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Abstract — Physics-based simulations allow for an accurate
insight into the impact of trap dynamics on GaN HEMT perfor-
mance. In particular, traps are responsible for the low-frequency
dispersion of AC performance, e.g. the Y parameters. In this
paper we present an in-house TCAD simulator implementing
the trap rate equations coupled to the drift-diffusion physical
model and solved through the Harmonic Balance algorithm.
The developed TCAD allows for the extraction of the trap rate
equations Green’s Functions (GFs) in the frequency domain. GFs
are then used to compute the sensitivity of the AC Y parameters
towards variations of the trap physical parameters (e.g. the trap
energy) and to extract the local sensitivity, showing the parts of
the device where traps influence most the HEMT AC parameters.

Keywords — GaN HEMTs, Nonlinear device models, TCAD
simulations, Trap rate equations, Scattering Parameters

I. INTRODUCTION

GaN HEMT technology is rapidly achieving sufficient
maturity for its exploitation in communication and space
power applications, although trap dynamics still is a bottle-
neck limiting RF/microwave power performance [1]. Various
characterization techniques aim at identifying the trap dynamic
behaviour, linking the trap occupation to the gate/drain current
delay in terms e.g. of rise/fall time in the response to specific
stimuli such as voltage steps or pulses [2], [3]. Pulsed S-
parameters are also used to assess the trap-related dispersion
of AC and RF parameters [4], [5]. In fact, the peculiar low
frequency dispersion of the device Y parameters has become
a standard method to characterize the trap dynamics [6].
While characterizations typically provide only the dynamics
of the device terminal currents, TCAD analysis represents
a unique opportunity to investigate the effect of the trap
localization, especially when trap density varies in the device
volume. In this work, we present an in-house TCAD simulator
implementing explicitly the trap rate equations coupled to the
drift-diffusion (DD) physical model and solved through the
Harmonic Balance (HB) algorithm. In this implementation,
no back-substitution of the trap equations is performed, so
as to maintain a fully general model. The developed TCAD
allows for both the LS and SS-LS device physical analysis,
along with the extraction the Green’s Functions (GFs) of
the physical model in the frequency domain. In particular,
we exploit the GFs of the trap rate equations, not currently
available in commercial codes. We demonstrate that these GFs
are a powerful tool to: 1) compute the sensitivity of the AC Y
parameters towards variations of the trap physical parameters

(e.g. the trap concentration and trap energy) in a numerically
efficient way; 2) extract the local sensitivity, showing the
areas of the device where traps influence most the HEMT AC
features. We apply the implemented model to a Fe-doped GaN
HEMT, investigating the dependency of Y -parameters on the
trap energy.

II. TRAP DYNAMIC MODEL IMPLEMENTATION

For each trap, the Trap Rate Equation (TRE) reads [7]:
∂fn

∂t
= (1− fn)cnC − fnenC + (1− fn)epV − fncpV (1)

where fn is the electron occupation probability, cnC and enC the
electron capture and emission rates to the conduction band and
cpV and epV the hole capture and emission rates to the valence
band. According to the principle of detailed balance:

cnC = σnv
n
thn ; enC = σnv

n
thn1

cpV = σpv
p
thp ; epV = σpv

p
thp1

where σn and σp denote the trap cross sections, vnth and vpth the
thermal velocities, n1 = NC exp[(ET −EC)/kBT ] and p1 =
NV exp[(EV − ET )/kBT ], being ET the trap energy level.
Here we present the modelling approach with one trap only,
but the generalization to the case of several traps is obvious.

In the in-house developed TCAD, fn is expressed as the
ratio between the concentration of occupied traps nT and the
local trap concentration NT , hence TRE becomes:

∂nT

∂t
= NT

(
1− nT

NT

)
cnC︸ ︷︷ ︸

Rn

− NT
nT

NT
enC︸ ︷︷ ︸

Gn

+

−
[
NT

nT

NT
cpV︸ ︷︷ ︸

Rp

− NT

(
1− nT

NT

)
epV︸ ︷︷ ︸

Gp

]
=

= Rn −Gn︸ ︷︷ ︸
Un

−(Rp −Gp︸ ︷︷ ︸
Up

) = Un − Up

(2)

where Un and Up denote the net recombination rates. TRE
couples to the DD model due to the trap charge −qnT in
Poisson equation:

∇ · (ϵ∇ϕ) = −q · (p− n+ND −NA − nT ) (3)

and due to the trap recombination rates in the carrier continuity
equations:

1

q
∇ · Jn =

∂n

∂t
+ Un − 1

q
∇ · Jp =

∂p

∂t
+ Up (4)



Finally, the coupled DD-TRE system (3), (4) and (2) allows
to self-consistently model the effect of trap dynamics on the
device electrical features.

