
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Robot Movement Using the Trust Region Policy Optimization / ALI MOUHAMED ALI, Romisaa. - ELETTRONICO. -
Vol:17:(2023), pp. 394-399. (Intervento presentato al convegno ICRMCA 2023: 17. International Conference on Robot
Motion Control and Automation January 16-17, 2023 in Rome, Italy tenutosi a Rome (Italy)) [10.5281/zenodo.10045678].

Original

Robot Movement Using the Trust Region Policy Optimization

Publisher:

Published
DOI:10.5281/zenodo.10045678

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983363 since: 2023-10-27T13:51:42Z

World Academy of Science, Engineering and Technology


Abstract—The Policy Gradient approach is a subset of the Deep

Reinforcement Learning (DRL) combines Deep Neural Networks
(DNN) with Reinforcement Learning (RL). This approach finds the
optimal policy of robot movement, based on the experience it gains
from interaction with its environment. Unlike previous policy gradient
algorithms, which were unable to handle the two types of error
variance and bias introduced by the DNN model due to over- or
underestimation, this algorithm is capable of handling both types of
error variance and bias. This article will discuss the state-of-the-art
SOTA policy gradient technique, trust region policy optimization
(TRPO), by applying this method in various environments compared
to another policy gradient method, the Proximal Policy Optimization
(PPO), to explain their robust optimization, using this SOTA to gather
experience data during various training phases after observing the
impact of hyper-parameters on neural network performance.

Keywords—Deep neural networks, deep reinforcement learning,
Proximal Policy Optimization, state-of-the-art, trust region policy
optimization.

I. INTRODUCTION

ACHINE learning is a field of study that involves
teaching computers to learn from data. There are three

main sub-fields within machine learning: supervised learning,
unsupervised learning, and RL. The primary difference between
RL and the other two sub-fields is that RL relies on an agent
learning through interacting with its environment, rather than a
training set of labeled examples provided by an external
supervisor. In supervised learning, each example includes a
description of a circumstance and a label, which defines the
correct action the system should take in response to that
condition. In unsupervised learning, the focus is on discovering
hidden structures within groups of unlabeled data. RL is often
mistaken for unsupervised learning because it does not rely on
examples of appropriate conduct. However, the goal of RL is to
maximize a reward signal, rather than seeking out hidden
structures. While finding structure in an agent's experience can
be helpful for RL, it does not solve the problem of how to
maximize a reward signal for the agent. Therefore, RL should
be considered a separate machine learning method alongside
supervised and unsupervised learning [1]. Recent research has
focused on integrating deep learning with RL, resulting in the
development of deep RL systems, algorithms, and agents that
have achieved impressive outcomes. These systems are capable
of outperforming human intelligence at tasks that were
previously thought to require high levels of human intelligence,
creativity, and planning abilities [2].

Romisaa Ali is with Dept. Computer and Control Engineering (DAUIN),

Politecnico di Torino University, Turin, Italy (e-mail: romisaa.ali@polito.it).

II. POLICY GRADIENT

In this article, we will focus on a specific subset of RL
methods called policy gradient (PG) approaches. These
methods aim to optimize parameterized policies in relation to
the expected return, or the long-term cumulative reward. The
objective of the PG method is to determine the optimal action
to take in order to maximize the cumulative rewards. Unlike
other RL methods that use a value table to associate each action
with its state, the PG method can easily handle large state
spaces. The policy, which is a DNN, decides which action to
take based on the network parameters. The PG method has two
optimization methods: stochastic gradient ascent (SGA) and
stochastic gradient descent (SGD). SGA moves in the direction
of optimization, while SGD aims to minimize the cost function
or climate by moving towards the minimum point of the loss
function [3]. After an action is selected, the PG algorithms
evaluate the last policy and determine the best one. The
improvement step for the policy is done by updating the neural
network parameters. Each PG algorithm has a different way of
evaluating and improving the policy. The Reinforce algorithm's
performance is based on the average cumulative return G (ϴ),
see (1) which can have high variance due to rewards being
random variables. On the other hand, the Advantage Actor-
Critic (A2C) algorithm's performance is based on the advantage
function Aϴ(s, a), see (2) which takes into account the
difference between the next state and the immediate state,
resulting in lower variance but with a potential for bias. In this
article, we will focus on PG methods that have the ability to
balance the trade-off between variance and bias to introduce
powerful algorithms. Specifically, we will focus on methods
that utilize trust regions to find optimization with low variance
and low bias; in particular, we shall examine the following
algorithms: TRPO and PPO. In the following section, we will
examine in depth the concept of trust region and provide a
thorough analysis of the TRPO algorithm. We will explain how
TRPO finds the optimization, and in the subsequent section, we
will compare the implementation of TRPO to the performance
of PPO algorithm.

