up to 2 hours.
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The rest of this manuscript is organized as follows. Section 2 introduces the

case study. Section 3 presents the proposed methodology. Section 4 discusses

our experimental results. Finally, Section 5 provides our concluding remarks.

2. Case Study

The methodology presented in this work, aiming to forecast PV power gen-

eration with ANNs, when only a limited amount of real data is available, tested

and validated on a real-life PV installation located on the rooftop of a building

of our university campus in Turin, Italy, as shown in Figure 1.

Figure 1: University campus location in Turin, Italy, and its PV system under analysis

The PV installation has a total surface area of almost 3,000 m2, and the

characteristics described in Table 1.
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INSTALLATION YEAR 2016

SIZE 631 kWp

# OF PV CELLS 96

POWER PV CELLS 3,406 Wp

BRAND PV CELLS BEN-Q

# OF PV MODULES 1,836

BRAND PV MODULES BENQ SOLAR

MODEL PV MODULES SunForte PM096B00

MODULES’ TECHNOLOGY MONO-CRISTALLINO

MODULES’ NOMINAL POWER 327 W

MODULES’ SURFACE AREA 1.63 m2

# OF INVERTERS 8 19

MAX POWER INVERTERS 20 kW 25 kW

BRAND INVERTERS SMA

MODELINVERTERS SUNNY TRIPOWER

Table 1: Technical specifications of the PV system

The PV power production of this installation is measured through specific

sensors, with data collection occurring every 15 min. Data collected through

these sensors covers years 2018 to 2020, for a total of 105,216 data points.

The PV power generation simulator presented by [26], which accurately repli-

cates the real PV installation located on the roof of our university campus in

Turin, Italy, is then used to create an artificial, but accurate and realistic,

dataset of PV power generation large enough to effectively train and test differ-

ent ANNs. This artificial, but accurate and realistic dataset, together with the

meteorological features previously selected, is used for the initial training and

testing of the ANNs. The simulated dataset also presents PV power production

every 15 min. The simulator was used to generate an artificial dataset covering

years 2010 to 2015, for a total of 210,336 data points.

The artifical and real datasets will then be further divided in different parts,
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each of which will be used in a different phase of the training, testing, exploita-

tion and tuning of the ANN models and of the TL.

The simulated data is split and used to train and test the different ANN

models. Years 2010 to 2014 (175,296 data points) are used as training set,

while year 2015 (35,040 data points) is used as testing set. The real data set is

then used to exploit the ANN models and evaluate their prediction performance

against real data, and also to apply different TL techniques to tune the ANN

models and to improve their prediction performance of PV power generation,

always against the same real data. Year 2020 (35,136) is used to exploit the ANN

models and evaluate their prediction performance against real data (inference

set). Years 2018 and 2019 (70,080 data points) are used as training set to tune

the ANN models with TL (tuning set), while year 2020 (inference set) is also

used as test set for the TL models, and their performance is compared to that

of the original ANN models exploited on the same year.

3. Methodology

This section aims to present the proposed methodology to forecast PV power

generation when only a limited amount of real data is available, leveraging

different meteorological data, a PV power generation simulator which accurately

models a real PV installation, different ANNs and TL techniques.

As shown in Figure 2, the different meteorological data features are first

collected and then analyzed through feature selection methodologies in order to

identify those which most impact the accuracy of data prediction forecast. The

PV power generation simulator presented by [26], which is accurately modeled

to replicate the real PV installation located on the roof of our university campus

in Turin, Italy, is then used to create an artificial, but accurate and realistic,

dataset of PV power generation large enough to effectively train and test differ-

ent ANNs. This artificial, but accurate and realistic dataset, together with the

meteorological features previously selected, is used for the initial training and

testing of the two different ANNs: 1D-CNN and LSTM. The resulting ANN
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models, trained and tested on the simulated dataset, are then exploited on a

portion of real, but limited, dataset of the real power generated by the real

PV installation on which the simulator is modeled, to evaluate their prediction

performance against real data. Finally, different TL techniques are used to tune

the ANN models with the remaining portion of the real, but limited, dataset of

PV power generation, investigating their effectiveness to improve the prediction

performance of PV power generation always against the same real data.

Figure 2: Scheme of the proposed methodology
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3.1. Data collection, preprocessing and Feature Selection

For the indicated time period, a dataset containing different meteorological

features must be collected, together with the real PV generation data. The data

must then be preprocessed, in order to make it coherent, for the whole dataset,

and self-consistent. A selection of which of these features are most correlated

to PV power generation is then carried out (Feature Selection), before feeding

these features as inputs to the neural network models.

3.1.1. Data collection and preprocessing

The initial raw dataset, which is presented in the following list, is composed

by 22 features and 385,718 rows, referring to years 2010 to 2020. All features

are collected with 15 min intervals.

• Real PV power generation, i.e. real power (W) generated from the PV

installation (data available from 2018 to 2020);

• GHI, Global Horizontal Irradiance (W/m2);

• Relative Humidity, ranging between 0 and 1;

• Air temperature (°C);

• Air temperature - day (°C);

• Wind speed (m/s);

• Wind direction;

• Atmospheric pressure (hPa);

• Ultraviolet Index (UV index);

• Temperature (°C);

• Apparent temperature (°C);

• Humidity, ranging between 0 and 1;
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• Wind speed (m/s) (wind speed Dark Sky);

• Wind bearing, the direction that the wind is coming from in degrees, with

true north at 0° and proceeding clockwise;

• Dew point, the point at which dew can form (°C) below the atmospheric

temperature (it changes with respect to pressure and humidity);

• Precipitation intensity, the intensity of precipitation at the given time;

• Precipitation probability, the probability of precipitation occurs, between

0 and 1;

• Cloud cover, the percentage of sky occluded by clouds, between 0 and 1;

• Simulated PV power (W) (simulated power);

• Sunset time, the unix timestamp when sun will set during a given day (s);

• Sunrise time, the unix timestamp when sun will rise during a given day

(s);

• Sunshine duration, the difference between sunrise and sunset time (calcu-

lated);

• Day;

• Hour;

• Minute.

Real PV power generation is the real power (W) generated from the PV

installation (data available from 2018 to 2020), and is provided by the sensors

present in the PV installation in our university campus. The meteorological

features are obtained from different sources. Features from GHI to atmospheric

pressure are provided a weather station in our university campus, which is very

close to the case study’s building (see Section 2). Features from ultraviolet

(UV) index to cloud cover are provided from Dark Sky [27], a software company
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specialized in weather observations and visualization which provides historical

weather data in all the world, obtained from multiple sources (in Turin, the

nearest station for data collection is located near the city’s airport, 14.5 km

north of the case study’s building). The simulated power is obtain through the

simulator [26], sunset and sunrise times are obtained through the pvlib python

library [28], sunshine duration is calculated subtracting sunrise time from subset

time, while day, hour and minute are embedded in the data.

After collecting the meteorological features’ data, data cleaning and feature

engineering steps were then carried out in order to clean the dataset.

