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Abstract

Multiple myeloma disrupts normal blood cell production, requiring early

detection due to the increased risk of bone metastases. Although various artifi-

cial intelligence (AI) methods have been developed to assist pathologists, they

often lack comprehensive metrics to measure both detection and segmentation

errors. This study presents a hybrid framework that combines deep learning

and heuristic techniques to achieve accurate instance segmentation of individ-

ual plasma cells in Giemsa-stained cytology images. Our proposed network,

called cyto-Knet, incorporates an innovative color-balancing method as a pre-

processing step to standardize the appearance of cytological images. Our net-

work leverages a 4-class segmentation strategy with conditional kernels to

enhance segmentation performance and accuracy. Additionally, a marker-

based watershed algorithm is employed in the postprocessing step to address

the challenge of merged objects. Extensive validation at both pixel and object-

based levels demonstrates superior performance compared with state-of-the-

art techniques. Our method achieves pixel-based metrics (precision, recall, and

F1-score) of approximately 0.90. The object-based evaluation reveals an aver-

age Dice coefficient of 0.9130 and an aggregated Jaccard index of 0.8237.

Importantly, our solution is designed for integration into an end-to-end system

for diagnosis support and can be easily extended to other applications.
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1 | INTRODUCTION

Multiple myeloma (MM) is a cancer that disrupts the nor-
mal production of blood cells by causing the proliferation
and accumulation of plasma cells in the bone marrow.
This type of malignancy accounts for 10% of all blood

cancer cases and primarily affects men over the age of
65.1,2 The median survival rate for MM patients is typi-
cally 5–7 years and varies based on factors such as tumor
stage, cytogenetic abnormalities, and response to treat-
ment.3 Early detection is crucial as MM often leads to
bone metastases.
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Currently, the gold standard for MM diagnosis
involves visually examining a serum sample obtained
through biopsy to identify abnormal plasma cells. These
cells exhibit peculiar characteristics such as irregular
shape, abnormal nuclei, and enlarged size. Pathologists
analyze the sample and determine the percentage of
abnormal plasma cells present, known as the plasma cell
percentage, which is a critical factor in MM diagnosis.
However, this manual process can be time-consuming
and prone to interoperator variability. To address these
limitations, automated algorithms have been developed
to enable faster and more consistent segmentation of
malignant cells.4,5

The challenge of segmenting cells, including identify-
ing nuclei and cytoplasm, can be addressed using
instance segmentation techniques, which combine pixel-
wise prediction and object detection.6 In digital cytology,
instance segmentation of plasma cells aims to differenti-
ate individual or clustered cells with different sizes and
shapes. Furthermore, it must handle potential issues aris-
ing from suboptimal staining processes that may affect
the chromatic appearance of cellular structures. The
main challenges associated with cytological cell segmen-
tation are illustrated in Figure 1.

Recent studies in the field of instance segmentation
have focused on using deep networks, specifically convo-
lutional neural networks (CNNs), to identify different cel-
lular components of interest in the microscopic image,
including nucleus and cytoplasm. The U-Net architecture
is commonly combined with other networks for this pur-
pose. For instance, Bozorgpour et al.7 applied U-Net to
segment each nucleus instance in the input images, while
the Attention Deeplabv3+ model generated the final seg-
mentation map. Azad et al.8 employed the deep fre-
quency re-calibration U-Net to segment both nuclei and
cytoplasm. To address instance segmentation, Pandey
et al.9 fused transformer-based models with CNN back-
bones. Faura et al.10 utilized three different networks—
Mask R-CNN, Hybrid Task Cascade (HTC), and Sample

Consistency Network (SCNet) —to automatically seg-
ment plasma cells in MM patients. They employed
ResNet and the recent ResNeSt convolutional backbones
as feature extractors. Another recent study proposed
DCSAU-Net,11 a deeper and more compact split-attention
U-Net for medical image segmentation, which was com-
pared against a wide range of state-of-the-art models.

The use of neural network-based algorithms has dem-
onstrated significant potential in improving the speed
and reproducibility of MM diagnosis. However, a litera-
ture gap exists in this application as the majority of the
implementation and training of black-box models are
without a pre- and postprocessing strategy to ensure the
stability and robustness of the entire end-to-end pipeline.
Additionally, the data acquisition setup may negatively
impact the training phase due to high color variation
observed in images captured using different devices like
microscopes or cameras. The use of resource-intensive
ensemble models significantly increases computational
times, and limited training data for such data-intense
approaches may necessitate the adoption of massive data
augmentation strategies, risking overfitting. Despite the
progress in deploying increasingly complex architectures,
the evaluation of these methods still lacks on quantitative
metrics that effectively address object detection and seg-
mentation errors in a unified manner.12 False-positive
instances have not been adequately assessed, which can
have a negative impact on the clinical perspective of
plasma cell counting. Furthermore, the instance segmen-
tation task presents inherent complexities, such as
(i) suboptimal image acquisition and quality, (ii) partially
overlapping cells, and (iii) poorly defined object contours.