In steady-state conditions (∂nT /∂t = 0) TRE uncou-
ples from the DD system leading to the classical Shockley-
Read-Hall model, while in the dynamic case DD-TRE must
be solved self-consistently. Time-domain approaches aim at
mimicking the measurements with pulses and voltage steps,
but frequency domain analyses are more adherent to the final
device operating conditions. In this work the DD-TRE model,
treated in the frequency-domain through the HB approach, can
be cast into the form

D(α)ẋ = F(α)(x, e;σσσ) α = φ, n, p, nT (5)

where α = φ refers to the Poisson equation (3), α = n, p to
the electron and hole continuity equations (4), and α = nT to
the trap rate equation (2). Vector x collects the nodal values of
the discretized potential φ, carrier densities n and p and trap
charge nT while ẋ denotes the corresponding time derivatives.
D(α) is a diagonal matrix accounting for the time-derivatives
of the system (memory) while F is the memory-less part [9].
In the HB analysis, the external sources e correspond to the
superposition of DC + harmonic stimuli with fundamental
frequency f0, thereby forcing the device in periodic large-
signal operation. In (5) vector σσσ represents the collection of
the model parameters such as e.g. trap energy, cross section,
total concentration.

Following the HB approach, x(t) is Fourier expanded as1:

x(t) =

NH∑
k=−NH

Xk exp(jkω0t) (6)

where ω0 = 2πf0, Xk is the phasor of the k-th harmonic
(X−k = X∗

k for each k, where ∗ denotes complex conjugation),
while (5) is converted into the frequency domain as:

D(α)ΩX = ΓF(α)(Γ−1X,E;σσσ) α = φ, n, p, nT (7)

where E is the collection of the harmonic amplitudes of the
applied generators e(t), Ω is an operator representing time
derivation in the frequency domain, and Γ−1 is the operator
implementing the dicrete Fourier tranform (6) between phasors
and time samples. The solution XS of (7) with nominal
parameters σσσ0 includes all the harmonic amplitudes of the
large-signal steady-state of the nominal device.

In this contribution, we consider a particular case for (7)
that corresponds to AC analysis, where the input generators
E contain only a DC component and a single tone at fre-
quency f0. The tone amplitude is small enough to assume
a linear response of the device, therefore the full system (7)
is solved without any linearization, but the expansion (6) is
limited to NH = 1. The tone is recursively applied to each
device terminal r yielding a corresponding current i(q) at each
terminal q. The DC component I

(q)
0 corresponds to the DC

1We consider here a purely periodic signal for the sake of simplicity. The
extension to the quasi-periodic case is trivial.

working point of the AC analysis, while the phasor I
(q)
1 at

fundamental frequency allows to compute the (q, r) element
of the AC admittance matrix as

Yq,r =
I
(q)
1

V
(r)
1

(8)

Assuming a (time-independent) perturbation ∆σσσ = σσσ−σσσ0

of the model parameters, a linearization of (7) allows for
the sensitivity analysis of AC parameters [8]. Denoting with
∆I

(q)
1 the variation of the current phasor at terminal q induced

by ∆σσσ, the Green’s Function approach allows to write

∆I
(q)
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α
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where (G
(q)
α (r))(1,1) is the (1,1) element of the Conversion

Green’s Function (CGF) [9], while Sα,1(r) represents a mi-
croscopic (local) source at fundamental frequency, computed
as the residual of (7) for a variation ∆σσσ (see [8] for details).
The integrand function of the spatial convolution (9) represents
the local variation source K

(q)
α (r) =

(
G

(q)
α (r)

)
(1,1)

Sα,1(r),

i.e. a map of the device internal regions allowing to identify
where physical parameter variations influence most the device
characteristics. According to (8) and (9), K(q)

α (r)/V
(r)
1 corre-

sponds to the distributed variation source, whose integral yields
∆Yq,r = ∆I

(q)
1 /V

(r)
1 , i.e. the variation of the (q, r) element

of the Y matrix discussed in detail in section III.

III. RESULTS

We consider the 0.150 µm gate length HEMT structure in
Fig. 1, including the AlGaN barrier layer (15 nm thickness,
Al mole fraction 25%) and the GaN layer, which has been
divided into a 5 nm thick channel region (with residual donor
doping of 1015 cm−3) and a 2 µm deep buffer region, charac-
terized by a Fe doping with concentration NT = 1018 cm−3.
Fig. 1 shows the details of the HEMT structure, including
the source and drain doped regions and the S/D contacts. The
simulation includes the GaN spontaneous polarization and both
the AlGaN spontaneous and piezoelectric polarization. The
resulting net polarization charge at the AlGaN/GaN interface
is σpol = 1.34× 1013 cm−2, with 90% activation. For further
details on the polarization model the reader can refer to
the Synopsys Simplified strain model [10], which
was implemented in our in-house simulator. The polarization
charge at the interface with the contacts and the passivation
layers has been exactly compensated. A fixed interface nega-
tive charge σint = −2 × 1012 cm−2 has been also added to
the barrier/passivation interface. The electron mobility includes
dependency on lattice temperature and doping, while velocity
saturation is modelled with the Caughey-Thomas model with
vn,sat = 2.5 × 107 cm/s for both AlGaN and GaN. The
simulated device is characterized by the threshold voltage
Vth = −2.5 V and IDss = 1.2 A/mm saturation current.