Data cleaning

Table 2 presents a summary of the different features present in the dataset,

highlighting the missing datapoints. The minimum and maximum values are

also presented, after abnormal values for minimum and maximum were identified

and replaced through linear interpolation.
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Data Type Min Max
# of Missing

Source
Samples

Campus PV

Real PV power generation float64 0.00 562.20 0 installation

sensors

GHI float64 0.00 1,139.20 21,032

relative humidity float64 0.09 1.00 8,670

air temperature float64 -10.90 36.20 880 Campus

air temperature - day float64 -6.00 33.20 772 Weather

wind speed float64 0.00 12.40 41,798 Station

wind direction float64 0.00 360.00 0

atmospheric pressure float64 800.20 1,008.40 41,798

UV index float64 0.00 10.00 12,666

temperature float64 -11.60 36.20 5,791

apparent temperature float64 -13.50 36.20 5,791

humidity float64 0.05 1.00 4,390

wind speed Dark Sky float64 0.00 13.59 39,191 Dark

wind bearing float64 0.00 359.00 43,731 Sky

dew point float64 -22.25 24.32 1,890

precipitation intensity float64 0.00 12.954 45,968

precipitation probability float64 0.00 1.00 45,968

cloud cover float64 0.00 1.00 48,325

simulated power float64 0.00 9.32 0 PV simulator

sunrise time int64 1262329669.00 1609398464.00 0 Embedded

sunset time int64 1262361479.00 1609430242.00 0 with other

sunshine duration int64 31532.00 56258.00 0 data

Table 2: Raw dataset summary information

In the period between the 6th of September 2016 until the 31st of December

2017, the weather station in our campus was not functioning and the data

collected was therefore irregular or absent. The features affected by this issue are

GHI, speed wind, atmospheric pressure, and wind direction. As a consequence,

the data for that period is discarded (for a total number of 21,032 values), not

just for the compromised features but, to be coherent, for the whole dataset,

to make it self-consistent, and will not be used subsequently in any part of the

training and/or validation of the neural networks and TL.

All features related to PV power generation were then set to 0 during the
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night (Real PV power generation, GHI, UV index, simulated power). This

was done by leveraging the sunrise and sunset times. Specific missing values

were then identified and replaced where possible. A strong, positive correlation

between UV index and GHI was identified, so missing values in UV index were

included based on existing UV index values for similar GHI. Finally, sporadic

missing values in different features were replaced through linear interpolation.

Feature engineering

Feature engineering is a process used to manipulating raw data into features

that can be effectively used in machine learning. More specifically, features

scaling is required when the variables present very different orders of magnitude,

and must therefore be normalized before being fed into the models. Normalized

features all have the same magnitude, which increased the speed with which the

machine learning models are trained. The min-max normalization is applied,

scaling each variable in the range between 0 and 1.

It important to underline that min-max normalization is performed only dur-

ing feature selection, to identify those features which most impact the models’

ability to forecast PV power generation, aiming to reduce the number of input

variables and therefore also the computational effort. Then, once the features

which must be considered as inputs for the selected models have been identified,

the works moves to the training and testing phases of the ANNs, during which

there is no normalization.

3.1.2. Feature Selection

The aim of the feature selection is to identify those features which most

impact the models’ ability to forecast PV power generation, aiming to reduce

the number of input variables and therefore also the computational effort. [29]

and [30] identify three main categories for feature selection:

• filter method: filtering is done using the correlation matrix and is most

commonly carried out using Pearson Correlation.

• wrapper methods: it requires a machine learning algorithm and uses its
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performance as evaluation criteria.

• embedded methods: an iterative process, which analyzes each iteration of

the model training process and extracts the features which contribute the

most to the training.

In the following sections these techniques applied to our dataset are presented

in detail.

3.1.3. Feature Selection - Filter methods

With filter methods, the selection of the features is independent from any

machine learning algorithms, with features being selected based on their scores

in statistical tests (correlation criteria). As presented by [29] and [30], since it

does not rely on a machine learning algorithm, this technique avoids the risk of

overfitting, but the selected subset of features are not optimal and could contain

redundant variables. Pearson’s correlation criteria and mutual information are

the two ranking criteria used in our methodology.

Correlation Criteria

As presented by [29] and [30], the Pearson’s correlation coefficient is used as

a measure to quantify linear dependence between two variables. Its values vary

from -1 to 1, where 1 means maximum positive linear correlation, -1 maximum

negative linear correlation and 0 means no correlation.

Figure 3, presents a correlation matrix with the results of the correlation

coefficients computed between each variable, excluding the simulated power

(since it is equivalent to the real powe). The correlation matrix reveals a positive

linear correlation of 85% between UV index and GHI features, of 50% between

real PV generation and UV index, and of 40% between real PV generation and

GHI. Strong correlation (80%) appears to exist between sunshine duration and

temperature, and between dew point and temperature, but such correlations are

not useful for this investigation. The correlation between real PV generation

and all other features appears to be very low, as that between GHI and all other

features. Out of all variables, it is interesting to see how “sunshine duration” has
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a low correlation with ”real PV power generation”. As explained in section 3.1.1,

this variable is calculated and represents the difference between sunrise time

(the unix timestamp when sun will set during a given day) and sunset time

(the unix timestamp when sun will rise during a given day). This variable

therefore does not take into consideration the weather conditions, and the actual

amount of sun present. For this reason, this variable does not have such a strong

correlation with ”real PV power generation”. Similar results for this variable

will be confirmed also by other feature selection methods.

Figure 3: Correlation matrix presenting correlation coefficients computed between each vari-

able

Since Pearson’s correlation can be positive or negative, a new coefficient is

adopted, the coefficient of determination R2, which is defined as the square of
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the Pearson’s coefficient R. As presented by [29] and [30], R2 provides a more

interpretable measure in order to compare the linear correlation between vari-

ables, and is used to evaluate the correlation between the different features and

the real PV power generation, as presented in Figure 4. According to these

results, UV index is by far the feature with the highest correlation to PV power

generation, with its R2 coefficient at 0.25, almost 60% greater than the second

feature, GHI. The next eight features (in decreasing order, GHI, sunset time,

sunrise time, temperature, apparent temperature, humidity, relative humidity,

and air temperature) fall between an R2 range of 0.15 and 0.06. The next seven

features (wind speed Dark Sky, dew point, air temperature - day, sunshine du-

ration, wind speed, atmospheric pressure, wind bearing) present an R2 between

of 0.03 and 0.01, and the last features (precipitation intensity, precipitation

probability, cloud cover, wind direction, day, hour, minute) present an R2 of 0

a slightly above.

Figure 4: Correlation criteria results between variables and P-PV Cittadella
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Mutual information

The mutual information (MI) index measures how much can be learned from

one variable by observing the other variable (or mutual dependence between two

variables) [31], represented by the statistical dependence between the density of

a variable x and the density of a variable y.

The probability densities of x and y are p(x) and p(y) respectively, with the

joint probability density given by p(x, y). Compared to the Pearson’s correla-

tion, the mutual information index is also able to recognize non linear correla-

tions between variables. Figure 5 presents the features sorted by their mutual

information compared to the real PV power generation (P-PV Cittadella), with

results showing how the best feature is by far the GHI, with a mutual informa-

tion greater than 1.5, over twice that of the following features. UV index and

hour are then respectively the second and third features, with mutual informa-

tion around 0.7. The remaining twenty features have significantly lower mutual

information, ranging between 0.3 and 0.