The aim of this research paper is to develop a hybrid
framework that combines recent deep learning methods
with heuristic techniques to achieve precise and accurate
segmentation of individual plasma cells, which is a cru-
cial requirement for this application. We used the dataset
provided by the SegPC-2021 challenge,13 to develop our
method. In this challenge, microscopic images were

FIGURE 1 Challenges in the dataset for instance segmentation of cytological images. The instance segmentation task for cytological

images presents several challenges, including (A) clustered plasma cells with merged boundaries, where the cytoplasm of two cells may

touch each other, the cytoplasm of one cell and the nucleus of another may touch each other, or cell nuclei may touch each other;

(B) cytoplasm stain color may be similar to the background color, making the cell boundary indistinguishable; (C) unwanted stained cells

may be annotated due to the subjective clinical operator's experience; and (D) partially captured objects may be present in the images.
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obtained from bone marrow aspirate slides of patients
diagnosed with MM. The main contributions of this
paper can be summarized as follows:

• We propose a novel color-balancing method that effec-
tively standardizes the appearance of cytological
images acquired from different devices, such as micro-
scopes and cameras. This innovative approach
addresses variations in illumination conditions by nor-
malizing background color and calibrating staining
within images.

• We introduce a new image segmentation network
called cyto-Knet, which combines vision transformers
and multiscale feature extraction. An important aspect
of our approach is the utilization of a four-class train-
ing strategy that includes an additional cell border
class. Furthermore, we employ conditional kernels for
each class, resulting in optimized segmentation
accuracy.

• We present a robust framework that incorporates a
highly effective postprocessing phase designed to
enhance the performance of our deep learning model.
To address the issue of merged objects and reduce
false-positive cell segmentations, we employ the water-
shed algorithm and a tailored postprocessing step.

• We conduct extensive validation using both pixel and
object-level metrics to fully assess errors and accuracy.
This approach is essential as it addresses a current gap
in existing methods that often overlook segmentation
errors. We compare our results with prior published
techniques and also conduct an ablation study to dem-
onstrate the contributions of our pre- and postproces-
sing components.

The rest of this paper is organized as follows: Section 2
provides an in-depth description of the proposed method;
experimental results are reported and discussed in Sec-
tions 3 and 4, respectively. Finally, Section 5 includes a
final summary and future lines of research.

2 | MATERIALS AND METHODS

In this paper, we present a fully supervised method for
myeloma cell segmentation in cytological images.
Figure 2 summarizes the overall flowchart of our
approach. Our method follows a three-step procedure:
(i) preprocessing and patch extraction, (ii) cell segmenta-
tion using conditional kernels, and (iii) postprocessing
and segmentation refinement. A detailed description of
our approach is provided in the following subsections.

2.1 | Dataset

We used the dataset from the SegPC-2021 challenge13 to
develop our method. This challenge involved acquiring
microscopic images from bone marrow aspirate slides of
patients diagnosed with MM. The slides were stained
using the Jenner-Giemsa stain, and the plasma cells were
manually segmented by experts and provided as part of
the challenge dataset. The images were digitized in BMP
file format using two different cameras attached to the
microscope. The Olympus CellSens software (version 2.1)
was used to capture 690 images with a size of
1536 � 2040 pixels, and the Nikon DS-5 M camera
acquired 85 images with a size of 1920 � 2560 pixels.14–16

FIGURE 2 Schematic representation of our segmentation pipeline with a zoomed-in view of the result for each step. The process begins

with the application of color standardization to balance the chromatic components of the original cytological image. Subsequently, our deep

neural network, called cyto-Knet, is employed for the segmentation task. Finally, an ad-hoc postprocessing technique is applied to

accomplish the instance segmentation of nuclei and cytoplasm for each plasma cell.
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Each image contained multiple plasma cells, and each
cell was segmented into three classes: nuclei, cytoplasm,
and background.

The entire dataset consisted of 775 microscopic images,
which were divided into a training set with 298 samples, a
validation set with 200 images, and a test set with 277 sam-
ples. Manual annotations were provided only for the train-
ing and validation sets.13 Since the test data from the
challenge are not publicly available yet, we randomly
divided the 498 images into a construction set, with
400 images used for training and 48 images for validation.
The remaining 50 images were reserved as a blind test set.

