
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Where Did My Packet Go? Real-Time Prediction of Losses in Networks / Song, Tailai; Markudova, Dena; Perna,
Gianluca; Meo, Michela. - ELETTRONICO. - (2023), pp. 3836-3841. (Intervento presentato al convegno ICC 2023 -
IEEE International Conference on Communications tenutosi a Rome, Italy nel 28 May 2023 - 01 June 2023)
[10.1109/ICC45041.2023.10278583].

Original

Where Did My Packet Go? Real-Time Prediction of Losses in Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICC45041.2023.10278583

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983314 since: 2023-10-25T12:52:55Z

IEEE

Where did my packet go?
Real-time prediction of losses in networks

Tailai Song, Dena Markudova, Gianluca Perna, Michela Meo
Politecnico di Torino

first.last@polito.it

Abstract—Real-time communication (RTC) platforms have un-
dergone a consistent increase in popularity in recent years, and
nowadays, they are fundamental for both work and leisure pur-
poses. To ensure adequate Quality of Experience (QoE) for users
of RTC services, we need proper traffic management policies, that,
when critical network conditions are detected, react by operating
either at the network configuration level or on the application
to improve QoE. However, predicting critical network conditions,
especially packet losses that are particularly harmful to QoE, is
a very challenging task. In this paper, we propose a system for
predicting packet losses that might occur in the near future (i.e.,
in a second) for RTP streaming traffic. We analyze several ML
algorithms, from standard techniques to deep neural networks and
anomaly detection algorithms, and we apply them to more than 66
hours of data from two popular RTC applications. The selection
of the algorithm and its tuning turn out to be fundamental to
achieving good performance. In one of the best settings, which
are based on a Balanced Random Forest classifier, we obtain a
recall of 0.82.

I. INTRODUCTION

In recent years, there has been a consistent increase in the
use of RTC applications, such as video-conferencing and cloud
gaming, for both work and leisure purposes. The importance
of RTC applications was especially evident during the COVID-
19 pandemic in 2020, when the lockdown measures adopted
to curb the outbreak forced millions of people to rely on
these platforms all at once, leading to a global increase of
RTC traffic by more than 200% [1]. With remote working
becoming the norm for a lot of companies, the reliability of
RTC applications has become critical. Supported by the ever-
growing network infrastructure all over the world and higher
available bandwidth, RTC services are evolving rapidly, with
countless competing applications on the market today [2]. Each
application adopts a different technical solution, but most of
them rely on the Real-time Protocol (RTP) [3] over UDP. In
web browsers, the applications use the open-source WebRTC
framework over RTP.1

In this context, it is becoming increasingly important to
maximize the Quality of Experience (QoE) of users of RTC ap-
plications. Improvements can either come from the application
layer or the network layer. On the network side, QoE depends
on many factors, such as the quality of the participants’ con-

This work has been supported by the SmartData@PoliTO center on Big
Data and Data Science

1https://webrtc.org/

nections, the network topology, and the network management.
One of the main threats to good QoE is packet loss [4], [5].

In this paper, we propose a novel application based on
Machine Learning (ML) for predicting losses in RTC traffic in
real time. Predicting network conditions on in-network devices
may significantly help network management. We pose the
problem as time-series forecasting to be solved by supervised
learning techniques. We base our prediction on carefully chosen
features from network traffic statistics in the past few seconds,
such as inter-arrival times and packet sizes. Our algorithm then
predicts whether there will be packet loss in the next time bin.
We build our study on 66 hours of network traffic from real
calls captured at the client side using two RTC applications -
Cisco Webex and Jitsi Meet2. To select the best ML algorithm
for our purposes, we evaluate a large set of approaches, from
standard techniques to deep neural networks and anomaly
detection algorithms, measuring the classification recall as a
performance metric. We further build our system considering
constraints present in real networks - we are careful to train and
test with data from different RTP streams and predict further
in the future so we have time to implement network policies
based on our predictions. We also analyze the occurrence of
losses, considering the severity of loss events. The selection
of the algorithm and its tuning turn out to be quite critical for
good performance. In one of the best settings, using a Balanced
Random Forest classifier, we obtain a recall of 0.82.