Figure 5: Mutual information criteria results between variables and Real PV power generation
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3.1.4. Feature Selection - Wrapper Method

In the Wrapper Method, the feature selection process is based on a specific

machine learning algorithm, with the aim of solving an optimization problem

by evaluating all the possible combinations of features, through an approach

called greedy search, and finding the best ones compared to the real PV power

generation. As presented by [29] and [30], this approach increases the perfor-

mance and may reduce the risk of overfitting the data. However, as the number

of features increases, the complexity also increases. The most commonly used

algorithms are the sequential forward and the backward selection.

Sequential forward selection

The Sequential Forward Selection (SFS) algorithms stars with a null model,

and at each step adds the features which give the highest performance. As

presented by [29] and [30], this process continues until the addition of new

features starts decreasing the performance. A disadvantage of this method is

that it does not take into account dependencies among variables. In this work,

a Linear Regression model is used. To train the model, the dataset needs to be

split into training and testing. This division will be specific for the training of

this model for this type of feature selection, and will therefore not follow the

data division described in Section 2: this training set is composed of 2 years

worth of data, from 2018 to 2019, while the test is performed on the last year of

data (2020). After normalizing the features using the min-max normalization,

the variables are fed to the algorithm and evaluated with respect to their Mean

Squared Error (MSE) on the test set. Figure 6 presents the results compared

to the real PV power generation, with the most important features being GHI,

sunshine duration and humidity, while the worst feature is the wind speed.
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Figure 6: SFS result criteria results between variables and Real PV power generation

Sequential backward selection

While the sequential forward selection methods starts with an empty model,

the Sequential Backward Selection (SBS) algorithm starts with a complete set of

features and at each step removes those features which decrease the prediction

performance. As presented by [29] and [30], the advantage of this method is that

the features are evaluated in the presence of other variables, thus discarding

useless features. The training and the testing set are the same of the sequential

forward selection case. The algorithm deletes those features whose removal

generated the lowest MSE on the test set. Figure 7 shows the results compared

to the real PV power generation, with most important features being GHI,

air temperature and air temperature - day, while the worst is precipitation

probability.
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Figure 7: SBS results between variables and Real PV power generation

3.1.5. Feature Selection - Embedded methods

In the embedded methods, the feature selection algorithm is integrated into

the model’s learning algorithm, it is incorporated in the training process and it

combines the qualities of filter and of the wrapper methods. As presented by [29]

and [30], embedded methods do not require to split the dataset into training and

test sets, and the most common embedded technique are the LASSO regression

and Random Forest.

LASSO Regression

Least Absolute Shrinkage and Selection Operator (LASSO) regression is a

Linear Regression that uses l1, and adds a regularization term called alpha to

the cost function.

As presented by [29] and [30], LASSO regression is similar to features se-

lection because l1 regularization sets the weight of least significant features to

zero. This regularization is done by varying the regularization of the hyperpa-

rameter alpha. The training set is composed by two years worth of data, from
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2018 to 2020, with the features being normalized between 0 and 1 by using min-

max normalization. The best model with lowest MSE value obtained from the

training set is identifying by varying the model’s hyperparameters, with alpha

equal to 0.001 being the best. Figure 8 presents the features sorted by weight,

with the best ones compared to the real PV power generation being GHI and

temperature.

Figure 8: LASSO Regression results between variables and Real PV power generation

Random Forest

Random forest is a machine learning algorithm which combines the output

of multiple decision trees to reach a single result. As presented by [29] and

[30], each of these decision trees are trained on different random subsets of the

training set. The most important features are located closer to the root of the

tree, while the less important ones are close to the leaves. The drawback of this

method is that the features could overfit the decision tree algorithm, discarding

important features too. In this work, 50 estimators are used for a period ranging

from 2018 to 2020. Figure 9 presents the results compared to the real PV power
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generation, with GHI being by far the most important feature with a value

greater than 0.8.

Figure 9: Random Forest results between variables and Real PV power generation

3.1.6. Results of features selection

Feature selection is used in order to find the most relevant features compared

to the real PV power generation, which will then be used as inputs to the

machine learning models, together with the PV power generation data. Table 3,

presents the results for each feature selection technique, with features sorted

from most to least important. The ranking is obtained by calculating the mean

of the results of each test, while the threshold between the selected and the

discarded features was identified through a trial and error approach during the

model evaluation.

The features selected for this investigations are GHI, humidity, temperature,

dew point, UV index, sunshine duration and hour. It is interesting to notice

how the different feature selection techniques present significant variance in

classifying the features. Apart for GHI, which is consistently ranked as first or
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second for all feature selection techniques, the other features are evaluated very

differently from the different methodologies. If one takes the top three features

for each technique, they are not all part of the list of top features presented

in Table 3. If one looks at the sequential backward selection technique, for

example, only its first feature was included in the selected ones (GHI), while

the others were all excluded. Similarly, for LASSO regression the second and

third features rank as sixt and seventh overall, narrowly making the selected

list. On the other hand, two to three of the final selected features rank over

tenth in the different feature selection techniques.
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Features
Methods

Rank
R2 MI SFS SBS L RF

S
el
ec
te
d

GHI 2 1 1 1 1 1 1

humidity 7 9 3 9 6 13 2

temperature 5 10 4 8 2 10 3

dew point 11 19 11 6 3 4 4

UV index 1 2 9 16 7 23 5

sunshine duration 13 18 2 19 8 3 6

hour 22 3 15 11 12 2 7

D
is
ca
rd
ed

air temperature 9 12 7 3 5 16 8

air temperature - day 12 20 5 2 4 10 9

relative humidity 8 8 6 17 15 9 10

sunrise time 4 15 13 4 17 18 11

day 21 14 8 10 13 6 12

wind speed Dark Sky 10 17 18 13 11 5 13

cloud cover 19 4 10 15 19 12 14

wind bearing 16 6 22 14 16 8 15

sunset time 3 13 23 5 22 17 16

apparent temperature 6 11 21 7 23 15 16

wind speed 14 16 14 12 10 20 17

precipitation probability 18 5 12 18 18 21 18

atmospheric pressure 15 22 16 20 9 14 19

precipitation intensity 17 7 20 23 14 22 20

wind direction 20 21 17 21 20 11 21

minute 23 23 19 22 21 7 23

Table 3: Feature selection results between variables and Real PV power generation

3.2. Training, testing and exploitation of the Neural Networks

The purpose of this section is to present the methodology adopted during the

development of the different ANN models. As presented in Figure 2, the main

phases required to develop any new predictive model are: i) training (which

includes training and validation, ii) testing.
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The PV power generation simulator presented by [26], which is accurately

modeled to replicate the real PV installation located on the roof of our uni-

versity campus in Turin, Italy, is used to create an artificial, but accurate and

realistic, dataset of PV power generation large enough to effectively train and

test different ANNs. This artificial, but accurate and realistic dataset, together

with the meteorological features previously selected in Section 3.1.6, is used for

the initial training and testing of the two ANNs: 1D-CNN and LSTM. The

resulting ANN models, trained and tested on the simulated dataset, are then

exploited on a portion of real, but limited, dataset of the real power generated

by the real PV installation on which the simulator is modeled, to evaluate their

prediction performance against real data.

