
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

To Spike or Not To Spike: A Digital Hardware Perspective on Deep Learning Acceleration / Ottati, Fabrizio; Gao, Chang;
Chen, Qinyu; Brignone, Giovanni; Casu, Mario Roberto; Eshraghian, Jason; Lavagno, Luciano.. - In: IEEE JOURNAL
ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS. - ISSN 2156-3365. - ELETTRONICO. -
13:4(2023), pp. 1015-1025. [10.1109/JETCAS.2023.3330432]

Original

To Spike or Not To Spike: A Digital Hardware Perspective on Deep Learning Acceleration

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JETCAS.2023.3330432

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983425 since: 2023-11-08T07:22:21Z

IEEE



1

To Spike or Not To Spike: A Digital Hardware
Perspective on Deep Learning Acceleration

Fabrizio Ottati∗† , Graduate Student Member IEEE, Chang Gao‡ , Member IEEE,
Qinyu Chen§ , Member IEEE, Giovanni Brignone† , Graduate Student Member IEEE, Mario R. Casu† ,

Senior Member IEEE, Jason K. Eshraghian¶ , Member IEEE and Luciano Lavagno† , Senior Member IEEE

Abstract—As deep learning models scale, they become increas-
ingly competitive from domains spanning from computer vision to
natural language processing; however, this happens at the expense
of efficiency since they require increasingly more memory and
computing power. The power efficiency of the biological brain
outperforms any large-scale deep learning (DL) model; thus,
neuromorphic computing tries to mimic the brain operations, such
as spike-based information processing, to improve the efficiency
of DL models. Despite the benefits of the brain, such as efficient
information transmission, dense neuronal interconnects, and the
co-location of computation and memory, the available biological
substrate has severely constrained the evolution of biological
brains. Electronic hardware does not have the same constraints;
therefore, while modeling spiking neural networks (SNNs) might
uncover one piece of the puzzle, the design of efficient hardware
backends for SNNs needs further investigation, potentially taking
inspiration from the available work done on the artificial neural
networks (ANNs) side. As such, when is it wise to look at the brain
while designing new hardware, and when should it be ignored?
To answer this question, we quantitatively compare the digital
hardware acceleration techniques and platforms of ANNs and
SNNs. As a result, we provide the following insights: (i) ANNs
currently process static data more efficiently, (ii) applications
targeting data produced by neuromorphic sensors, such as
event-based cameras and silicon cochleas, need more investigation
since the behavior of these sensors might naturally fit the SNN
paradigm, and (iii) hybrid approaches combining SNNs and ANNs
might lead to the best solutions and should be investigated further
at the hardware level, accounting for both efficiency and loss
optimization.

Index Terms—Artificial Neural Networks, Deep Learning,
Digital Hardware, Neuromorphic Computing, Spiking Neural
Networks.

I. INTRODUCTION

From smartphones to televisions and cars, deep learning
(DL) has become pervasive in our daily lives. Many modern
DL models, especially large language models (LLMs) [1],
recommender systems [2], and vision transformers [3] require
huge amounts of power and energy for both training and
inference. For instance, Vit-G/14 [4], a top performing model
in object recognition, requires 2.86GFLOP for a single
inference on ImageNet [5]. The model contains 184.3 billions

∗ Corresponding author: fabrizio.ottati@polito.it
† Department of Electronics and Telecommunications Engineering, Politec-

nico di Torino, Torino, Italy.
‡ Department of Microelectronics, Delft University of Technology, Delft,

Netherlands.
§ Institute of Neuroinformatics, University of Zürich and ETH Zürich,

Zürich, Switzerland.
¶ University of California Santa Cruz, Santa Cruz, California, USA.

of parameters, and optimizing these parameters has also a non
negligible environmental impact [6]. In fact, Vit-G/14 has a
training time of 3 · 104 TPUv3 days [4]; given that a TPUv3
consumes an average of 220W[7], the energy consumption
for training can be estimated to be 159MWh. This training
is performed on 220W highly-efficient and specialized TPUs,
while the brain runs within a 20W power budget and it is able
to perform multiple tasks at once.

Tackling these challenges requires more efficient neural
network models and hardware. Many neuromorphic engineers
are looking at how the brain might offer us a blueprint for
making DL more efficient [8]. This is because the brain
is capable of causal reasoning, integrating various sensory
modalities in executing long-term planning, and providing
sensorimotor feedback to enable us to engage with our
environments actively. Moreover, it does so far more efficiently
than any combination of large-scale DL models currently
available. The pursuit of brain-inspired computing has triggered
a surge in the popularity of spiking neural networks (SNNs) [9]
with the ultimate goal of realizing efficient artificial intelligence
(AI). For instance, SpikeGPT [10], the first spiking LLM, is
estimated to use 22× fewer operations in its execution when
compared to its conventional non-spiking counterpart. Thus,
model optimizations may ultimately outweigh the low-level
hardware issues discussed in this paper.

At the inception of neuromorphic computing, analog-domain
computation was shown to be a promising substrate for
the deployment of brain-inspired hardware. The metal-oxide-
semiconductor transistor in the sub-threshold regime can
emulate the diffusion-based dynamics of neuronal ion channels.
At the same time, memristive technologies reproduce key
features of biological neurons [11], [12]. However, analog
designs suffer from scalability issues due to transistor mismatch
and noise, and long design time due to reduced electronic
design automation (EDA) tool support [13]. In contrast, in
deep sub-micron technologies, digital designs benefit from
strong EDA support and reliable operation. While research on
analog computation and in-memory processing has flourished
over the past decade, digital accelerators are easier to design
and deploy in the immediate short term.

This paper quantitatively reviews the broad landscape of
digital accelerators for both SNN and conventional artificial
neural network (ANN) accelerators. To analyze spike-based
processing pipelines in the machine learning context, we
segment the analysis into static and temporal (e.g., sequence
learning) workloads as follows:

https://orcid.org/0000-0003-2989-3634
https://orcid.org/0000-0002-3284-4078
https://orcid.org/0009-0005-9480-6164
https://orcid.org/0000-0002-1656-8376
https://orcid.org/0000-0002-1026-0178
https://orcid.org/0000-0002-5832-4054
https://orcid.org/0000-0002-9762-6522


2

• Section II analyzes the low-level neuron models employed
in SNNs and ANNs.

• Section III introduces the metrics and used to compare the
hardware accelerators from the ANN and SNN domains,
and an energetic model to approximately estimate how
static and sequential tasks would perform on SNN and
ANN hardware.

• Section IV analyzes and compares the hardware accel-
eration of convolutions for static vision workloads (in
particular, object recognition), and then compares state-
of-the-art (SOTA) digital ANN and SNN accelerators.

• Section V analyzes and compares the hardware accel-
eration of temporal workloads, i.e., tasks that involve
sequences of inputs evolving in time.

We derive the following conclusions:
• Based on the current SOTA digital chips results and

measurements on static data classification tasks, ANNs
perform better than SNNs in processing efficiency and
classification accuracy. Since ANNs Pareto dominate
SNNs, we claim that SNNs do not suit static tasks. A
key reason is that SNN classification requires multiple
timesteps, resulting in more operations than ANN since
the latter is computed in a single pass.