𝐺௧ሺ𝜃ሻ ൌ ∑ 𝛾௞ି௧ି௧்
௞ୀ௧ାଵ 𝑅௞ (1)

𝐴ఏሺ𝑠,  𝑎ሻ ൌ 𝑄ሺ𝑠,  𝑎ሻ  െ 𝑉ሺ𝑠ሻ (2)

Q (s, a) is the q value of the action in the immediate state; V(s)
is the value of the immediate state.

Robot Movement Using the Trust Region Policy
Optimization

Romisaa Ali

M

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:17, No:10, 2023

394International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

10
, 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

32
0/

pd
f

A. Trust Region Method (TRM)

Line searching and trust region searching are two types of
searches used in the PG method for optimization. While the
PPO and TRPO rely on the trust region search, the algorithms
A2C, reinforce, DDPG, etc., rely on the line search. In this
paper, we propose a method for optimizing the performance of
a neural network using a line search algorithm. The method
involves tuning two parameters, w1 and w2, with the goal of
maximizing policy performance. Our approach involves
identifying the direction of the maximum accent and then
selecting an appropriate step size. As shown in Fig. 1, this
approach allows for efficient and precise optimization of the
neural network's performance. Additionally, we incorporate a
trust region approach to further enhance the optimization
process. For each new update and policy point, we identify the
trust region border inside the point, as shown in Fig. 2. We then
search inside this region for a different policy with higher
performance until we achieve optimization. This approach
allows for the identification of a more optimal policy, and thus,
an improvement in the overall performance of the neural
network.

Fig. 1 Policy performance of line search method with the two neural
network parameters w1 and w2

The Trust Region Method (TRM) [12] initially identifies a

region that includes the current best solution and can
approximate the basic goal function. The TRM then moves
forward in keeping with what the region's model predicts. TRM
often decides the step size before the improving direction, in
contrast to line search approaches in the previous PG algorithms
A2C, reinforce, etc. [4]. TRM helps us to make the learning
process more efficient and reliable. This method addresses two
things: 1) sample efficiency, the ability of an RL algorithm to
learn from a small number of interactions with the environment,
as opposed to a large number of interactions. 2) The reliability
of the steps taken to find that optimal policy while avoiding the
steps that decrease the performance. In this method, first, we
must determine the region of trust by creating a bound around
the last policy point. Then inside this region, we must find the
other parameters that can give us better policy and the new
policy point, and so on until obtaining the best policy, with
reliable improvement for the new policy. TRM are based on

using the Kullback-Leibler divergence (KL divergence) as a
tool to measure the difference between two policies. The better
policy in the trust region bound must be equal to or less than the
delta δ. Inside the region, all available policies have a
divergence less than or equal to the delta. When we have
continuous action, the DKL will be the integration of the
equation (see (4)), and the KLB equation (3) applies for the
discrete action space.

Fig. 2 Policy performance of trust region method with the two neural
network parameters w1 and w2

𝐷௞௟ሺ𝜋ଵ//𝜋ଶሻ ൌ ∑ 𝜋ଵሺ𝑎 ∖ 𝑠ሻ  
௔∈஺   ln ቀ

గభሺ௔∖௦ሻ

గమሺ௔∖௦ሻ
ቁ ൑ 𝛿 (3)

𝐷௞௟ሺ𝑃//𝑄ሻ ൌ ∑ 𝑃ሺ𝑥 ሻ ln ቀ
௉ሺ௑ሻ

ொሺ௑ሻ
ቁ  

௫∈௑ ൑ 𝛿 (4)

