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Abstract—Electro-mechanical systems are ubiquitous in engi-
neering. For example, they are used in energy harvesting systems
to convert random mechanical excitations into usable electrical
power. The analysis and design of these electro-mechanical sys-
tems is particularly challenging, because concepts and methods of
stochastic analysis and nonlinear dynamics are required. In this
work we present a methodology for the analysis of nonlinear
electro-mechanical systems with small internal friction, and
subject to random external mechanical excitations. The method
is based on the combined application of a model order reduction
technique, to reduce the number of dynamical variables, thus
reducing the complexity, and of stochastic averaging, to calculate
statistical relevant quantities, and in particular expectations of
the output electrical variables. As an example, we apply the
proposed technique to the analysis of a piezoelectric energy
harvesting system.

I. INTRODUCTION

Electro-mechanical systems can be found in several en-
gineering applications, among which harvesting systems for
powering Internet of Things systems [1] represent a fertile
research area.

When embedded into a complex environment, electro-
mechanical systems are subject to the action of environmen-
tal stimuli, representing the superposition of many different
phenomena. As such, these external actions appear random in
nature, and can be modeled as a white, Gaussian distributed
noise source [2]–[6].

When the random nature of environmental disturbances is
taken into account, together with the intrinsically nonlinear
nature of electro-mechanical systems, the problem of analysis
and design of such structures becomes particularly challeng-
ing, because methods of stochastic analysis and nonlinear
dynamics must be applied [7]–[12].

This research has been partially conducted within the Italian inter university
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In this contribution, we present a novel technique for the
analysis of nonlinear electro-mechanical systems with small
internal friction, and subject to random external stimuli, mod-
eled as white Gaussian noise. We start from a rather general
model of an electro-mechanical system, where the mechanical
part is characterized by a nonlinear elastic potential, and the
electrical part, formed by interconnected linear two terminal
elements, is described by a linear system of state equations.
The resulting model is made of nonlinear stochastic differential
equations (SDEs).

Generalizing the results in [7], we use a nonlinear reduc-
tion technique, that amounts to rewrite electrical variables as
functions of the mechanical quantities, here approximated by
a single harmonic representation, thus reducing the number
of variables and the complexity of the problem. The reduced
system can be transformed into energy-angle equation system,
where the energy is a slow variable, while the angle is a fast
one. Application of stochastic averaging permits to eliminate
the fast variable, thus reducing further the system of SDEs to
a single SDE for the energy. The stationary probability density
function for the energy, which can be used to calculate expec-
tations of any relevant quantity, is then calculated analytically
solving the associated Fokker-Planck equation.

As an example of application of the method, we study the
model of a nonlinear piezoelectric energy harvesting for am-
bient mechanical vibrations, and we calculate the expectation
of the output voltage. The accuracy of the method is verified
comparing theoretical predictions with the results of extensive
numerical simulations.

II. ELECTRO-MECHANICAL SYSTEM MODELING

The electro-mechanical harvester can be represented as a
a two-port network, excited by mechanical quantities, like
forces and velocities, at the input port, and yielding electrical
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Fig. 1. Schematic representation of cascade connected two-port networks
closed on a generic user.

quantities, like currents and voltages, at the output port, as
schematized in figure 1. The internal structure of the electro-
mechanical system can be quite complicated, being composed
of different mechanical and electrical subsystems, as well as
a transducer stage, that require additional variables, either
mechanical, electrical or both, for a detailed description.

As an example, we consider an electro-mechanical system
whose mechanical domain is described by the Lagrangian
function L(z, ż) = T (ż) − Û(z) = (1/2)mż2 − Û(z),
where m is an inertial mass, and z, ż are the generalized
coordinate and velocity, respectively, corresponding to a one
dimensional mechanical oscillator. Consequently, T (ż), Û(z)
are the kinetic and the potential energy functions. Introducing
also the dissipation potential D(ż) = (1/2)ε̂ż2, where ε̂ is the
friction coefficient, the Lagrange equation of motion for the
mechanical system takes the form

mz̈ + ε̂ż + Û ′(z) = F (t) (1)

where F (t) represents the resultant of the forces applied to the
mechanical domain. In the following, we shall assume that F
is the sum of two contributions: an external random force due
to the action of the environment, modelled as a white Gaussian
term, and a linear force due to the action of the electrical
variables. For the sake of simplicity, we shall assume that the
resultant force has the same order of magnitude of the internal
friction.