• On temporal tasks, SNNs show energy efficiency com-
parable to ANN chips; furthermore, only in the SNN
domain there is an example of on-chip training and
learning on temporal sequences with competitive task
performance [14]; hence, further investigation in this di-
rection is needed, together with model training techniques
to improve performance (e.g., classification accuracy) and
system energy consumption.

• Classification-based workloads employing bio-inspired
sensors data, such as event cameras [15] and silicon
cochleas [16], naturally fit the stateful nature of spiking
neurons, but SOTA models and accelerators are not
exploring this kind of tasks, which could lead to an
effective advantage related to SNNs models.

• The optimal solution for a given classification task might
be a heterogeneous model, made of ANN and SNN parts
that operate synergically together. Further research is
needed in this direction.

II. NEURON MODELS

A basic introduction to the SNN and ANN models employed
in this analysis is provided. Using these models, a quantitative
estimation of the energy consumption of these neurons on
vision and sequence learning tasks is made.

A. The spiking neuron

The discrete leaky integrate and fire (LIF) neuron model is
among the most commonly used models in the literature [9],
and is described by:

vl,i[t] = β · vl,i[t− 1] + ul,i[t]− ϑ · Sl,i[t− 1] (1)

vi[t] is the neuron state, β is the decay coefficient associated
with the leakage, and Si[t] is the output spike. The l suffix

denotes the l-th layer in the network. The input current ul,i[t]
is given by:

ul,i[t]
∆
=

∑
j

wl,ij · Sl−1,j [t] (2)

The output spike is modeled by:

Si[t] =

{
1 if vi[t] ≥ ϑ
0 otherwise

Si[t] is equal to 1 at spike time (i.e., if at timestamp t the
state vi[t] is larger than the threshold ϑ) and 0 elsewhere.

Note that since Sl−1,j [t] is either 0 or 1, the input current
ul,i[t] is the sum of the synaptic weights of the l − 1-th layer
neurons spiking at timestamp t.

Equation (1) requires three inputs to update the state v[t]: the
weights wij , the previous value v[t− 1] and the input spikes
Sj [t]. This means that an SNN hardware processing element
(PE) needs access to 3 memory structures to retrieve the inputs,
the state, and the weights.

B. The artificial neuron

The most common artificial neuron model [17] is static in
time, i.e., it does not preserve any state between successive
inputs. A particular class of ANNs, namely recurrent neural
networks (RNNs), employ special gates that introduce a state
in the neuron [17]. Here, the stateless ANN neuron is analyzed
while in Section V, recurrent cells are discussed.

The artificial neuron model is:

zl,i = φ(
∑
j

zl−1,j · wl,ij + bl,i) (3)

The weights are multiplied by the inputs from the previous
layer, zl−1,j , and accumulated; an optional bias term bl,j is
added in (3). An activation function, φ(x), is applied to the
accumulated value. The specific choice of activation function
often depends on the application, layer, and the type of neural
network [17].

Distinct from (1), only two inputs are needed in (3): the
previous layer activations zl−1,j and the current layer weights
wl,ij . This implies that only two memory structures are needed
for the artificial PE being implemented in hardware: this repre-
sents an advantage over SNN implementations in both memory
(and area) occupation of the circuit, and energy consumption,
since memory accesses are the most energy-intensive operations
in modern digital hardware architectures[18].

III. METHODOLOGY

In ANN architectures, the most common operation is the
multiply and accumulate (MAC) [19], which includes the
input activation multiplication by the corresponding weight
and the subsequent accumulation. We count each MAC as
two operations, since it computes a multiplication and an
addition, even if in hardware they might be merged. This is
to isolate the contribution of each computation to total power
consumption, and is the same approach adopted by the ANN
hardware research considered in this analysis [20]–[23]. In



3

TABLE I: Energy consumption comparison between integer add,
multiply and memory operation on on-chip static random access
memory (SRAM) caches [18], targeting a 45 nm CMOS process.

Energy Energy density
[pJ] [pJ/B]

Add 8 b 0.03 0.03
Multiply 8 b 0.20 0.20
Read 64 b (8 kB capacity) 10.00 2.50

SNN hardware, no multiplication is performed [9]: a weight
is accumulated if there is an input spike, otherwise it is not.
Hence, this is considered a single operation in our analysis.

In the SNN literature, there are numerous references to
the synaptic operation (SynOP) metric [24], [25]. However,
there is little consensus on its formal definition. Given the
ambiguous definition of this metric, it is not used to measure
the efficiency of an SNN accelerator in this work. In addition
to ambiguity, the SynOP metric does not tend to account for
stateful operations (state access and updates).

To obtain an estimation of the energy cost of SNN and ANN
architectures, two simple mathematical models are provided in
Sections IV and V. These allow us to approximately compare
ANN and SNN hardware accelerators a priori. While evaluating
the actual hardware performance, considering efficiencies in
terms of operations per second per watt (OPS/W) is not
enough: on static data, an SNN would need multiple time steps
to perform a classification, while an ANN accelerator performs
an inference in a single forward-pass. To ensure fairness, this
paper adopts the energy consumption per inference as the most
balanced metric for comparison; latency and accuracy-related
metrics are accounted for separately.

Sparsity is ignored in the energy consumption analysis
performed in Sections IV and V, since modern ANN acceler-
ators have complex and very efficient sparse dataflows [20],
[26], [27]; however, the sparsity handling capability of SOTA
accelerators is included in the energy consumption results
shown in Tables II and III.

IV. STATIC TASKS

Equation (2) embeds one of the major advantages of SNN
processing, namely the removal of multiplication between the
input feature map (i.e., spikes) and the synaptic weights. In
theory, this leads to both hardware and energy savings. However,
considering the data in Table I, the energy consumption
for reading a byte from the on-chip buffer, implemented
as SRAM, exceeds the cost of an 8 b integer multiplication.
Hence, a multiply-free SNN digital hardware accelerator is
not necessarily more efficient than an ANN accelerator, given
that SNNs require additional memory accesses to update the
neuron states.

A. Energy model

To evaluate these mathematical models quantitatively on
static tasks, the convolution operations shown in Algorithms 1
and 2 are used as benchmarks, since convolution is the
fundamental operation employed in the large majority of current

hardware accelerators for object recognition, detection and so
on [22], [23], [28], [29]. In more recent approaches, transformer
architectures are emerging as better-performing vision models
[30]; as such, a transformer accelerator [20] is considered in
the final results section.

Algorithm 1 SNN convolution of a single window and
timestamp.

Require: S, β, ϑ ▷ Stride, leakage, threshold.
Require: weights ▷ Convolution kernel weights.
Require: states ▷ Neurons states.
Require: ifmap, ofmap ▷ Input and output feature maps.
Require: (co, ho, wo) ▷ Output value coordinates.