We present (5) that allows us to compare the performance of

two policies: J(π) the last policy and J(π ̃) the new policy. The
equation expresses the performance of the new policy as the
performance of the last policy, plus the expectation 𝔼 of the
simulation of selection for each action in each state for the
expected discounted advantage A஠ሺs୲, a୲ሻ. The expectation of
the advantage of the new policy is compared with the previous
one. If the expectation of the advantage of the new policy is
higher, then the performance of the new policy is better than the
previous one. This means that the new policy will expect to
select the best actions more often than the last one. In other
words, the new policy will select the actions with more positive
advantages when it visits the same states.

 𝐽ሺ𝜋෤ሻ ൌ 𝐽ሺ𝜋ሻ ൅ 𝔼௦బ௔బ….∼గ෥ ሾ ෌ γA஠ሺs୲, a୲ሻሿ
ஶ

௧ୀ଴
 (5)

The L(π) value is the surrogate function [5], which represents

the frequency sampled for the new policy to easily approximate
the performance of the new policy by using the number of the
visitation frequency of each state of the last policy ρπ(s) instead
of the new one ρπ෥(s), which is the hardest to estimate. Through
this function, we can simplify the search for a better policy by

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:17, No:10, 2023

395International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

10
, 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

32
0/

pd
f

making the number of visitations states be fixed during the
research process, see (6):

𝐽ሺπ෤ሻ  ൌ J ሺπሻ ൅ ∑ s ρπሺsሻ ∑ a π෤ሺa ∖ sሻ  Aπሺs, aሻ (6)

The function L(πϴ) must take the value of the J(πϴ) which is
the derivative of the first order to calculate the direction of the
gradient descent. It must be the same, see (7) and (8); the two
values must be equal for the first derivative.

L𝜋஘బ ሺπϴబሻ ൌ  Jሺπϴబሻ  (7)

∇𝜃  L𝜋஘బ ሺπϴబሻ∥𝜃ൌ𝜃0ൌ ∇𝜃 𝐽ሺπϴబሻ  ∥𝜃ൌ𝜃0 (8)

After calculating the derivative using L (πϴ) instead of J(πϴ),

the purpose of (8) is to determine the step size, denoted by α,
the step size α is a hyperparameter that determines the
magnitude of the update to the parameters θ at each iteration of

the PG optimization algorithm that must be taken to guarantee
improvements in the policy (π). The left side of the equation
represents a constant (C) multiplied by the maximum Kullback-
Leibler divergence (Dkl) between the current and new policy.
By applying this formula, we can find a policy with better
performance using the minorize-maximization algorithm. The
minorize-maximization algorithm is a technique used to
optimize a function by iteratively finding a lower bound of the
function, called the minorizer, and then maximizing the
minorizer. By applying this equation within the minorize-
maximization algorithm [13], we can iteratively improve the
policy and find the policy that yields the best performance, see
Fig. 3 [6] To find the optimal policy, we must try all policies
within the region and apply (9) to each one of them. In this way,
the optimal policy is the one that minimizes the left side of the
equation.

Jሺπ෥ሻ  ൒  Lగሺπ෥ሻ  െ  CD୩୐

୫ୟ୶ሺπ,  π෥ሻ (9)

Fig. 3 Minorize Maximization Algorithm of policy performance

The surrogate function represented by L minus the term
CD୩୐

୫ୟ୶ ensures that the new policy is close enough to the
previous policy. By applying this local function to each new
policy, we find the policy that results in the local maximum, as
shown in (10). This process is repeated until the optimal policy
or a policy that is sufficiently close to the previous policy is
found. Equation (10) describes the updates of the new neural
networks parameters made to the new policy during this
process.