The electrical domain can be described as a linear circuit,
composed by the interconnection of linear two-terminal (or
even multi-terminal) elements. The state equations are a linear
system of ordinary differential equations (ODEs), which can
be derived combining Kirchhoff voltage and current laws
together with the characteristic relationships of the electrical
elements [13], thereby obtaining the ODE system:

że = Âeze + B̂e[z, ż]
T (2)

where ze : R 7→ Rn is the vector of the electrical variables,
Âe ∈ Rn,n, B̂e ∈ Rn,2 are real valued matrices, and T denotes
the transpose.

Combining (1) and (2), and rewriting as a system of first
order SDEs yields

ż1 = z2 (3a)

ż2 =

(
− 1

m
Û ′(z1)− ε̂

m
z2 +

ε̂

m
b̂Tmze

)
+

√
ε̂

m
η(t) (3b)

że = Âeze + B̂ezm (3c)

where ε̂ b̂Tmze is the mechanical force due to the action of
the electrical domain, b̂m = [bm,1, . . . , bm,n]T is the vector
of the elctro-mechanical coupling constants, η(t) is a scalar
white Gaussian noise process, and zm = [z1, z2]T = [z, ż]T

is the vector obtained collecting the mechanical variables.
With a limited loss of generality, we have assumed that
internal friction and electro-mechanical coupling are a factor√
ε̂ stronger than the external random force.

III. SDE DESCRIPTION AND MODEL ORDER REDUCTION

Let (Ω,F , P ) be a probability space, where Ω is the sample
space, F = (Ft)t≥0 is a filtration, i.e. the σ-algebra of all
the events, and P a probability measure. A vector valued
stochastic process Xt is a function Xt : Ω × T 7→ Rd,
i.e. a vector of random variables taking values in Ω, and
parameterized by t ∈ T . The parameter space T is usually
the half-line [0,+∞[.

In the following we adopt the standard notation used in
probability: A capital letters denotes a random variable, while
a lower case letter denotes its possible value. A scalar Wiener
process Wt = W (t), is characterized by the expectation
value E[Wt] = 0 (symbol E[Xt] denotes expectation of
the stochastic process Xt), the covariance cov(Wt,Ws) =
E[WtWs] = min(t, s) and Wt ∼ N (0, t), where symbol ∼
means “distributed as”, and N (0, t) denotes centered normal
distribution.

A d-dimensional system of SDEs driven by a scalar Wiener
process takes the form

dZt = a(Zt)dt+ B(Zt)dWt (4)

where Zt : Ω × [0, T ] 7→ Rd is a vector valued stochastic
process. The d-dimensional vector a : Rd 7→ Rd is called the
drift function, while the vector valued function B : Rd 7→ Rd
is the diffusion. For a constant diffusion noise is additive (or
unmodulated), while the general case B(Zt) corresponds to a
modulated, or multiplicative, noise. The SDE system (3) can
be rewritten in the form

dZt =
(
ÂZt + n̂(Zt)

)
dt+ B̂ dWt (5)

where the matrix Â ∈ Rd,d, and n̂ : Rd 7→ Rd, with d =
n + 2, collect the linear and the nonlinear terms of the drift,
respectively, and B̂ ∈ Rd is a constant diffusion vector.

After application of the linear transformation described in
[14] to normalize the SDE system (3), we find

dX1 =X2 dt (6a)

dX2 =
(
−U ′(X1)− εX2 + εbTmXe

)
dt+

√
ε dWt (6b)

dXe = (AeXe + b1X1 + b2X2) dt (6c)

where X1, X2 and Xe are dimensionless variables correspond-
ing to z1, z2 and ze, respectively, b1 ∈ Rn and b2 ∈ Rn are
the columns of the scaled matrix Be ∈ Rn,n, and ε = ε̂/m.

Our goal is to derive a reduced order model, “eliminating”
the electrical variables. To this end, we apply a method similar
to that used in [7]. Let’s introduce the normalized mechanical



energy E = (1/2)X2
2 + U(X1). Application of Itô formula

yields

dE = ε

(
1

2
−X2

2 + bTeXe

)
dt+

√
εX2 dWt

Then, for ε� 1, the mecha nical energy is a slow, or nearly
constant, variable.