The proposed application is envisioned to work as a software
module in network devices (e.g., middleboxes, routers), as part
of a comprehensive ML-based, RTC-aware traffic management
system. The system enables application-level visibility at the
network control plane and incorporates a feedback mechanism
to inform the control plane of worsening network conditions.
It would contain several classifiers, trained offline, that predict
various network characteristics [6], [7], one of which is the
expected packet loss in the near future. Then, a controller (e.g.,
an SDN orchestrator) can apply select network management
techniques to alleviate the worsening conditions, like allocate
more bandwidth to flows or send them on different paths.

To make our research reproducible, we publish the dataset,
the underlying code, and the trained models mentioned in the
paper3.

2https://www.webex.com/, https://meet.jit.si/
3https://smartdata.polito.it/real-time-prediction-of-packet-loss/

TABLE I: Summary of quantities for all packet flows

Description Quantity[-] Percentage[%]
Total packets 59393645 -

Total lost packets 216735 0.36
Total time bins 2137727 -

Time bins with loss 32472 1.52
Sparse loss 7374 0.34 (22.4)

Concentrated loss 25098 1.18 (77.6)

II. RELATED WORK

Numerous works related to RTC applications address the
topic of analysis and predictions of packet losses. Some works
employ traditional mathematical models based on various net-
work measurements. For example, the authors of [8] propose a
model to predict packet loss and congestion for audio streams
based on measurements of end-to-end delay variation. The
authors of [9] focus on video loss prediction in wireless
networks with the goal of video codec improvement. They use
simulated data to devise a mathematical model, with parameters
defined by linear regression. Other papers propose the use of
machine learning for different predictions related to losses. The
authors of [10] propose a lightweight ML tool to predict the
number of retransmitted packets in bulky TCP flows. Unlike
our real-time system, they propose an algorithm that works per-
flow and predicts retransmissions a-posteriori. Authors of [11]
develop hidden Markov chain-based models to predict the loss
rate in the short-term future, by first estimating the distribution
of the number of losses and then taking the expected value
as a prediction of the loss rate. In contrast to our approach,
they only use loss distributions to predict future losses, while
we use various other network features, making the prediction
more robust.

Whole systems to cope with packet losses also exist in the
literature. Authors of [12] propose early packet loss feedback
(EPLF), where the MAC layer of the local WiFi link sends a
spoofed NACK to the RTP layer. In [13], instead, the authors
propose an adaptive hybrid NACK/FEC method with temporal
layers to handle packet loss in WebRTC.

Most works predict packet loss per-flow, while we are at a
much finer granularity of per-500 ms time bin, which allows us
to use our system in real-time. Numerous works use simulated
data, while we build our study on real traffic from widely
adopted RTC applications. Moreover, our system only requires
the statistics of received packets at the receiver end, which
makes it implementable in network equipment, not only on the
application side. In addition, we also consider a wide range of
ML algorithms of different types.

III. PROBLEM STATEMENT

Our goal is to predict the presence of packet losses in the
near future using statistical features of past packets. More
specifically, we divide the traffic into 500 ms time bins and use
the past 10 time bins, which correspond to 5 seconds of traffic,
to predict if there is a loss in a future time bin. Formally, we
can represent the loss as a function of traffic features in the
past w time bins:

Yt+m∆t = f(xt−∆t, xt−2∆t, .., xt−w∆t)

with x = (x1, .., xN) and Y =

{
1, loss
0, no loss

,
(1)

where t is time, ∆t is the time bin size (500 ms), m is the
number of time bins we consider as the ”gap” between the
time bins used as input and the time bin for which we want
to predict, and Yt+m∆t is a binary variable that represents the
presence of packet loss in the future time bin (at time t+m∆t).
For the model development, we use m=0, but in the final
results, we use m=1, predicting a loss 1 s later by skipping
one time bin. x represents the input traffic statistics or features
of the ML model (such as packet sizes and inter-arrival times),
and N is the number of different types of statistics (features)
considered. w is the window size - how many time bins we
consider from the past. We fix w to 10. Then, xt−n∆t is the
vector of all types of traffic statistics calculated in the nth

time bin in the past. The supervised learning models learn the
function f(·) that maps our input features x ∈ X to the binary
classification target variable Y . An example of one feature
vector (e.g., x1 - standard deviation of inter-arrival time), with
w = 10, ∆t = 500ms, and m = 0, in function of different Y
(0 - right or 1 - left) is shown in Figure 2.

