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 
Abstract—The Policy Gradient approach is a subset of the Deep 

Reinforcement Learning (DRL) combines Deep Neural Networks 
(DNN) with Reinforcement Learning (RL). This approach finds the 
optimal policy of robot movement, based on the experience it gains 
from interaction with its environment. Unlike previous policy gradient 
algorithms, which were unable to handle the two types of error 
variance and bias introduced by the DNN model due to over- or 
underestimation, this algorithm is capable of handling both types of 
error variance and bias. This article will discuss the state-of-the-art 
SOTA policy gradient technique, trust region policy optimization 
(TRPO), by applying this method in various environments compared 
to another policy gradient method, the Proximal Policy Optimization 
(PPO), to explain their robust optimization, using this SOTA to gather 
experience data during various training phases after observing the 
impact of hyper-parameters on neural network performance.  
 

Keywords—Deep neural networks, deep reinforcement learning, 
Proximal Policy Optimization, state-of-the-art, trust region policy 
optimization. 

I. INTRODUCTION 

ACHINE learning is a field of study that involves 
teaching computers to learn from data. There are three 

main sub-fields within machine learning: supervised learning, 
unsupervised learning, and RL. The primary difference between 
RL and the other two sub-fields is that RL relies on an agent 
learning through interacting with its environment, rather than a 
training set of labeled examples provided by an external 
supervisor. In supervised learning, each example includes a 
description of a circumstance and a label, which defines the 
correct action the system should take in response to that 
condition. In unsupervised learning, the focus is on discovering 
hidden structures within groups of unlabeled data. RL is often 
mistaken for unsupervised learning because it does not rely on 
examples of appropriate conduct. However, the goal of RL is to 
maximize a reward signal, rather than seeking out hidden 
structures. While finding structure in an agent's experience can 
be helpful for RL, it does not solve the problem of how to 
maximize a reward signal for the agent. Therefore, RL should 
be considered a separate machine learning method alongside 
supervised and unsupervised learning [1]. Recent research has 
focused on integrating deep learning with RL, resulting in the 
development of deep RL systems, algorithms, and agents that 
have achieved impressive outcomes. These systems are capable 
of outperforming human intelligence at tasks that were 
previously thought to require high levels of human intelligence, 
creativity, and planning abilities [2]. 
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II. POLICY GRADIENT 

In this article, we will focus on a specific subset of RL 
methods called policy gradient (PG) approaches. These 
methods aim to optimize parameterized policies in relation to 
the expected return, or the long-term cumulative reward. The 
objective of the PG method is to determine the optimal action 
to take in order to maximize the cumulative rewards. Unlike 
other RL methods that use a value table to associate each action 
with its state, the PG method can easily handle large state 
spaces. The policy, which is a DNN, decides which action to 
take based on the network parameters. The PG method has two 
optimization methods: stochastic gradient ascent (SGA) and 
stochastic gradient descent (SGD). SGA moves in the direction 
of optimization, while SGD aims to minimize the cost function 
or climate by moving towards the minimum point of the loss 
function [3]. After an action is selected, the PG algorithms 
evaluate the last policy and determine the best one. The 
improvement step for the policy is done by updating the neural 
network parameters. Each PG algorithm has a different way of 
evaluating and improving the policy. The Reinforce algorithm's 
performance is based on the average cumulative return G (ϴ), 
see (1) which can have high variance due to rewards being 
random variables. On the other hand, the Advantage Actor-
Critic (A2C) algorithm's performance is based on the advantage 
function Aϴ(s, a), see (2) which takes into account the 
difference between the next state and the immediate state, 
resulting in lower variance but with a potential for bias. In this 
article, we will focus on PG methods that have the ability to 
balance the trade-off between variance and bias to introduce 
powerful algorithms. Specifically, we will focus on methods 
that utilize trust regions to find optimization with low variance 
and low bias; in particular, we shall examine the following 
algorithms: TRPO and PPO. In the following section, we will 
examine in depth the concept of trust region and provide a 
thorough analysis of the TRPO algorithm. We will explain how 
TRPO finds the optimization, and in the subsequent section, we 
will compare the implementation of TRPO to the performance 
of PPO algorithm. 
 