In this work, all the neural networks are trained using the Adaptive Mo-

ment Estimation (ADAM), with a learning rate of 0.001. Adaptive moment

estimation is useful because it is able to avoid the cumbersome process of hy-

perparameters tuning dynamically the learning rate as needed, based on past

gradient values. The loss function that has to be minimize during the training

process is the MSE. Furthermore, in order to prevent overfitting and reduce

the training time, the early stopping criteria with a patience of 10 epochs is

introduced.

In order to identify the best architecture, the networks’ performance is eval-

uated through four statistical indicators proposed by [32], being: Mean Abso-

lute Difference (MAD), Mean Absolute Percentage Error (MAPE), Root Mean

Square Difference (RMSD) and Coefficient of Determination (R2).

The MAD, which measures the absolute difference between the prediction

and the observed value:

MAD =

∑n
i=1 |ypred,i − ytest,i|

n
(1)

The MAPE, which measures the relative difference between the prediction

and the observed value:
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MAPE =

∑n
i=1

|ypred,i−ytest,i|
ytest,i

n
100 (2)

The RMSD, which measures the standard deviation of the difference between

predicted and observed values:

√∑n
i=1(ypred,i − ytest,i)2

n
(3)

The R2, which measures the proportion of variance between the observed

and the predicted values:

R2 = 1−
∑n

i=1(ytest,i − ypred,i)
2∑n

i=1(ytest,i − ȳtest)2
(4)

The ideal values of each metric used in this article, in terms of forecast-

ing performance, were identified during past experiences, after reviewing the

State of the Art literature on similar applications, particularly [21] and [30].

For example, the work of [21] presents R2 = 0.8 as the threshold under which

machine learning forecasting results can not be considered acceptable. On the

other hand, defining acceptable values for the other metrics, MAD, MAPE and

RMSD, requires a more in-depth also of the data which wishes to be forecasted.

This investigation focuses on effective forecasting of PV power generation which,

according to Table 2, has values included between 0 and 562.20. If we consider

5% of the max PV power generation value, we have a value of approximately 28,

which can be rounded up to 30. However, a difference of 30 between real and

predicted value when the real value is close to its max, has an approximate error

of 5%, but if the real value is close to 100, the approximate error results much

higher. To properly identify the acceptable values for these metrics, we reviewed

the approach presented by [21] and [30] on the same metrics, and we concluded

that an acceptable metric for these models (LSTM and 1D-CNN) used to fore-

cast this type of data (PV power generation) with this dataset, would be 20 for

MAD, 50 for MAPE and 40 for RMSD.
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3.2.1. Applicability of k-folds cross validation

When defining the investigation’s methodology, existing literature was stud-

ied to identify different ways to ensure that the investigation’s results are as

robust as possible, and one of the methods which was found to be particularly

well-established for machine learning predictive modeling is k-fold cross vali-

dation. However, after studying existing literature on the application of this

method, such as [33], [34] and [35], it was determined that k-folds cross vali-

dation is inapplicable to this work, due to the nature of the data which is the

subject of the prediction.

The paper investigates innovative methods to predict photovoltaic power

generation, by leveraging artificial neural networks which, in turn, leverage his-

torical data for effective prediction. Photovoltaic power generation is strongly

dependent on weather conditions, to the point that as presented by [21] and

as applied in this investigation, meteorological features can be leveraged as an

input to the artificial neural network models to successfully increase prediction

accuracy for photovoltaic power generation.

However, due to the nature of the meteorological features data and, conse-

quently, of the photovoltaic power generation data, coherence and continuity

of the data is fundamental for the model to effectively learn from the data

and successfully predict photovoltaic power generation. Macro-factors such as

seasonality, and micro-factors such as changing weather conditions, strongly in-

fluence the varying photovoltaic power generation and must be captured by the

model for it to accurately predict photovoltaic power generation. The appli-

cation of k-folds cross validation, and of its random data sampling or random

data splitting, would break the coherence and continuity of the data, and make

it impossible for the model to successfully capture such trends.

More specifically, during the different seasons (i.e., winter, spring, summer,

autumn) the trends of the meteorological features, in particular GHI, may seem

similar (for example, during a sunny day without clouds the GHI values would

always form a perfect-like bell curve), while in reality the absolute values are
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different: for example, in summer they are greater than in winter, as presented

in Figure 10. The application of k-folds cross validation, and of its random data

sampling or random data splitting, would break the coherence and continuity of

the data: if the Time Window (TW) are randomly split, there could be strong

jumps between the last value of TW-1 and the first value of TW-2, and the

model would be unable to effectively interpret the dataset and deliver accurate

predictions.

Figure 10: Example of GHI values in a sunny day in winter, spring, summer and autumn

A possible way to overcome this issue would be to divide the total dataset

into four separate datasets based on the four seasons, and then divide each sep-

arate dataset into further subsets for training and testing, respectively. The

investigation would therefore be training four distinct neural networks, one per

season, and at this point the k-folds cross validation method could be appli-

cable. However, the available dataset is not large enough to allow all these

subdivisions: the four different training sets and four different test sets would

not have sufficient data to train the models ([19] recommends selecting a data

length of at least 3 years to effectively train artificial neural network models).

This same problem is further accentuated for the real data dataset used when

applying the different transfer learning techniques, dataset in which much less
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data is available.

A further challenge to the application of k-folds cross validation comes from

occasional meteorological changes. For example, if at a certain point the sun is

covered by temporary clouds, the photovoltaic power generation could see a tem-

porary drop. However, if this event happens during the summer, in a relatively

nice-weather week, the photovoltaic power generation in the hours and/or days

before and after the cloud event would still be significant. Similarly, the meteo-

rological features would also present specific behaviors which would be strongly

influenced by both macro-factors such as seasonality, and micro-factors such

as changing weather conditions. When the sun is covered by temporary clouds

during the summer and in a relatively nice-weather week, certain meteorological

features such as GHI and UV Index would see a significant drop, while others

such as humidity and temperature would remain more stable. The model would

therefore be able to capture these variations and locate them within a wider

trend of data behavior, thus accurately leveraging the coherence and continuity

of the data to accurately predict the photovoltaic power generation. The appli-

cation of k-folds cross validation, and of its random data sampling or random

data splitting, would break the coherence and continuity of the data, making

it impossible for the model to successfully capture such trends, and therefore

decreasing the accuracy of the photovoltaic power generation prediction.

Because of these reasons, it is clear that k-folds cross validation cannot be

applied to this investigation.

3.2.2. 1D-CNN best architecture

The 1D-CNN is a particular kind of CNN, from which it differs from the

dimension of the input and the way that the filter slides across the data. The

CNN’s filter (its ability to automatically detect important features), and its

relative low cost makes it an extremely versatile model which is used in a vari-

ety of applications. Its application however is recommended when the dataset

available for training is big enough in order to not occur in overfitting problem.

