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A B S T R A C T

Artificial Neural Networks (ANNs) can successfully be integrated into smart models for energy prediction,
but require large datasets for training. This investigation presents an innovative methodology for photovoltaic
power generation forecasting with ANNs, when only a limited amount of real data is available, and has been
tested and validated on a real-life photovoltaic installation. Feature selection identifies which meteorological
features most impact photovoltaic power generation. A simulator, which accurately models a real photovoltaic
installation, is used to create an artificial, but accurate and realistic, dataset of power generation large enough
to effectively train and test different ANNs. These are then exploited on a portion of real, but limited, dataset
of power generated by the real photovoltaic installation on which the simulator is modeled. Finally, different
transfer learning techniques are used to tune the ANN models with the remaining portion of the real, but
limited, dataset of photovoltaic power generation.
1. Introduction

As highlighted by the International Energy Agency (IEA), in its 2022
World Energy Outlook Report [1], with the world in the midst of a
global energy crisis, and faced with energy shortfalls and high prices,
governments have rushed to try and secure alternative energy sources
and supplies, and accelerating the flow of new renewables projects.
Within this context, electricity accounts for about 20% of the world’s
total final consumption of energy, but its share of energy services
is higher. Investments in clean electricity and electrification, along
with expanded and modernized grids, offer clear and cost-effective
opportunities to cut emissions more rapidly while bringing electricity
costs down from their current highs. In the most affected regions
of this energy crisis, for example, higher shares of renewables were
correlated with lower electricity prices, and more efficient homes and
electrified heat have provided an important buffer for some – but far
from enough – consumers. Today’s growth rates for deployment of solar
photovoltaic (PV) and wind, if maintained, would lead to a much faster
transformation than projected in the Stated Policies Scenarios (STEPS),
although this would require supportive policies not just in the leading
markets for these technologies but across the world. Supply chains for
some key technologies – including solar PV – are expanding at rates
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that support higher global ambition. If all announced manufacturing ex-
pansion plans for solar PV see the light of day, manufacturing capacity
would exceed the deployment levels in the Announced Pledges Scenario
(APS) in 2030 by around 75% and approach the levels required in
the Net Zero Emissions (NZE) Scenario. These clean energy supply
chains are a huge source of employment growth, with clean energy jobs
already exceeding those in fossil fuels worldwide and projected to grow
from around 33 million today to almost 55 million in 2030 in the APS.
Finally, it is interesting to underline how the World Energy Outlook
Report also highlighted that demand-side measures have generally
received less attention, but greater efficiency is an essential part of the
short- and longer-term response.

Within this framework, it is clear how the role of renewable energy
sources such as PV energy is becoming increasingly important. PV en-
ergy can be classified in the variable renewable energy (VRE) sources,
due to its fluctuating power output based on solar power. The variable
nature of PV power poses a challenge towards its use as a reliable
energy source in power grids, whose stability strongly depends on the
balance between generation and consumption of energy. According
to the IEA, a power system is flexible, if it can, within economic
boundaries, respond quickly to high fluctuations in supply and demand,
vailable online 30 October 2023
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Acronyms

1D-CNN 1 Dimensional Convolutional Neural Net-
work

ADAM Adaptive Moment Estimation
ANN Artificial Neural Network
ANNs Artificial Neural Networks
APS Announced Pledges Scenario
BiLSTM Bidirectional LSTM
C-LSTM Constrained LSTM
CLSTM Contextual LSTM
CNN Convolution Neural Network
GHI global horizontal irradiance
GRU Gated Recurrent Unit
IEA International Energy Agency
LASSO Least Absolute Shrinkage and Selection

Operator
LSTM Long Short-Term Memory
MAD Mean Absolute Difference
MAPE Mean Absolute Percentage Error
MI mutual information
MSE Mean Squared Error
NAR Non-linear AutoRegressive
NZE Net Zero Emissions
PV photovoltaic
R2 Coefficient of Determination
RMSD Root Mean Square Difference
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SBS Sequential Backward Selection
SFS Sequential Forward Selection
STEPS Stated Policies Scenarios
TL Transfer Learning
TW Time Window
UV ultraviolet
VRE variable renewable energy

ramping down a generation when demand decreases, and upwards
when it increases for scheduled and unpredictable events [2]. However,
the flexibility of power systems has become a concept that needs to be
redefined, due to the increasing penetration levels of power generation
from variable and hardly predictable sources such as wind and solar
energy, which generate uncertainty on the supply side [3].

These difficulties however can be overcome with the support of
technological innovations such as smart grids, which allow to improve
management and stability of existing power grids by integrating them
with modern distributed computing facilities and communication net-
works [4]. Within the smart grid framework, innovative applications
can be implemented in order to better coordinate power demand and
supply, for example real time forecasting or demand response [5],
which can adapt the power consumption in order to align power de-
mand with supply. For such applications to work effectively though, the
ability to effectively forecast both power demand and supply with dif-
ferent forecast horizon has become increasingly important. Within this
framework, specific attention can be given to the effective forecasting
of PV power generation [6].

According to [7,8] and [9], artificial intelligence techniques have
become an excellent tool for wind generation and PV generation fore-
casting. [10] discuss how forecasting based on Artificial Neural Net-
work (ANN), which have been used in a variety of fields since [11] first
2

published his comprehensive book of many neural network techniques
from an engineering perspective, is one of the most effective methods
for PV generation forecasting. However, [10] also highlight some main
drawbacks of ANNs such as the fact that they require a large amount
of data for the training process, a random initial dataset that may
reduce the reliability of the forecasted results, and the challenge and
time required for accurate development of the model architecture.
Nonetheless, different ANN solutions have been investigated for long-,
medium- and short-term PV generation forecasting.

For long-term prediction horizons, [12] used different ways to
forecast PV power from 0 h to 48 h ahead, based on spatial clustering
of the PV fleet and an ensemble of multilayer perceptron using satel-
lite and numerical weather prediction data. For mid-term prediction
horizons, [13] and [14] investigate different approaches for forecast-
ing of PV power generation up to 24 h ahead, each using different
ANNs and meteorological inputs, with results showing how the latter
increase the prediction performance. [15] also investigate forecasting
PV power generation up to 24 h ahead, using PV simulation software
to generate the data inputs to their model, with results showing how
their generalized model could effectively forecast PV power generation
in both normal (clear-sky) and abnormal days (cloudy or rainy days),
and also in various seasons and different abnormal weather conditions.
For shorter prediction horizons, [16] investigate one step and multi
step ahead PV power generation forecasting for 1 min, 5 min, 30 min
and 60 min, by using Long Short-Term Memory (LSTM), Bidirectional
LSTM (BiLSTM), Gated Recurrent Unit (GRU), Bidirectional GRU, Con-
volution Neural Network (CNN), and hybrid architecture. Different
model architectures are tested and their performance compared to that
of a Non-linear AutoRegressive (NAR) neural network and a Elman
recurrent neural network. Results show that the best performance is
obtained with LSTM and GRU based models, with LSTM presenting the
best accuracy and simplicity of implementation.

After the main LSTM paper was published in the journal Neural
Computation in 1997 [17], this ANN has been used successfully in a
variety of fields, and after it started showing interesting performance
when applied to PV power generation forecasting, different authors in-
vestigated its performance in this field. [18] experiment with different
LSTM model parameters (number of hidden nodes, activation function,
number of input variables), and also by changing the division of the
dataset, with their results showing good performance in forecasting the
daily PV power generation, while again also highlighting how increas-
ing the number of input variables does not produce better results. [19],
propose three different models for PV power forecast: CNN, LSTM and
Contextual LSTM (CLSTM). Their results shows that all of the models
have a positive performance, with CLSTM outperforming the others
in terms of accuracy while GRU presents the shortest training time.
Finally, [20] also present an investigation leveraging neural networks
for PV power prediction, including GRU, which provides the best
prediction accuracy.

[21] instead investigate PV power forecasting using the global
horizontal irradiance (GHI) measured by sensors and GHI in clear sky
condition. The authors evaluate the effectiveness of exogeneous inputs
together with different machine learning models (Feedforward, Echo
State, 1D-Convolutional, Long Short-Term Memory neural networks
and Random Forest) for short term solar radiation forecasting. The
investigation’s results show that best model is GRU, and that exogenous
inputs significantly improve the forecasting performance for prediction
horizons greater than 15 min, while for very short prediction horizons
(i.e. 15 min) the improvements are negligible.

Regardless the range of prediction, one of the main challenges posed
techniques belonging to the field of machine learning and artificial
intelligence, particularly those related to ANNs, is that they require
significant amounts of data in order to be trained effectively and
produce acceptably accurate results. [19], for example, in their work
with CNN, GRU and CLSTM, recommend to select a data length of at
least 3 years.
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In recent years, Transfer Learning (TL) has been increasingly in-
vestigated as a possible solution to overcome the challenge posed by
lack of large and reliable enough data in a variety of fields. After [22]
published the first paper addressing Transfer Learning (TL) in neural
network training, this methodology has been investigated and applied
in a variety of fields. Its application has also been investigated in
PV power forecasting but, to the best of our knowledge, research
availability on such topic is still scarce.