IV. DATASET AND LOSS CHARACTERIZATION

In this section, we describe the dataset we used, from .pcap
format to traffic statistics, showing the properties of the traffic
before a loss occurs.

Data source. We collect data from 70 real multi-party calls,
with audio and video, using two RTC applications: Cisco Webex
and Jitsi Meet. The calls are made with 2–6 participants, who
are either connected to WiFi or a cellular network. In total, we
have 66.5 hours of traffic. We capture traffic at the client side,
since this is where most losses in the network occur, and use
only incoming streams for the prediction task. All the traffic is
captured in pcap format.

RTP stream identification. We identify the RTP traffic with
straightforward deep packet inspection by matching the pro-
tocol headers. We define an RTP flow as a tuple composed
of (IPsrc, IPdst, portsrc, portdst, SSRC,PT), where SSRC
is the Synchronization Source Identifier (a field in the RTP
header that specifies an RTP stream) and PT is the Payload
Type, indicating the video or audio codec that is being used.

Traffic aggregation and loss calculation. For each RTP
stream, we aggregate the packets into time bins of duration
∆t and calculate traffic statistics for each time bin. To do this,
we use the open-source tool Retina [14]. Retina takes pcap
files and the time bin size as inputs and outputs .csv files with
96 traffic statistics, such as the mean inter-arrival time, the
standard deviation of packet size etc. We process all the pcap
files with Retina. For each time bin, we also compute the loss
by using the sequence number field from the RTP header. The
sequence number is a 16-bit field, incremented by 1 for each

1 10 100 1000
Quantity of packet loss in a time bin

0.6

0.7

0.8

0.9

1.0
E

C
D

F

Fig. 1: ECDF of number of lost packets in loss time bins

new packet. Therefore, the number of losses can be computed
as: nloss = seqt − seqt−1 − 1 in which nloss is the number
of packets lost between adjacent packets, seqt is the sequence
number of the packet at the current timestamp, and seqt−1 is
the sequence number of the packet at the previous timestamp.
We take care of edge cases like out-of-order delivery, packet
duplicates, reaching the maximum RTP sequence number, or
having a series of packet losses in two consecutive time bins.

A. Amount of packet loss

Table I describes the quantity of losses in our dataset. In
general, out of 60 million observed packets, only 0.36%
were lost. When we aggregate to time bins, out of 2 million
time bins in total, 1.52% are time bins with at least one lost
packet. In the following, we call these time bins loss time
bins. Such a small percentage of loss time bins makes this
a very imbalanced dataset, which poses one of the greatest
challenges for prediction. Moreover, 77.6% of loss time bins
are concentrated, meaning there are loss time bins in their
5-second proximity. As to the traffic from the different RTC
applications, we have more Jitsi traffic (45.7 hours) than Webex
traffic (20.81 hours). However, they both exhibit similar ratios
of no loss and loss time bins, leaving no bias in the dataset.

To analyze the amount of losses we find in the loss time
bins, we refer to Figure 1. Figure 1 illustrates the empirical
CDF (ECDF) of different quantities of packet loss for all loss
time bins. Around 67% loss time bins only have 1 lost packet,
and around 13% have 2 lost packets; in 95% of the cases,
there are less than 10 lost packets in a time bin. To put it in
perspective, a time bin of audio consists of 25 packets, while
an average time bin of Standard Definition video holds around
100 packets. Having 67% of loss time bins with only one lost
packet is another great challenge for the predictor.

B. Feature construction

In this section, we study the traffic statistics observed before
a loss time bin to find out if they are correlated with losses,
and we use this analysis to find meaningful features for our
ML algorithms. To this end, we look at w=10 time bins in
the 5 seconds preceding a loss time bin and compare them
with normal conditions in which there are no losses. Figure 2
shows an example of the behavior of the standard deviation
of packet inter-arrival time before a loss occurs (left) and in
normal conditions (right). We observe an increasing trend as
we approach a loss and stable behavior when there is no loss.