2.2 | cyto-Knet preprocessing: novel
color balancing and patch extraction

Preprocessing is a crucial step in enhancing the contrast
between cells and background. However, conventional
contrast stretching methods may compromise the integ-
rity of the image, introducing potential biases during
analysis.17 For this reason, we have developed a novel
preprocessing technique based on color balancing. This
technique standardizes the conditions of image acquisi-
tion while preserving the image's information content,
reducing chromatic variability, and achieving a more nat-
ural white background appearance. Our color-balancing
method comprises two steps: color calibration and illumi-
nant correction.

In the color calibration phase, the image is converted
to the LAB color space. Then, the A and B layers are
adjusted according to Equation 1 and Equation 2, respec-
tively. The modified image is then converted back to the
RGB color space using Equation 3.

Anew ¼A�1:1� avgA�128ð Þ � L=255 ð1Þ

Bnew ¼B�1:1� avgB�128ð Þ � L=255 ð2Þ

IMGnew ¼ lab2rgb L,Anew,Bnewð Þ ð3Þ

In these equations, avgA and avgB represent the aver-
age values of A-layer and B-layer in the initial LAB
image. Equation 1 adjusts the A channel relative to the L
channel proportionally to the difference between avgA
and 128. This quantity is then scaled by a factor of 1.1.
Through visual comparison, we found factors less than
1 inadequate to fully correct potential image calibration
errors, while factors slightly above 1 were effective. Equa-
tion 2 performs the same operations on the B channel.
These adjustments aim to eliminate background polariza-
tion caused by various image acquisition conditions like

ambient lighting and uncalibrated camera colors, as
shown in Figure 3.

In the illuminant correction step, we employ a white
balance method to standardize all image colors based on
the color of the white background.18,19 To correct for illu-
mination variations in the image, we first identify the
mask of bright pixels by applying a threshold in
the L-channel of the LAB color space. Then, we calculate
the mean value in grayscale (gv) for each channel of
the image. This parameter represents the intensity of the
bright pixels in the uncorrected image. To adjust the illu-
mination, we define a value called wv, which represents
the desired intensity of the bright pixels in the calibrated
image. For this study, we used a fixed value of 0.80 for all
channels. We chose this value to avoid a background that
is too light (wv= 1.0) or too dark (wv= 0.60). If the value
of wv is higher than gv, the brightness of the image is
increased; otherwise, it is decreased. Next, each channel
of the RGB image is converted into optical density
(OD) and normalized to the gv value using Equation 4.
Finally, to return to the RGB space, we apply the inverse
formula to multiply the previous value by wv using
Equation 5.

ODi
NORM ¼� log10 IMGi

new=gvi
� �

, 8i¼ 1,2,3 ð4Þ

Ci
NORM ¼wv �10�ODi

NORM ,8i¼ 1,2,3 ð5Þ

This approach effectively adjusts the brightness of the
image, ensuring that no areas are over- or underexposed.
Figure 3 provides an example of the effectiveness of the
preprocessing technique. Our method accurately stan-
dardizes different color presets within the image, while
simultaneously preserving the image's information con-
tent and reducing chromatic variability. After performing
image standardization, we extracted patches of
1500 � 1500 pixels with a spatial overlap of 75% to fit the
network input size.

2.3 | cyto-Knet core: cell instance
segmentation using conditional kernels

When considering the task of semantic segmentation of
plasma cells, it is essential for the final framework to uti-
lize information from different scales of the image.13 This
task presents two primary challenges: firstly, nuclei often
merge and form clusters, and secondly, the cytoplasm of
multiple cells can come into contact with each other. To
overcome these challenges, we have developed a novel
architecture called cyto-Knet, as depicted in Figure 4.
This architecture incorporates a pyramid pooling module
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to extract multiscale features and performs precise seg-
mentation by using conditional kernels customized for
each class.

The cyto-Knet model integrates the UPerNet (Unified
Perceptual Parsing for Scene Understanding)20 into the
K-Net architecture.21 Additionally, this model employs a
Swin transformer22 as a feature extractor, which provides
a robust and accurate representation of the input data.
The Swin transformer constructs hierarchical feature
maps by merging image patches in deeper layers. One of
the advantages of this architecture is its linear computa-
tional complexity in relation to the input image size,
achieved by conducting self-attention computations
solely within local windows, as indicated by the red boxes
in Figure 4A. Following feature extraction, the UPerNet
leverages global context information by merging features
into different pyramid scales. This architecture combines
a bottom-up pathway, which captures low-level features
of the input image, with a top-down pathway that refines
the segmentation map using skip connections
(Figure 4B). The lateral connection between the
bottom-up and top-down pathways merges feature

maps of different resolutions to further enhance the seg-
mentation results. Finally, the K-Net module updates
conditional kernels based on their corresponding seg-
mentation class, resulting in a more accurate mask
prediction.