𝐺௧ሺ𝜃ሻ ൌ ∑ 𝛾௞ି௧ି௧்
௞ୀ௧ାଵ 𝑅௞         (1) 

 
𝐴ఏሺ𝑠,  𝑎ሻ ൌ 𝑄ሺ𝑠,  𝑎ሻ  െ 𝑉ሺ𝑠ሻ         (2) 

 
Q (s, a) is the q value of the action in the immediate state; V(s) 
is the value of the immediate state. 
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A. Trust Region Method (TRM) 

Line searching and trust region searching are two types of 
searches used in the PG method for optimization. While the 
PPO and TRPO rely on the trust region search, the algorithms 
A2C, reinforce, DDPG, etc., rely on the line search. In this 
paper, we propose a method for optimizing the performance of 
a neural network using a line search algorithm. The method 
involves tuning two parameters, w1 and w2, with the goal of 
maximizing policy performance. Our approach involves 
identifying the direction of the maximum accent and then 
selecting an appropriate step size. As shown in Fig. 1, this 
approach allows for efficient and precise optimization of the 
neural network's performance. Additionally, we incorporate a 
trust region approach to further enhance the optimization 
process. For each new update and policy point, we identify the 
trust region border inside the point, as shown in Fig. 2. We then 
search inside this region for a different policy with higher 
performance until we achieve optimization. This approach 
allows for the identification of a more optimal policy, and thus, 
an improvement in the overall performance of the neural 
network.  

 

 

Fig. 1 Policy performance of line search method with the two neural 
network parameters w1 and w2 

 
The Trust Region Method (TRM) [12] initially identifies a 

region that includes the current best solution and can 
approximate the basic goal function. The TRM then moves 
forward in keeping with what the region's model predicts. TRM 
often decides the step size before the improving direction, in 
contrast to line search approaches in the previous PG algorithms 
A2C, reinforce, etc. [4]. TRM helps us to make the learning 
process more efficient and reliable. This method addresses two 
things: 1) sample efficiency, the ability of an RL algorithm to 
learn from a small number of interactions with the environment, 
as opposed to a large number of interactions. 2) The reliability 
of the steps taken to find that optimal policy while avoiding the 
steps that decrease the performance. In this method, first, we 
must determine the region of trust by creating a bound around 
the last policy point. Then inside this region, we must find the 
other parameters that can give us better policy and the new 
policy point, and so on until obtaining the best policy, with 
reliable improvement for the new policy. TRM are based on 

using the Kullback-Leibler divergence (KL divergence) as a 
tool to measure the difference between two policies. The better 
policy in the trust region bound must be equal to or less than the 
delta δ. Inside the region, all available policies have a 
divergence less than or equal to the delta. When we have 
continuous action, the DKL will be the integration of the 
equation (see (4)), and the KLB equation (3) applies for the 
discrete action space. 

 

 

Fig. 2 Policy performance of trust region method with the two neural 
network parameters w1 and w2 

 

𝐷௞௟ሺ𝜋ଵ//𝜋ଶሻ ൌ ∑ 𝜋ଵሺ𝑎 ∖ 𝑠ሻ  
௔∈஺   ln ቀ

గభሺ௔∖௦ሻ

గమሺ௔∖௦ሻ
ቁ ൑ 𝛿       (3) 

 

𝐷௞௟ሺ𝑃//𝑄ሻ ൌ ∑ 𝑃ሺ𝑥 ሻ ln ቀ
௉ሺ௑ሻ

ொሺ௑ሻ
ቁ  

௫∈௑ ൑ 𝛿      (4) 

 
We present (5) that allows us to compare the performance of 

two policies: J(π) the last policy and J(π ̃) the new policy. The 
equation expresses the performance of the new policy as the 
performance of the last policy, plus the expectation 𝔼 of the 
simulation of selection for each action in each state for the 
expected discounted advantage A஠ሺs୲, a୲ሻ. The expectation of 
the advantage of the new policy is compared with the previous 
one. If the expectation of the advantage of the new policy is 
higher, then the performance of the new policy is better than the 
previous one. This means that the new policy will expect to 
select the best actions more often than the last one. In other 
words, the new policy will select the actions with more positive 
advantages when it visits the same states. 
 