Also in this case a trial and error approach was used to identify the best
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architecture. The following hyperparameters were tested:

• number of one-dimensional convolution layers: varied between 1 and 2;

• number of units: varied between 10 and 200 (with an interval of 10 at a

time);

• filter size: varied between 50 and 200 (first with an interval of 50 at a

time, then between 150 and 200 with an interval of 10 at a time);

• kernel size: varied between 1, 2 and 3;

• activation functions: linear and hyperbolic, with and without a flatten

layer and dense layer;

• epochs: varied between 250 and 500 (with an interval of 50 at a time);

• batch size: varied between 100 and 400 (with an interval of 100 at a time).

The total number of possible combinations from this choice of ranges and

intervals for the hyperparameters would have been over 20,000. As a conse-

quence, a logical approach on how to reduce the overall combination was de-

veloped, based on our past experience working with these models and on the

results presented in literature, for example by [21] and [30]. First, the num-

ber of layers was set at 2, and the activation functions were set at hyperbolic.

Then, the kernel size was investigated at a high level, with parameters varying

between 1, 2 and 3. Values of 2 and 3 clearly outperformed, and were chosen

to continue. Then the filter size was investigated, with parameters varying be-

tween 50 and 200, with an interval of 50 at a time (50, 100, 15, 200). These

different filter sizes were applied with both 1 and 2 kernel size. The results

showed that kernel size 2 outperformed kernel size 3, and that filter sizes 150

and 200 outperformed the rest. A more capillary investigation of filter size was

then carried out, varying between 150 and 200 with an interval of 10 at a time

(150, 160, 170, 180, 190, 200), with kernel size 2. Filter size 170, with kernel

size 2, outperformed the rest. These values were used to investigate the next
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parameter, batch size which varied between 100 and 400 with an interval of 100

at a time (100, 200, 300, 400). Batch size 200 outperformed the others. The

number of epochs was then investigated, varying between 250 and 500 with an

interval of 50 at a time (250, 300, 350, 400, 450, 500). 500 epochs outperformed

the rest. Finally, the number of units was investigated, varying between 10 and

200, with an interval of 10 at a time (10, 20, 30, ..., 180, 190, 200). 100 units

appeared to be the ones with slightly better performance. Different activation

functions were then investigated (hyperbolic and linear), together with different

layers (with and without a flatten layer and dense layer). Also, the impact of a

further fully connected layer, with varying units, added at the end of network

using a hyperbolic tangent was also investigated. Furthermore, a pooling strat-

egy is also used (Max Pooling) with pool size equal to 2, with the dimension

of the output being halved as a consequence. Finally, the performance of the

model with only 1 layer was also checked. Overall, 280 different combinations

were tested.

3.2.3. LSTM best architecture

The LSTM neural network is a Recurrent Neural Network (RNN), useful for

modelling sequential data. LSTM and RNNs also contain backward connections,

meaning that at a given time t they receive the current state input xt plus its

own output at the previous time step yt-1.

Also in this case a trial and error approach was used to identify the best

architecture. The following hyperparameters were tested:

• number of layers: varied between 1, 2 and 3;

• number of units: varied between 10 and 150 (also varying between layers:

with an interval of 10 at a time, and then 1 at a time between 20 and 30);

• activation functions: linear and hyperbolic (also varying between layers);

• epochs: varied between 100 and 500 (with an interval of 100 at a time);

• batch size: varied between 100 and 400 (with an interval of 100 at a time).
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The total number of possible combinations from this choice of ranges and

intervals for the hyperparameters would have been over 1,200. As a consequence,

as for the 1D-CNN a logical approach on how to reduce the overall combination

was developed, based on our past experience working with these models and

on the results presented in literature, for example by [21] and [30]. First, the

number of layers was investigated, with parameters varying between 1, 2 and 3.

Values of 2 and 3 clearly outperformed, and were chosen to continue. Then, for

these two numbers of layers, the batch size was investigated, varying between

100 and 400 with an interval of 100 at a time (100, 200, 300, 400). Batch

size 200, with 3 layers, outperformed the others. The number of epochs was

then investigated, varying between 250 and 500 with an interval of 50 at a time

(250, 300, 350, 400, 450, 500). 500 epochs outperformed the rest. Finally,

the number of units was investigated, varying between 10 and 150, with an

interval of 10 at a time (10, 20, 30, ..., 130, 140, 150). 100 units appeared to be

the ones with slightly better performance. Different activation functions were

then investigated (hyperbolic and linear), and different tests were performed

to see if changing some of these parameters within layers further influenced the

performance. It was noticed that changes to the third layer had greatest impact.

Overall, 130 different combinations were tested.

3.3. Transfer learning

The final section of the methodology presented in Figure 2 aims to evaluate

the effectiveness of TL in supporting PV power generation forecast. Different

TL techniques are used to tune the ANN models with the remaining portion

of the real, but limited, dataset of PV power generation, investigating their

effectiveness to improve the prediction performance of PV power generation

always against the same real data. As explained in Section 2, the data used

for TL is now only the real, limited, dataset: years 2018 and 2019 (70,080 data

points) are used for training (tuning), and year 2020 (35,136 data points) is

used for testing.

Following the methodologies identified in the state of the art, TL can be
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applied through three main approaches:

• Retrain only the first layer

• Retrain only the second layer

• Retrain all the layers

As discussed in [36], and in [37], the different TL retraining approaches

impact mainly accuracy and computation time. If all the layers of the model

are retrained (no layers are frozen), the accuracy of the trained model will be

greater, but will also require greater computation time. On the other hand, if

only the first or the second layer are retrained (all layers but one are frozen), the

model required backpropagating and updating the weights only of the unfrozen

layer, which brings a significant decrease in computation time. The different

solutions are therefore investigated.

For the purpose of this investigation, the performance of the different TL

approaches was evaluated by considering only their accuracy (through the MAD,

MAPE, RMSD and R2 indexes). The computational time required for the three

different TL approaches to complete the fine tuning of the neural networks was

very similar, and in the order of minutes. The computational time required to

train the original neural networks, on the other hand, was slightly longer, but

still less than an hour, and once again similar for the two different models. Since

the computational time required to train and fine tune the models was similar,

it was not taken into consideration when evaluating their performance.

4. Results

In this section we report and discuss, for each ANN: the testing prediction

performance of the most effective architectures in PV generation forecasting af-

ter their training with the artificial, but accurate and realistic, dataset of PV

power generation created by the PV power generation simulator presented by

[26]; the prediction performance of the same ANN models on a portion of real,
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but limited, dataset of the real power generated by the real PV installation

on which the simulator is modeled, to evaluate their prediction performance

against real data; and the effectiveness of different TL techniques to tune the

ANN models with the remaining portion of the real, but limited, dataset of PV

power generation, to improve the prediction performance of PV power genera-

tion always against the same real data.