[23], for example, propose a method to transfer the knowledge
obtained with historical solar irradiance data to the PV power output
prediction, using an GRU model which is first trained using historical
solar irradiance data, and then fine-tuned with the PV output data.
The author use 6 months of historical solar irradiance data and 45
days of historical output data, with a sampling interval of 10 min. The
results show that although the amount of training data is insufficient
to generate accurate results, TL does improve the performance of the
prediction, with Mean Absolute Percentage Error (MAPE) improving
an average of 23% and Root Mean Square Error (RMSE) improving an
average of 10%, for predictions up to 40 min ahead.

In another investigation, [24] focus on newly-constructed PV plants
and on their challenge to effectively execute hourly day-ahead PV
power generation, by applying a Constrained LSTM (C-LSTM) model
together with two parameter-transferring strategies, thus combining
TL and deep learning models. The results show how standard GRU
models are outperformed by C-LSTM models in terms of forecasting
accuracy, and also how variability and accuracy issues due to different
sky conditions can be improved by the application of the proposed
combination of C-LSTM and TL strategies.

[25] also developed a model based on TL to predict PV power
generation, with their experimental results showing how traditional
learning methods are outperformed by the proposed TL model. The
model they developed leverages the variation of solar altitude angles
in a year to identify the season, combine it with the meteorological
factors hidden in the data collected from a PV system, and use it as
input for online learning models based on both traditional learning and
TL approaches to predict power generation.

Within this framework, the purpose of this investigation is there-
fore to present an innovative methodology for PV power generation
forecasting with ANNs, when only a limited amount of real data is
available. Feature selection is first used to investigate different mete-
orological features, such as GHI, humidity, air temperature, and so on,
in order to identify those which most impact the accuracy of data pre-
diction forecast. The PV power generation simulator presented by [26],
which is accurately modeled to replicate real PV installations, is then
used. As a case study, we selected a PV system installed in the rooftops
of some buildings in our University campus, located in Turin, north
west of Italy. Thus, the PV power generation simulator has been applied
to these rooftops to create an artificial, but accurate and realistic,
dataset of PV power generation large enough to effectively train and
test different ANNs. Moreover, for these real world PV system, we also
collected measurements of real power generated, as a second dataset. It
is worth noting that real and simulated PV installations are coincident.
In the proposed methodology, the simulated dataset, together with
the meteorological features previously selected, is used for the initial
training and testing of the ANNs. The resulting ANN models, trained
and tested on the simulated dataset, are then exploited on a portion
of the real dataset to evaluate their prediction performance against
real data. Finally, different TL techniques are used to tune the ANN
models with the remaining portion of the real dataset investigating
their effectiveness to improve the prediction performance of PV power
generation always against the same real data. As already mentioned,
the whole methodology has been tested and validated on a real-life PV
installation in our university campus.

The novelty of this investigation lies in the exploitation of a PV
power generation simulator, which accurately models a real PV instal-
3

lation, to create an artificial, but accurate and realistic, dataset of PV 2
Table 1
Technical specifications of the PV system.

Installation year 2016
Size 631 kWp
# of PV cells 96
Power PV cells 3406 Wp
Brand PV cells BEN-Q
# of PV modules 1836
BRAND PV modules BENQ SOLAR
MODEL PV modules SunForte PM096B00
Modules’ technology MONO-CRISTALLINO
Modules’ nominal power 327 W
Modules’ surface area 1.63 m2

# of inverters 8 19
Max power inverters 20 kW 25 kW
Brand inverters SMA
Modelinverters Sunny tripower

power generation large enough to effectively train and test different
ANN models, which are then exploited on a portion of real, but limited,
dataset of the real power generated by the real PV installation on which
the simulator is modeled, to evaluate their prediction performance
against real data. Further novelty is brought by the application of
different TL techniques to tune the ANN models with the remaining
portion of the real, but limited, dataset of PV power generation, in-
vestigating their effectiveness to improve the prediction performance
of PV power generation always against the same real data. The ANNs
used in this investigation are: GRU, which is a well-established ANNs
in PV power generation forecasting; and 1 Dimensional Convolutional
Neural Network (1D-CNN), which is a variation of CNN, which have
occasionally been used in PV power generation forecasting.

The results of the investigation conclude that after the feature
selection process, the variables which most impact power prediction are
global horizontal irradiance, humidity, temperature, dew point, ultra-
violet index, sunshine duration and time of the day; the best prediction
performance, up to 4 h, is given by GRU neural networks; the TL tech-
niques can successfully improve short-term forecasting performance up
to 2 h.

The rest of this manuscript is organized as follows. Section 2 in-
troduces the case study. Section 3 presents the proposed methodology.
Section 4 discusses our experimental results. Finally, Section 5 provides
our concluding remarks.

2. Case study

The methodology presented in this work, aiming to forecast PV
power generation with ANNs, when only a limited amount of real data
is available, tested and validated on a real-life PV installation located
on the rooftop of a building of our university campus in Turin, Italy, as
shown in Fig. 1.

The PV installation has a total surface area of almost 3000 m2, and
he characteristics described in Table 1.

The PV power production of this installation is measured through
pecific sensors, with data collection occurring every 15 min. Data
ollected through these sensors covers years 2018 to 2020, for a total
f 105,216 data points.

The PV power generation simulator presented by [26], which ac-
urately replicates the real PV installation located on the roof of our
niversity campus in Turin, Italy, is then used to create an artificial,
ut accurate and realistic, dataset of PV power generation large enough
o effectively train and test different ANNs. This artificial, but accurate
nd realistic dataset, together with the meteorological features previ-
usly selected, is used for the initial training and testing of the ANNs.
he simulated dataset also presents PV power production every 15 min.
he simulator was used to generate an artificial dataset covering years
010 to 2015, for a total of 210,336 data points.
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Fig. 1. University campus location in Turin, Italy, and its PV system under analysis.
The artifical and real datasets will then be further divided in differ-
ent parts, each of which will be used in a different phase of the training,
testing, exploitation and tuning of the ANN models and of the TL.

The simulated data is split and used to train and test the different
ANN models. Years 2010 to 2014 (175,296 data points) are used as
training set, while year 2015 (35,040 data points) is used as testing
set. The real data set is then used to exploit the ANN models and
evaluate their prediction performance against real data, and also to
apply different TL techniques to tune the ANN models and to improve
their prediction performance of PV power generation, always against
the same real data. Year 2020 (35,136) is used to exploit the ANN
models and evaluate their prediction performance against real data
(inference set). Years 2018 and 2019 (70,080 data points) are used as
training set to tune the ANN models with TL (tuning set), while year
2020 (inference set) is also used as test set for the TL models, and their
performance is compared to that of the original ANN models exploited
on the same year.

3. Methodology

This section aims to present the proposed methodology to forecast
PV power generation when only a limited amount of real data is avail-
able, leveraging different meteorological data, a PV power generation
simulator which accurately models a real PV installation, different
ANNs and TL techniques.

As shown in Fig. 2, the different meteorological data features are
first collected and then analyzed through feature selection method-
ologies in order to identify those which most impact the accuracy of
data prediction forecast. The PV power generation simulator presented
by [26], which is accurately modeled to replicate the real PV instal-
lation located on the roof of our university campus in Turin, Italy, is
then used to create an artificial, but accurate and realistic, dataset of
PV power generation large enough to effectively train and test different
ANNs. This artificial, but accurate and realistic dataset, together with
the meteorological features previously selected, is used for the initial
training and testing of the two different ANNs: 1D-CNN and LSTM.
The resulting ANN models, trained and tested on the simulated dataset,
are then exploited on a portion of real, but limited, dataset of the real
power generated by the real PV installation on which the simulator is
modeled, to evaluate their prediction performance against real data.
Finally, different TL techniques are used to tune the ANN models with
the remaining portion of the real, but limited, dataset of PV power
generation, investigating their effectiveness to improve the prediction
performance of PV power generation always against the same real data.
4

3.1. Data collection, preprocessing and feature selection

For the indicated time period, a dataset containing different me-
teorological features must be collected, together with the real PV
generation data. The data must then be preprocessed, in order to make
it coherent, for the whole dataset, and self-consistent. A selection of
which of these features are most correlated to PV power generation is
then carried out (Feature Selection), before feeding these features as
inputs to the neural network models.

3.1.1. Data collection and preprocessing
The initial raw dataset, which is presented in the following list, is

composed by 22 features and 385,718 rows, referring to years 2010 to
2020. All features are collected with 15 min intervals.