1: I ← 0 ▷ Input synaptic current.
2: for ci ← 0, CI − 1 do ▷ Input channels.
3: for hk ← 0, HK − 1 do ▷ Kernel height.
4: for wk ← 0, WK − 1 do ▷ Kernel width.
5: hi ← ho ∗ S + hk
6: wi ← wo ∗ S + wk

7: if ifmap[ci][hi][wi] ̸= 0 then
8: I ← I + weights[co][ci][hk][wk]
9: end if

10: end for
11: end for
12: end for
13: m← states[co][ho][wo] ∗ β + I ▷ State update.
14: if m ≥ ϑ then
15: m← m− ϑ
16: ofmap[co][ho][wo] = 1
17: else
18: ofmap[co][ho][wo] = 0
19: end if
20: states[co][ho][wo]← m

With respect to Algorithms 1 and 2, all activations, weights,
and states are quantized to 8 b, while spikes are treated as
unary quantities. Consider Algorithm 1:

• CI ·HK ·WK weights and spikes are read from memory,
where CI is the number of channels in the input feature
map, and HK and WK represent the shape of the
convolution kernel. For the sake of clarity, this quantity
is denoted with Nrd.

Nrd
∆
= CI ·HK ·WK

Assuming that 8 spikes are encoded to an 8 b memory
word in the spike scratchpad (i.e., the memory structure
used to host the input and output data near the PE), the
energy associated with a spike memory operation (either
read or write) can be approximated to Erd/8, where Erd

(Ewr) is the energy consumption of a memory read (write)
considering the 8 kB cache field in Table I. The energy
consumption associated with the memory accesses of
weights and spikes is denoted with Erdtot :

Erdtot = Nrd · (Erd + Erd/8)

• CI · HI ·WI additions are performed on the synaptic
current. The energy associated to checking if the spike



4

(ifmap[ci][hi][wi]) is equal to 1 is negligible since its cost
is included in the memory access performed to retrieve
the spikes. Hence, this energy is denoted with Eacc.

Eacc = Nrd · Eadd

• Next, one state has to be retrieved from memory, mul-
tiplied by the leakage, β, added to the synaptic current,
thresholded (compared against the threshold, ϑ, and, if
higher, reduced by ϑ via subtraction) and written back. In
the worst case, this energy denoted with Estate, is given
by:

Estate = Erd + Emult + Eadd + Ecomp + Esub + Ewr

• The output spike must then be written to the scratchpad.
This energy is denoted with Eofmap.

Eofmap = Ewr/8

Hence, the total energy involved in an SNN convolution,
defined as ESNN, is:

ESNN = Erdtot + Eacc + Estate + Eofmap

The following values are employed for numerical estimation:
the shape of the convolution, i.e., of the input feature map
window to be evaluated in order to compute a single output
feature map value, is (CI ,HI ,WI ) = (512, 3, 3), which means
the number of memory reads is Nrd = 4608. For memory
operations, additions/subtractions, and multiplications, the data
from Table I are used. It has to be remarked that, in this
analysis, we do not consider any memory optimization (e.g.,
buffering on registers) since both ANNs and SNNs access the
memories with the same window patterns; thus, these would
bring similar advantages to both of them, without impacting the
comparison. The energy consumed by a threshold comparison,
Ecomp, is assumed to be the same as that of an 8 b addition.
This is a reasonable assumption, since comparison commonly
employs a subtraction. This leads to:

ESNN = 13.1 nJ

The energy consumption obtained above assumes a dense
input feature map, i.e., all input neurons are firing. To take
into account sparse firing activity, a coefficient γSNN can be
introduced that reflects the proportion of neurons in the feature
map that are firing at a given time, and the hardware overhead
due to the sparse data structures employed. Hence:

ESNN = 13.1 nJ · γSNN

0 < γSNN ≤ 1

Consider now the convolution operation performed in an
ANN, which is reported in Algorithm 2.

Following the same approach adopted for the SNN convolu-
tion:

• Nrd weights and inputs are read from memory:

Erdtot = 2Nrd · Erd

Algorithm 2 ANN convolution of a single window.

1: a← 0 ▷ Activation.
2: for ci ← 0, CI − 1 do
3: for hk ← 0, HK − 1 do
4: for wk ← 0, WK − 1 do
5: hi ← ho ∗ S + hk
6: wi ← wo ∗ S + wk

7: a← a +
8: weights[co][ci][hk][wk] ∗ ifmap[ci][hi][wi]
9: end for

10: end for
11: end for
12: z = φ(a) ▷ Non-linear activation.
13: ofmap[co][ho][wo] = ψ(z) ▷ Quantisation.

• The same number of additions and multiplications are
performed, and this energy is denoted with EMAC.

EMAC = Nrd · (Eadd + Emult)

• The obtained value is then processed by the nonlinear
activation function φ(z). This energy is denoted with Eact.

• The result is quantized in order to be processed by
the next layer in the network. The quantization step is
modeled through a function ψ(z), with an associated
energy cost Equant, which is estimated as an 8 b addition
(for instance, the rectified linear unit (ReLU) activation
is a 0-thresholding).

• Finally, the result is written to the scratchpad memory:

Eofmap = Ewr

The total energy consumption of an ANN convolution is:

EANN = 24.1 nJ · γANN

A similar sparsity coefficient can be introduced, denoted
with γANN. The approximations made for Equant and Eact

are acceptable since their contribution to the total energy is
negligible, given that they are performed only on the final
result of the convolution.

Hence, despite the additional memory accesses and state
operations involved in SNNs, ANN convolutions consume
1.84× more energy. Of course, this result depends heavily on
the convolution filter depth and size, but it gives a reasonable
approximation of the different costs between ANN and SNN
processing, as highlighted in Section IV-B.

However, the energy estimation obtained for the SNN
corresponds to a single time step! When dealing with static
data, such as images, an SNN needs multiple time steps (T , for
instance), since the input image pixels are encoded to multiple
spikes in time [9]. Hence, the actual energy consumption
associated with a convolution operation in an SNN must be
multiplied by the number of time steps needed to perform an
inference:

ESNN = 13.1 nJ · T · γSNN

Since T > 1 for any SNN, otherwise there would be no
temporal evolution in the network and it would be equal to



5

TABLE II: DL accelerators evaluated on ImageNet [5]. The best efficiency is considered for each design, and the associated task accuracy is
evaluated under the same conditions. Mixed indicates an accelerator running both SNN and ANN processing elements.

ANN Transf. ANN CNN SNN Mixed

Work Keller’23 [20] Park’22 [23] Mo’21 [21] SNPU’23 [28] C-DNN’23 [29]
Process [nm] 5 7 28 28 28
Area [mm2] 0.2 4.7 1.9 6.3 20.3

Supply voltage [V] 1.1 1.0 0.9 1.1 1.1
Clock frequency [MHz] 1760 1196 470 200 200

Data format INT4-VSQ [20] INT8 INT8 INT8, INT4 INT1-16, INT4/8

Network model DeiT-Base MobileNetTPU ResNet50 ResNet18 ResNet50
Parameters [M] 768 3 25 12 25

Operations/inference [GOP] 35.2 17.4 13.3 61.4 7.4
Task accuracy [%] 80.5 71.7 76.9 66.8 77.1

Throughput [FPS] 56 3433 120 245 123
Power [mW] 56 5114 132 478 34

Energy/inference [mJ] 1.0 1.5 1.1 2.0 0.3

heavily quantized ANNs, SNNs are less efficient on static
vision data than ANNs, if the same degree of sparsity-awareness
(γSNN = γANN) is taken into account. This conclusion is
validated by the data shown in Table II, which includes SOTA
accelerators at the time of writing. The given results account
for how the hardware handles sparse feature maps, as stated
by the author of the papers considered [20]–[23], [28], [29].