The conditional kernels in cyto-Knet are a type of
convolutional kernel that dynamically adjusts its behav-
ior based on the input data. Unlike traditional convolu-
tional kernels that apply the same weights to all input
patches, conditional kernels can adapt their weights
based on the characteristics of the input. To achieve this,
cyto-Knet employs a gating mechanism that determines
the contribution strength of each conditional kernel. The
gating mechanism takes the input data and produces a
set of gating values, which determine the strength of each
kernel's contribution. Kernel refinement involves updat-
ing each kernel with contextual information from other
groups through a multihead attention block. Convolu-
tions between the obtained kernels and the feature map
result in a more precise mask prediction, improving
the discriminative ability of the kernels and enhancing
the final segmentation performance (Figure 4C).

FIGURE 3 Preprocessing step applied to the cytological image. As can be seen, this standardization approach calibrates images

effectively and consistently, reducing chromatic variability and ensuring that the image's information content is preserved.
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Another novel aspect of this work is the training strat-
egy in terms of the number of classes used to train the
network. Specifically, the network is trained on a four-
class problem using 1500 � 1500 RGB images as input
and labeled masks as the target. The pixels are labeled in
four classes: nuclei, cytoplasm, background, and the
newly introduced class for the cell boundary, an
approach that has not yet been explored in this dataset.
The inclusion of both the object and the border as classes
serves to accurately define the spatial boundaries of each
cell by leveraging information on the location and con-
tour of each object, as demonstrated in Figure 4. The use
of a fourth class to represent the cell boundary is crucial
for the postprocessing stage to effectively separate indi-
vidual cells (Section 2.4). To determine the cell boundary
class, which was not originally provided with the chal-
lenge dataset, the outline of each plasma cell is extracted
from the manual mask, and a dilation is performed using
a 5-pixel radius disk to obtain a binary mask of cell con-
tours. During training, real-time data augmentation is
implemented by randomly flipping and rotating both the
input image and the corresponding encoded mask to
increase the diversity of the training data.

The cyto-Knet was trained on 1216 patches with a
minibatch size of 8, using a Dice loss and AdamW opti-
mizer for both the decode and auxiliary head of the
model. The maximum number of epochs was set to

100 with a validation patience of 5 epochs for early stop-
ping. The model was trained for 7 h on a dedicated work-
station equipped with a GeForce RTX3090, a 4.5 GHz
10-core CPU, and 128 GB of RAM.

2.4 | cyto-Knet postprocessing: patch
aggregation and segmentation refinement

The proposed segmentation model works on patches of
size 1500 � 1500 pixels. However, the images in the
SegPC challenge have different sizes depending on
the acquisition device, either 1920 � 2560 or 1536 � 2040
pixels. To address this issue, we employed the same patch
aggregation strategy adopted in our previous works.23,24

This technique involves creating an extended image by
padding the original image with mirror reflections. A
sliding window operator with overlap is then applied,
and each window is processed by the network. The final
softmax is obtained by center cropping the resulting heat-
map, which represents the pixel-wise probability for the
“nucleus,” “cytoplasm,” “border,” or “background”
classes.

The raw segmentation mask, illustrated in Figure 5, is
generated through majority voting from the 4-class soft-
max probability map mentioned earlier. Subsequently, a
postprocessing step is conducted to refine the

FIGURE 4 Segmentation network used in this work. (A) Features are extracted by using a Swin transformer as backbone.

(B) Multiresolution features aggregation is performed by the UPerNet (Unified Perceptual Parsing for Scene Understanding). (C) Overall

architecture of the cyto-Knet. During the inference process, the network generates a softmax output that indicates the probability of each

pixel belonging to one of the following classes: background (shown in black), nucleus (blue), cytoplasm (green), and cell border (red).
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segmentation of individual plasma cells, especially in
the presence of clustered objects. Nuclei and cytoplasm
masks are extracted from the raw segmentation by merg-
ing the cell border class with the background, facilitating
the separation of cells. This merging process reduces the
number of clustered cells and results in a clearer division
between single cells. Additionally, image cleaning

operations such as small objects removal and hole filling
are applied to the segmentation masks.