• Real PV power generation, i.e. real power (W) generated from the
PV installation (data available from 2018 to 2020);

• GHI, Global Horizontal Irradiance (W/m2);
• Relative Humidity, ranging between 0 and 1;
• Air temperature (◦C);
• Air temperature - day (◦C);
• Wind speed (m/s);
• Wind direction;
• Atmospheric pressure (hPa);
• Ultraviolet Index (UV index);
• Temperature (◦C);
• Apparent temperature (◦C);
• Humidity, ranging between 0 and 1;
• Wind speed (m/s) (wind speed Dark Sky);
• Wind bearing, the direction that the wind is coming from in

degrees, with true north at 0◦ and proceeding clockwise;
• Dew point, the point at which dew can form (◦C) below the

atmospheric temperature (it changes with respect to pressure and
humidity);

• Precipitation intensity, the intensity of precipitation at the given
time;

• Precipitation probability, the probability of precipitation occurs,
between 0 and 1;

• Cloud cover, the percentage of sky occluded by clouds, between
0 and 1;

• Simulated PV power (W) (simulated power);
• Sunset time, the unix timestamp when sun will set during a given

day (s);
• Sunrise time, the unix timestamp when sun will rise during a

given day (s);
• Sunshine duration, the difference between sunrise and sunset time

(calculated);
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Fig. 2. Scheme of the proposed methodology.
• Day;
• Hour;
• Minute.

Real PV power generation is the real power (W) generated from the
PV installation (data available from 2018 to 2020), and is provided by
the sensors present in the PV installation in our university campus. The
meteorological features are obtained from different sources. Features
from GHI to atmospheric pressure are provided a weather station in
our university campus, which is very close to the case study’s building
(see Section 2). Features from ultraviolet (UV) index to cloud cover
are provided from Dark Sky [27], a software company specialized
in weather observations and visualization which provides historical
weather data in all the world, obtained from multiple sources (in
Turin, the nearest station for data collection is located near the city’s
airport, 14.5 km north of the case study’s building). The simulated
power is obtain through the simulator [26], sunset and sunrise times
are obtained through the pvlib python library [28], sunshine duration
is calculated subtracting sunrise time from subset time, while day, hour
and minute are embedded in the data.

After collecting the meteorological features’ data, data cleaning and
feature engineering steps were then carried out in order to clean the
dataset.

Data cleaning
Table 2 presents a summary of the different features present in the

dataset, highlighting the missing datapoints. The minimum and maxi-
mum values are also presented, after abnormal values for minimum and
maximum were identified and replaced through linear interpolation.
5

In the period between the 6th of September 2016 until the 31st of
December 2017, the weather station in our campus was not functioning
and the data collected was therefore irregular or absent. The features
affected by this issue are GHI, speed wind, atmospheric pressure, and
wind direction. As a consequence, the data for that period is discarded
(for a total number of 21,032 values), not just for the compromised
features but, to be coherent, for the whole dataset, to make it self-
consistent, and will not be used subsequently in any part of the training
and/or validation of the neural networks and TL.

All features related to PV power generation were then set to 0
during the night (Real PV power generation, GHI, UV index, simulated
power). This was done by leveraging the sunrise and sunset times. Spe-
cific missing values were then identified and replaced where possible. A
strong, positive correlation between UV index and GHI was identified,
so missing values in UV index were included based on existing UV index
values for similar GHI. Finally, sporadic missing values in different
features were replaced through linear interpolation.

Feature engineering
Feature engineering is a process used to manipulating raw data

into features that can be effectively used in machine learning. More
specifically, features scaling is required when the variables present
very different orders of magnitude, and must therefore be normalized
before being fed into the models. Normalized features all have the same
magnitude, which increased the speed with which the machine learning
models are trained. The min–max normalization is applied, scaling each
variable in the range between 0 and 1.

It important to underline that min–max normalization is performed
only during feature selection, to identify those features which most
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Table 2
Raw dataset summary information.

Data type Min Max # of missing Source
samples

Campus PV
Real PV power generation float64 0.00 562.20 0 installation

sensors

GHI float64 0.00 1139.20 21,032
Relative humidity float64 0.09 1.00 8670
Air temperature float64 −10.90 36.20 880 Campus
Air temperature - day float64 −6.00 33.20 772 Weather
Wind speed float64 0.00 12.40 41,798 Station
Wind direction float64 0.00 360.00 0
Atmospheric pressure float64 800.20 1008.40 41,798

UV index float64 0.00 10.00 12,666
Temperature float64 −11.60 36.20 5791
Apparent temperature float64 −13.50 36.20 5791
Humidity float64 0.05 1.00 4390
Wind speed Dark Sky float64 0.00 13.59 39,191 Dark
Wind bearing float64 0.00 359.00 43,731 Sky
Dew point float64 −22.25 24.32 1890
Precipitation intensity float64 0.00 12.954 45,968
Precipitation probability float64 0.00 1.00 45,968
Cloud cover float64 0.00 1.00 48,325

Simulated power float64 0.00 9.32 0 PV simulator

Sunrise time int64 1 262 329 669.00 1 609 398 464.00 0 Embedded
Sunset time int64 1 262 361 479.00 1 609 430 242.00 0 With other
Sunshine duration int64 31 532.00 56 258.00 0 data
impact the models’ ability to forecast PV power generation, aiming to
reduce the number of input variables and therefore also the compu-
tational effort. Then, once the features which must be considered as
inputs for the selected models have been identified, the works moves
to the training and testing phases of the ANNs, during which there is
no normalization.

3.1.2. Feature selection
The aim of the feature selection is to identify those features which

most impact the models’ ability to forecast PV power generation,
aiming to reduce the number of input variables and therefore also the
computational effort. [29] and [30] identify three main categories for
feature selection:

• filter method: filtering is done using the correlation matrix and is
most commonly carried out using Pearson Correlation.

• wrapper methods: it requires a machine learning algorithm and
uses its performance as evaluation criteria.

• embedded methods: an iterative process, which analyzes each
iteration of the model training process and extracts the features
which contribute the most to the training.

In the following sections these techniques applied to our dataset are
resented in detail.

.1.3. Feature selection - filter methods
With filter methods, the selection of the features is independent

rom any machine learning algorithms, with features being selected
ased on their scores in statistical tests (correlation criteria). As pre-
ented by [29] and [30], since it does not rely on a machine learning
lgorithm, this technique avoids the risk of overfitting, but the selected
ubset of features are not optimal and could contain redundant vari-
bles. Pearson’s correlation criteria and mutual information are the two
anking criteria used in our methodology.

orrelation Criteria
As presented by [29] and [30], the Pearson’s correlation coefficient

s used as a measure to quantify linear dependence between two
ariables. Its values vary from −1 to 1, where 1 means maximum

positive linear correlation, −1 maximum negative linear correlation and
0 means no correlation.
6

Fig. 3, presents a correlation matrix with the results of the cor-
relation coefficients computed between each variable, excluding the
simulated power (since it is equivalent to the real powe). The cor-
relation matrix reveals a positive linear correlation of 85% between
UV index and GHI features, of 50% between real PV generation and
UV index, and of 40% between real PV generation and GHI. Strong
correlation (80%) appears to exist between sunshine duration and
temperature, and between dew point and temperature, but such cor-
relations are not useful for this investigation. The correlation between
real PV generation and all other features appears to be very low, as
that between GHI and all other features. Out of all variables, it is
interesting to see how ‘‘sunshine duration’’ has a low correlation with
‘‘real PV power generation’’. As explained in Section 3.1.1, this variable
is calculated and represents the difference between sunrise time (the
unix timestamp when sun will set during a given day) and sunset
time (the unix timestamp when sun will rise during a given day).
This variable therefore does not take into consideration the weather
conditions, and the actual amount of sun present. For this reason, this
variable does not have such a strong correlation with ‘‘real PV power
generation’’. Similar results for this variable will be confirmed also by
other feature selection methods.

Since Pearson’s correlation can be positive or negative, a new
coefficient is adopted, the coefficient of determination R2, which is
defined as the square of the Pearson’s coefficient R. As presented
by [29] and [30], R2 provides a more interpretable measure in order
to compare the linear correlation between variables, and is used to
evaluate the correlation between the different features and the real PV
power generation, as presented in Fig. 4. According to these results,
UV index is by far the feature with the highest correlation to PV power
generation, with its R2 coefficient at 0.25, almost 60% greater than
the second feature, GHI. The next eight features (in decreasing order,
GHI, sunset time, sunrise time, temperature, apparent temperature,
humidity, relative humidity, and air temperature) fall between an R2

range of 0.15 and 0.06. The next seven features (wind speed Dark
Sky, dew point, air temperature - day, sunshine duration, wind speed,
atmospheric pressure, wind bearing) present an R2 between of 0.03
and 0.01, and the last features (precipitation intensity, precipitation
probability, cloud cover, wind direction, day, hour, minute) present an
R2 of 0 a slightly above.
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Fig. 3. Correlation matrix presenting correlation coefficients computed between each variable.
Fig. 4. Correlation criteria results between variables and P-PV Cittadella.