θ୲ାଵ ൌ arg୫ୟ௫೷ L ሺθ|θ୲ሻ െ CD௞௟
௠௔௫ሺθ୲, θሻ (10)

Equation (10) describes a method for updating the policy in

which the value of C is very small in comparison to CD௞௟
௠௔௫. This

means that many steps must be taken for each local surrogate
value to reach the optimal policy. To update the local surrogate
function and take larger steps without losing the guarantee, one
approach is to remove the value of C from the equation. This
can be achieved by maximizing the value of L while ensuring
that the constraints CD௞௟

௠௔௫ ≤ δ are met. By removing the value
of C, the optimization process can be accelerated and the
optimal policy can be reached faster. This allows for a more
efficient search for the optimal policy while still maintaining
the guarantee of similarity between the current and new
policies.

   𝐦𝐚𝒙𝜭 ሺ𝜃ሻ  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒  (11)

In (11), we must compare the average of all samples in the

trust region, and if this average is smaller than or equal to the
delta value, then we can take values of any samples in the region
even if the sample is bigger than delta. In the next paragraph,
we will discuss how the TRPO method utilizes the truth region
for optimization.

B. Trust Region Policy Optimization

Our goal is to maximize the surrogate function, which is a
measure of how well our policy is performing, by making the
Dkl value, a measure of the difference between two probability
distributions, smaller than or equal to delta as stated in (11). To
achieve this, we use the TRPO method, which is a part of the
TRM family. The TRPO method involves expanding the
surrogate function to maximize the expression in (12). This is
done by removing the discounting factor (gamma) from the
term that represents the sum of the discounted number of
visitations of states under the old policy 𝜌

𝛳𝑜𝑙𝑑 
ሺ𝑠ሻ. This simplifies

the equation and makes it easier to understand. Additionally, we
also remove the part of the equation that represents the sum of
the new expected policy times the expected advantage of the
old policy 𝜋௾ ሺ𝑎 ∖ 𝑠ሻ 𝐴௾೚೗೏ 

ሺ𝑠, 𝑎ሻ. It is important to note that these
simplifications do not change the overall value of the surrogate
function, they only make the equation clearer.

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:17, No:10, 2023

396International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

10
, 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

32
0/

pd
f

  Maxϴ
 ෍ 𝜌

𝛳𝑜𝑙𝑑 
ሺ𝑠ሻ

𝑠
෍ 𝜋𝛳 ሺ𝑎 ∖ 𝑠ሻ 𝐴

𝛳𝑜𝑙𝑑 
ሺ𝑠, 𝑎ሻ

𝑎
 (12)

𝝆𝜭𝒐𝒍𝒅 

: The number of visitation frequency of each state for the
old policy; 𝝅𝜭 ሺ𝒂 ∖ 𝒔ሻ: The expected new policy; 𝑨𝜭𝒐𝒍𝒅 

ሺ𝒔, 𝒂ሻ:
The advantage function of the old policy.

 𝒓𝒆𝒑𝒍𝒂𝒄𝒆  ෍ 𝜌గ೚೗೏ 
ሺ𝑠ሻ

 

௦

  𝒘𝒊𝒕𝒉   
1

1 െ 𝛾
𝔼௦∼ఘఏ೚೗೏

𝒓𝒆𝒑𝒍𝒂𝒄𝒆 ∑ 𝜋ఏሺ𝑎𝑠௡ሻ 

௔  𝐴ఏ೚೗೏ 
ሺ𝑠௡, 𝑎ሻ

  𝒘𝒊𝒕𝒉 𝔼௔∼గఏ೚೗೏ 
൤

గഇሺ௔∖௦೙ሻ

గഇ೚೗೏
ሺ௔∖௦೙ሻ

 𝐴ఏ೚೗೏ 
ሺ𝑠௡, 𝑎ሻ൨

After making the changes to the equation as previously

explained, the surrogate function can be calculated more easily.
The expression for this calculation can be found in (13). It is the
maximum expectation of state visits under the previous policy,
as well as the expectation of actions taken under the previous
policy.

max
ఏ 

 𝔼௦∼ఘఏ೚೗೏
,  ௔∼గഇ೚೗೏

൤
గഇሺ௔∖௦೙ሻ

గഇ೚೗೏
ሺ௔∖௦೙ሻ

 𝐴ఏ೚೗೏
ሺ𝑎 ∖ 𝑠௡ሻ൨ (13)