 𝐽ሺ𝜋෤ሻ ൌ 𝐽ሺ𝜋ሻ ൅ 𝔼௦బ௔బ….∼గ෥ ሾ ෌ γA஠ሺs୲, a୲ሻሿ
ஶ

௧ୀ଴
    (5) 

 
The L(π) value is the surrogate function [5], which represents 

the frequency sampled for the new policy to easily approximate 
the performance of the new policy by using the number of the 
visitation frequency of each state of the last policy ρπ(s) instead 
of the new one ρπ෥(s), which is the hardest to estimate. Through 
this function, we can simplify the search for a better policy by 
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making the number of visitations states be fixed during the 
research process, see (6): 
 

𝐽ሺπ෤ሻ  ൌ  J ሺπሻ  ൅  ∑ s ρπሺsሻ ∑ a π෤ሺa ∖  sሻ  Aπሺs, aሻ   (6) 
 

The function L(πϴ) must take the value of the J(πϴ) which is 
the derivative of the first order to calculate the direction of the 
gradient descent. It must be the same, see (7) and (8); the two 
values must be equal for the first derivative.  

 
L𝜋஘బ  ሺπϴబሻ  ൌ   Jሺπϴబሻ           (7) 

 
∇𝜃  L𝜋஘బ ሺπϴబሻ∥𝜃ൌ𝜃0ൌ ∇𝜃 𝐽ሺπϴబሻ  ∥𝜃ൌ𝜃0       (8) 

 
After calculating the derivative using L (πϴ) instead of J(πϴ), 

the purpose of (8) is to determine the step size, denoted by α, 
the step size α is a hyperparameter that determines the 
magnitude of the update to the parameters θ at each iteration of 

the PG optimization algorithm that must be taken to guarantee 
improvements in the policy (π). The left side of the equation 
represents a constant (C) multiplied by the maximum Kullback-
Leibler divergence (Dkl) between the current and new policy. 
By applying this formula, we can find a policy with better 
performance using the minorize-maximization algorithm. The 
minorize-maximization algorithm is a technique used to 
optimize a function by iteratively finding a lower bound of the 
function, called the minorizer, and then maximizing the 
minorizer. By applying this equation within the minorize-
maximization algorithm [13], we can iteratively improve the 
policy and find the policy that yields the best performance, see 
Fig. 3 [6] To find the optimal policy, we must try all policies 
within the region and apply (9) to each one of them. In this way, 
the optimal policy is the one that minimizes the left side of the 
equation. 

 
Jሺπ෥ሻ  ൒   Lగሺπ෥ሻ  െ   CD୩୐

୫ୟ୶ሺπ,  π෥ሻ     (9) 
 

 

Fig. 3 Minorize Maximization Algorithm of policy performance 
 

The surrogate function represented by L minus the term 
CD୩୐

୫ୟ୶ ensures that the new policy is close enough to the 
previous policy. By applying this local function to each new 
policy, we find the policy that results in the local maximum, as 
shown in (10). This process is repeated until the optimal policy 
or a policy that is sufficiently close to the previous policy is 
found. Equation (10) describes the updates of the new neural 
networks parameters made to the new policy during this 
process.  
 

θ୲ାଵ  ൌ arg୫ୟ௫೷ L ሺθ|θ୲ሻ  െ CD௞௟
௠௔௫ሺθ୲, θሻ     (10) 

 
Equation (10) describes a method for updating the policy in 

which the value of C is very small in comparison to CD௞௟
௠௔௫. This 

means that many steps must be taken for each local surrogate 
value to reach the optimal policy. To update the local surrogate 
function and take larger steps without losing the guarantee, one 
approach is to remove the value of C from the equation. This 
can be achieved by maximizing the value of L while ensuring 
that the constraints CD௞௟

௠௔௫ ≤ δ are met. By removing the value 
of C, the optimization process can be accelerated and the 
optimal policy can be reached faster. This allows for a more 
efficient search for the optimal policy while still maintaining 
the guarantee of similarity between the current and new 
policies.  
 

   𝐦𝐚𝒙𝜭 ሺ𝜃ሻ  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒       (11) 
 
In (11), we must compare the average of all samples in the 

trust region, and if this average is smaller than or equal to the 
delta value, then we can take values of any samples in the region 
even if the sample is bigger than delta. In the next paragraph, 
we will discuss how the TRPO method utilizes the truth region 
for optimization.  