Finally, we chose 15 types of statistics with viable trends to
identify loss time bins. We then check the correlation between
any pair of features using the Pearson correlation coefficient:
if the Pearson correlation coefficient is greater than 0.9, we
remove one of the pair of features at random. This way, we
decrease the number of features N to 11. Seven features among
the 11 selected features are related to packet inter-arrival times;
this is expected since the effect of network congestion that
may lead to losses is first seen in the delays between adjacent
packets. Three features are related to the packet size and one
to the RTP timestamp. Note that, since we use traffic statistics
from the past w=10 time bins as features, we end up with 110
features (inputs to the model).

C. Challenges

Our problem has numerous inherent and substantial prop-
erties that introduce challenges for the prediction of packet
loss in a time bin. First, we observe different traffic trends
before different loss time bins. Second, time bins with just one
packet lost are very challenging to predict because the trend of
statistics in the time window before such time bins is similar
to the no-loss scenario. Third, the dataset is highly imbalanced
due to the nature of losses. Moreover, the variation in traffic
statistics in the time window before a loss time bin can be due
to some other network conditions and not necessarily lead to
a loss. Therefore, when evaluating the model performance, we
need to take into account these difficulties.

V. METHODOLOGY

In this section, we present the different combinations of tech-
niques we used to classify loss time bins. To solve the problem,
we exploit six different ML approaches for classification and
anomaly detection. For all models, we follow the same pipeline:
train the model, fine-tune the hyperparameters, and evaluate
performance. To validate the model, we use 70% of data for
training and 30% for testing. To tackle the imbalanced dataset
problem, we consider several sampling techniques and compare
their performance: undersampling (reducing the quantity of the
majority class), oversampling (increasing the quantity of the
minority class) through the Synthetic Minority Oversampling
Technique (SMOTE) [15] and a combination of both.

Since the dataset is highly imbalanced, accuracy and pre-
cision are highly biased by the number of samples from the
majority class. The F1-score indicates the overall performance,
but it is affected by precision. Consequently, we chose recall
as our performance metric and optimization goal. Recall is the
ratio between the true positive samples and all positive samples.
Since it contains only the elements of one class, the results are
not unbalanced, i.e., very close to 0 for the loss class or to 1
for the no loss class. Note that our classifier is conceived as
a part of a network management system, which should react
if it identifies a few loss time bins in a row. This means that
if we misclassify a no loss time bin, the system would react
to improve the conditions for a flow when it is not necessary,
while if we misclassify a loss time bin, the system would not
react when a reaction is necessary and keep the network status

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.1

0.2

0.3

0.4

St
an

da
rd

de
vi

at
io

n
of

in
te

ra
rr

iv
al

tim
e

”no-loss” time bin ”loss” time bin

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Time bin (timestamp)

Fig. 2: The behaviour of standard deviation of packet inter-arrival time, before a loss (left) or when there is no loss (right)

TABLE II: Summary of the results of all machine learning models

Category Model Sampling strategy Recall (class 0) Recall (class 1) Macro average F1 score

Classification

Decision tree Original 0.98 0.14 0.55
Decision tree Undersampling 0.68 0.67 0.41
Decision tree Oversampling 0.94 0.29 0.53
Decision tree

Combination

0.84 0.48 0.47
Deep neural network 0.82 0.69 0.47

Long short-term memory neural network 0.83 0.69 0.47
Random forest without class weight 0.96 0.47 0.60

Balanced random forest with class weight

Original

0.85 0.64 0.51
Balanced random forest without class weight 0.81 0.80 0.50
XGBoost GBDT targeting overall performance 0.97 0.49 0.62

XGBoost GBDT targeting average recall 0.85 0.74 0.52

Anomaly detection Isolation forest 0.99 0.01 0.50
Autoencoder 0.96 0.05 0.50

quo. It is important to note that both of these decisions would
not lead to worsening network conditions, since the system is
not aggressive. However, it means that we are more interested
in the performance of the loss class.