Because the probability of choosing the action in a given

state under the new policy is not yet accessible, (13) is still
difficult to use. The Taylor Series Technique [7] is used by the
TRPO algorithm to resolve this issue. The surrogate
function 𝐿ሺ𝜃ሻ, represented by (14), helps to evaluate the
performance of a set of policy parameters (shown as θ). The
change in this performance is measured by comparing it to the
previous set of policy parameters 𝜃௢௟ௗ using the first derivative
of the surrogate function 𝑔். The TRPO algorithm uses a
Kullback-Leibler divergence 𝐷௄௅ to measure this change as
shown in (15). In this equation, H represents the second
derivative of 𝐷௄௅ with respect to the policy parameters θ and
𝜃௢௟ௗ, and the variable δ represents the maximum allowed
change in the policy.

𝐿ሺ𝜃ሻ ൎ  𝑔்ሺ𝜃 െ 𝜃௢௟ௗሻ (14)

𝐷௄௅ሺ𝜃ሻ ൎ
ଵ

ଶ
ሺ𝜃 െ 𝜃௢௟ௗሻ் 𝐻ሺ𝜃 െ 𝜃௢௟ௗሻ  ൑ 𝛿 (15)

The surrogate function, represented by (14), is a

mathematical formula that helps to evaluate the performance of
a certain set of policy parameters θ. These parameters are
chosen by finding the highest Taylor gradient value during a
search on the trust area. These selected parameters are then used
to update the neural networks as shown in (16). However, this
update is subject to a constraint, the Kullback-Leibler
divergence DKL should not exceed a certain value called delta.

𝜃௞ାଵ ൌ   arg max
ఏ 

 ൎ  𝑔்ሺ𝜃 െ 𝜃௞ሻ (16)

Subject to

ଵ

ଶ
ሺ𝜃 െ 𝜃௢௟ௗሻ் 𝐻ሺ𝜃 െ 𝜃௢௟ௗሻ  ൑ 𝛿 (17)

Equation (18) represents the calculation of new policy
parameters based on the maximum value of the surrogate
function. As you can see, the formula is like the one used to
update parameters in the SGD method.

𝜃௞ାଵ ൌ  𝜃௞ ൅  ට
ଶఋ

ℊ೅ுషభℊ
𝐻ିଵℊ (18)

In (18), the update of the new parameters is based on the

maximum value of the surrogate function, using a step size
represented by the second part of the equation, on the right side
of the equation. The direction of the step size is represented by
𝐻ିଵℊ which is the direction towards optimization and the
growth of the maximum policy. However, there is a problem of
maintaining the guarantee of improved policy while staying
within the Kullback-Leibler divergence DKL bounds by using
this formula, (19):

𝜃௞ାଵ ൌ  𝜃௞ ൅ 𝛼௝ ට
ଶఋ

ℊ೅ ுషభℊ
𝐻ିଵℊ (19)

It includes a constant value, α, which is between 0 and 1, and

it is raised to the power of j. The value of j can be a constant (1,
2, 3, 4...) and it changes until finding the value of the most
recent update inside the trust region boundary. This means that
the value of j is adjusted until the step size is found that does
not cause the boundary to be exceeded. To optimize the
strategy, this algorithm is applied in the next part.

III. EXPERIENCE

This experience uses Google Colab [9] as the platform to
perform the experiments and run the TRPO algorithm on the
Ant and Humanoid robot environments. Google Colab is a
platform that allows the execution of Python code on a Linux
operating system, which is equipped with a GPU processor and
27.3 gigabytes of RAM. This platform is chosen for its ability
to handle large amounts of data and its ease of use. The PyTorch
toolkits are employed to implement the TRPO algorithm on the
Ant and Humanoid environments. PyTorch [11], [12] is a
popular deep learning framework that is widely used for
machine learning and deep learning applications. The PyTorch
toolkits [8], provide a convenient way to run the TRPO
algorithm on the robot environments. The study compares the
average return of the Ant and Humanoid environments using
TRPO with the average return using the PPO method. The PPO
method is a popular algorithm that is widely used in RL. The
study aims to see if the TRPO algorithm can outperform the
PPO method in these robot environments. The results are
analyzed and visualized using TensorBoard, a tool that allows
the user to easily view and analyze the performance of the
algorithm and see how the algorithm is performing over time
and identify any patterns or trends that may indicate areas for
improvement. Lastly, the study also examines the impact of
hyper-parameters. The study aims to see how the choice of
hyper-parameters affects the optimization process and how it
may impact the overall performance of the algorithm.