For 1D-CNN, after training and testing the model with the artificial, but

accurate and realistic, dataset of PV power generation created by the PV power

generation simulator presented by [26], the best identified architecture consists

of two 1-dimensional convolution layers with filter size equal to 170, kernel size

equal to 2, a hyperbolic tangent as activation function, followed by a flatten and

dense layer. Finally, a fully connected layer with 100 units is added at the end of

the network, using a hyperbolic tangent. The output layer of the 1D-CNN was

made up of 16 outputs, the number of epochs equals to 500 and the batch size is

equal 200. Figures 11, 12, 13 and 14 present the performance in terms of MAD,

MAPE, RMSD and R2 for the most effective 1D-CNN architectures. One can

see that the variation between the different types of 1D-CNN architectures is

limited, and all three indicators improve for the first four steps (up to 1 hour),

and then their performance deteriorates and appears to level out after 24 steps

(6 hours). The overall 1D-CNN performances are lower than the ones of the

LSTM, both in terms of reduced variation and absolute value. The R2, however,

has similar values for both ANNs: at the 4th step (1 hour) it is approximately

0.98; at the 8th step (2 hours) it is approximately 0.88; and at the 12th step (3

hours) it is approximately 0.85.
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Figure 11: Best 1D-CNN architecture MAD

Figure 12: Best 1D-CNN architecture MAPE

Figure 13: Best 1D-CNN architecture RMSD
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Figure 14: Best 1D-CNN architecture R2

For LSTM, after training and testing the model with the artificial, but ac-

curate and realistic, dataset of PV power generation created by the PV power

generation simulator presented by [26], the best identified architecture consists

of three recurrent layers, where the first two are composed by 100 units, with a

hyperbolic activation function, and a third layer composed of 24 units that have

a tanh activation function, and the output layer composed by 100 units with a

linear activation function. Figures 15, 16, 17 and 18 present the performance

in terms of MAD, MAPE, RMSD and R2 for the most effective LSTM archi-

tectures. One can see that the variation between the different types of LSTM

architectures is limited, and all three indicators improve for the first four steps

(up to 1 hour), and then their performance deteriorates and appears to level

out after 24 steps (6 hours). The overall LSTM performances are overall better

than the 1D-CNN ones. The RMSD, for example, at the 4th step (1 hour) is

approximately between 21 and 23 for 1D-CNN, and 20 for LSTM; at the 8th

step (2 hours) it is approximately 53 for 1D-CNN, 54 for LSTM; at the 12th

step (3 hours) it is approximately 60 for both ANNs.
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Figure 15: Best LSTM architecture MAD

Figure 16: Best LSTM architecture MAPE

Figure 17: Best LSTM architecture RMSD
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Figure 18: Best LSTM architecture R2

Table 4 compares the prediction performance of the testing phase for the

best of each of these ANNs (in terms of MAD, MAPE, RMSD and R2), for

different prediction horizons.

Pred. horizon
MAD MAPE RMSD R2

1D-CNN LSTM 1D-CNN LSTM 1D-CNN LSTM 1D-CNN LSTM

15 min 19.27 19.63 25.37 24.43 35.70 35.38 0.95 0.95

30 min 17.87 17.95 28.12 25.12 35.08 34.69 0.95 0.95

45 min 12.87 12.80 23.72 19.76 20.94 20.42 0.98 0.98

60 min 19.26 18.86 29.15 27.43 38.03 37.69 0.94 0.94

75 min 24.96 23.41 38.64 36.62 46.95 46.71 0.91 0.91

90 min 24.89 24.30 44.32 39.43 50.28 50.01 0.89 0.89

105 min 27.22 26.10 52.86 43.89 53.73 52.92 0.88 0.88

120 min 28.33 27.61 54.57 47.68 55.61 54.78 0.87 0.87

Table 4: MAD, MAPE, RMSD and R2 comparison for the best ANN architectures

As far as MAD is concerned, one can see that the comparative performance

between the different ANNs varies depending on the prediction horizon. In the

first 30 minutes, 1D-CNN performance is slightly better than LSTM. From 15

to 45 minutes, performance of both LSTM and 1D-CNN actually improves, at

45 minutes they both perform at their best and LSTM start to slightly outper-
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form 1D-CNN. From 60 minutes on, the performance of both networks worsens,

but without major differences between them. For the MAPE results, the LSTM

performance is always better than that of the 1D-CNN. For both models the

MAPE also improves from 15 to 45 minutes, although with a countertrend

at 30 minutes. Then from 60 minutes on, the performance of both networks

worsens, with LSTM slightly outperforming 1D-CNN. For the RMSD results,

LSTM performance is systematically slightly better than the 1D-CNN one and

1D-CNN networks. Again, from 15 to 45 minutes, performance of both LSTM

and 1D-CNN actually improves, reaches its best at 45 minutes, and then dete-

riorates again from 60 minutes on. Finally, the R2 results, show a much more

homogeneous worsen in performance for both ANNs, with LSTM systematically

overperforming the other, but by a matter of decimals. Again, from 15 to 45

minutes, performance of both LSTM and 1D-CNN actually improves, reaches

its best at 45 minutes, and then deteriorates again from 60 minutes on.

The results clearly show that the best prediction performance is obtain with

the LSTM model. The 1D-CNN also gives good prediction performance, and

1D-CNN also has better MAD values at the beginning with respect LSTM

model, but the LSTM model generally outperforms the 1D-CNN one in most

forecasting horizons for MAD, MAPE, RMSD, and R2.

As explained in Section 3.2, and following the methodology presented in Fig-

ure 2, the resulting ANN models, trained and tested on the simulated dataset,

are then exploited on a portion of real, but limited, dataset of the real power

generated by the real PV installation on which the simulator is modeled, to

evaluate their prediction performance against real data. The previously pre-

sented best architectures for the ANN models are exploited on the inference set

from the real dataset. Table 5 presents the prediction performance results on

the real dataset for the 1D-CNN model, while Table 6 presents the results for

the LSTM model. Results clearly show how the performance of both models

deteriorate once they are exploited on a real dataset. The MAD, for example,

deteriorates between 40% and 47% for 1D-CNN, and between 42% and 46% for

LSTM. The MAPE also deteriorates, between 49% and 70% for 1D-CNN, and
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between 58% and 65% for LSTM. The RMSD deteriorates significantly, between

70% and 83% for 1D-CNN, and between 74% and 85% for LSTM. Finally, the

R2 deteriorates between 15% and 20% for 1D-CNN, and between 16% and 21%

for LSTM but, most importantly, it immediately deteriorates below 0.8.

Pred. horizon
MAD MAPE RMSD R2

testing exploitation testing exploitation testing exploitation testing exploitation

15 min 19.27 27.36 25.37 37.67 35.70 62.48 0.95 0.80

30 min 17.87 25.02 28.12 46.40 35.08 59.64 0.95 0.81

45 min 12.87 18.28 23.72 40.32 20.94 37.27 0.98 0.78

60 min 19.26 27.16 29.15 48.24 38.03 67.69 0.94 0.78

75 min 24.96 35.44 38.64 64.92 46.95 83.57 0.91 0.78

90 min 24.89 36.09 44.32 75.12 50.28 90.50 0.89 0.77

105 min 27.22 40.01 52.86 89.33 53.73 98.33 0.88 0.76

120 min 28.33 41.65 54.57 91.13 55.61 101.77 0.87 0.75

Table 5: 1D-CNN MAD, MAPE, RMSD, and R2 comparison between testing and exploitation

prediction performance

Pred. horizon
MAD MAPE RMSD R2

testing exploitation testing exploitation testing exploitation testing exploitation