According to [7] we assume X1(t) = A(E) sin(Ω(E)t),
where A(E) and Ω(E) are an unknown amplitude and angular
frequency, respectively. Because the energy is nearly constant,
(6a) implies X2(t) ' Ω(E)A(E) cos(Ω(E)t), and

dX2

dt
= −Ω2(E)A(E) sin(Ω(E)t) = −Ω2(E)X1

We look for a solution to (6c) in the form

Xe = m1(E)X1 + m2(E)X2 (7)

where m1 ∈ Rn and m2 ∈ Rn are unknown vectors to be
determined. Taking the derivative and equating with (6c) gives(

Aem1 + Ω2In,nm2 + b1

)
X1

+ (−m1 + Aem2 + b2)X2 = 0

where In,n is the identity matrix of size n. Since the equality
holds for any t, we find

Aem1 + Ω2In,nm2 + b1 =0

−m1 + Aem2 + b2 =0

Solving the system yields

m1(E) =−Ae

(
A2
e + Ω2In,n

)−1
(b1 + Aeb2) + b2 (8a)

m2(E) =−
(
A2
e + Ω2In,n

)−1
(b1 + Aeb2) (8b)

We would like to stress that because the energy is a function
of X1 and X2, the vector valued function Xe is a nonlinear
function of X1 and X2. Substituting (7) into (6b) we find the
reduced SDE system

dX1 =X2 dt (9a)

dX2 = (−U ′(X1) + εf(X1, X2)) dt+
√
ε dWt (9b)

with

f(X1, X2) =−X2 + bTm
(
m1(X1, X2)X1

+ m2(X1, X2)X2

)
(10)

IV. STOCHASTIC AVERAGING

For ε = 0 system (9) is Hamiltonian, i.e. it admits a
first integral that corresponds to the total (normalized) energy
E = (1/2)X2

2 + U(X1). Hamiltonian systems admit a repre-
sentation in terms of energy and angle coordinates, such that
the state equations take the form [15]

Ė = 0 (11a)

θ̇ = Ω(E) (11b)

where θ is the angle function and Ω(E) the angular frequency.
The energy-angle representation can be extended to the per-

turbed system (9). In fact, since the Jacobian of the coordinate

transformation (x, y) → (E, θ) is regular, by the implicit
function theorem the coordinate transformation is invertible
for small values of ε, at least locally.

Theorem 1 (Energy-angle SDEs given E = E(X1, X2) and
θ = θ(X1, X2).):

Consider the nonlinear oscillator described by the SDE
system (9). The energy and the angle are Itô processes. If
an explicit expression for the angle variable as a function of
the old coordinate is available in the form θ = θ(X1, X2), the
the energy and the angle are solutions of the SDE system

dE =εaE(E, θ)dt+
√
εBE(E, θ)dWt (12a)

dθ =
(
Ω(E) + εaθ(E, θ)

)
dt+

√
εBθ(E, θ)dWt (12b)

where

aE(E, θ) =
1

2
+X2 f(X1, X2) (13a)

BE(E, θ) =X2 (13b)

Ω(E) =
∂θ

∂X1
X2 −

∂θ

∂X2
U ′(X1) (13c)

aθ(E, θ) =
∂θ

∂X2
f(X1, X2) +

1

2

∂2θ

∂X2
2

(13d)

Bθ(E, θ) =
∂θ

∂X2
(13e)

Proof: That the energy and angle variables are Itô processes
is a direct consequence of the fact that, for ε = 0, the
coordinate transformation is invertible and of the implicit
function theorem. The SDE system for the energy and angle
are obtained by straightforward application of Itô formula,
using the definition of the normalized energy. �

For ε � 1, equation (12) shows a time scale separation,
with the energy being a slow (or nearly constant) variable
with repect to the fast angle variable.

A classical theorem by Khasminskii [16] states that the slow
varying process E converges weakly, e.g. in probability, to a
one dimensional Markov process as ε→ 0, in a time interval
0 ≤ t ≤ T with T = O(1/ε). The Itô SDE system for the
one dimensional Markov process is obtained by averaging the
original SDEs (12a) with respect to the fast variable, while the
slow one is kept constant [9], [16], thereby obtaining

dE ' εaE(E)dt+
√
εBE(E)dWt (14)

where the averaged coefficients are

aE(E) = lim
T→+∞

1

T

∫ T

0

aE(E, θ(t)) dt (15a)

BE(E) =

√
lim

T→+∞

1

T

∫ T

0

B2
E(E, θ(t)) dt (15b)

and θ(t) is the solution of the fast equation, calculated keeping
the slow variable constant. In particular, for ε → 0, the fast



equation admits the trivial solution θ = Ω(E)t+ θ0, where θ0
is the initial condition, and the averaged coefficients become

aE(E) =
1

2π

∫ 2π

0

aE(E, θ) dθ (16a)

BE(E) =

√
1

2π

∫ 2π

0

B2
E(E, θ) dθ (16b)

V. PROBABILITY DENSITY FUNCTION AND EXPECTED
QUANTITIES

The energy-angle equations can be exploited to derive an
accurate approximation for the probability density function,
which can be used to find expectations.