A. Machine learning models
We now present several key technical aspects for each of the

chosen ML techniques.
The first family of ML algorithms we consider is tree-

based algorithms, since they have been proven to work well
with traffic statistics data [6], [7]. We try Decision Tree (DT),
Random Forest (RF), Balanced Random Forest (BRF), and
XGBoost (XGB). The idea of RF and XGB is to combine
weak learners to create a stronger classifier. These algorithms
implement intrinsic mechanisms to cope with the class imbal-
ance [16]. We also implement two types of neural networks:
the Deep Neural Network (DNN) with three hidden layers
and the Long Short-term Memory (LSTM) neural network that
specifically works for time-series data. Packet losses can also be
considered anomalies with respect to normal traffic. We refer to
two popular anomaly detection methods, Isolation Forest (IF)
and AutoEncoder (AE). Both of them are unsupervised models,
and in order to enable them to work in a supervised manner,
we need to set thresholds to detect anomalies. For AE, we set
the error reconstruction threshold to 0.13. For IF, we set the
contamination parameter to 0.0139, which is the share of loss
time bins in the training data.

VI. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments.
We develop the models under basic assumptions, and then we
introduce some optimizations to adapt them to a more realistic
network scenario.

A. Results of model development
Table II summarizes the classification results of all algo-

rithms and sampling strategies we consider. We denote the no
loss class as Class 0 and the loss class as Class 1. To rank the
models, we devise the following criteria: First, the recall for
the no loss class has to be at least 0.80, meaning at most 20%
of samples can be misclassified. Almost all models pass this
criteria. We then choose the model with the highest recall for
the loss class.

Generally, well-performing models are the two neural net-
works: DNN and LSTM, which exhibit recalls for the no loss
class of 0.82 and 0.83, respectively, and a recall of 0.69 for the
loss class. XGBoost (targeting macro-averaged recall) exhibits
even better performance, with a recall of 0.85 for the no loss
class and 0.74 for the loss class. The best-performing model
according to our criteria is the Balanced Random Forest without
class weight, with a recall of 0.81 for the no loss class and 0.80
for the loss class. It also shows the most balanced performance
between the two classes. These four well-performing models
are marked with bold in Table II. We notice that simple
Decision Trees do not result in good performance, even when
combined with the different sampling strategies. Anomaly
detection models perform well for the no loss class but fail
in classifying the loss class. Their performance is dependent
on the thresholds mentioned in Section V. However, lowering
these thresholds results in more misclassification for the no loss
class and no significant improvement for the loss class.

In the following sections, when introducing the optimization
techniques for a more realistic scenario, we build on two of the
models: the Balanced RF classifier without class weight and the
XGBoost that targets macro-averaged recall. XGBoost does not
only exhibit good performance, it is also highly configurable.

B. Constraints in reality

Time constraint. To develop the model, we consider predic-
tions in the next time bin. However, in a real scenario, our
system would need time to perform a series of actions: compute
the traffic statistics, run the model, predict the losses, and
react accordingly. In particular, for a machine with an Intel
i7-1165G7 CPU and 16 GB of RAM, in Python, the time
consumption is 85.9 ms for feature construction and 5.55 ms
(XGBoost) or 38.7 ms (BRF) for prediction. Therefore, we
move the prediction target further into the future, setting the
value of two parameters in (1). Namely, we set m to 1 and w
to 9. This means that we leave a gap of ∆t =500 ms between
collecting the traffic and the prediction time bin, a sufficient
amount of time to compute the statistics, run the model, and
send the information to the network control plane. Even for
a device with weaker computational capability, the total time
consumption would be less than 500 ms and network devices
operate on much faster programming languages. As a result of
moving the prediction target further into the future, the models
exhibit a slight performance drop of 1-2%.

RTP flow constraint. In the model development stage, data
points are shuffled randomly to obtain the training and test
sets. However, a more realistic approach would be to use data
from different RTP flows in the training and test sets. This is
because in a real network, one would always be predicting a
new flow using a model pre-trained on other flows. To this end,
we recreate the training and test sets, not allowing data from
one flow to spill into both sets. Due to the higher variability
of the results, depending on which flows fall in the training set
and which in the test set, we get very different results. Thus,
we perform 50 trials using different random shuffles of the
flows. For each trial, we run Balanced RF and XGBoost and
record the recall of both classes, as well as the macro-averaged
recall. The results are shown in Figure 4(a). In this case, we
observe huge performance drops. For Balanced RF the mean
recall is 0.66 for the no loss class and 0.42 for the loss class.
XGBoost gives a more balanced result, with a mean recall of
0.58 for both classes. On top of that, the predictions are much
more variable for the loss class, since they are very dependent
on the specific flows chosen in the test set.