Mutual information
The mutual information (MI) index measures how much can be

learned from one variable by observing the other variable (or mutual
dependence between two variables) [31], represented by the statistical
dependence between the density of a variable 𝑥 and the density of a
variable y.

The probability densities of 𝑥 and 𝑦 are 𝑝(𝑥) and 𝑝(𝑦) respectively,
with the joint probability density given by 𝑝(𝑥, 𝑦). Compared to the
Pearson’s correlation, the mutual information index is also able to
7

Fig. 5. Mutual information criteria results between variables and Real PV power
generation.

recognize non linear correlations between variables. Fig. 5 presents the
features sorted by their mutual information compared to the real PV
power generation (P-PV Cittadella), with results showing how the best
feature is by far the GHI, with a mutual information greater than 1.5,
over twice that of the following features. UV index and hour are then
respectively the second and third features, with mutual information
around 0.7. The remaining twenty features have significantly lower
mutual information, ranging between 0.3 and 0.
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Fig. 6. SFS result criteria results between variables and Real PV power generation.

3.1.4. Feature selection - Wrapper method
In the Wrapper Method, the feature selection process is based on

a specific machine learning algorithm, with the aim of solving an
optimization problem by evaluating all the possible combinations of
features, through an approach called greedy search, and finding the
best ones compared to the real PV power generation. As presented
by [29] and [30], this approach increases the performance and may
reduce the risk of overfitting the data. However, as the number of
features increases, the complexity also increases. The most commonly
used algorithms are the sequential forward and the backward selection.

Sequential forward selection
The Sequential Forward Selection (SFS) algorithms stars with a

null model, and at each step adds the features which give the highest
performance. As presented by [29] and [30], this process continues
until the addition of new features starts decreasing the performance.
A disadvantage of this method is that it does not take into account
dependencies among variables. In this work, a Linear Regression model
is used. To train the model, the dataset needs to be split into training
and testing. This division will be specific for the training of this model
for this type of feature selection, and will therefore not follow the data
division described in Section 2: this training set is composed of 2 years
worth of data, from 2018 to 2019, while the test is performed on the
last year of data (2020). After normalizing the features using the min–
max normalization, the variables are fed to the algorithm and evaluated
with respect to their Mean Squared Error (MSE) on the test set. Fig. 6
presents the results compared to the real PV power generation, with the
most important features being GHI, sunshine duration and humidity,
while the worst feature is the wind speed.

Sequential backward selection
While the sequential forward selection methods starts with an empty

model, the Sequential Backward Selection (SBS) algorithm starts with a
complete set of features and at each step removes those features which
decrease the prediction performance. As presented by [29] and [30],
the advantage of this method is that the features are evaluated in the
presence of other variables, thus discarding useless features. The train-
ing and the testing set are the same of the sequential forward selection
case. The algorithm deletes those features whose removal generated the
lowest MSE on the test set. Fig. 7 shows the results compared to the
real PV power generation, with most important features being GHI, air
temperature and air temperature - day, while the worst is precipitation
probability.
8

Fig. 7. SBS results between variables and Real PV power generation.

3.1.5. Feature selection - Embedded methods
In the embedded methods, the feature selection algorithm is inte-

grated into the model’s learning algorithm, it is incorporated in the
training process and it combines the qualities of filter and of the
wrapper methods. As presented by [29] and [30], embedded methods
do not require to split the dataset into training and test sets, and
the most common embedded technique are the LASSO regression and
Random Forest.

LASSO Regression
Least Absolute Shrinkage and Selection Operator (LASSO) regres-

sion is a Linear Regression that uses l1, and adds a regularization term
called alpha to the cost function.

As presented by [29] and [30], LASSO regression is similar to
features selection because l1 regularization sets the weight of least
significant features to zero. This regularization is done by varying the
regularization of the hyperparameter 𝑎𝑙𝑝ℎ𝑎. The training set is com-
posed by two years worth of data, from 2018 to 2020, with the features
being normalized between 0 and 1 by using min–max normalization.
The best model with lowest MSE value obtained from the training set
is identifying by varying the model’s hyperparameters, with 𝑎𝑙𝑝ℎ𝑎 equal
to 0.001 being the best. Fig. 8 presents the features sorted by weight,
with the best ones compared to the real PV power generation being GHI
and temperature.

Random Forest
Random forest is a machine learning algorithm which combines the

output of multiple decision trees to reach a single result. As presented
by [29] and [30], each of these decision trees are trained on different
random subsets of the training set. The most important features are
located closer to the root of the tree, while the less important ones are
close to the leaves. The drawback of this method is that the features
could overfit the decision tree algorithm, discarding important features
too. In this work, 50 estimators are used for a period ranging from 2018
to 2020. Fig. 9 presents the results compared to the real PV power
generation, with GHI being by far the most important feature with a
value greater than 0.8.

3.1.6. Results of features selection
Feature selection is used in order to find the most relevant features

compared to the real PV power generation, which will then be used
as inputs to the machine learning models, together with the PV power
generation data. Table 3, presents the results for each feature selection
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Fig. 8. LASSO Regression results between variables and Real PV power generation.

Fig. 9. Random Forest results between variables and Real PV power generation.

technique, with features sorted from most to least important. The
ranking is obtained by calculating the mean of the results of each test,
while the threshold between the selected and the discarded features
was identified through a trial and error approach during the model
evaluation.

The features selected for this investigations are GHI, humidity,
temperature, dew point, UV index, sunshine duration and hour. It is
interesting to notice how the different feature selection techniques
present significant variance in classifying the features. Apart for GHI,
which is consistently ranked as first or second for all feature selection
techniques, the other features are evaluated very differently from the
different methodologies. If one takes the top three features for each
technique, they are not all part of the list of top features presented in
Table 3. If one looks at the sequential backward selection technique, for
example, only its first feature was included in the selected ones (GHI),
while the others were all excluded. Similarly, for LASSO regression the
second and third features rank as sixth and seventh overall, narrowly
making the selected list. On the other hand, two to three of the final
selected features rank over tenth in the different feature selection
techniques.
9

Table 3
Feature selection results between variables and real PV power generation.

Features Methods Rank

R2 MI SFS SBS L RF

Selected

GHI 2 1 1 1 1 1 1
Humidity 7 9 3 9 6 13 2
Temperature 5 10 4 8 2 10 3
Dew point 11 19 11 6 3 4 4
UV index 1 2 9 16 7 23 5
Sunshine duration 13 18 2 19 8 3 6
Hour 22 3 15 11 12 2 7

Discarded

Air temperature 9 12 7 3 5 16 8
Air temperature - day 12 20 5 2 4 10 9
Relative humidity 8 8 6 17 15 9 10
Sunrise time 4 15 13 4 17 18 11
Day 21 14 8 10 13 6 12
Wind speed Dark Sky 10 17 18 13 11 5 13
Cloud cover 19 4 10 15 19 12 14
Wind bearing 16 6 22 14 16 8 15
Sunset time 3 13 23 5 22 17 16
Apparent temperature 6 11 21 7 23 15 16
Wind speed 14 16 14 12 10 20 17
Precipitation probability 18 5 12 18 18 21 18
Atmospheric pressure 15 22 16 20 9 14 19
Precipitation intensity 17 7 20 23 14 22 20
Wind direction 20 21 17 21 20 11 21
Minute 23 23 19 22 21 7 23

3.2. Training, testing and exploitation of the neural networks

The purpose of this section is to present the methodology adopted
during the development of the different ANN models. As presented in
Fig. 2, the main phases required to develop any new predictive model
are: (i) training (which includes training and validation), (ii) testing.

The PV power generation simulator presented by [26], which is
accurately modeled to replicate the real PV installation located on the
roof of our university campus in Turin, Italy, is used to create an arti-
ficial, but accurate and realistic, dataset of PV power generation large
enough to effectively train and test different ANNs. This artificial, but
accurate and realistic dataset, together with the meteorological features
previously selected in Section 3.1.6, is used for the initial training and
testing of the two ANNs: 1D-CNN and LSTM. The resulting ANN models,
trained and tested on the simulated dataset, are then exploited on a
portion of real, but limited, dataset of the real power generated by the
real PV installation on which the simulator is modeled, to evaluate their
prediction performance against real data.

In this work, all the neural networks are trained using the Adaptive
Moment Estimation (ADAM), with a learning rate of 0.001. Adaptive
moment estimation is useful because it is able to avoid the cumbersome
process of hyperparameters tuning dynamically the learning rate as
needed, based on past gradient values. The loss function that has to be
minimize during the training process is the MSE. Furthermore, in order
to prevent overfitting and reduce the training time, the early stopping
criteria with a patience of 10 epochs is introduced.