The time scale separation between the slow energy and the
fast angle variables, suggests that the stationary probability
density function can be factorized in the form

pst(E, θ) = ρ̂(E, θ) ρst(E) (17)

Now we take advantage of the fact that, for ε→ 0, the SDE for
the angle becomes independent on the energy. The stationary
solution to the Fokker-Planck equation (FPE) corresponding
to (12b) is found solving

−Ω(E)
∂ρ̂(E, θ)

∂θ
= 0 (18)

implying ρ̂(E, θ) = h(E), where h(E) is an arbitrary function
of the energy. Imposing the normalizing condition∫ 2π

0

ρ̂(E, θ)dθ = 1 (19)

yields ρ̂(E, θ = (2π)−1.
Similarly, the stationary FPE for the energy variable is

− ∂

∂E
(aE(E)ρst(E)) +

1

2

∂2

∂E2

(
B

2

E(E)ρst(E)
)

= 0 (20)

By separation of variables and imposing the null boundary
conditions

lim
E→+∞

ρst(E) = lim
E→+∞

∂ρst(E)

∂E
= 0 (21)

we find the solution

ρst(E) =
N

B
2

E(E)
exp

(
2

∫
aE(E)

B
2

E(E)
dE

)
(22)

where N is a normalizing constant whose value is determined
imposing

∫ +∞
0

ρst(E)dE = 1.
From (7) we have

Xe(E, θ) = m1(E)X1(E, θ) + m2(E)X2(E, θ)

Therefore, expectation for any arbitrary function F (Xe(E, θ))
can be calculated as

E[F (Xe(E, θ))] =
1

2π

∫ 2π

0

∫ +∞

0

F (Xe(E, θ))ρst(E) dEdθ

VI. APPLICATION TO ENERGY HARVESTING

As an example of application, we consider the model of
a cantilever beam piezoelectric energy harvester with Duffing
type nonlinearity, such as the one discussed in [10], [12], [17],
connected to a resistive electrical load in the absence of any
intermediate stage that might enhance the energy transfer to
the load itself. The normalized equations take the form

dX1 =X2 dt (23a)

dX2 = (−U ′(X1)− εX2 − εX3) dt+
√
εdWt (23b)

dX3 = (αX2 − γX3) dt (23c)

where X1 is proportional to the cantilever position, X2 to
the cantilever velocity, X3 represents the normalized output
voltage, and α, γ are real positive parameters linked to the
electro-mechanical coupling and to the load, respectively.
Nonlinearity is introduced by means of a normalized elastic
potential of the form U(X1) = X2

1/2 +X4
1/4. For ε = 0 the

solution of the Hamiltonian system takes the form [10]

X1(t) =

(
4E2

1 + 4E

)1/4

sd(θ, k) (24a)

X2(t) =
√

2E cd(θ, k) nd(θ, k) (24b)

where E = X2
2 (0)/2 + U(X1(0)) is the initial value of the

energy, sd(θ, k), cd(θ, k) and nd(θ, k) are the Jacobi elliptic
functions and

k2 =
1

2

(
1− 1√

1 + 4E

)
(25)

is the elliptic modulus [18]. The angle is θ(t) = Ω(E)t with
angular frequency

Ω(E) = (1 + 4E)1/4 (26)

Applying the method of Section III yields

m1(E) =
αΩ2(E)

γ2 + Ω2(E)
, m2(E) =

αγ

γ2 + Ω2(E)
(27)

To calculate the coefficients of the averaged equation it is
necessary to evaluate

1

2π

∫ 2π

0

X2
2 (E, θ) dθ =

E

2K(E)

∫ 4K(E)

0

cd2(u) nd2(u) du

(28)
where K(E) is the complete elliptic integral of the first kind
[18]. The integral can be calculated using the relationships
between the squares of the Jacobi elliptic functions:

k2sd2u =nd2u− 1 (29a)

k2cd2(u) =1− k′2nd2(u) (29b)

where k′2 = 1 − k2 is the complementary modulus. Thus
evaluating integral (34) is reduced to compute integrals of the
type

In =

∫
ndn(u) du (30)

which evaluation can be carried out using the Fourier series
[19] and the recursive relationships between In, In+2 and In+4



Fig. 2. Coefficients Ω(E) (solid black line, left scale), m1(E) and m2(E)
(dashed and dotted blue lines, respectively, right scale) as a function of the
energy. Parameters are α = 1 and γ = 10.