B. Trust Region Policy Optimization  

Our goal is to maximize the surrogate function, which is a 
measure of how well our policy is performing, by making the 
Dkl value, a measure of the difference between two probability 
distributions, smaller than or equal to delta as stated in (11). To 
achieve this, we use the TRPO method, which is a part of the 
TRM family. The TRPO method involves expanding the 
surrogate function to maximize the expression in (12). This is 
done by removing the discounting factor (gamma) from the 
term that represents the sum of the discounted number of 
visitations of states under the old policy 𝜌

𝛳𝑜𝑙𝑑 
ሺ𝑠ሻ. This simplifies 

the equation and makes it easier to understand. Additionally, we 
also remove the part of the equation that represents the sum of 
the new expected policy times the expected advantage of the 
old policy  𝜋௾ ሺ𝑎 ∖ 𝑠ሻ  𝐴௾೚೗೏ 

ሺ𝑠, 𝑎ሻ. It is important to note that these 
simplifications do not change the overall value of the surrogate 
function, they only make the equation clearer. 
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  Maxϴ
 ෍ 𝜌

𝛳𝑜𝑙𝑑 
ሺ𝑠ሻ   

 

𝑠
෍   𝜋𝛳 ሺ𝑎 ∖ 𝑠ሻ  𝐴

𝛳𝑜𝑙𝑑 
ሺ𝑠, 𝑎ሻ

 

𝑎
    (12) 

 
𝝆𝜭𝒐𝒍𝒅 

: The number of visitation frequency of each state for the 
old policy;  𝝅𝜭 ሺ𝒂 ∖ 𝒔ሻ: The expected new policy; 𝑨𝜭𝒐𝒍𝒅 

ሺ𝒔, 𝒂ሻ: 
The advantage function of the old policy. 
 

 𝒓𝒆𝒑𝒍𝒂𝒄𝒆  ෍ 𝜌గ೚೗೏ 
ሺ𝑠ሻ

 

௦

         𝒘𝒊𝒕𝒉                
1

1 െ 𝛾
𝔼௦∼ఘఏ೚೗೏

 

        
𝒓𝒆𝒑𝒍𝒂𝒄𝒆      ∑ 𝜋ఏሺ𝑎𝑠௡ሻ 

௔  𝐴ఏ೚೗೏ 
ሺ𝑠௡, 𝑎ሻ  

 

  𝒘𝒊𝒕𝒉             𝔼௔∼గఏ೚೗೏ 
൤

గഇሺ௔∖௦೙ሻ

గഇ೚೗೏
ሺ௔∖௦೙ሻ

 𝐴ఏ೚೗೏ 
ሺ𝑠௡, 𝑎ሻ൨  

 
After making the changes to the equation as previously 

explained, the surrogate function can be calculated more easily. 
The expression for this calculation can be found in (13). It is the 
maximum expectation of state visits under the previous policy, 
as well as the expectation of actions taken under the previous 
policy.  
 

max
ఏ 

  𝔼௦∼ఘఏ೚೗೏
,  ௔∼గഇ೚೗೏

൤
గഇሺ௔∖௦೙ሻ

గഇ೚೗೏
ሺ௔∖௦೙ሻ

 𝐴ఏ೚೗೏
ሺ𝑎 ∖ 𝑠௡ሻ൨  (13) 

 
Because the probability of choosing the action in a given 

state under the new policy is not yet accessible, (13) is still 
difficult to use. The Taylor Series Technique [7] is used by the 
TRPO algorithm to resolve this issue. The surrogate 
function 𝐿ሺ𝜃ሻ, represented by (14), helps to evaluate the 
performance of a set of policy parameters (shown as θ). The 
change in this performance is measured by comparing it to the 
previous set of policy parameters 𝜃௢௟ௗ using the first derivative 
of the surrogate function 𝑔். The TRPO algorithm uses a 
Kullback-Leibler divergence 𝐷௄௅ to measure this change as 
shown in (15). In this equation, H represents the second 
derivative of 𝐷௄௅ with respect to the policy parameters θ and 
𝜃௢௟ௗ, and the variable δ represents the maximum allowed 
change in the policy. 
 

𝐿ሺ𝜃ሻ ൎ  𝑔்ሺ𝜃 െ 𝜃௢௟ௗሻ       (14) 
 

𝐷௄௅ሺ𝜃ሻ ൎ
ଵ

ଶ
ሺ𝜃 െ 𝜃௢௟ௗሻ் 𝐻ሺ𝜃 െ 𝜃௢௟ௗሻ  ൑ 𝛿     (15) 

 
The surrogate function, represented by (14), is a 

mathematical formula that helps to evaluate the performance of 
a certain set of policy parameters θ. These parameters are 
chosen by finding the highest Taylor gradient value during a 
search on the trust area. These selected parameters are then used 
to update the neural networks as shown in (16). However, this 
update is subject to a constraint, the Kullback-Leibler 
divergence DKL should not exceed a certain value called delta. 
 