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:17, No:10, 2023

397International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

10
, 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

32
0/

pd
f

A. Exploring the Impact of Batch Size on the Efficiency of
TRPO for Robot Movement

To achieve the best results, we aimed to find the optimal
hyper-parameters for the TRPO method. These hyper-
parameters include the training rate, epsilon greedy (the
probability of taking a random action), batch size, discount
factor (used to determine the importance of future rewards), and
number of epochs (the number of times the model is trained on
the entire dataset). In this study, we focused specifically on the
batch size and its effect on the efficiency of the TRPO method.
We found that smaller batch sizes [10] resulted in more steps
per episode, as a smaller batch size requires more iterations to
visit all the data in the dataset. However, it was also observed
that larger batch sizes (2048 and 1024) resulted in faster
learning but later convergence and stability. Additionally, we
found that the processor and RAM used in this experience had
a significant impact on the batch size efficiency, the data shown
in Figs. 4 and 5 illustrate our findings and the relationship
between batch size and steps per episode. The figures
demonstrate that as the batch size increases, the number of steps
per episode decreases. Overall, our research suggests that the
batch size is an important hyper-parameter to consider when
using the TRPO method and that the optimal batch size may
vary depending on the specific environment and hardware
being used, see Table I.

B. The Functionality of TRPO and PPO Algorithms in the
Actor-Critic Network: A Comparison of Parameters

TRPO and PPO algorithms are based on two neural
networks: an actor-network and a critic network. The actor
chooses which action to take, and the critic estimates the
action's value as selected by the actor. The critic calculates the
TD error to improve the network parameters and then sends this
error to the actor to improve its parameters for a more accurate
prediction of the action's next selection The parameters of the
source codes of TRPO actor learning rate = 0.001, critic
learning rate = 0.0001, γ = 0.99, λ = 0.95, Dkl = 0.25, and the
PPO source code have the same parameters except ε = 0.3 and
the entropy coefficient = 0.1, the number of episodes was 1000.

Fig. 4 Results of the average return that the neural network model
produced for the various batch sizes, TRPO method

C. Comparison of TRPO and PPO Methods for Training a
Robot: Results and Analysis

The TRPO and PPO methods were both used to train a robot.
The results of this training are presented in Figs. 6 and 7. The
TRPO method was found to have better average return
performance when applied to the ant and humanoid robot
environments, but required more time for training compared to
PPO. However, after sufficient training, TRPO still performed
better than PPO when the robot was required to move forward
while also moving its arms. PPO, on the other hand, required
less time for training and produced better returns initially.
Additionally, using a batch size of 1024 resulted in better
performance for the humanoid robot, which has a larger dataset
than the ant robot, see Table II. The results indicate that PPO
had more stability during training in both the ant and humanoid
robots. The humanoid robot training in TRPO in the iteration
40k was raised to the highest value recorded 605, but with
training, it started to decline until reaching 508. This suggests
that the ant robot can learn easily and move forward and fast,
but the humanoid robot may require more training or has not
yet learned enough to move forward and fast after being trained
with both algorithms.

Fig. 5 Results of the average return that the neural network model produced for the various batch sizes, PPO method