B. SOTA accelerators

The literature provides many overviews of hardware ac-
celerators for SNNs, ranging from digital hardware to in-
memory computing (IMC) and mixed-signal architectures [24],
[31], [32]. An up-to-date list of SNN hardware accelerators
and processors can be found in [33]. In these reviews [24],
different coding schemes for SNNs, such as latency coding
and phase coding [9], are explored; however, these still lack in
classification accuracy performance with respect to rate coding,
even if they represent an interesting approach that could provide
an advantage to SNNs.

Most SNN hardware reviews are missing an important
feature: an objective comparison with SOTA ANN hardware
accelerators. Most SNN accelerators are benchmarked on static
datasets; such datasets are inappropriate for proper system
characterization, since (i) they are often considered trivial or
“solved” datasets (e.g., CIFAR-10, MNIST) [24], and (ii) ANNs
are more efficient on static data.

Table II reports SOTA ANN vision accelerators and the best
performing SNN accelerator [28] (SNPU’23). All accelerators
run the same task: object classification on ImageNet [5].
SNPU’23 [28] is chosen as the SNN reference since it is
the only accelerator targeting complex vision workloads such
as ImageNet. In addition to SNPU’23, C-DNN’23 [29] is
analyzed. This chip employs both ANN and SNN PEs to
maximize inference efficiency by inferring part of the neural
network layers on the SNN hardware and part of these on the
ANN hardware. In fact, mixed neural models employing both
artificial and spiking backbones are arising as high performance
implementations which allow to improve SNNs accuracy [34],
[35] on vision tasks, beyond tackling more complex workloads
such as object detection. Moreover, C-DNN’23 also provides

on-chip training capabilities, which most ANN accelerators
lack.

Table II considers the most efficient SNN digital hardware
accelerator, SNPU’23 [28], and a mixed-topology design, C-
DNN’23 [29]. These are compared to various ANN accelerators
for object recognition, which target both transformer-based
models [30] and convolutional neural networks [36]. Different
observations can be made:

• The model employed by SNPU’23 [28], ResNet18 [36]
SNN, is the lowest performing model in terms of classifi-
cation accuracy: 66.8%, against 80.5% (Keller’23 [20]),
71.68% (Park’22 [23]), 76.92% (Mo’21 [21]) and 77.1%
(C-DNN’23 [22]).

• The energy per inference of SNPU’23 [28] is the highest
among all the designs (1.95mJ/inf), even considering
an ANN accelerator implemented on the same 28 nm
complementary metal-oxide-semiconductor (CMOS) node,
i.e., Mo’21 [21] (0.46mJ/inf).

Figure 1 shows the energy consumption per inference and the
performance vs. the top-1% classification error on ImageNet,
for each accelerator reported in Table II. The performance
is expressed as the initiation interval, i.e., the ratio between
the clock frequency and the throughput. It is the number
of clock cycles between two inferences at the output at the
steady state and it corresponds to the latency of non-pipelined
accelerators. It is worth noting that this performance metric is
totally architecture-dependent and allows for more immediate
comparison between accelerators implemented with different
technological process. While SNPU’23 is considered the SOTA
SNN accelerator at the time of writing, it is nonetheless Pareto-
dominated by all ANN accelerators, both in the energy vs. error
(Fig. 1a) and in the performance vs. error (Fig. 1b) spaces.
This is because SNPU’23 requires 16 timesteps to process a
single input image; hence, even if the SNPU’23 model contains
less than half of the parameters of the Mo’21 one, it requires
4.6× operations per inference.

For what concerns C-DNN’23 [29], the mixed architecture
leads to a very low energy consumption per inference (281 µJ),
the best among all the chips despite being implemented on
a CMOS node older than Keller’23 [20] and Park’22 [23]



6

0 10 20 30 40 50
0

0.5

1

1.5

2

Better

Keller’23 @ 5 nm

Park’22 @ 7 nm

Mo’21 @ 28 nm

SNPU’23 @ 28 nm

C-DNN’23 @ 28 nm

Classification error [%]

E
ne

rg
y

[m
J]

ANN Transf.
ANN CNN
SNN
Mixed

(a) Energy.

0 10 20 30 40 50
10−1

100

101

Better

Keller’23 @ 5 nm

Park’22 @ 7 nm

Mo’21 @ 28 nm

SNPU’23 @ 28 nm

C-DNN’23 @ 28 nm

Classification error [%]

In
iti

at
io

n
in

te
rv

al
[c

yc
le

s]

100

101

102

103

Pa
ra

m
et

er
s

[M
]

(b) Performance.

Fig. 1: Energy and performance of DL accelerators with respect to classification error on ImageNet.

(28 nm vs. 5 nm and 7 nm, respectively). However, the model
being run on C-DNN’23, the ResNet50, is much smaller than
the vision transformer of Keller’23, which achieves a higher
accuracy (80.5% vs. 77.1%).

The design presented in SNPU’23 is among the best-
performant in the SNN domain. Accelerating ResNet family
models on-chip is an impressive feat, given that many SNN
accelerators are limited to smaller-scale architectures; however,
our analysis of SNPU’23 against ANN accelerators highlights
that static data is not the optimal way to demonstrate processing
efficiency. Beyond static vision tasks, a possibility is to focus
on tasks that take advantage of the event-based nature of
SNNs, such as dynamic vision sensor (DVS) data [15]. These
sensors capture scenes in the form of ‘events’ that can be
treated naturally as spikes, without any artificial encoding.
Some alternative SNN accelerators target dynamic workloads,
though only those that handle large-scale (at least on the scale
of ResNets) models with static data are considered in the above
analysis [14], [37]. These accelerators represent the minority
[24], since most benchmarks are limited to the MNIST and
CIFAR-10 static datasets.

Beyond classification, more complex event-based vision tasks
are less explored by the neuromorphic community, though tend
to dominate the modern computer vision ANN field [38]–[41].
Conversely, on-chip learning solutions in the SNN domain [14],
[25] are more advanced than for the ANN community. This
advantage should be exploited to reduce training costs and
allow for adaptive intelligence at the edge. In order to reduce
the memory access burden for computation of neuron states,
low-rate training techniques should be explored for efficient
hardware inference [9], [25].

It has to be remarked that on-chip training solutions have
been and are investigated in the ANN domain [42]; however,
these approaches target general purpose platforms, such as

microcontrollers, and still target simple neural networks and
tasks. Of course, this is true also for SNNs: in fact, the
classification accuracy of on-chip trained networks is worse
than the one of off-chip models, which perform worse than the
ANN counterpart. This is why in practically any application,
inference-only, ANN-based models are deployed on highly
efficient accelerators.