𝜃௞ାଵ ൌ   arg max
ఏ 

 ൎ  𝑔்ሺ𝜃 െ 𝜃௞ሻ       (16) 

 
Subject to  

 
ଵ

ଶ
ሺ𝜃 െ 𝜃௢௟ௗሻ் 𝐻ሺ𝜃 െ 𝜃௢௟ௗሻ  ൑ 𝛿       (17) 

Equation (18) represents the calculation of new policy 
parameters based on the maximum value of the surrogate 
function. As you can see, the formula is like the one used to 
update parameters in the SGD method. 
 

𝜃௞ାଵ ൌ  𝜃௞ ൅  ට
ଶఋ

ℊ೅ுషభℊ
𝐻ିଵℊ        (18) 

 
In (18), the update of the new parameters is based on the 

maximum value of the surrogate function, using a step size 
represented by the second part of the equation, on the right side 
of the equation. The direction of the step size is represented by 
𝐻ିଵℊ which is the direction towards optimization and the 
growth of the maximum policy. However, there is a problem of 
maintaining the guarantee of improved policy while staying 
within the Kullback-Leibler divergence DKL bounds by using 
this formula, (19): 
 

𝜃௞ାଵ ൌ  𝜃௞ ൅ 𝛼௝ ට
ଶఋ

ℊ೅ ுషభℊ
𝐻ିଵℊ           (19) 

 
It includes a constant value, α, which is between 0 and 1, and 

it is raised to the power of j. The value of j can be a constant (1, 
2, 3, 4...) and it changes until finding the value of the most 
recent update inside the trust region boundary. This means that 
the value of j is adjusted until the step size is found that does 
not cause the boundary to be exceeded. To optimize the 
strategy, this algorithm is applied in the next part. 

III. EXPERIENCE 

This experience uses Google Colab [9] as the platform to 
perform the experiments and run the TRPO algorithm on the 
Ant and Humanoid robot environments. Google Colab is a 
platform that allows the execution of Python code on a Linux 
operating system, which is equipped with a GPU processor and 
27.3 gigabytes of RAM. This platform is chosen for its ability 
to handle large amounts of data and its ease of use. The PyTorch 
toolkits are employed to implement the TRPO algorithm on the 
Ant and Humanoid environments. PyTorch [11], [12] is a 
popular deep learning framework that is widely used for 
machine learning and deep learning applications. The PyTorch 
toolkits [8], provide a convenient way to run the TRPO 
algorithm on the robot environments. The study compares the 
average return of the Ant and Humanoid environments using 
TRPO with the average return using the PPO method. The PPO 
method is a popular algorithm that is widely used in RL. The 
study aims to see if the TRPO algorithm can outperform the 
PPO method in these robot environments. The results are 
analyzed and visualized using TensorBoard, a tool that allows 
the user to easily view and analyze the performance of the 
algorithm and see how the algorithm is performing over time 
and identify any patterns or trends that may indicate areas for 
improvement. Lastly, the study also examines the impact of 
hyper-parameters. The study aims to see how the choice of 
hyper-parameters affects the optimization process and how it 
may impact the overall performance of the algorithm. 
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A. Exploring the Impact of Batch Size on the Efficiency of 
TRPO for Robot Movement 

To achieve the best results, we aimed to find the optimal 
hyper-parameters for the TRPO method. These hyper-
parameters include the training rate, epsilon greedy (the 
probability of taking a random action), batch size, discount 
factor (used to determine the importance of future rewards), and 
number of epochs (the number of times the model is trained on 
the entire dataset). In this study, we focused specifically on the 
batch size and its effect on the efficiency of the TRPO method. 
We found that smaller batch sizes [10] resulted in more steps 
per episode, as a smaller batch size requires more iterations to 
visit all the data in the dataset. However, it was also observed 
that larger batch sizes (2048 and 1024) resulted in faster 
learning but later convergence and stability. Additionally, we 
found that the processor and RAM used in this experience had 
a significant impact on the batch size efficiency, the data shown 
in Figs. 4 and 5 illustrate our findings and the relationship 
between batch size and steps per episode. The figures 
demonstrate that as the batch size increases, the number of steps 
per episode decreases. Overall, our research suggests that the 
batch size is an important hyper-parameter to consider when 
using the TRPO method and that the optimal batch size may 
vary depending on the specific environment and hardware 
being used, see Table I. 