In order to identify the best architecture, the networks’ perfor-
mance is evaluated through four statistical indicators proposed by [32],
being: Mean Absolute Difference (MAD), Mean Absolute Percentage
Error (MAPE), Root Mean Square Difference (RMSD) and Coefficient
of Determination (R2).

The MAD, which measures the absolute difference between the
prediction and the observed value:

𝑀𝐴𝐷 =
∑𝑛

𝑖=1 |𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑡𝑒𝑠𝑡,𝑖|
𝑛

(1)

The MAPE, which measures the relative difference between the
prediction and the observed value:

𝑀𝐴𝑃𝐸 =

∑𝑛
𝑖=1

|𝑦𝑝𝑟𝑒𝑑,𝑖−𝑦𝑡𝑒𝑠𝑡,𝑖|
𝑦𝑡𝑒𝑠𝑡,𝑖 100 (2)
𝑛
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The RMSD, which measures the standard deviation of the difference
between predicted and observed values:
√

∑𝑛
𝑖=1(𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑡𝑒𝑠𝑡,𝑖)2

𝑛
(3)

The R2, which measures the proportion of variance between the
observed and the predicted values:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑡𝑒𝑠𝑡,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)2
∑𝑛

𝑖=1(𝑦𝑡𝑒𝑠𝑡,𝑖 − �̄�𝑡𝑒𝑠𝑡)2
(4)

The ideal values of each metric used in this article, in terms of
forecasting performance, were identified during past experiences, after
reviewing the State of the Art literature on similar applications, par-
ticularly [21] and [30]. For example, the work of [21] presents R2 =
0.8 as the threshold under which machine learning forecasting results
cannot be considered acceptable. On the other hand, defining accept-
able values for the other metrics, MAD, MAPE and RMSD, requires a
more in-depth also of the data which wishes to be forecasted. This
investigation focuses on effective forecasting of PV power generation
which, according to Table 2, has values included between 0 and 562.20.
If we consider 5% of the max PV power generation value, we have a
value of approximately 28, which can be rounded up to 30. However, a
difference of 30 between real and predicted value when the real value
is close to its max, has an approximate error of 5%, but if the real
value is close to 100, the approximate error results much higher. To
properly identify the acceptable values for these metrics, we reviewed
the approach presented by [21] and [30] on the same metrics, and we
concluded that an acceptable metric for these models (LSTM and 1D-
CNN) used to forecast this type of data (PV power generation) with this
dataset, would be 20 for MAD, 50 for MAPE and 40 for RMSD.

3.2.1. Applicability of k-folds cross validation
When defining the investigation’s methodology, existing literature

was studied to identify different ways to ensure that the investigation’s
results are as robust as possible, and one of the methods which was
found to be particularly well-established for machine learning pre-
dictive modeling is k-fold cross validation. However, after studying
existing literature on the application of this method, such as [33,34]
and [35], it was determined that k-folds cross validation is inapplicable
to this work, due to the nature of the data which is the subject of the
prediction.

The paper investigates innovative methods to predict photovoltaic
power generation, by leveraging artificial neural networks which, in
turn, leverage historical data for effective prediction. Photovoltaic
power generation is strongly dependent on weather conditions, to the
point that as presented by [21] and as applied in this investigation,
meteorological features can be leveraged as an input to the artificial
neural network models to successfully increase prediction accuracy for
photovoltaic power generation.

However, due to the nature of the meteorological features data
and, consequently, of the photovoltaic power generation data, co-
herence and continuity of the data is fundamental for the model to
effectively learn from the data and successfully predict photovoltaic
power generation. Macro-factors such as seasonality, and micro-factors
such as changing weather conditions, strongly influence the varying
photovoltaic power generation and must be captured by the model for
it to accurately predict photovoltaic power generation. The application
of k-folds cross validation, and of its random data sampling or random
data splitting, would break the coherence and continuity of the data,
and make it impossible for the model to successfully capture such
trends.

More specifically, during the different seasons (i.e., winter, spring,
summer, autumn) the trends of the meteorological features, in partic-
ular GHI, may seem similar (for example, during a sunny day without
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clouds the GHI values would always form a perfect-like bell curve),
while in reality the absolute values are different: for example, in
summer they are greater than in winter, as presented in Fig. 10. The
application of k-folds cross validation, and of its random data sampling
or random data splitting, would break the coherence and continuity of
the data: if the Time Window (TW) are randomly split, there could be
strong jumps between the last value of TW-1 and the first value of TW-
2, and the model would be unable to effectively interpret the dataset
and deliver accurate predictions.

A possible way to overcome this issue would be to divide the total
dataset into four separate datasets based on the four seasons, and
then divide each separate dataset into further subsets for training and
testing, respectively. The investigation would therefore be training four
distinct neural networks, one per season, and at this point the k-folds
cross validation method could be applicable. However, the available
dataset is not large enough to allow all these subdivisions: the four
different training sets and four different test sets would not have
sufficient data to train the models ([19] recommends selecting a data
length of at least 3 years to effectively train artificial neural network
models). This same problem is further accentuated for the real data
dataset used when applying the different transfer learning techniques,
dataset in which much less data is available.

A further challenge to the application of k-folds cross validation
comes from occasional meteorological changes. For example, if at a
certain point the sun is covered by temporary clouds, the photovoltaic
power generation could see a temporary drop. However, if this event
happens during the summer, in a relatively nice-weather week, the
photovoltaic power generation in the hours and/or days before and
after the cloud event would still be significant. Similarly, the meteo-
rological features would also present specific behaviors which would
be strongly influenced by both macro-factors such as seasonality, and
micro-factors such as changing weather conditions. When the sun is
covered by temporary clouds during the summer and in a relatively
nice-weather week, certain meteorological features such as GHI and UV
Index would see a significant drop, while others such as humidity and
temperature would remain more stable. The model would therefore be
able to capture these variations and locate them within a wider trend of
data behavior, thus accurately leveraging the coherence and continuity
of the data to accurately predict the photovoltaic power generation. The
application of k-folds cross validation, and of its random data sampling
or random data splitting, would break the coherence and continuity of
the data, making it impossible for the model to successfully capture
such trends, and therefore decreasing the accuracy of the photovoltaic
power generation prediction.

Because of these reasons, it is clear that k-folds cross validation
cannot be applied to this investigation.

3.2.2. 1D-CNN best architecture
The 1D-CNN is a particular kind of CNN, from which it differs

from the dimension of the input and the way that the filter slides
across the data. The CNN’s filter (its ability to automatically detect
important features), and its relative low cost makes it an extremely
versatile model which is used in a variety of applications. Its application
however is recommended when the dataset available for training is big
enough in order to not occur in overfitting problem.

Also in this case a trial and error approach was used to identify the
best architecture. The following hyperparameters were tested:

• number of one-dimensional convolution layers: varied between 1
and 2;

• number of units: varied between 10 and 200 (with an interval of
10 at a time);

• filter size: varied between 50 and 200 (first with an interval of 50
at a time, then between 150 and 200 with an interval of 10 at a
time);

• kernel size: varied between 1, 2 and 3;
• activation functions: linear and hyperbolic, with and without a

flatten layer and dense layer;
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Fig. 10. Example of GHI values in a sunny day in winter, spring, summer and autumn.
• epochs: varied between 250 and 500 (with an interval of 50 at a
time);

• batch size: varied between 100 and 400 (with an interval of 100
at a time).

The total number of possible combinations from this choice of
ranges and intervals for the hyperparameters would have been over
20,000. As a consequence, a logical approach on how to reduce the
overall combination was developed, based on our past experience
working with these models and on the results presented in literature,
for example by [21] and [30]. First, the number of layers was set at 2,
and the activation functions were set at hyperbolic. Then, the kernel
size was investigated at a high level, with parameters varying between
1, 2 and 3. Values of 2 and 3 clearly outperformed, and were chosen to
continue. Then the filter size was investigated, with parameters varying
between 50 and 200, with an interval of 50 at a time (50, 100, 15, 200).
These different filter sizes were applied with both 1 and 2 kernel size.
The results showed that kernel size 2 outperformed kernel size 3, and
that filter sizes 150 and 200 outperformed the rest. A more capillary
investigation of filter size was then carried out, varying between 150
and 200 with an interval of 10 at a time (150, 160, 170, 180, 190, 200),
with kernel size 2. Filter size 170, with kernel size 2, outperformed the
rest. These values were used to investigate the next parameter, batch
size which varied between 100 and 400 with an interval of 100 at a
time (100, 200, 300, 400). Batch size 200 outperformed the others.
The number of epochs was then investigated, varying between 250 and
500 with an interval of 50 at a time (250, 300, 350, 400, 450, 500).
500 epochs outperformed the rest. Finally, the number of units was
investigated, varying between 10 and 200, with an interval of 10 at a
time (10, 20, 30, . . . , 180, 190, 200). 100 units appeared to be the
ones with slightly better performance. Different activation functions
were then investigated (hyperbolic and linear), together with different
layers (with and without a flatten layer and dense layer). Also, the
impact of a further fully connected layer, with varying units, added
at the end of network using a hyperbolic tangent was also investigated.
Furthermore, a pooling strategy is also used (Max Pooling) with pool
size equal to 2, with the dimension of the output being halved as a
consequence. Finally, the performance of the model with only 1 layer
was also checked. Overall, 280 different combinations were tested.