V. TEMPORAL TASKS

SNNs are inherently time-aware neural networks due to
their statefulness (see Section II). As such, they are a natural
fit for sequential data processing. In video processing tasks,
such as video segmentation, both non-spiking and spiking
neural networks often employ convolution structures to extract
features [43]–[45]. Given that the computational costs of
spiking and non-spiking convolutional operators are addressed
in Section IV, this section primarily concentrates on audio
processing, another prominent subset of temporal tasks.

In previous work [46], [47], a fully connected feed-forward
RNN targeting keyword prediction is used to compare ANNs,
rate-based SNNs, and latency-based SNNs [9]. The rate-based
SNN is only 9% more efficient than the ANN due to the
high input firing rate (2.5 kHz) necessary to match the ANN
performance. The limited efficiency advantage makes the effort
of migrating to a new type of neural network hard to justify.
Conversely, the latency-based SNN is 84% more efficient
than the ANN, primarily thanks to the significantly lower
firing rate that leads to a reduction in the number of the
timesteps evaluated by the SNN. However, this methodology
sets the target time window to 75ms to incorporate temporal
information, which is not suitable for real-time processing.

To evaluate the performance and efficiency of ANN and SNN
accelerators, in the following audio processing benchmarks are
considered, such as keyword spotting (KWS), voice activity



7

detection (VAD) and automatic speech recognition (ASR) [48]–
[50]. In particular, we present an energy analysis similar to the
one in Section IV. Finally, we compare SOTA digital hardware
accelerators from the spiking and artificial domains.

A. RNN versus SNN

RNNs are designed for discerning patterns in sequential data,
uniquely characterized by their capacity to retain memory of
previous inputs within their hidden state. Variants that aim to
enhance the “memory” of such neurons have also emerged,
such as lost short-term memories (LSTMs) and gated recurrent
units (GRUs) [17], and have been adopted in audio processing
tasks [51], [52]. The formulation of a vanilla RNN layer is:

ht = σh(Uh · xt + Vh · ht-i + bh)

ot = σo(Wo · ht + bo)
(4)

where x is the input, h the hidden layer, and o the output. Uh,
Wo, and Vh are the weight matrices, b is the bias vector and
σ is the activation function. Differently from the SNN model
defined by (1), the next state is computed considering a bias bh

and by multiplying the previous state by a matrix Vh; in SNNs,
Vh reduces to a scalar β, employed for all the neurons [9]. The
equivalent synaptic current is represented by Uh · xt.

We compare the computational cost of these operations in the
context of a speech recognition task. We consider the cost of
a vanilla RNN and an SNN, which share the same mechanism
of implicit recurrence through the neuron state [13], [17]. As
in Section IV, activations, weights, and states are quantized
to 8 bits, while spikes are single-bit quantities. As a use case,
we consider a layer with N inputs and calculate the energy
consumption of a neuron in the layer, as in Section IV.

With the SNN model:
1) N weights and input spikes are loaded from memory:

Erdtot = N · (Erd + Erd/8)

2) These values are then accumulated depending on the spike
value to obtain the activation to be fed to the state:

Eacc = N · Eadd

3) The state is loaded from memory and decayed (i.e.,
multiplied) by a factor β; then, it is accumulated with
the activation computed in the previous step, compared
against the threshold ϑ, reset if needed and stored to
memory:

Estate = Erd + Emult + Eadd + Ecomp + Esub + Ewr

4) The output spike, if generated, is then stored to the
scratchpad:

Eofmap = Ewr/8

Assuming N = 1024 inputs and considering the data
reported in Table I, the total energy, ESNN, is given by:

ESNN = 2.92 nJ · γSNN

Consider now the vanilla artificial RNN layer:

1) N weights and N inputs are read from memory, together
with the hidden state and its recurrent weight:

Erdtot = (2N + 2) · Erd

2) the inputs and the state are multiplied by the weights and
accumulated:

EMAC = (N + 1) · (Eadd + Emult)

3) the state is written back to memory. As in Section IV, the
quantization and activation energies are neglected:

Estate = Ewr

4) the obtained value is processed by the nonlinear activation
function, quantized and written back to memory:

Eofmap = Ewr

Hence, the total energy consumption is:

EANN = 5.37 nJ · γANN

The energy analysis shows that in both vanilla RNN and
spiking layers, the memory accesses for weights and states
consume the majority of the energy, as in the convolution case.
Notice that ESNN is 1.84× smaller than EANN: this is due to the
fact that while in the ANN the inputs are on 8 b, in the SNN
these are single-bit quantities. Since the memory access energy
dominates the other figures, this results in a major overhead of
ANN models with respect to SNN ones. Moreover, the ANN
model involves a multiplication when processing inputs, which
is more energy-hungry than the addition (Table I).

Differently from the convolution case, the number of
timesteps needed to process the inputs is larger than 1 for
both ANNs and SNN, since the data is now evolving through
time.

It has to be taken into account that very simple RNN and
SNN models are considered. In Section V-B, digital hardware
accelerator targeting more sophisticated neural network archi-
tectures are investigated.

B. SOTA accelerators

Regarding audio processing tasks, most accelerators are
tested on or designed specifically for VAD [53], [54] and
KWS [14], [55]–[57]. This is due to the fact that VAD and
KWS represent less challenging problems to tackle; hence,
simple neural network architectures are employed, which allow
achieving higher efficiency on hardware inference.

In Table III we chose the two most efficient SNN chips [14],
[53], respectively in VAD and KWS, which are compared
against SOTA ANN counterparts. For the VAD task, Oh’19 [54]
achieves the best efficiency measured in energy per inference,
despite being implemented on an old 180 nm CMOS technol-
ogy node. It results to be more efficient and to perform better,
in terms of classification accuracy, than Yang’19 [53], which
runs an SNN model and uses the same CMOS node.

As for the KWS task, different CMOS technologies are
employed in the accelerators. These values are not normalized
with Dennard scaling since all the chips have a power
consumption in the order of 10 µW; in these conditions, most



8

TABLE III: SNN and ANN accelerators evaluated on temporal tasks including VAD and KWS.

VAD KWS

SNN ANN SNN ANN

Work Yang’19 [53] Oh’19 [54] Frenkel’22 [14] Kim’22 [55] Giraldo’22 [56] Shan’23 [57]
Process [nm] 180 180 28 65 65 28
Area [mm2] 2.57 17.55 0.45 2.03 2.56 3.6

Supply voltage [V] 0.55 0.6 0.5 0.75 0.6 0.4
Clock frequency [MHz] 0.5 0.7 13 0.25 0.25 0.2

Feature extractor Analog Analog No FEx Analog Digital Digital
Data format INT1 INT4 INT8 INT8 INT8 INT1

Dataset Aurora4 w/
DEMAND

LibriSpeech w/
NOISEX-92

Spiking
Heidelberg Digits GSCD

Task accuracy [%] 85 90 90.7
(1-word)

86
(10-word)

90.9
(10-word)

97.8
(2-word)

Network model FCN FCN Spiking RNN GRU LSTM DSCNN
Parameters [k] 4.6 1.6 132 24 21.5 4.7

Power [µW] 1 0.142 79 23 10.6 0.8
Energy/inference [nJ] 10 2.3 42 285.2 169.6 23.6

Latency [ms] - 512.0 5.7 12.4 16.0 29.5

of the power consumption is static, while Dennard scaling
gives an approximation of how dynamic power scales across
technology nodes.