B. The Functionality of TRPO and PPO Algorithms in the 
Actor-Critic Network: A Comparison of Parameters 

TRPO and PPO algorithms are based on two neural 
networks: an actor-network and a critic network. The actor 
chooses which action to take, and the critic estimates the 
action's value as selected by the actor. The critic calculates the 
TD error to improve the network parameters and then sends this 
error to the actor to improve its parameters for a more accurate 
prediction of the action's next selection The parameters of the 
source codes of TRPO actor learning rate = 0.001, critic 
learning rate = 0.0001, γ = 0.99, λ = 0.95, Dkl = 0.25, and the 
PPO source code have the same parameters except ε = 0.3 and 
the entropy coefficient = 0.1, the number of episodes was 1000.  

 

Fig. 4 Results of the average return that the neural network model 
produced for the various batch sizes, TRPO method 

C. Comparison of TRPO and PPO Methods for Training a 
Robot: Results and Analysis 

The TRPO and PPO methods were both used to train a robot. 
The results of this training are presented in Figs. 6 and 7. The 
TRPO method was found to have better average return 
performance when applied to the ant and humanoid robot 
environments, but required more time for training compared to 
PPO. However, after sufficient training, TRPO still performed 
better than PPO when the robot was required to move forward 
while also moving its arms. PPO, on the other hand, required 
less time for training and produced better returns initially. 
Additionally, using a batch size of 1024 resulted in better 
performance for the humanoid robot, which has a larger dataset 
than the ant robot, see Table II. The results indicate that PPO 
had more stability during training in both the ant and humanoid 
robots. The humanoid robot training in TRPO in the iteration 
40k was raised to the highest value recorded 605, but with 
training, it started to decline until reaching 508. This suggests 
that the ant robot can learn easily and move forward and fast, 
but the humanoid robot may require more training or has not 
yet learned enough to move forward and fast after being trained 
with both algorithms.  

 

 

 

Fig. 5 Results of the average return that the neural network model produced for the various batch sizes, PPO method 
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Fig. 6 Ant environment result 
 

 

Fig. 7 Humanoid environment result 
 

TABLE I 
BATCH SIZE 

Symbol 
Number of samples 
in one batch TRPO 

Average 
return 

Number of samples 
in one batch PPO 

Average 
return

1 64 Value error 64 1384 

2 128 Value error 128 1889 

3 256 Value error 256 2045 

4 512 4442 512 3630 

5 1024 2622 1024 2110 

6 2048 2251 2048 2047 

 
TABLE II 

EXPERIENCED AVERAGE RETURN 

Environment TRPO 
Average Return 

PPO 
Average 
Return

TRPO 
Training time 

PPO 
Training 

time
Ant 4442 3630 1 hour, 52 

minutes 
58 minutes

Humanoid 508 345 1 hour, 
50 minutes 

53 minutes

IV. CONCLUSION AND RECOMMENDATIONS 

To improve the effectiveness of the TRPO and PPO methods 
for robot movement, it is important for future research to 
address the trade-off between training time and performance. 
Specifically, efforts should be made to reduce the training time 
for TRPO while maintaining its superior performance in tasks 
such as moving forward while also moving the robot's arms. 
Additionally, it would be valuable to investigate the 
adaptability and performance of the two methods in 
environments with a high number of obstacles, as this could 
have a significant impact on the robot's ability to navigate. 

Furthermore, it is important to evaluate the performance of both 
methods in different scenarios, such as environments with and 
without obstacles, and to study the effect of obstacle density and 
types on the performance. Additionally, it is crucial to monitor 
the performance of the robot in real-world environments, as 
simulation results may not always accurately reflect real-world 
performance. Finally, it would be beneficial to investigate the 
scalability and robustness of the TRPO and PPO methods when 
dealing with high numbers of obstacles in the environment. To 
make the TRPO and PPO methods work better for robot 
movement, it is important to experiment with different 
hyperparameters and not just focus on the batch size, as this 
could help improve the performance and effectiveness of the 
methods.  
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