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:17, No:10, 2023

398International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

10
, 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

32
0/

pd
f

Fig. 6 Ant environment result

Fig. 7 Humanoid environment result

TABLE I
BATCH SIZE

Symbol
Number of samples
in one batch TRPO

Average
return

Number of samples
in one batch PPO

Average
return

1 64 Value error 64 1384

2 128 Value error 128 1889

3 256 Value error 256 2045

4 512 4442 512 3630

5 1024 2622 1024 2110

6 2048 2251 2048 2047

TABLE II

EXPERIENCED AVERAGE RETURN

Environment TRPO
Average Return

PPO
Average
Return

TRPO
Training time

PPO
Training

time
Ant 4442 3630 1 hour, 52

minutes
58 minutes

Humanoid 508 345 1 hour,
50 minutes

53 minutes

IV. CONCLUSION AND RECOMMENDATIONS

To improve the effectiveness of the TRPO and PPO methods
for robot movement, it is important for future research to
address the trade-off between training time and performance.
Specifically, efforts should be made to reduce the training time
for TRPO while maintaining its superior performance in tasks
such as moving forward while also moving the robot's arms.
Additionally, it would be valuable to investigate the
adaptability and performance of the two methods in
environments with a high number of obstacles, as this could
have a significant impact on the robot's ability to navigate.

Furthermore, it is important to evaluate the performance of both
methods in different scenarios, such as environments with and
without obstacles, and to study the effect of obstacle density and
types on the performance. Additionally, it is crucial to monitor
the performance of the robot in real-world environments, as
simulation results may not always accurately reflect real-world
performance. Finally, it would be beneficial to investigate the
scalability and robustness of the TRPO and PPO methods when
dealing with high numbers of obstacles in the environment. To
make the TRPO and PPO methods work better for robot
movement, it is important to experiment with different
hyperparameters and not just focus on the batch size, as this
could help improve the performance and effectiveness of the
methods.

ACKNOWLEDGMENT

Invaluable assistance from Prof. Marcello Chiaberge of
Politecnico di Torino University and Maurizio Griva from
REPLY Company was essential in the completion of this work
and the supporting research. Deep gratitude goes to colleagues
at the PIC4SeR center and for the support from REPLY
Company. Special appreciation is directed to the book
"Reinforcement Learning: An Introduction" by Richard S.
Sutton and Andrew G. Barto, as well as the Reinforcement
Learning course series on Udemy.com. Both have been
constant sources of inspiration and knowledge throughout the
duration of this work.

REFERENCES
[1] R. S. Sutton and A. G. Barto, A Reinforcement Learning: Introduction.

Mit Press, 2012.
[2] M. Sewak, Deep reinforcement learning: Frontiers of artificial

intelligence, 1st ed. Singapore, Singapore: Springer, 2020.
[3] Ott Toomet, “Stochastic Gradient Ascent in maxLik,” 2020.
[4] Jorge Nocedal, Stephen J. Wright, Sequential Quadratic Programming,

Springer, New York, NY, 1999.
[5] Iris Smit, Reinforcement Learning, and surrogate reward functions based

on graph Laplacians, Utrecht University, 2022
[6] J. Hui, “RL — The Math behind TRPO & PPO,” Medium, Sep. 14, 2018.

https://jonathan-hui.medium.com/rl-the-math-behind-trpo-ppo-
d12f6c745f33

[7] C. Canuto and A. Tabacco, Mathematical analysis II, 2nd ed. Basel,
Switzerland: Springer International Publishing, 2015

[8] “PyTorch Lightning,” Pytorchlightning.ai. (Online). Available:
https://www.pytorchlightning.ai/. (Accessed: 03-Oct-2022).

[9] “Google colab,” Google.com. (Online). Available:
https://research.google.com/colaboratory/faq.html. (Accessed: 03-
Oct2022).

[10] Machinelearningmastery.com. (Online). Available:
https://machinelearningmastery.com/difference-between-a-batch-and-
anepoch/. (Accessed: 03-Oct-2022).

[11] Sehgal A, La H, Louis S, Nguyen H, editors. Deep reinforcement learning
using genetic algorithm for parameter optimization. 2019 Third IEEE
International Conference on Robotic Computing (IRC); 2019: IEEE.

[12] A. Mohapatra, “Trust region methods for deep reinforcement
learning,” Analytics Vidhya, 04-Jul-2021. (Online). Available:
https://medium.com/analytics-vidhya/trust-region-methods-for-deep-
reinforcement-learning-e7e2a8460284. (Accessed: 07-Oct-2022).

[13] Lange, K. (2016). MM optimization algorithms. SIAM. This book offers
a comprehensive introduction to MM optimization algorithms and their
applications.

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:17, No:10, 2023

399International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

10
, 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

32
0/

pd
f