Also for KWS, the highest energy efficiency is achieved by
an ANN chip, Shan’23 [57], which also has a lower average
power consumption and significantly higher accuracy than all
the other chips targeting the same task. The SNN accelerator,
Frenkel’22 [14], achieves the lowest latency and is the only
chip that supports online learning and on-chip training: in
fact, the whole training process is performed on-chip, that
is validated also on vision and autonomous agent tasks. It
should be noted that the number of parameters of the spiking
RNN in [14] is 28× larger than that of the ANN chip in
[57], while achieving lower accuracy. This might suggest that
SNNs are still lacking in terms of classification accuracy when
compared to their ANN counterparts; however, Shan’23 [57]
is an inference only chip, hence the model is fine-tuned for the
task, while Frenkel’22 supports arbitrary network topologies
and on-chip training and can be repurposed. This is a significant
advantage for chips deployed on edge devices, which model
might need to be re-adapted to the environment in which the
system is deployed.

Figure 2 shows the distribution of these accelerators in
terms of energy efficiency and accuracy along with FPGA
accelerators [27], [58], that achieve the highest accuracy in
KWS. One can notice that Shan’23 [57] Pareto-dominates all
the other chips, thanks to a highly efficient sparsity-aware
chip architecture and a performant neural network model.
Frenkel’22 [14] presents a very competitive efficiency, taking
into account that it is the only chip with in-hardware training
capabilities: in fact, the network benchmarked on KWS is
trained directly on it; nonetheless, the resulting classification
accuracy on the task results to be competitive even when
considering most of the ANN chips analyzed.

VI. CONCLUSIONS

This paper analyzes SOTA digital hardware accelerators
implementing ANN and SNN models performing two types

0 5 10 15 20 25
100

101

102

103

104

105

Better

Oh’19@180 nm

Kim’22@65 nm
Giraldo’22@65 nm

Shan’23@28 nm
Yang’19@180 nm

Frenkel’22@28 nm

Gao’20

Gao’18

Classification error [%]

E
ne

rg
y

[n
J]

ANN FPGA
ANN
SNN

100

101

102

103

104

Pa
ra

m
et

er
s

[k
]

Fig. 2: Energy vs. classification error of recent digital SNN and ANN
accelerators measured on the VAD and KWS tasks.

of tasks: static and temporal datasets. The architectures are
compared on classification accuracy and energy consumption
per inference. The results suggest that:

• Current ANN models and digital hardware accelerators
outperform their SNN counterparts on static images and
object recognition tasks. One reason is that the multi-
timestep processing of SNNs increases the operations per
inference, leading to throughput and energy overheads.

• On temporal tasks, SNNs show a really competitive energy
efficiency, and represent the only case in which full
on-chip training and learning is performed [14]. This
advantage should be exploited, together with new training
strategies that promote both improvement in classification
accuracy, which is still lower than the ANN counterpart,
and sparse firing activity, that would lower further the
energy consumption of the accelerator.

• Further investigation of efficient model and hardware
solutions targeting bio-inspired sensors data, such as event



9

cameras [15] and silicon cochleas [16], are needed to
take advantage of the time-related functioning of spiking
neurons and architectures.

• Hybrid SNN and ANN solutions might be the key to max-
imize task performance and efficiency. C-DNN’23 [29]
shows the second-best efficiency among the accelerators
analyzed, despite being implemented in a 28 nm CMOS
process, while the best-performing chip takes advantage
of a 5 nm CMOS technological node.

In conclusion, the answer to our original question is that
there are few tasks in which one should spike, but full on-
chip learning accelerators, such as ReckOn [14], and mixed
architectures represent a promising research direction that
should be further addressed, instead of simply replicating ANN
architectures on tasks where there is no efficiency or accuracy
advantage to SNNs.

ACKNOWLEDGMENTS

This work was partially supported by the Key Digital
Technologies Joint Undertaking under the REBECCA Project
with grant agreement number 101097224, receiving support
from the European Union, Greece, Germany, Netherlands,
Spain, Italy, Sweden, Turkey, Lithuania, and Switzerland.

The authors would like to thank: Kim Sangyeob, who is
with the Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, for providing the energy per
inference measurements for C-DNN’23 [29].

REFERENCES

[1] T. Brown et al., “Language models are few-shot learners,”
in Adv. Neural Inf. Process. Syst., 2020, pp. 1877–1901.

[2] M. Naumov et al., “Deep learning recommendation
model for personalization and recommendation systems”,
2019. arXiv: 1906.00091.

[3] A. Dosovitskiy et al., “An image is worth 16x16 words:
Transformers for image recognition at scale”, 2020.
arXiv: 2010.11929.

[4] X. Zhai et al., “Scaling vision transformers,” in Conf.
Comput. Vis. Pattern Recog., 2022, pp. 12 104–12 113.

[5] J. Deng et al., “Imagenet: A large-scale hierarchical
image database,” in Conf. Comput. Vis. Pattern Recog.,
2009, pp. 248–255.

[6] A. Fu et al., “Reconsidering CO2 emissions from
Computer Vision,” in Proc. IEEE/CVF Conf. CVPR,
2021, pp. 2311–2317.

[7] Google Cloud, “System Architecture of TPU VM”, https:
//cloud.google.com/tpu/docs/system-architecture-tpu-
vm?hl=en#tpu_v3, (accessed Jun. 27, 2023).

[8] S. Schmidgall et al., “Brain-inspired learning in arti-
ficial neural networks: a review”, 2023. arXiv: 2305.
11252.

[9] J. K. Eshraghian et al., “Training spiking neural net-
works using lessons from deep learning”, 2021. arXiv:
2109.12894.

[10] R.-J. Zhu et al., “Spikegpt: Generative pre-trained
language model with spiking neural networks”, 2023.
arXiv: 2302.13939.

[11] R. Douglas et al., “Neuromorphic analogue VLSI,” Annu.
Rev. Neurosci., vol. 18, no. 1, pp. 255–281, Feb. 1995.

[12] M. Payvand et al., “Dendritic Computation through Ex-
ploiting Resistive Memory as both Delays and Weights”,
2023. arXiv: 2305.06941.

[13] J. K. Eshraghian et al., “Memristor-based binarized
spiking neural networks: Challenges and applications,”
Nanotechnol. Mag., vol. 16, no. 2, pp. 14–23, Apr. 2022.

[14] C. Frenkel and G. Indiveri, “ReckOn: A 28nm sub-mm2
task-agnostic spiking recurrent neural network processor
enabling on-chip learning over second-long timescales,”
in Int. Solid-State Circuits Conf., 2022, pp. 1–3.