3.2.3. LSTM best architecture
The LSTM neural network is a Recurrent Neural Network (RNN),

useful for modeling sequential data. LSTM and RNNs also contain
11
backward connections, meaning that at a given time t they receive the
current state input xt plus its own output at the previous time step yt-1.

Also in this case a trial and error approach was used to identify the
best architecture. The following hyperparameters were tested:

• number of layers: varied between 1, 2 and 3;
• number of units: varied between 10 and 150 (also varying be-

tween layers: with an interval of 10 at a time, and then 1 at a
time between 20 and 30);

• activation functions: linear and hyperbolic (also varying between
layers);

• epochs: varied between 100 and 500 (with an interval of 100 at
a time);

• batch size: varied between 100 and 400 (with an interval of 100
at a time).

The total number of possible combinations from this choice of
ranges and intervals for the hyperparameters would have been over
1200. As a consequence, as for the 1D-CNN a logical approach on how
to reduce the overall combination was developed, based on our past
experience working with these models and on the results presented in
literature, for example by [21] and [30]. First, the number of layers
was investigated, with parameters varying between 1, 2 and 3. Values
of 2 and 3 clearly outperformed, and were chosen to continue. Then, for
these two numbers of layers, the batch size was investigated, varying
between 100 and 400 with an interval of 100 at a time (100, 200,
300, 400). Batch size 200, with 3 layers, outperformed the others. The
number of epochs was then investigated, varying between 250 and
500 with an interval of 50 at a time (250, 300, 350, 400, 450, 500).
500 epochs outperformed the rest. Finally, the number of units was
investigated, varying between 10 and 150, with an interval of 10 at a
time (10, 20, 30, . . . , 130, 140, 150). 100 units appeared to be the
ones with slightly better performance. Different activation functions
were then investigated (hyperbolic and linear), and different tests were
performed to see if changing some of these parameters within layers
further influenced the performance. It was noticed that changes to the
third layer had greatest impact. Overall, 130 different combinations
were tested.

3.3. Transfer learning

The final section of the methodology presented in Fig. 2 aims to
evaluate the effectiveness of TL in supporting PV power generation
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forecast. Different TL techniques are used to tune the ANN models with
the remaining portion of the real, but limited, dataset of PV power
generation, investigating their effectiveness to improve the prediction
performance of PV power generation always against the same real data.
As explained in Section 2, the data used for TL is now only the real,
limited, dataset: years 2018 and 2019 (70,080 data points) are used
for training (tuning), and year 2020 (35,136 data points) is used for
testing.

Following the methodologies identified in the state of the art, TL
can be applied through three main approaches:

• Retrain only the first layer
• Retrain only the second layer
• Retrain all the layers

As discussed in [36], and in [37], the different TL retraining ap-
roaches impact mainly accuracy and computation time. If all the
ayers of the model are retrained (no layers are frozen), the accuracy
f the trained model will be greater, but will also require greater
omputation time. On the other hand, if only the first or the second
ayer are retrained (all layers but one are frozen), the model required
ackpropagating and updating the weights only of the unfrozen layer,
hich brings a significant decrease in computation time. The different

olutions are therefore investigated.
For the purpose of this investigation, the performance of the differ-

nt TL approaches was evaluated by considering only their accuracy
through the MAD, MAPE, RMSD and R2 indexes). The computational

time required for the three different TL approaches to complete the fine
tuning of the neural networks was very similar, and in the order of
minutes. The computational time required to train the original neural
networks, on the other hand, was slightly longer, but still less than
an hour, and once again similar for the two different models. Since
the computational time required to train and fine tune the models
was similar, it was not taken into consideration when evaluating their
performance.

4. Results

In this section we report and discuss, for each ANN: the testing
prediction performance of the most effective architectures in PV gen-
eration forecasting after their training with the artificial, but accurate
and realistic, dataset of PV power generation created by the PV power
generation simulator presented by [26]; the prediction performance
of the same ANN models on a portion of real, but limited, dataset
of the real power generated by the real PV installation on which the
simulator is modeled, to evaluate their prediction performance against
real data; and the effectiveness of different TL techniques to tune the
ANN models with the remaining portion of the real, but limited, dataset
of PV power generation, to improve the prediction performance of PV
power generation always against the same real data.

For 1D-CNN, after training and testing the model with the artificial,
but accurate and realistic, dataset of PV power generation created
by the PV power generation simulator presented by [26], the best
identified architecture consists of two 1-dimensional convolution layers
with filter size equal to 170, kernel size equal to 2, a hyperbolic tangent
as activation function, followed by a flatten and dense layer. Finally,
a fully connected layer with 100 units is added at the end of the
network, using a hyperbolic tangent. The output layer of the 1D-CNN
was made up of 16 outputs, the number of epochs equals to 500 and
the batch size is equal 200. Figs. 11–14 present the performance in
terms of MAD, MAPE, RMSD and R2 for the most effective 1D-CNN
architectures. One can see that the variation between the different types
of 1D-CNN architectures is limited, and all three indicators improve for
the first four steps (up to 1 h), and then their performance deteriorates
and appears to level out after 24 steps (6 h). The overall 1D-CNN
12

performances are lower than the ones of the LSTM, both in terms of
reduced variation and absolute value. The R2, however, has similar
values for both ANNs: at the 4th step (1 h) it is approximately 0.98; at
the 8th step (2 h) it is approximately 0.88; and at the 12th step (3 h)
it is approximately 0.85.

For LSTM, after training and testing the model with the artificial,
but accurate and realistic, dataset of PV power generation created
by the PV power generation simulator presented by [26], the best
identified architecture consists of three recurrent layers, where the first
two are composed by 100 units, with a hyperbolic activation function,
and a third layer composed of 24 units that have a tanh activation
function, and the output layer composed by 100 units with a linear
activation function. Figs. 15–18 present the performance in terms of
MAD, MAPE, RMSD and R2 for the most effective LSTM architectures.
One can see that the variation between the different types of LSTM
architectures is limited, and all three indicators improve for the first
four steps (up to 1 h), and then their performance deteriorates and
appears to level out after 24 steps (6 h). The overall LSTM performances
are overall better than the 1D-CNN ones. The RMSD, for example, at the
4th step (1 h) is approximately between 21 and 23 for 1D-CNN, and 20
for LSTM; at the 8th step (2 h) it is approximately 53 for 1D-CNN, 54
for LSTM; at the 12th step (3 h) it is approximately 60 for both ANNs.

Table 4 compares the prediction performance of the testing phase
for the best of each of these ANNs (in terms of MAD, MAPE, RMSD and
R2), for different prediction horizons.

As far as MAD is concerned, one can see that the comparative
performance between the different ANNs varies depending on the
prediction horizon. In the first 30 min, 1D-CNN performance is slightly
better than LSTM. From 15 to 45 min, performance of both LSTM and
1D-CNN actually improves, at 45 min they both perform at their best
and LSTM start to slightly outperform 1D-CNN. From 60 min on, the
performance of both networks worsens, but without major differences
between them. For the MAPE results, the LSTM performance is always
better than that of the 1D-CNN. For both models the MAPE also
improves from 15 to 45 min, although with a countertrend at 30 min.
Then from 60 min on, the performance of both networks worsens, with
LSTM slightly outperforming 1D-CNN. For the RMSD results, LSTM
performance is systematically slightly better than the 1D-CNN one and
1D-CNN networks. Again, from 15 to 45 min, performance of both
LSTM and 1D-CNN actually improves, reaches its best at 45 min, and
then deteriorates again from 60 min on. Finally, the R2 results, show
a much more homogeneous worsen in performance for both ANNs,
with LSTM systematically overperforming the other, but by a matter of
decimals. Again, from 15 to 45 min, performance of both LSTM and 1D-
CNN actually improves, reaches its best at 45 min, and then deteriorates
again from 60 min on.

The results clearly show that the best prediction performance is
obtain with the LSTM model. The 1D-CNN also gives good prediction
performance, and 1D-CNN also has better MAD values at the beginning
with respect LSTM model, but the LSTM model generally outperforms
the 1D-CNN one in most forecasting horizons for MAD, MAPE, RMSD,
and R2.