C. Model optimization

To overcome the performance drop experienced when pre-
dicting further into the future and using different RTP flows
in the training and test sets, we introduce three types of
optimization: feature augmentation, feature selection, and a
redefinition of loss time bins based on the quantity of lost
packets.

Feature augmentation and selection. The first model op-
timization technique we employ is feature augmentation.
Namely, a new binary feature is added to x from (1), that notes
the presence of a loss in the last 10 time bins (5 seconds).
This brings to a total of 120 features. The Recursive Feature
Elimination (RFE) technique is then applied. RFE continuously

1 2 3 5 7 10 13 >17
Number of lost packets in a time bin

75%

80%

85%

90%

95%

100%

Sh
ar

e
of

co
rr

ec
tly

cl
as

si
fie

d
sa

m
pl

es

Fig. 3: Share of correctly classified time bins with different
numbers of lost packets

examines the importance of features and recursively removes
those that are less informative. Basically, we combine domain
knowledge with standard feature selection techniques to finalize
the features.

Redefining loss time bins. Since we are interested in detecting
real network impairments, such as severe congestion, which
would justify actuating operations on the network, it is more
relevant to predict time bins with multiple lost packets than time
bins in which an occasional loss occurs. Consequently, worse
conditions lead to more distinct traffic patterns in our features.
We thus set a threshold on the minimum number of lost packets
in a time bin for it to be considered a loss time bin. To set the
threshold, we analyze the prediction errors of the Balanced RF
model trained during the model development phase. Figure 3
shows the share of correctly classified samples with respect
to the number of lost packets in a time bin observed in our
original test set. 78% of time bins with only one lost packet
were correctly classified, while this number was 92% for time
bins with 13 lost packets inside. We see that, as the number of
lost packets inside a time bin grows, so does the percentage of
correct classification. The curve caps at 17 packets, meaning
that any time bin that contains more than 17 lost packets is
always correctly classified. Note that the drop at 10 packets is
due to the low number of data points for that particular case.
Given the curve, we set the threshold to 3, meaning that if a
time bin contains 3 or more lost packets, it is considered a loss
time bin. For the following experiments, all the time bins that
contain less than three lost packets are discarded, and they are
also not used as no loss because they may impede the training.

Final results. Figure 4 shows the results when using the
optimization techniques described above. Predictions refer to
1 s into the future, instead of the next time bin. The box plots
refer to the distribution of recall for 50 random shuffles of the
training and test sets. The split is still 70% for training and 30%
for testing. Figure 4(a) shows the results with no optimization.
As discussed in Section VI-B, in this configuration, the recall
for both classes is unsatisfactory and the loss class exhibits
high variance among different shuffles of the training and test
sets. Figure 4(b), instead shows the performance after feature
augmentation and selection. An overall increase in the recall
for both algorithms can be observed. Balanced RF, as expected,
gives a more balanced result among the no loss and loss classes,

0 1avg
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

BRF

0 1avg

XGBoost

Recall type (class & macro-average)

(a) No optimization

0 1avg
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

BRF

0 1avg

XGBoost

Recall type (class & macro-average)

(b) Feature augmentation & selection

0 1avg
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

BRF

0 1avg

XGBoost

Recall type (class & macro-average)

(c) Feature augmentation & selection
and redefinition of loss time bins

Fig. 4: Recall distributions under different model optimization

with a mean of 0.72 for the no loss class and 0.6 for the loss
class. XGBoost shows very good performance for the no loss
class, with a mean recall of 0.95, while it slightly worsens the
loss class (mean recall 0.53).