[9]. The final result, after defining the complete elliptic integral
of the second kind E(E) [18], reads

I2 =
4E(E)

k′2
(31a)

I4 =
8(2− k2)E(E)− 4(1− k2)K(E)

3k′4
(31b)

Combining all these remarks together yields the following
expressions for the averaged coefficients:

aE(E) =
1

2
− (1 +m2(E))

E

2K(E)

(
1

k2
I2 −

k′2

k2
I4

)
(32a)

BE(E) =

(
E

2K(E)

(
1

k2
I2 −

k′2

k2
I4

))1/2

(32b)

These coefficients are finally used to calculate the stationary
probability density function in (22).

The (normalized) energy dependence of the unperturbed
angular frequency Ω(E) (right scale) and of the coefficients
m1(E) and m2(E) (left scale) is shown in Figure 2 for α = 1
and γ = 10.

Figure 3 shows the comparison between the stationary prob-
ability density function obtained using the approach described
in sections III to V, and the result obtained through a numerical
integration of the SDE system (23). The excellent matching
between the two approaches clearly validates the adopted
stochastic averaging procedure. For the numerical integration,
we used a strong order one stochastic Runge-Kutta method.
We performed relatively long simulations (∆T = 104), using
a small (normalized) time integration step (δt ' 37 × 10−6).
After integration, the initial transient interval was removed
from the data, while we averaged over 10 simulations carried
out for different realizations of the Wiener process. The
probability to find the system in the energy range between
E and E + dE was evaluated as the number of samples in
that interval, normalized to the total number of samples.

Fig. 3. Stationary probability density function for the SDEs system (23).
Blue vertical bars are the result of numerical integration, black line is the
theoretical prediction. Parameters values are α = 1, γ = 10, and ε = 0.25.

Fig. 4. Root mean square value of the normalized output voltage X3,rms =√
E[X2

3 ] as a function of parameter γ. Other parameters are α = 1, and
ε = 0.25.

Finally, figure 4 shows the root mean square value of the
normalized output voltage X3,rms =

√
E[X2

3 ] as a function
of parameter γ. According to (7), the expectation is calculated
as follows:

E[X2
3 ] =

1

2π

∫ 2π

0

dθ

∫ +∞

0

(
m1(E)X1(E, θ)

+m2X2(E, θ)

)2

ρst(E) (33)

The integral of
∫ 2π

0
X2

2 (E, θ)dθ has already been discussed



(see (34)-(31)). For
∫ 2π

0
X2

1 (E, θ)dθ, using (29) we have

1

2π

∫ 2π

0

X2
2 (E, θ) dθ =

1

4K(E)

(
4E2

1 + 4E

)1/2 ∫ 4K(E)

0

(nd2(u)− 1) du

(34)

which can be solved using (30) and (31).

VII. CONCLUSIONS

In a complex environment, the external stimuli applied to
an electro-mechanical systems can be represented as random
excitations. If the system is also nonlinear, the analysis and
design may become particularly challenging, because methods
from stochastic analysis and nonlinear dynamics are necessary.

We have presented a methodology for the analysis of
complex nonlinear electro-mechanical systems subject to ran-
dom external forces, modeled as a white Gaussian noise.
The method combines a nonlinear model order reduction
technique, aimed at reducing the number of dynamic variables,
and a stochastic averaging method, that allows a description
of the reduced system in terms of a slow energy and a
fast angle variables. The model order reduction technique is
based on representing the electrical quantities as functions of
mechanical variables, through a first harmonic approximation,
thus reducing the number of variables and the complexity of
the problem. The stochastic averaging method corresponds
to averaging the stochastic dynamics with respect to the
fast variable, under the assumption that the slow variable
remains almost constant. The final result is a single SDE
for the energy, whose probability density function can be
calculated analytically integrating the corresponding Fokker-
Planck equation. The knowledge of the probability density
function allows to calculate all expected quantities analytically.
The method is shown to provide accurate results for electro-
mechanical systems with small internal friction.

As an example of application of the proposed technique,
we have analysed the model of a cantilever beam piezoelectric
energy harvesting system, that is frequently used in research
on energy harvesting.
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