The marker-controlled watershed algorithm based on
the Euclidean distance transform25,26 is then applied to
separate plasma cells into single instances. Markers are
defined as local maxima of the distance from the back-
ground class. Each instance is individually processed and

FIGURE 5 Graphical flowchart representation of the postprocessing strategy adopted in this work.
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analyzed using a heuristic rule-based suppression step. In
cases where multiple nuclei exist for the same cell, only
the nucleus with the largest area is retained. Instances
consisting solely of a nucleus or cytoplasm are removed if
their area-to-cell ratio exceeds 85%, as they do not repre-
sent the cells of interest. Cells with an average softmax
probability of the nucleus or cytoplasm lower than 50%
are also discarded due to potential network misclassifica-
tion. Furthermore, cells with nuclei located on the
image's edge and an eccentricity higher than 0.6 (indicat-
ing a shape very different from a circle) are considered
partially acquired objects and are excluded.

The final segmentation mask is obtained by applying a
dilation operation with a 5-pixel radius disk to retrieve the
newly introduced border class. Figure 5 provides a system-
atic diagram illustrating the key steps of the postprocessing
strategy. In the 4-class softmax probability map, the nuclei,
cytoplasm, border, and background classes are represented
by the colors blue, green, red, and black, respectively. The
final segmentation mask, obtained after postprocessing, is
displayed with overlapping ground truth nuclei and cell
contours shown in blue and red, respectively.

2.5 | Performance metrics

The SegPC-2021 challenge introduced the mean Inter-
section over Union (mIoU) score as an evaluation metric.13

This score measures the overlap between each ground truth
object and detected instance using the Jaccard index. If no
automated segmentation is found, indicating a false-
negative object, a score of zero is assigned. The mIoU is cal-
culated as the average value across all ground truth
instances. However, the mIoU does not consider unclaimed
segmented instances (false-positive objects), which is a limi-
tation of this metric. Additionally, the images are resized to
1080 � 1440 pixels before computing the mIoU score to
standardize image sizes. The score is then calculated as the
average over all plasma cells in each subset, rather than
over images as with other quantitative metrics.

To address these limitations, we compute several
pixel and object-based metrics to provide a more robust
performance comparison. At the pixel level, we calculate
various metrics by comparing the manual and automatic
segmentation masks, including precision, recall, and the
F1 score (also known as Dice coefficient). Furthermore,
our work introduces object-level metrics to evaluate indi-
vidual instances using the same metrics but with an
object-wise definition.27 Additionally, we compute the
Hausdorff distance (HD) to measure object contour
matching.28 For a more comprehensive assessment, we
calculate the aggregated Jaccard index (AJI), which effec-
tively penalizes both pixel- and object-level segmentation

and detection errors.12 These metrics collectively provide
a thorough and robust evaluation of our segmentation
model's performance.

3 | RESULTS

3.1 | Hyperparameter tuning

In this study, we perform a fine-tuning of the cyto-Knet
architecture to identify its most effective components. We
evaluate various backbone networks, including ResNet,
DenseNet, and the Swin transformer, with different depths
and numbers of convolutional blocks. Based on the analy-
sis, we select the Swin transformer as it achieves the best
results on the validation set. We also experiment with dif-
ferent hyperparameters such as learning rate, batch size,
loss function, and weight for the decode and auxiliary
head of the network (Table 1). The performance of each
configuration is assessed on the validation set, and the
final architecture with the highest Dice score is chosen.

3.2 | Plasma cell segmentation

The pixel- and object-based metrics for the segmentation of
nuclei, cytoplasm, and the whole plasma cell, are reported
in Table 2. For cytoplasm segmentation, only pixel-based
metrics can be computed due to instances referring to mul-
tiple connected components with nonconvex shapes. The
proposed cyto-Knet achieves an mIoU of 0.8561 for the con-
struction set and an mIoU of 0.8333 for the test set.

3.3 | Ablation study

An ablation study is conducted to understand the effects
of the different modules in our proposed framework. We

TABLE 1 Tuning of the hyperparameters of the proposed

network (cyto-Knet).