As explained in Section 3.2, and following the methodology pre-
sented in Fig. 2, the resulting ANN models, trained and tested on the
simulated dataset, are then exploited on a portion of real, but limited,
dataset of the real power generated by the real PV installation on which
the simulator is modeled, to evaluate their prediction performance
against real data. The previously presented best architectures for the
ANN models are exploited on the inference set from the real dataset.
Table 5 presents the prediction performance results on the real dataset
for the 1D-CNN model, while Table 6 presents the results for the
LSTM model. Results clearly show how the performance of both models
deteriorate once they are exploited on a real dataset. The MAD, for
example, deteriorates between 40% and 47% for 1D-CNN, and between
42% and 46% for LSTM. The MAPE also deteriorates, between 49% and
70% for 1D-CNN, and between 58% and 65% for LSTM. The RMSD

deteriorates significantly, between 70% and 83% for 1D-CNN, and



Applied Soft Computing 149 (2023) 110988

13

A. Bellagarda et al.

Fig. 11. Best 1D-CNN architecture MAD.

Fig. 12. Best 1D-CNN architecture MAPE.

Fig. 13. Best 1D-CNN architecture RMSD.

Fig. 14. Best 1D-CNN architecture R2.
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Fig. 15. Best LSTM architecture MAD.

Fig. 16. Best LSTM architecture MAPE.

Fig. 17. Best LSTM architecture RMSD.

Fig. 18. Best LSTM architecture R2.
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Table 4
MAD, MAPE, RMSD and R2 comparison for the best ANN architectures.
Pred. horizon MAD MAPE RMSD R2

1D-CNN LSTM 1D-CNN LSTM 1D-CNN LSTM 1D-CNN LSTM

15 min 19.27 19.63 25.37 24.43 35.70 35.38 0.95 0.95
30 min 17.87 17.95 28.12 25.12 35.08 34.69 0.95 0.95
45 min 12.87 12.80 23.72 19.76 20.94 20.42 0.98 0.98
60 min 19.26 18.86 29.15 27.43 38.03 37.69 0.94 0.94
75 min 24.96 23.41 38.64 36.62 46.95 46.71 0.91 0.91
90 min 24.89 24.30 44.32 39.43 50.28 50.01 0.89 0.89
105 min 27.22 26.10 52.86 43.89 53.73 52.92 0.88 0.88
120 min 28.33 27.61 54.57 47.68 55.61 54.78 0.87 0.87
Table 5
1D-CNN MAD, MAPE, RMSD, and R2 comparison between testing and exploitation prediction performance.
Pred. horizon MAD MAPE RMSD R2

Testing Exploitation Testing Exploitation Testing Exploitation Testing Exploitation

15 min 19.27 27.36 25.37 37.67 35.70 62.48 0.95 0.80
30 min 17.87 25.02 28.12 46.40 35.08 59.64 0.95 0.81
45 min 12.87 18.28 23.72 40.32 20.94 37.27 0.98 0.78
60 min 19.26 27.16 29.15 48.24 38.03 67.69 0.94 0.78
75 min 24.96 35.44 38.64 64.92 46.95 83.57 0.91 0.78
90 min 24.89 36.09 44.32 75.12 50.28 90.50 0.89 0.77
105 min 27.22 40.01 52.86 89.33 53.73 98.33 0.88 0.76
120 min 28.33 41.65 54.57 91.13 55.61 101.77 0.87 0.75
Table 6
LSTM MAD, MAPE, RMSD and R2 comparison between testing and exploitation prediction performance.
Pred. horizon MAD MAPE RMSD R2

Testing Exploitation Testing Exploitation Testing Exploitation Testing Exploitation

15 min 19.63 28.07 24.43 40.19 35.38 62.27 0.95 0.79
30 min 17.95 25.49 25.12 40.44 34.69 60.36 0.95 0.80
45 min 12.80 18.18 19.76 31.22 20.42 36.76 0.98 0.77
60 min 18.86 26.97 27.43 43.89 37.69 68.22 0.94 0.76
75 min 23.41 33.48 36.62 57.86 46.71 84.55 0.91 0.76
90 min 24.30 34.75 39.43 65.26 50.01 91.02 0.89 0.75
105 min 26.10 37.58 43.89 71.76 52.92 96.84 0.88 0.74
120 min 27.61 40.31 47.68 75.57 54.78 101.34 0.87 0.73
between 74% and 85% for LSTM. Finally, the R2 deteriorates between
15% and 20% for 1D-CNN, and between 16% and 21% for LSTM but,
most importantly, it immediately deteriorates below 0.8.

As explained in Section 3.2, and following the methodology pre-
sented in Fig. 2, different TL techniques are then used to tune the ANN
models with the remaining portion of the real, but limited, dataset
of PV power generation, investigating their effectiveness to improve
the prediction performance of PV power generation always against the
same real data. The tuning set of the real dataset is therefore used to
re-train the ANN models with the TL methodology, while the inference
set of the real dataset is used for testing, and comparing the prediction
performance on real data of TL to that of the exploited models.

As presented in Section 3.3, different TL techniques are used: one
where only the first layer is retrained, one where only the last layer
is retrained, and one where all layers are retrained. For each ANN,
the prediction performance of the original models presented in the
exploitation phase, without TL, and the prediction performance of the
three different TL techniques, is presented in the following figures.
For the 1D-CNN, Figs. 19–22 present the MAD, MAPE, RMSD and
R2 performance of the different TL techniques. Figs. 23–26, on the
other hand, present the MAD, MAPE, RMSD and R2 performance of the
ifferent TL techniques applied to the LSTM.

For 1D-CNN, the best performance is obtained with the second
L model (where only the second layer is retrained) which, however,
elivers only marginal performance improvement: up to 30 min for
AD and RMSD, and up to 75 min for R2, while for MAPE this TL
odel outperforms for up to 2 h and then converges. For LSTM on the

ther hand, it is the third TL model (where all layers are retrained),
15

hich outperforms the others, and which is able to deliver significant
performance improvement: up to 90 min for MAD and RMSD, up to
120 min for R2, while for MAPE it underperforms for the first 30 min
and remains more performing for up to 2 h.

The performance of the 1D-CNN model presented in the test, ex-
ploitation and best TL phases, are compared in Table 7. Similarly, for
LSTM the achieved results are presented by Table 8.

The difference in variation of performance of the 1D-CNN and LSTM
models from exploitation to TL are summarized in Table 9. A positive
variation indicates an improvement in the application of TL, while
negative variation indicates a worse performance of TL.

When applying TL to the 1D-CNN, at the first 15 min forecast the
MAD improves by 12.0%, RMSD by 17.1% and R2 by 21.9%, while the
MAPE is slightly worst by 5.5%. At the 30 min forecast, the MAD im-
provement decreases to 3.6%, RMSD to 2.9% and R2 to 9.1%, while the
MAPE improves to 10.9%. After 30 min however, the MAD and RMSD
show a worsening in performance, while the R2 continues to remain
better until 75 min. After 90 min, all three indicators underperform
with TL. The MAPE instead slightly underperforms again at 45 min to
−3.1%, but then improves continuously until 105 min, and at 2 h its
improvements appears to start decreasing.

For the LSTM on the other hand, TL appears to be even more
effective. For the 15 min forecast the MAD improves by 15.4%, MAPE
by 39.5%, RMSD by 18.2% and R2 by 20.6%. For the 30 min forecast
the MAD remains at 9.9%, MAPE by 26.5%, RMSD at 6.9% and R2 at
14.1%. At 45 min, MAPE slightly worsens to −7.2%, but then improves
again immediately, and performance remains better for all indicators
until 90 min. After 90 min, the MAD and RMSD appear to converge,
with differences in performance between exploitation and TL leveling

2
out around 0. R with TL, on the other hand, continues to overperfom
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Fig. 19. 1D-CNN MAD comparison with TL.
Fig. 20. 1D-CNN MAPE comparison with TL.
Fig. 21. 1D-CNN RMSD comparison with TL.
up to 2 h, with stable values of around 10% better than without
TL. Similarly, also MAPE continues to overperfom up to 2 h, with
performance actually improving up to 44% better than without TL.

The above results therefore clearly show that TL brings limited
improvement to the 1D-CNN, but consistent improvement to LSTM,
which remains the best performing ANN even after TL.

5. Conclusion

The purpose of this investigation is to present an innovative method-
ology for PV power generation forecasting with ANNs, when only a
limited amount of real data is available. The novelty of this inves-
tigation lies in the exploitation of a PV power generation simulator,
which accurately models a real PV installation, to create an artificial,
16
but accurate and realistic, dataset of PV power generation large enough
to effectively train and test different ANN models, which are then
exploited on a portion of real, but limited, dataset of the real power
generated by the real PV installation on which the simulator is mod-
eled, to evaluate their prediction performance against real data. Further
novelty is brought by the application of different TL techniques to tune
the ANN models with the remaining portion of the real, but limited,
dataset of PV power generation, investigating their effectiveness to
improve the prediction performance of PV power generation always
against the same real data.

