
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hysteresis and controllability of affine driftless systems: Some case studies / Bagagiolo, F.; Zoppello, M.. - In:
MATHEMATICAL MODELLING OF NATURAL PHENOMENA. - ISSN 0973-5348. - 15:(2020), pp. 1-25.
[10.1051/mmnp/2020023]

Original

Hysteresis and controllability of affine driftless systems: Some case studies

Publisher:

Published
DOI:10.1051/mmnp/2020023

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983303 since: 2023-10-25T07:12:01Z

EDP Sciences



Math. Model. Nat. Phenom. 15 (2020) 55 Mathematical Modelling of Natural Phenomena
https://doi.org/10.1051/mmnp/2020023 www.mmnp-journal.org

HYSTERESIS AND CONTROLLABILITY OF AFFINE DRIFTLESS

SYSTEMS: SOME CASE STUDIES∗

Fabio Bagagiolo1,∗∗ and Marta Zoppello2

Abstract. We investigate the controllability of some kinds of driftless affine systems where hysteresis
effects are taken into account, both in the realization of the control and in the state evolution. In
particular we consider two cases: the one when hysteresis is represented by the so-called play operator,
and the one when it is represented by a so-called delayed relay. In the first case we prove that, under some
hypotheses, whenever the corresponding non-hysteretic system is controllable, then we can also, at least
approximately, control the hysteretic one. This is obtained by some suitably constructed approximations
for the inputs in the hysteresis operator. In the second case we prove controllability for a generic
hysteretic delayed switching system. Finally, we investigate some possible connections between the two
cases.
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1. Introduction

The study of different kinds of mechanical systems provides a rich area for mathematical investigation, and
vice-versa mathematics may enlighten mechanical phenomena. In particular, we may have possible implications
on the design of artificial devices that could be used in different context, from medicine to industry. Nowadays
relying on technology has become fundamental and the mathematical modelization of mechanics underlying
any real system is crucial for the development of any sophisticated technology. In particular, such models ought
to contain a control, so that control theory is likely the appropriate mathematical framework for this issue.
Furthermore, many of the models used to describe real mechanical (as well as physical, biological, economic
and social) systems may present an intrinsic memory phenomenon. To take into account this particular memory
behavior, one may introduce a suitable memory-term and pursue controllability results in this enlarged setting.
Often, such a memory effect is of the so-called rate-independent type. This means that the actual state of the
system depends on its whole past history via the sequence of reached states only, independently of the time-scale.
Sometimes this behavior may be seen as a sort of delay in the reaction to some external forces (as well as to
some external controls). This phenomenon is known as hysteresis, and just to name a few examples, besides the
classical ferromagnetic theory, we quote hysteresis in phase transitions (see Brokate-Sprekels [12]), hysteresis
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in filtration through porous media (Bagagiolo-Visintin [7]), hysteresis in economics (see Gocke [19]), hysteresis
in transmission and consensus problems (see Ceragioli et al. [13]). The mathematical studies of hysteresis
phenomena as functional operators, representing the input-output hysteresis relationship, were introduced by
Krasnosel’skǐı and his co-worker [21] (see also Visintin [32]). This kind of operators are non linear and non
differentiable, even if some possible definitions of derivatives were given, see for example Brokate- Krejč́ı [11].
Anyway, those definitions essentially involve derivatives of the output with respect to time. When spatial
derivatives must be taken into account, the dependence on the past history is, up to the knowledge of the
authors, an unsolved problem. This fact, in the controllability setting, prevents the use of local techniques,
for which the application of classical tools in geometric control theory, as Chow theorem, Lie brackets and so
on (Chow [14], Coron [17], Bressan [10], Agrachev et al. [1]) is not immediate. Indeed such tools involve the
spatial derivatives of the dynamic vector fields which, as already said, seem to be meaningless in the presence
of hysteresis. Specific studies are then required but they are not well presented in the literature, despite the
importance of the problem.

Due to the difficulties described above, in this paper we assume the controllability of the system without
hysteresis and study the case when that system is perturbed by a hysteresis effect. This kind of situation is also
common in the applications, for example in the case of switching systems (see Liberzon [24], see also Bagagiolo
et al. [9]) or in the case of stabilization of systems representing a single input single output plant interconnected
with a hysteresis disturbance (see for example Cocetti et al. [15] and the references therein). Moreover, the
present study seems to be the first attempt in the direction of the control of driftless affine ordinary systems
with hysteresis (for a first attempt in the framework of semilinear parabolic partial differential equations, see
Bagagiolo [5]. See also Gavioli- Krejč́ı [18].)

More precisely we focus on the driftless control-affine system in Rn{
ż =

∑m
i=1 gi(z)ui

z(0) = z0
(1.1)

and we assume that the hysteresis effect is described by the so-called play operator P (see Visintin [32]) which
maps a continuous time-dependent function ζ (the input) to a continuous time-dependent functions P[ζ] (the
output), or by the delayed relay operator hρ, whose output is instead a piecewise-constant time-dependent
function and which may be used to model situations of discontinuous switching dynamics. These two remarkable
examples of hysteresis operators are introduced in Section 2, and, as we are going to describe in Section 4.4,
they are also intimately related.