Fe doping acts like a deep acceptor-like trap with trap
energy ET = EC − 0.45 eV (being EC the conduction band
edge) and electron and hole capture cross-sections σn = σp =



Thickness Length
Si3N4 100 nm Gate 150 nm
AlGaN barrier 15 nm Gate-Source 800 nm
GaN channel 5 nm Gate-Drain 2000 nm
Gate buffer 2000 nm

Fig. 1: Simulated HEMT structure.

3 × 10−16 cm2. We aim at investigating the effect of Fe trap
dynamics on the HEMT Y parameters. The DC bias point is set
to VD = 10 V and VG = −2.22 V, corresponding to 10%IDss.
i.e. similar to the typical bias condition for power amplifiers.

The Y -parameters were extracted from the in-house code
as described in Sec. II with NH = 1 and an input tone of
1 mV amplitude recursively applied to each terminal. The
tone frequency was swept from 10 Hz to 1 MHz. At each
frequency, the Y matrix and the CGFs are calculated with
nominal Fe trap energy Etrap = 0.45 eV from conduction
band. The variations of the Y parameters are then evaluated
according to (9) with varied values Etrap = [0.445, 0.455] eV.
For validation, results of the GF approach are also compared
to repeated AC simulations with varying trap energy levels (in-
cremental method, INC, more numerically intensive), always
obtaining an excellent agreement. Fig. 2 shows that Fe-doped
traps are responsible of a positive peak at fpeak ≈ 2 kHz in
the imaginary part of Y22. With decreasing Etrap, the peak
is shifted towards higher frequency values and Imag{Y22}
slightly increases. To achieve a further insight on these results,
we investigate which parts of the device contribute to the Y22

variations. The dominant contribution stems from the local
variation sources of the trap rate equation K

(D)
nT , hence we

report the imaginary part of K(D)
nT /V

(D)
1 , whose integral yields

Imag{∆Y22}. Figures 3 and 4 show the distributed variation
source for Etrap = 0.455 eV (5 meV variation with respect
to the nominal value) for the two frequencies f1 < fpeak
and f2 > fpeak shown in Fig. 2. In general the source is
significant only in the buffer region below the gate. For the
lower frequency the source is more concentrated at the source
side of the channel and assumes positive values. At higher
frequency, the local variation extends towards the drain contact
and becomes negative.

Fig. 5 shows two frequency peaks in the imaginary part of
Y21 [6]: a positive peak at fpeak,a ≃ 250 Hz and a negative peak
fpeak,b at around 3 kHz due to buffer traps. With decreasing trap

Fig. 2: Imaginary part of Y22 at different trap levels. Lines:
INC approach. Symbols: GF approach.

Fig. 3: Imaginary part of the local variation source of
Imag{∆Y22} [S/µm2] at f1 = 464 Hz reported in Fig. 2.

Fig. 4: Imaginary part of the local variation source of
Imag{∆Y22} [S/µm2] at f2 = 10 kHz reported in Fig. 2.

energy level, the buffer peak shifts towards higher frequencies
while the positive one is almost insensitive to Etrap variations.
Figures 6, 7 and 8 show the imaginary part of K

(D)
nT /V

(G)
1 ,

i.e. the integrand function of Imag{Y21}, at three different
frequencies. Increasing frequency from f1 to f3, the local
variation source spreading becomes more widely distributed
towards both the drain and the depth of the buffer region:



Fig. 5: Imaginary part of Y21 at different trap levels. Lines:
INC approach. Symbols: GF approach.

in particular it has positive values at frequency f1 < fpeak,a,
mostly negative at f2 while at f3 > fpeak,b we notice a sharp
negative peak under the gate at source side and a broad positive
region under the whole gate area.

IV. CONCLUSION

We presented an in-house TCAD simulator implementing
the trap rate equations coupled to the DD model, allowing for
the calculation of the trap rate equations Green’s Functions
in the frequency domain. The new code has been applied
to the analysis of the Y-parameter low-frequency dispersion,
showing the Y-parameter sensitivity to the trap energy and the
corresponding local sensitivity.

The novel code opens the way to the GaN HEMT vari-
ability analysis (by randomization of individual traps position,
energy and cross section) without the need of computationally
intensive MonteCarlo analysis. Furthermore, the developed
TCAD code is based on the direct solution of the trap equations
coupled to the DD model through the HB algorithm. Therefore,
the presented AC analysis can be readily extended to the
dynamic large-signal analysis with no further code variations.
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