15 min 19.63 28.07 24.43 40.19 35.38 62.27 0.95 0.79

30 min 17.95 25.49 25.12 40.44 34.69 60.36 0.95 0.80

45 min 12.80 18.18 19.76 31.22 20.42 36.76 0.98 0.77

60 min 18.86 26.97 27.43 43.89 37.69 68.22 0.94 0.76

75 min 23.41 33.48 36.62 57.86 46.71 84.55 0.91 0.76

90 min 24.30 34.75 39.43 65.26 50.01 91.02 0.89 0.75

105 min 26.10 37.58 43.89 71.76 52.92 96.84 0.88 0.74

120 min 27.61 40.31 47.68 75.57 54.78 101.34 0.87 0.73

Table 6: LSTM MAD, MAPE, RMSD and R2 comparison between testing and exploitation

prediction performance
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As explained in Section 3.2, and following the methodology presented in

Figure 2, different TL techniques are then used to tune the ANN models with

the remaining portion of the real, but limited, dataset of PV power generation,

investigating their effectiveness to improve the prediction performance of PV

power generation always against the same real data. The tuning set of the real

dataset is therefore used to re-train the ANN models with the TL methodology,

while the inference set of the real dataset is used for testing, and comparing the

prediction performance on real data of TL to that of the exploited models.

As presented in Section 3.3, different TL techniques are used: one where

only the first layer is retrained, one where only the last layer is retrained, and

one where all layers are retrained. For each ANN, the prediction performance

of the original models presented in the exploitation phase, without TL, and the

prediction performance of the three different TL techniques, is presented in the

following figures. For the 1D-CNN, Figures 19, 20, 21 and 22 present the MAD,

MAPE, RMSD and R2 performance of the different TL techniques. Figures 23,

24, 25 and 26, on the other hand, present the MAD, MAPE, RMSD and R2

performance of the different TL techniques applied to the LSTM.

For 1D-CNN, the best performance is obtained with the second TL model

(where only the second layer is retrained) which, however, delivers only marginal

performance improvement: up to 30 minutes for MAD and RMSD, and up to

75 minutes for R2, while for MAPE this TL model outperforms for up to 2h and

then converges. For LSTM on the other hand, it is the third TL model (where

all layers are retrained), which outperforms the others, and which is able to

deliver significant performance improvement: up to 90 minutes for MAD and

RMSD, up to 120 minutes for R2, while for MAPE it underperforms for the first

30 minutes and remains more performing for up to 2h.
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Figure 19: 1D-CNN MAD comparison with TL

Figure 20: 1D-CNN MAPE comparison with TL

Figure 21: 1D-CNN RMSD comparison with TL
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Figure 22: 1D-CNN R2 comparison with TL

Figure 23: LSTM MAD comparison with TL

Figure 24: LSTM MAPE comparison with TL
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Figure 25: LSTM RMSD comparison with TL

Figure 26: LSTM R2 comparison with TL

The performance of the 1D-CNN model presented in the test, exploitation

and best TL phases, are compared in Table 7. Similarly, for LSTM the achieved

results are presented by Table 8.
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Pred. horizon
MAD MAPE

testing exploitation TL testing exploitation TL

15 min 19.27 27.36 24.09 25.37 37.67 39.75

30 min 17.87 25.02 24.12 28.12 46.40 41.32

45 min 12.87 18.28 18.79 23.72 40.32 41.58

60 min 19.26 27.16 28.12 29.15 48.24 46.61

75 min 24.96 35.44 37.19 38.64 64.92 49.83

90 min 24.89 36.09 38.58 44.32 75.12 51.13

105 min 27.22 40.01 42.19 52.86 89.33 53.21

120 min 28.33 41.65 43.06 54.57 91.13 56.83

Pred. horizon
RMSD R2

testing exploitation TL testing exploitation TL

15 min 35.70 62.48 51.77 0.95 0.80 0.98

30 min 35.08 59.64 57.88 0.95 0.81 0.88

45 min 20.94 37.27 38.74 0.98 0.78 0.81

60 min 38.03 67.69 69.98 0.94 0.78 0.82

75 min 46.95 83.57 86.86 0.91 0.78 0.78

90 min 50.28 90.50 95.53 0.89 0.77 0.76

105 min 53.73 98.33 104.77 0.88 0.76 0.72

120 min 55.61 101.77 108.44 0.87 0.75 0.68

Table 7: 1D-CNN MAD, MAPE, RMSD and R2 comparison between testing, exploitation

and best TL prediction performance

50



Pred. horizon
MAD MAPE

testing exploitation TL testing exploitation TL

15 min 19.63 28.07 23.75 24.43 40.19 24.32

30 min 17.95 25.49 22.98 25.12 40.00 29.91

45 min 12.80 18.18 17.54 19.76 31.22 33.47

60 min 18.86 26.97 25.84 27.43 43.89 35.12

75 min 23.41 33.48 32.54 36.62 57.86 38.22

90 min 24.30 34.75 34.51 39.43 65.26 37.84

105 min 26.10 37.58 37.58 43.89 71.76 39.73

120 min 27.61 40.31 40.03 47.68 75.57 42.12

Pred. horizon
RMSD R2

testing exploitation TL testing exploitation TL

15 min 35.38 62.27 50.95 0.95 0.79 0.95

30 min 34.69 60.36 56.20 0.95 0.80 0.91

45 min 20.42 36.76 35.94 0.98 0.77 0.85

60 min 37.69 68.22 66.33 0.94 0.76 0.85

75 min 46.71 84.55 83.14 0.91 0.76 0.84

90 min 50.01 91.02 90.52 0.89 0.75 0.83

105 min 52.92 96.84 97.37 0.88 0.74 0.82

120 min 54.78 101.34 101.34 0.87 0.73 0.81

Table 8: LSTM MAD, MAPE, RMSD R2 comparison between testing, exploitation and best

TL prediction performance

The difference in variation of performance of the 1D-CNN and LSTM mod-

els from exploitation to TL are summarized in Table 9. A positive variation

indicates an improvement in the application of TL, while negative variation

indicates a worse performance of TL.

When applying TL to the 1D-CNN, at the first 15 minutes forecast the

MAD improves by 12.0%, RMSD by 17.1% and R2 by 21.9%, while the MAPE

is slightly worst by 5.5%. At the 30 minutes forecast, the MAD improvement

decreases to 3.6%, RMSD to 2.9% and R2 to 9.1%, while the MAPE improves

51



to 10.9%. After 30 minutes however, the MAD and RMSD show a worsening in

performance, while the R2 continues to remain better until 75 minutes. After 90

minutes, all three indicators underperform with TL. The MAPE instead slightly

underperforms again at 45 minutes to -3.1%, but then improves continuously

until 105 minutes, and at 2h its improvements appears to start decreasing.

For the LSTM on the other hand, TL appears to be even more effective. For

the 15 minutes forecast the MAD improves by 15.4% , MAPE by 39.5%, RMSD

by 18.2% and R2 by 20.6%. For the 30 minutes forecast the MAD remains

at 9.9%, MAPE by 26.5%, RMSD at 6.9% and R2 at 14.1%. At 45 minutes,

MAPE slightly worsens to -7.2%, but then improves again immediately, and

performance remains better for all indicators until 90 minutes. After 90 min-

utes, the MAD and RMSD appear to converge, with differences in performance

between exploitation and TL levelling out around 0. R2 with TL, on the other

hand, continues to overperfom up to 2 hours, with stable values of around 10%

better than without TL. Similarly, also MAPE continues to overperfom up to

2 hours, with performance actually improving up to 44% better than without

TL.