Hyperparameter Range/Values Chosen value

lr 10�i for i� 2 : 6½ �½ � 10�3

Batch size 4,8,16,32½ � 16

lossdecode [Dice, Cross-entropy] Dice

lossaux [Dice, Cross-entropy] Dice

weightdecode i �10�1 for i� 2 : 9½ �½ � 0.8

weightaux i �10�1 for i� 1 : 4½ �½ � 0.4

Abbreviations: lr, learning rate; lossdecode, loss function of the decode head;
lossaux, loss function of the auxiliary head; weightdecode, weight associated

with lossdecode; weightaux, weight associated with lossaux.
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evaluate the results obtained using only the cyto-Knet,
with and without the pre- and postprocessing stages.
Table 3 shows the plasma cell segmentation results on
the test set. Using only the deep learning model, we
achieve an AJI of 0.7333. Adding the color standardiza-
tion preprocessing step slightly improves the AJI to
0.7633. However, incorporating the full postprocessing
strategy leads to a significant increase in AJI to 0.8237,
a 6.04% improvement compared with the network
alone.

3.4 | Comparison with state-of-the-art
methods

In terms of a performance comparison with state-of-the-
art methods, we evaluate the proposed segmentation
strategy against several benchmarks:

1. The traditional K-Net,21 which is integrated in our
cyto-Knet model.

2. The ResNeSt model,29 serving as the convolutional
backbone for the top-performing method in the
SegPC-2021 challenge.

3. The attention-based Deeplabv3+,30 employed in the
second-place solution of the challenge.

4. The Vision Transformer (ViT),31 integrated into the
method that claimed third place in the challenge.

We present a quantitative metrics comparison in
Table 4, and a visual analysis is available in Figure 6 for a
more comprehensive understanding of the results.

From Figure 6, it can be observed that the proposed
cyto-Knet consistently estimates the correct number of
plasma cells, while the state-of-the-art approaches incor-
rectly associate merged instances single cells and gener-
ate false-positive objects. The mean absolute percentage
error (MAPE) on the number of detected plasma cells is
computed for the test set, showing that our method
achieves a MAPE of 12%, while the other approaches
reach values of 41%, 31%, and 42% for ResNeSt,
Deeplabv3+, and Vision Transformer, respectively.

TABLE 2 Quantitative performances of instance segmentation for construction (448 images) and test (50 images) sets.

Nuclei Pixel-based metrics Object-based metrics

Subset Precision Recall F1 score Dice HD (pixels) AJI

Construction 0.8606 0.9089 0.8708 0.8916 8.56 0.7902

Test 0.8944 0.8828 0.8810 0.9048 10.20 0.8027

Cytoplasm Pixel-based metrics

Subset Precision Recall F1 score

Construction 0.8409 0.8941 0.8544

Test 0.8747 0.8920 0.8779

Plasma cells Pixel-based metrics Object-based metrics

Subset Precision Recall F1 score Dice HD (pixels) AJI

Construction 0.8710 0.9219 0.8839 0.8953 27.18 0.8018

Test 0.9033 0.9049 0.8983 0.9130 28.84 0.8237

TABLE 3 Average computational times and performances on the test set for the different modules that compose our segmentation

framework.

Method Time (s)

Pixel-based metrics Object-based metrics

Precision Recall F1 score Dice HD (pixels) AJI

cyto-Knet 2.65 0.8108 0.9267 0.8571 0.8285 43.6065 0.7333

CS + cyto-Knet 2.88 0.8360 0.9289 0.8723 0.8631 36.4547 0.7633

CS + cyto-Knet + post 4.48 0.9033 0.9049 0.8983 0.9130 28.8380 0.8237

Note: The best performances are highlighted in bold.
Abbreviations: CS, color standardization (preprocessing); cyto-Knet, proposed segmentation network; post, postprocessing and segmentation refinement.
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In addition, a recent study proposed a deeper and
more compact split-attention U-Net, named DCSAU-
Net,11 and evaluated the model on a random test set of
49 images from the SegPC-2021 dataset. The authors
reported the following pixel-based performance metrics:
an accuracy of 0.950, a precision of 0.871, a recall of

0.910, and a F1 score of 0.886. The mIoU score was
equal to 0.806. The proposed cyto-Knet outperforms
DCSAU-Net for all metrics on the test set (accuracy:
0.967, precision: 0.903, recall: 0.905, F1 score: 0.898,
mIoU: 0.833) except for the recall values that are
comparable.

TABLE 4 Performance metric

evaluation between the proposed

approach (cyto-Knet) and the state-of-

the-art methods on the test set. The best

performances are highlighted in bold.