[15] G. Gallego et al., “Event-based vision: A survey,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 154–
180, Jan. 2020.

[16] M. Yang et al., “A 0.5 V 55µW 64x2 Channel Binaural
Silicon Cochlea for Event-Driven Stereo-Audio Sensing,”
IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2554–
2569, Nov. 2016.

[17] I. Goodfellow et al., Deep learning. MIT press, 2016.
[18] H. Mark, “Computing’s energy problem (and what we

can do about it),” in Int. Solid-State Circuits Conf., 2014,
pp. 9–13.

[19] V. Sze et al., “Efficient processing of deep neural
networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[20] B. Keller et al., “A 95.6-TOPS/W Deep Learning
Inference Accelerator With Per-Vector Scaled 4-bit
Quantization in 5 nm,” IEEE J. Solid-State Circuits,
vol. 58, no. 4, pp. 1129–1141, Apr. 2023.

[21] H. Mo et al., “9.2 A 28nm 12.1 TOPS/W dual-mode
CNN processor using effective-weight-based convolution
and error-compensation-based prediction,” in Int. Solid-
State Circuits Conf., 2021, pp. 146–148.

[22] Y. Wang et al., “A 28nm 27.5 TOPS/W approximate-
computing-based transformer processor with asymptotic
sparsity speculating and out-of-order computing,” in Int.
Solid-State Circuits Conf., 2022, pp. 1–3.

[23] J.-S. Park et al., “A Multi-Mode 8k-MAC HW-
Utilization-Aware Neural Processing Unit With a Unified
Multi-Precision Datapath in 4-nm Flagship Mobile SoC,”
IEEE J. Solid-State Circuits, vol. 58, no. 1, pp. 189–202,
Jan. 2023.

[24] A. Basu et al., “Spiking neural network integrated
circuits: A review of trends and future directions,” in
Custom Integr. Circuits Conf., 2022, pp. 1–8.

[25] C. Frenkel et al., “Bottom-Up and Top-Down Ap-
proaches for the Design of Neuromorphic Processing
Systems: Tradeoffs and Synergies Between Natural and
Artificial Intelligence,” Proc. IEEE, vol. 111, no. 6,
pp. 623–652, Jun. 2023.

[26] C. Gao et al., “Spartus: A 9.4 TOp/s FPGA-Based LSTM
Accelerator Exploiting Spatio-Temporal Sparsity,” IEEE
Trans. Neural Netw. Learn. Syst., pp. 1–15, Jun. 2022.

[27] C. Gao et al., “EdgeDRNN: Recurrent Neural Network
Accelerator for Edge Inference,” IEEE J. Emerg. Sel.
Top. Circuits Syst., vol. 10, no. 4, pp. 419–432, Dec.
2020.

https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/2010.11929
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm?hl=en#tpu_v3
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm?hl=en#tpu_v3
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm?hl=en#tpu_v3
https://arxiv.org/abs/2305.11252
https://arxiv.org/abs/2305.11252
https://arxiv.org/abs/2109.12894
https://arxiv.org/abs/2302.13939
https://arxiv.org/abs/2305.06941


10

[28] S. Kim et al., “SNPU: An Energy-Efficient Spike
Domain Deep-Neural-Network Processor With Two-
Step Spike Encoding and Shift-and-Accumulation Unit,”
IEEE J. of Solid-State Circuits, vol. PP, pp. 1–14, Jan.
2023.

[29] S. Kim et al., “C-DNN: A 24.5-85.8 TOPS/W
complementary-deep-neural-network processor with het-
erogeneous CNN/SNN core architecture and forward-
gradient-based sparsity generation,” in Int. Solid-State
Circuits Conf., 2023, pp. 334–336.

[30] S. Khan et al., “Transformers in vision: A survey,” ACM
comput. surv., vol. 54, no. 10s, pp. 1–41, Sep. 2022.

[31] M. Bouvier et al., “Spiking neural networks hardware
implementations and challenges: A survey,” ACM J.
Emerg. Technol. Comput. Syst., vol. 15, no. 2, pp. 1–35,
Apr. 2019.

[32] M. R. Azghadi et al., “Hardware implementation of deep
network accelerators towards healthcare and biomedi-
cal applications,” IEEE Trans. Biomed. Circuits Syst.,
vol. 14, no. 6, pp. 1138–1159, Dec. 2020.

[33] F. Ottati, Awesome Neuromorphic Hardware, https://
github.com/fabrizio-ottati/awesome-neuromorphic-hw,
2023.

[34] X. She et al., “SAFE-DNN: A Deep Neural Network
With Spike Assisted Feature Extraction For Noise Robust
Inference,” in Int. Jt. Conf. Neural Netw., 2020, pp. 1–8.

[35] B. Chakraborty et al., “A fully spiking hybrid neural
network for energy-efficient object detection,” IEEE
Trans. Image Process., vol. 30, pp. 9014–9029, Oct.
2021.

[36] K. He et al., “Deep residual learning for image recog-
nition,” in Conf. Comput. Vis. Pattern Recog., 2016,
pp. 770–778.

[37] A. Di Mauro et al., “SNE: an energy-proportional digital
accelerator for sparse event-based convolutions,” in
Design Autom. Test Eur. Conf. Exhib., 2022, pp. 825–830.

[38] E. Perot et al., “Learning to detect objects with a 1
megapixel event camera,” Adv. Neural Inf. Process. Syst.,
vol. 33, pp. 16 639–16 652, Dec. 2020.

[39] L. Cordone et al., “Object detection with spiking neural
networks on automotive event data,” in Int. Jt. Conf.
Neural Netw., 2022, pp. 1–8.

[40] M. Gehrig and D. Scaramuzza, “Recurrent vision trans-
formers for object detection with event cameras,” in Conf.
Comput. Vis. Pattern Recog., 2023, pp. 13 884–13 893.

[41] S. Barchid et al., “Spiking neural networks for frame-
based and event-based single object localization”, 2022.
arXiv: 2206.06506.

[42] J. Lin et al., “On-device training under 256kb memory”,
2022. arXiv: 2206.15472.

[43] K. Xu et al., “Spatiotemporal CNN for video object
segmentation,” in Conf. Comput. Vis. Pattern Recog.,
2019, pp. 1379–1388.

[44] Q. Chen et al., “Reducing latency in a converted spiking
video segmentation network,” in Int. Symp. Circuits Syst.,
2021, pp. 1–5.

[45] Q. Chen et al., “Skydiver: A Spiking Neural Network
Accelerator Exploiting Spatio-Temporal Workload Bal-

ance,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 41, no. 12, pp. 5732–5736, Dec. 2022.

[46] G. Chen et al., “Small-footprint keyword spotting using
deep neural networks,” in Int. Conf. Acoust. Speech
Signal Process., 2014, pp. 4087–4091.

[47] B. U. Pedroni et al., “Small-footprint Spiking Neural
Networks for Power-efficient Keyword Spotting,” in
Biomed. Circuits Syst. Conf., 2018, pp. 1–4.

[48] B. Cramer et al., “The heidelberg spiking data sets for
the systematic evaluation of spiking neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7,
pp. 2744–2757, Jul. 2020.