Pred. horizon
1D-CNN variation LSTM variation

MAD[%] MAPE[%] RMSD[%] R2[%] MAD[%] MAD[%] RMSD[%] R2[%]

15 min 12.0 -5.5 17.1 21.9 15.4 39.5 18.2 20.6

30 min 3.6 10.9 2.9 9.1 9.9 26.5 6.9 14.1

45 min -2.8 -3.1 -3.9 3.3 3.5 -7.2 2.2 10.1

60 min -3.5 3.4 -3.4 4.9 4.2 20.0 2.8 12.1

75 min -4.9 23.2 -3.9 0.0 2.8 33.9 1.7 10.4

90 min -6.9 31.9 -5.6 -1.7 0.7 42.0 0.5 10.7

105 min -5.4 40.4 -6.6 -5.2 0.0 44.6 -0.5 11.0

120 min -3.4 37.6 -6.6 -8.9 0.7 44.3 0.0 11.3

Table 9: Variation in performance variation from exploitation to TL for 1D-CNN and LSTM

The above results therefore clearly show that TL brings limited improvement
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to the 1D-CNN, but consistent improvement to LSTM, which remains the best

performing ANN even after TL.

5. Conclusion

The purpose of this investigation is to present an innovative methodology for

PV power generation forecasting with ANNs, when only a limited amount of real

data is available. The novelty of this investigation lies in the exploitation of a

PV power generation simulator, which accurately models a real PV installation,

to create an artificial, but accurate and realistic, dataset of PV power generation

large enough to effectively train and test different ANN models, which are then

exploited on a portion of real, but limited, dataset of the real power generated

by the real PV installation on which the simulator is modeled, to evaluate

their prediction performance against real data. Further novelty is brought by

the application of different TL techniques to tune the ANN models with the

remaining portion of the real, but limited, dataset of PV power generation,

investigating their effectiveness to improve the prediction performance of PV

power generation always against the same real data.

A variety of features obtained from different meteorological data are first an-

alyzed through feature selection methodologies in order to identify those which

most impact the accuracy of data prediction forecast. The variables which

most impact power prediction are found to be GHI, humidity, temperature,

dew point, UV index, sunshine duration and time of the day. The PV power

generation simulator presented by [26], which is accurately modeled to replicate

real PV installations, is then used to create an artificial, but accurate and real-

istic, dataset of PV power generation large enough to effectively train and test

different ANNs. This artificial, but accurate and realistic dataset, together with

the meteorological features previously selected, is used for the initial training

and testing of the two different ANNs: 1D-CNN and LSTM.

The resulting ANN models, trained and tested on the simulated dataset, are

then exploited on a portion of real, but limited, dataset of the real power gener-
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ated by the real PV installation on which the simulator is modeled, to evaluate

their prediction performance against real data. Finally, different TL techniques

are used to tune the ANN models with the remaining portion of the real, but

limited, dataset of PV power generation, investigating their effectiveness to im-

prove the prediction performance of PV power generation always against the

same real data. The methodology has been tested and validated on a real-life

PV installation located on the rooftop of a building of our university campus in

Turin, Italy.

For LSTM, the best identified architecture consists of three recurrent layers,

where the first two are composed by 100 units, with a hyperbolic activation

function, and a third layer composed of 24 units that have a tanh activation

function, and the output layer composed by 100 units with a linear activation

function. Furthermore, TL applied to this LSTM architecture allows improve-

ment in performance, especially when applying the third TL model, where all

layers are retrained. The improvement is significant in the short-term (up to 30

minutes), and slight up to 120 minutes.

For 1D-CNN, the best identified architecture consists of two 1-dimensional

convolution layer with filter size equal to 170, kernel size equal to 2, a hyperbolic

tangent as activation function, followed by a flatten and dense layer. Finally, a

fully connected layer with 100 units is added at the end of the network, using a

hyperbolic tangent. The output layer was made up of 16 outputs, the number

of epochs equals to 500 and the batch size is equal 200. TL applied to this 1D-

CNN architecture allows some improvement in performance, when applying the

second TL model, where only the second layer is retrained. This improvement

though is only slight, and only in the short-term (up to 30 minutes).

Results therefore show how 1D-CNN and LSTM ANNs can successfully be

used for PV power generation predictions even if trained on simulated datasets.

Furthermore, the application of TL techniques has proved useful to improve the

performance of PV power forecasting, both in the short-term (15-30 minutes,

for 1D-CNN) and in the mid-term (up 2 hours, for LSTM). These conclusions

open some interesting reflections on the advantages and disadvantages coming
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from the proposed methodology.

An advantage provided by this investigation is the understanding that a PV

power generation simulator, which accurately models a real PV installation,

can be trusted to create an artificial, but accurate and realistic, dataset of

PV power generation large enough to effectively train and test different ANN

models, and that these models can then be exploited on a more limited, but

real dataset of the real power generated by the real PV installation on which

the simulator is modeled, to predict with acceptable accuracy the PV power

generation of the PV installation. This is a very interesting advantage, since

it allows to overcome the difficulty of obtaining large, reliable datasets of real

data, which is required to train ANN models to an acceptable level of accuracy.

Another minor advantage of this investigation is the understand that 1D-CNN

and, especially, LSTM are two ANN models which can successfully be used for

PV power generation predictions even if trained on simulated datasets. This

advantage allows future works and applications to focus on ANN models which

have been proved to perform positively, and also provide some insight on what

parameters are successful with these models, thus reducing any time which

would otherwise be dedicated to trial and error activities trying to find the

most suitable models and their parameters. A further advantage provided by

this investigation is the understanding that the application of TL techniques on

these 1D-CNN and LSTM models can be useful to improve the performance of

PV power forecasting, both in the short-term (15-30 minutes, for 1D-CNN) and

in the mid-term (up 2 hours, for LSTM), also with limited real data available.

This advantage is quite important for two reasons: first of all, it can avoid future

applications from going through the lengthy process of training new ANNs from

scratch, thus saving potentially months of activity. Furthermore, in case future

applications wish to apply ANNs for PV power forecasting of a specific PV

installation, but do not have a large, reliable dataset of real data, which is

required to train ANN models to an acceptable level of accuracy, if they have

an ANN already trained on another PV installation, they can consider applying

TL techniques on the existing ANN, and potentially receive good performance
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both in the short-term (15-30 minutes) and in the mid-term (up 2 hours). This

last advantage, however, is laid with uncertainty.

On the other hand, some disadvantages provided by this investigation is the

understanding that the whole methodology was successful but that it relied on

the exploitation of a PV power generation simulator, which accurately models a

real PV installation. If such an accurate simulator is unavailable, it is unknown

if similar positive results are still achievable. If, for example, future applications

wish to leverage this methodology to adapt an ANN already trained on another,

different, PV installation, TL could be successful but there is no actual data

supporting this possibility. However, this uncertainty will be the subject of

future works and investigations.
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