Finally, Figure 4(c) shows the performance after imple-
menting all the optimizations, feature augmentation, feature
selection, and loss time bin redefinition. Here, a time bin
is considered a loss time bin only if it contains 3 or more
lost packets. Note that, by removing all time bins with fewer
than three lost packets, the dataset shrinks a bit. Observe the
dramatically improved performance, both for Balanced RF and
XGBoost, especially for the loss class. Again, Balanced RF
gives similar mean recalls for both classes: 0.89 for the no
loss class and 0.78 for the loss class. XGBoost, instead, has
plateaued for the no loss class with 0.95 mean recall and again
exhibits a slightly worse recall for the loss class (0.69). With
all three optimizations in place, we also observe a much lower
variance in the different shuffles for both classes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a ML-based system to predict lossy
time segments in communication networks. Given the network
statistics of the previous 5 seconds, we can predict whether
there will be lost packets in the next second. We base our
study on traffic data from two popular RTC applications carried
through WiFi and mobile networks. As a methodology, we
use time-series forecasting with ML classification algorithms.
We find that predicting losses is a challenging task, but it
can be solved by carefully choosing network traffic features
and setting a threshold for the number of lost packets to
distinguish occasional losses from losses due to undesired
network conditions. With one of the most effective solutions,
the Balanced Random Forest, we obtain a mean recall of 0.82.

As future work, we plan to strengthen our system by includ-
ing data from additional lossy channels, e.g., other mobile sce-
narios. We will work on the length of the time bin to offer the
service at different granularities or even on a per-packet basis.
This work is only a first step towards a network management
system designed to gather fine-grained information from RTC
traffic at the network layer and enable policies to improve QoE.

REFERENCES

[1] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-
zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The Lockdown Effect: Implications
of the COVID-19 Pandemic on Internet Traffic,” in Proceedings of the
ACM Internet Measurement Conference, IMC ’20, (New York, NY, USA),
p. 1–18, Association for Computing Machinery, 2020.

[2] A. Nistico, D. Markudova, M. Trevisan, M. Meo, and G. Carofiglio,
“A comparative study of rtc applications,” in 2020 IEEE International
Symposium on Multimedia (ISM), pp. 1–8, IEEE, 2020.

[3] R. Frederick, S. L. Casner, V. Jacobson, and H. Schulzrinne, “RTP: A
Transport Protocol for Real-Time Applications.” RFC 1889, Jan. 1996.

[4] D. Vucic and L. Skorin-Kapov, “The impact of packet loss and google
congestion control on qoe for webrtc-based mobile multiparty audiovisual
telemeetings,” in International Conference on Multimedia Modeling,
pp. 459–470, Springer, 2019.

[5] G. Carofiglio, G. Grassi, E. Loparco, L. Muscariello, M. Papalini, and
J. Samain, “Characterizing the relationship between application qoe
and network qos for real-time services,” in Proceedings of the ACM
SIGCOMM 2021 Workshop on Network-Application Integration, pp. 20–
25, 2021.

[6] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Munafò,
and G. Carofiglio, “Real-time classification of real-time communica-
tions,” IEEE Transactions on Network and Service Management, 2022.

[7] D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Munafo, and
G. Carofiglio, “What’s my App?: ML-based classification of RTC appli-
cations,” ACM SIGMETRICS Performance Evaluation Review, vol. 48,
no. 4, pp. 41–44, 2021.

[8] L. Roychoudhuri and E. S. Al-Shaer, “Real-time analysis of delay
variation for packet loss prediction,” 2004.

[9] J. V. C. CarmonaID, E. M. C. de Matos, B. S. L. Castro, F. J. B. Barros,
M. C. de Alcaˆntara Neto, and E. G. Pelaes, “Video loss prediction model
in wireless networks,” 2019.

[10] A. Giannakou, D. Dwivedi, and S. Peisert, “A machine learning approach
for packet loss prediction in science flows,” Future Generation Computer
Systems, vol. 102, pp. 190–197, 2020.

[11] F. S. Filho and E. de Souza e Silva, “A method for predicting packet
losses with applications to continuous media streaming,” 2006.

[12] L. Ma, W. Chen, D. Veer, G. Sternberg, W. Liu, and Y. Reznik, “Early
packet loss feedback for webrtc-based mobile video telephony over wi-
fi,” 2015.

[13] S. Holmer, M. Shemer, and M. Paniconi, “Handling packet loss in
webrtc,” 2013.

[14] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, and M. M.
Munafò, “Retina: An open-source tool for flexible analysis of rtc traffic,”
Computer Networks, vol. 202, p. 108637, 2022.

[15] N. V. Chawla, K. W. Bowyer, L. O.Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” 2002.

[16] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn
imbalanced data,” 2004.