[49] P. Warden, “Speech commands: A dataset for limited-
vocabulary speech recognition”, 2018. arXiv: 1804 .
03209.

[50] V. Panayotov et al., “Librispeech: an asr corpus based
on public domain audio books,” in Int. Conf. Acoust.
Speech Signal Process., 2015, pp. 5206–5210.

[51] C. Gao et al., “Real-Time Speech Recognition for
IoT Purpose using a Delta Recurrent Neural Network
Accelerator,” in Int. Symp. Circuits Syst., 2019, pp. 1–5.

[52] J. Li et al., “High-accuracy and low-latency speech
recognition with two-head contextual layer trajectory
LSTM model,” in Int. Conf. Acoust. Speech Signal
Process., 2020, pp. 7699–7703.

[53] M. Yang et al., “Design of an Always-On Deep Neural
Network-Based 1- µ W Voice Activity Detector Aided
With a Customized Software Model for Analog Feature
Extraction,” IEEE J. Solid-State Circuits, vol. 54, no. 6,
pp. 1764–1777, Jun. 2019.

[54] S. Oh et al., “An Acoustic Signal Processing Chip With
142-nW Voice Activity Detection Using Mixer-Based
Sequential Frequency Scanning and Neural Network
Classification,” IEEE J. of Solid-State Circuits, vol. 54,
no. 11, pp. 3005–3016, Sep. 2019.

[55] K. Kim et al., “A 23-µW Keyword Spotting IC With
Ring-Oscillator-Based Time-Domain Feature Extraction,”
IEEE J. Solid-State Circuits, vol. 57, no. 11, pp. 3298–
3311, Nov. 2022.

[56] J. S. P. Giraldo et al., “Vocell: A 65-nm Speech-
Triggered Wake-Up SoC for 10- µ W Keyword Spotting
and Speaker Verification,” IEEE J. Solid-State Circuits,
vol. 55, no. 4, pp. 868–878, Apr. 2020.

[57] W. Shan et al., “AAD-KWS: A Sub-µ W Keyword
Spotting Chip With an Acoustic Activity Detector
Embedded in MFCC and a Tunable Detection Window
in 28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 58,
no. 3, pp. 867–876, Mar. 2023.

[58] C. Gao et al., “DeltaRNN: A Power-Efficient Recurrent
Neural Network Accelerator,” in Int. Symp. Field-Prog.
Gate Arrays, 2018, pp. 21–30.

https://github.com/fabrizio-ottati/awesome-neuromorphic-hw
https://github.com/fabrizio-ottati/awesome-neuromorphic-hw
https://arxiv.org/abs/2206.06506
https://arxiv.org/abs/2206.15472
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209


11

Fabrizio Ottati (Graduate Student Member IEEE),
received the M.Sc. in Electronic Engineering from
Politecnico di Torino in 2020. He is currently pur-
suing the Ph.D. degree in Electrical, Electronics
and Telecommunication Engineering in the same
university, under the supervision of Professor Luciano
Lavagno. His research interests are digital hardware
design and machine learning.

Chang Gao (Member IEEE), received his Ph.D.
degree with Distinction in Neuroscience from the
Institute of Neuroinformatics, University of Zürich
and ETH Zürich, Zürich, Switzerland, in March
2022. In August 2022, he joined the Delft University
of Technology, The Netherlands as an Assistant
Professor in the Department of Microelectronics. He
received the 2022 Misha Mahowald Early Career
Award in Neuromorphic Engineering, the 2022 Marie-
Curie Postdoctoral Fellowship and the title of 2023
MIT Technology Review Innovators Under 35 in

Europe. His current research interest is in digital edge machine learning hard-
ware accelerator design and its applications in next-gen telecommunications,
video/audio processing, healthcare and robots.

Qinyu Chen (Member IEEE), received the B.S. de-
gree in Communication Engineering from Shandong
University, Jinan, China in 2016, and the Ph.D. degree
in Microelectronics from Nanjing University, Nanjing,
China, in 2021. She is now a postdoctoral researcher
at the Institute of Neuroinformatics, University of
Zürich and ETH Zürich, Zurich, Switzerland, and
an incoming Assistant Professor with the Leiden
University, Leiden, The Netherlands. Her current
research interest includes the seamless neuromorphic
artificial intelligence system at the edge, and its

application in healthcare, AR/VR with a focus on event-based processing.
In 2022, She received a Bridge Fellowship Grant from the Swiss National
Science Foundation (SNSF) and Innosuisse.

Giovanni Brignone (Graduate Student Member,
IEEE) received the M.Sc. degree in computer en-
gineering from the Politecnico di Torino, Italy, in
2021, where he is currently pursuing the Ph.D. degree
with the Department of Electronics and Telecommu-
nications under the supervision of Professor Luciano
Lavagno. His research interests include high-level
synthesis, digital hardware design, and HW/SW co-
design.

Mario R. Casu (Senior Member, IEEE) received
the Ph.D. degree in electronics and communications
engineering from Politecnico di Torino, Torino, Italy,
in 2001. He is currently an Associate Professor with
Politecnico di Torino. His research interests include
systems-on-chip (SoC) with specialized accelerators,
system-level design and design methodology for
FPGAs and ASICs, and embedded machine learning.
He is also interested in the design of circuits, systems,
and platforms for industrial applications, such as
biomedical, automotive, and food. His past work

focused on the latency-insensitive design of SoC and networks-on-chip.
He regularly serves on the Technical Program Committee for international
conferences, such as DAC, ICCAD, and DATE.

Jason K. Eshraghian (Member IEEE) received the
B.Eng. (electrical and electronic), L.L.B., and Ph.D.
degrees from The University of Western Australia,
Perth, WA, Australia, in 2016 and 2019, respectively.
From 2019 to 2022, he was a Post-Doctoral Research
Fellow at the University of Michigan, Ann Arbor
MI, USA. He is currently an Assistant Professor
with the Department of Electrical and Computer
Engineering, The University of California at Santa
Cruz, Santa Cruz, CA, USA. His research interests
include neuromorphic computing, resistive random

access memory (RRAM) circuits, and spiking neural networks.

Luciano Lavagno (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering and com-
puter science from UC Berkeley, in 1992. He was
an Architect with POLIS HW/SW Co-Design Tool.
From 2003 to 2014, he was an Architect with
Cadence CtoSilicon High-Level Synthesis Tool. Since
1993, he has been a Professor with Politecnico di
Torino, Italy. He has coauthored four books and over
200 scientific papers. His research interests include
the synthesis of asynchronous circuits, HW/SW co-
design, high-level synthesis, and design tools for

wireless sensor networks.


	Introduction
	Neuron Models
	The spiking neuron
	The artificial neuron

	Methodology
	Static tasks
	Energy model
	SOTA accelerators

	Temporal tasks
	RNN versus SNN
	SOTA accelerators

	Conclusions
	Biographies
	Fabrizio Ottati
	Chang Gao
	Qinyu Chen
	Giovanni Brignone
	Mario R. Casu
	Jason K. Eshraghian
	Luciano Lavagno