A variety of features obtained from different meteorological data are
first analyzed through feature selection methodologies in order to iden-
tify those which most impact the accuracy of data prediction forecast.
The variables which most impact power prediction are found to be GHI,
humidity, temperature, dew point, UV index, sunshine duration and
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Fig. 22. 1D-CNN R2 comparison with TL.
Fig. 23. LSTM MAD comparison with TL.
Fig. 24. LSTM MAPE comparison with TL.
time of the day. The PV power generation simulator presented by [26],
which is accurately modeled to replicate real PV installations, is then
used to create an artificial, but accurate and realistic, dataset of PV
power generation large enough to effectively train and test different
ANNs. This artificial, but accurate and realistic dataset, together with
the meteorological features previously selected, is used for the initial
training and testing of the two different ANNs: 1D-CNN and LSTM.

The resulting ANN models, trained and tested on the simulated
dataset, are then exploited on a portion of real, but limited, dataset
of the real power generated by the real PV installation on which the
simulator is modeled, to evaluate their prediction performance against
real data. Finally, different TL techniques are used to tune the ANN
models with the remaining portion of the real, but limited, dataset
of PV power generation, investigating their effectiveness to improve
17
the prediction performance of PV power generation always against the
same real data. The methodology has been tested and validated on
a real-life PV installation located on the rooftop of a building of our
university campus in Turin, Italy.

For LSTM, the best identified architecture consists of three recur-
rent layers, where the first two are composed by 100 units, with a
hyperbolic activation function, and a third layer composed of 24 units
that have a tanh activation function, and the output layer composed by
100 units with a linear activation function. Furthermore, TL applied to
this LSTM architecture allows improvement in performance, especially
when applying the third TL model, where all layers are retrained. The
improvement is significant in the short-term (up to 30 min), and slight
up to 120 min.

For 1D-CNN, the best identified architecture consists of two 1-
dimensional convolution layer with filter size equal to 170, kernel size
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Fig. 25. LSTM RMSD comparison with TL.
Fig. 26. LSTM R2 comparison with TL.
Table 7
1D-CNN MAD, MAPE, RMSD and R2 comparison between testing, exploitation and best
TL prediction performance.

Pred. MAD MAPE

horizon Testing Exploitation TL Testing Exploitation TL

15 min 19.27 27.36 24.09 25.37 37.67 39.75
30 min 17.87 25.02 24.12 28.12 46.40 41.32
45 min 12.87 18.28 18.79 23.72 40.32 41.58
60 min 19.26 27.16 28.12 29.15 48.24 46.61
75 min 24.96 35.44 37.19 38.64 64.92 49.83
90 min 24.89 36.09 38.58 44.32 75.12 51.13
105 min 27.22 40.01 42.19 52.86 89.33 53.21
120 min 28.33 41.65 43.06 54.57 91.13 56.83

Pred. RMSD R2

horizon Testing Exploitation TL Testing Exploitation TL

15 min 35.70 62.48 51.77 0.95 0.80 0.98
30 min 35.08 59.64 57.88 0.95 0.81 0.88
45 min 20.94 37.27 38.74 0.98 0.78 0.81
60 min 38.03 67.69 69.98 0.94 0.78 0.82
75 min 46.95 83.57 86.86 0.91 0.78 0.78
90 min 50.28 90.50 95.53 0.89 0.77 0.76
105 min 53.73 98.33 104.77 0.88 0.76 0.72
120 min 55.61 101.77 108.44 0.87 0.75 0.68

equal to 2, a hyperbolic tangent as activation function, followed by a
flatten and dense layer. Finally, a fully connected layer with 100 units is
added at the end of the network, using a hyperbolic tangent. The output
layer was made up of 16 outputs, the number of epochs equals to 500
and the batch size is equal 200. TL applied to this 1D-CNN architecture
allows some improvement in performance, when applying the second
TL model, where only the second layer is retrained. This improvement
though is only slight, and only in the short-term (up to 30 min).
18
Table 8
LSTM MAD, MAPE, RMSD R2 comparison between testing, exploitation and best TL
prediction performance.

Pred. MAD MAPE

horizon Testing Exploitation TL Testing Exploitation TL

15 min 19.63 28.07 23.75 24.43 40.19 24.32
30 min 17.95 25.49 22.98 25.12 40.00 29.91
45 min 12.80 18.18 17.54 19.76 31.22 33.47
60 min 18.86 26.97 25.84 27.43 43.89 35.12
75 min 23.41 33.48 32.54 36.62 57.86 38.22
90 min 24.30 34.75 34.51 39.43 65.26 37.84
105 min 26.10 37.58 37.58 43.89 71.76 39.73
120 min 27.61 40.31 40.03 47.68 75.57 42.12

Pred. RMSD R2

horizon Testing Exploitation TL Testing Exploitation TL

15 min 35.38 62.27 50.95 0.95 0.79 0.95
30 min 34.69 60.36 56.20 0.95 0.80 0.91
45 min 20.42 36.76 35.94 0.98 0.77 0.85
60 min 37.69 68.22 66.33 0.94 0.76 0.85
75 min 46.71 84.55 83.14 0.91 0.76 0.84
90 min 50.01 91.02 90.52 0.89 0.75 0.83
105 min 52.92 96.84 97.37 0.88 0.74 0.82
120 min 54.78 101.34 101.34 0.87 0.73 0.81

Results therefore show how 1D-CNN and LSTM ANNs can success-
fully be used for PV power generation predictions even if trained on
simulated datasets. Furthermore, the application of TL techniques has
proved useful to improve the performance of PV power forecasting,
both in the short-term (15-30 min, for 1D-CNN) and in the mid-term
(up 2 h, for LSTM). These conclusions open some interesting reflec-
tions on the advantages and disadvantages coming from the proposed
methodology.
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Table 9
Variation in performance variation from exploitation to TL for 1D-CNN and LSTM.
Pred. horizon 1D-CNN variation LSTM variation

MAD [%] MAPE [%] RMSD [%] R2 [%] MAD [%] MAD [%] RMSD [%] R2 [%]

15 min 12.0 −5.5 17.1 21.9 15.4 39.5 18.2 20.6
30 min 3.6 10.9 2.9 9.1 9.9 26.5 6.9 14.1
45 min −2.8 −3.1 −3.9 3.3 3.5 −7.2 2.2 10.1
60 min −3.5 3.4 −3.4 4.9 4.2 20.0 2.8 12.1
75 min −4.9 23.2 −3.9 0.0 2.8 33.9 1.7 10.4
90 min −6.9 31.9 −5.6 −1.7 0.7 42.0 0.5 10.7
105 min −5.4 40.4 −6.6 −5.2 0.0 44.6 −0.5 11.0
120 min −3.4 37.6 −6.6 −8.9 0.7 44.3 0.0 11.3
An advantage provided by this investigation is the understanding
hat a PV power generation simulator, which accurately models a real
V installation, can be trusted to create an artificial, but accurate and
ealistic, dataset of PV power generation large enough to effectively
rain and test different ANN models, and that these models can then
e exploited on a more limited, but real dataset of the real power
enerated by the real PV installation on which the simulator is mod-
led, to predict with acceptable accuracy the PV power generation
f the PV installation. This is a very interesting advantage, since it
llows to overcome the difficulty of obtaining large, reliable datasets
f real data, which is required to train ANN models to an acceptable
evel of accuracy. Another minor advantage of this investigation is the
nderstand that 1D-CNN and, especially, LSTM are two ANN models
hich can successfully be used for PV power generation predictions
ven if trained on simulated datasets. This advantage allows future
orks and applications to focus on ANN models which have been
roved to perform positively, and also provide some insight on what
arameters are successful with these models, thus reducing any time
hich would otherwise be dedicated to trial and error activities try-

ng to find the most suitable models and their parameters. A further
dvantage provided by this investigation is the understanding that the
pplication of TL techniques on these 1D-CNN and LSTM models can
e useful to improve the performance of PV power forecasting, both in
he short-term (15-30 min, for 1D-CNN) and in the mid-term (up 2 h,
or LSTM), also with limited real data available. This advantage is quite
mportant for two reasons: first of all, it can avoid future applications
rom going through the lengthy process of training new ANNs from
cratch, thus saving potentially months of activity. Furthermore, in
ase future applications wish to apply ANNs for PV power forecasting
f a specific PV installation, but do not have a large, reliable dataset
f real data, which is required to train ANN models to an acceptable
evel of accuracy, if they have an ANN already trained on another PV
nstallation, they can consider applying TL techniques on the existing
NN, and potentially receive good performance both in the short-term

15-30 min) and in the mid-term (up 2 h). This last advantage, however,
s laid with uncertainty.

On the other hand, some disadvantages provided by this investiga-
ion is the understanding that the whole methodology was successful
ut that it relied on the exploitation of a PV power generation simula-
or, which accurately models a real PV installation. If such an accurate
imulator is unavailable, it is unknown if similar positive results are still
chievable. If, for example, future applications wish to leverage this
ethodology to adapt an ANN already trained on another, different,
V installation, TL could be successful but there is no actual data
upporting this possibility. However, this uncertainty will be the subject
f future works and investigations.
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