Method

Pixel-based metrics Object-based metrics

Precision Recall F1 score Dice HD (pixels) AJI

K-Net 0.8139 0.9034 0.8478 0.7999 58.0502 0.6809

ResNeSt 0.8168 0.9157 0.8536 0.7953 50.5016 0.7134

Deeplabv3+ 0.8526 0.8881 0.8598 0.8493 44.7354 0.7514

ViT 0.8019 0.9227 0.8491 0.8033 48.7715 0.7141

cyto-Knet 0.9033 0.9049 0.8983 0.9130 28.8380 0.8237

F IGURE 6 Sample images for state-of-the-art visual comparison. Original images and ground truth (GT) annotations are reported in the

first and second columns, respectively; results of state-of-the-art approaches are shown from the third to the fifth column, and the proposed

cyto-Knet segmentations are reported in the last column. The number of detected plasma cells is added in parenthesis for each method.
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4 | DISCUSSION

The current gold standard for MM diagnosis involves
manual analysis of suspicious plasma cells, also known
as myeloma cells, from a serum sample taken through
biopsy. However, this method can be time-consuming,
prone to human errors, and affected by interoperator var-
iability. The emergence of digital pathology has intro-
duced new possibilities for pathologists. They can now
inspect, label, and track digital tissue slides in high-
resolution formats. This advancement enables easy shar-
ing of second opinions and facilitates the integration of a
laboratory information system to improve clinical work-
flow.32 Additionally, digital cytology enables the use of
computer-aided diagnosis (CAD) and artificial
intelligence-based tools, enhancing the accuracy and the
efficiency of MM diagnosis.

Cytological preparations present several challenges.
These include irregular distribution of isolated and clus-
tered plasma cells with different nuclei and cytoplasm
sizes/shapes, as well as suboptimal staining processes
that can negatively impact the chromatic appearance of
cellular structures. To address these issues, we have
employed the technique of instance segmentation, which
focuses on pixel-wise prediction and object detection
simultaneously. As illustrated in Figure 1, the instance
segmentation task presents the following complexities:
(i) suboptimal acquisition of the images, (ii) partially
overlapping cells, and (iii) poorly defined contours of the
objects of interest.

In this study, we propose a novel multiscale architec-
ture (cyto-Knet), for instance segmentation of plasma
cells from microscopic images of bone marrow aspiration.
We have developed this framework using the publicly
available SegPC-2021 dataset of myeloma cell images.13

The proposed framework, summarized in Figure 2, com-
bines deep learning techniques with heuristic approaches
in the pre- and postprocessing steps. In the preprocessing
stage, we introduce a novel color standardization method
to balance different illuminant conditions. This
method effectively calibrates the input cytological images
and minimizes chromatic variability (Figure 3). Our
approach successfully standardizes images captured from
two different setups, such as microscope and cameras,
and can be easily extended to other applications where
white balancing of acquired images is not standard. The
proposed cyto-Knet architecture (Figure 4) generates a
softmax output indicating the probability of each pixel
belonging to one of the four classes: background,
nucleus, cytoplasm, and cell border. The introduction of
a cell border class enables the subsequent postprocessing
strategy to facilitate cell splitting, as depicted in the
zoomed-in view of Figure 2. We employ the watershed

algorithm with a rule-based heuristic suppression step to
correctly separate merged objects, identifying only cells
of interest and minimizing the risk of false-positive
objects. Figure 5 graphically demonstrates the utility of
the postprocessing strategy in removing single instances
that are not cells of interest. The watershed transform
used for separating merged instances detects 11 objects in
the sample image. In the final mask, four plasma cells
previously detected by the watershed algorithm are cor-
rectly discarded: cells #1, #3, and #10 have nuclei par-
tially out of the field of view with an eccentricity above
the threshold, and cell #6 consists of cytoplasm only
(i.e., with a cytoplasm area ratio >85%). The postproces-
sing strategy relies on the watershed transform and a
threshold-based heuristic approach. The employed water-
shed algorithm can be easily extended to other nucleated
cells in the bone marrow aspirate images without requir-
ing specific parameter tuning, thanks to the introduction
of the new border class that facilitates the splitting of
merged instances. The same principle applies to all
thresholds used for removing unwanted objects, which
are relative values based on softmax probability and the
circular shape of cellular structures, such as nuclei and
steatosis in other histological image data.

We conducted an extended performance validation by
computing both pixel- and object-based quantitative met-
rics. These metrics allowed us to evaluate the accuracy of
pixel-level misclassification, object-level detection errors,
and both in a unified manner (e.g., AJI metric). Notably,
this is the first study to report quantitative metrics, both
pixel- and object-based, for the segmentation of all
classes—nuclei, cytoplasm, and whole cells—as shown in
Table 2. Our color standardization and postprocessing
strategy proved effective in improving network perfor-
mance, as demonstrated in the ablation study (Table 3).
Specifically, the introduction of these steps resulted in a
4% increase in pixel-based F1 score and 9% increase in
object-based AJI. Additionally, there was an improve-
ment of approximately 15 pixels when evaluating contour
matching between ground truth and automatic segmen-
tations. The full pipeline with postprocessing requires
4.48 s, approximately 2 s longer than the network alone.
However, this additional time is justified by the signifi-
cant performance gain. The postprocessing also improves
all pixel-based metrics. Precision, recall, and F1 score all
see increases of 3%–4% with the full framework com-
pared with the individual network alone.

Table 4 and Figure 6 demonstrate the performance
comparison of our cyto-Knet framework with other state-
of-the-art methods on the SegPC-2021 dataset. Our
framework outperforms existing methods in terms of
pixel-based F1 score, object-based AJI, and other evalua-
tion metrics. These results highlight the effectiveness of
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our proposed approach in accurately segmenting plasma
cells in microscopic images of bone marrow aspiration.
In the context of plasma cell counting, pathologists con-
sider the percentage of abnormal plasma cells a crucial
factor in the diagnosis of multiple myeloma. Our frame-
work achieves the lowest mean absolute percentage error
in counting these abnormal cells. Additionally, we have
demonstrated that our method outperforms a recent
study11 that analyzed various state-of-the-art models and
evaluated them on the same cytological dataset.

In summary, this work offers several benefits:

1. We present a hybrid framework that combines deep
learning and heuristic techniques to achieve highly
accurate instance segmentation of individual plasma
cells in Giemsa-stained cytology images.

2. Our cyto-Knet includes an innovative color-balancing
method as a preprocessing step, effectively standardiz-
ing the appearance of cytological images. This
addresses issues related to variations in image quality
resulting from different acquisition devices, such as
microscopes or cameras.

3. Our network introduces a 4-class segmentation strat-
egy with conditional kernels, significantly enhancing
segmentation performance and accuracy.

4. We tackle the challenge of merged objects and the
issue of false-positive object generation, employing a
marker-based watershed algorithm in the postproces-
sing step.

5. Through extensive validation at both pixel- and
object-based levels, we demonstrate superior perfor-
mance compared with state-of-the-art techniques.

The main limitation of our study is directly related to
the dataset employed. Our method is developed on the
SegPC-2021 dataset,13 which only includes annotations
for cells identified as plasma cells by a senior
onco-pathologist. As a result, not all visible cells were
annotated, since not all visible cells are plasma cells of
interest. Figure 7 shows sample images with low segmen-
tation performance scores. Some sample images in our
dataset exhibited low segmentation performance scores
due to the presence of false-negative and false-positive
objects. The false-negative objects were generated
because some cells consisting only of the nucleus were
annotated in specific images, unlike the majority of the
dataset. The false-positive objects were a result of subtle
differences in the manual annotations between stained
plasma cells of interest and unstained cells considered
part of the background. However, the challenge

FIGURE 7 Sample images with faulty cases. Original images and ground truth (GT) annotations are reported in the first and second

columns, respectively, while cyto-Knet softmax probability maps and final segmentations are reported in the third and fourth columns,

respectively. False-positive and -negative objects are dashed in red.
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organizers plan to release full annotations for a new data-
set in the future, which will enable the construction of
multiclass segmentation models. Additionally, our model
was trained on a smaller number of images since the
challenge's test set was not provided, which may have
limited its performance.

5 | CONCLUSIONS

The current gold standard for diagnosis of multiple mye-
loma involves manual microscopic analysis of a serum
sample taken by biopsy, which is time-consuming and
affected by intra/interoperator variability. In this study,
we have proposed a novel multiscale architecture, called
cyto-Knet, for instance segmentation of plasma cells in
Giemsa-stained cytological images. Our framework intro-
duces several novel aspects, including a color-balancing
algorithm as a preprocessing step, the integration of
UPerNet into the K-Net architecture, the inclusion of a
fourth class for cell boundary segmentation, and a post-
processing algorithm to reduce false-positive segmenta-
tions. We further conduct an extended performance
validation through the computation of both pixel- and
object-based quantitative metrics using the publicly avail-
able SegPC-2021 dataset of myeloma cell images for the
first time. The proposed cyto-Knet outperforms state-of-
the-art approaches, by estimating the correct number of
plasma cells, splitting merged instances correctly, and
minimizing false-positive instance generation. In future
studies, our proposed method could be integrated into an
end-to-end system to support diagnostics. Additionally,
the framework can be easily extended to other cytological
stains and cellular modalities, such as multichromatic
Papanicolaou staining, immunocytochemistry, or fluores-
cence microscopy.
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