Regarding the play operator, it can be introduced in system (1.1) in two different ways:

{
ż =

∑m
i=1 gi(z)P[ui]

z(0) = z0

{
ż =

∑m
i=1 gi(P[z])ui

z(0) = z0
(1.2)

On one hand we apply it in the controls (see (1.2)-left), on the other hand we introduce the hysteresis in the
state variables (1.2)-right. These two cases may model respectively the situation where the control is performed
by an external magnetic field (see for example Alouges et al. [2, 3]) and where there could be a sort of lack of
information in the state-variable, for example in the synthesis of feedback controls (see for example Logemann
et al. [25], Cocetti et al. [15] and Bagagiolo et al. [8], and Tarbouriech et al. [31] for the case of linear systems).

The first case is addressed in Section 3. There, suitably using the properties of the play operator, we obtain
an approximate controllability result via the construction of a suitable sequence of continuous controls uk such
that P[uk] converges in L1 to the (possible discontinuous) control u, good for the non-hysteretic case.

The second case is addressed in Section 4. We restrict ourselves to a suitable class of triangular systems for
which we still construct an approximating sequence of controls generating trajectories converging to the good
trajectory for the non-hysteretic case.
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Such a class of systems has strong connection with the so-called Heisenberg systems and Carnot groups of
step 2, and we also give a possible mechanical justification for it.

In Section 4, for the case of hysteresis in the state variables, we also analyze the situation in which the
system switches between different dynamics and we model it by the introduction of a delayed relay hysteresis
operator. Such a situation occurs, for example, when there is a change in the dynamics depending on the state
(e.g. when crossing some hyperplanes of Rn). It has been successfully introduced to solve chattering problems
(see Ceragioli et al. [13], and Bagagiolo-Maggistro [6]) or to get complete controllability results (see Bagagiolo
et al. [9]). We prove controllability for such a problem.

Finally, in Section 4.5, we give a controllability result for the case where the hysteresis/memory effect is
given by the sum of a finite number of delayed relays. As we will see, this situation is also extremely related
to the approximation of the continuous play operator, and hence promising in order to obtain more general
controllability results.

2. Hysteresis operators

Hysteresis phenomena often occur in mechanical systems such as gear systems, hydraulic controlled valves or
systems governed by an external magnetic field. These systems experience a particular memory effect, the rate
independent one which is persistent and scale invariant. In this section we describe the mathematical properties
of two operators used to model the hysteresis phenomena. Let us start with the so called play operator.

In Figure 1, ρ > 0 is the parameter characterizing this operator. We define

Ωρ :=
{

(u,w) ∈ R2 |u− ρ < w < u+ ρ
}
. (2.1)

Given a scalar input u (a continuous function of time), the behavior of the output (a continuous function of
time, too) of the scalar play operator w(·) := P[u](·), with its typical hysteresis loops, can be described using
the phase-portrait in Figure 1, representing the trajectories t 7→ (u(t), w(t)) ∈ R2. In particular, supposing u
piecewise monotone, we have the following. If (u(t), w(t) ∈ Ωρ for all t ∈ I, with I interval, then w is constant
in I (the pair (u,w) moves horizontally, in any of the two possible directions); if w(t) = u(t) − ρ (i.e. (u,w)
belongs to the right-boundary of the strip Ωρ), u is non increasing in [t, t + τ ] and w(t) ≤ u(t + τ) + ρ (i.e.
in [t, t + τ ] the pair (u(·), w(·)) does not go out the closed strip Ωρ) then w stays constant in [t, t + τ ] (again,
(u,w) only moves horizontally); if w(t) = u(t)− ρ and u is nondecreasing in [t, t+ τ ] then w = u− ρ in [t, t+ τ ]
(i.e. (u,w) moves along the right-boundary of Ωρ in the upward versus only); a similar argumentation holds
if w(t) = u(t) + ρ. Moreover we have to prescribe also an initial value for the output: w(0) = w0, with the
condition (u(0), w0) ∈ Ωρ. Finally, we point out the memory feature of the play operator: for a given value of
the input, u(t), there is in principle a whole interval of possible values for the output: [u(t)− ρ, u(t) + ρ], and
the actual value depends on the past history of the input.

The previous discussion has assumed that the input u(·) is piecewise monotone. However, due to its good
continuity/convergence properties, the play operator can be also defined for any continuous input, using an
approximation of the input by a sequence of piecewise monotone functions (see Krasnosel’skǐı-Pokrovskǐı [21]
and Visintin [32]). In particular, the phase-portrait in Figure 1 is still preserved. Given a time horizon T > 0,
a possible characterization of the output for an absolutely continuous input u ∈W 1,1(0, T ), with initial output
w0 such that |w0 − u(0)| ≤ ρ, is as the unique absolutely continuous function w such that


|u(t)− w(t)| ≤ ρ ∀ t
dw

dt
(t)(u(t)− w(t)− v) ≥ 0 ∀v such that |v| ≤ ρ, a.e. t

w(0) = w0.
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Figure 1. Hysteresis play operator.

Hence, the play operator P is finally defined on the space of the continuous functions, more precisely, in the
set

D :=
{

(u,w0) ∈ C0([0, T ])× R|(u(0), w0) ∈ Ωρ
}

P : D → C0([0, T ]), (u,w0) 7→ w := P[u,w0]

where C0([0, T ]) is the set of all continuous functions defined in [0, T ], T > 0.
The play operator is used in literature to model several hysteresis phenomena (such as, for example, the

mechanical play in a junction (also called backlash) due to some damage) and moreover it has many interesting
and useful properties (see for example Visintin [32]): For every (u,w0), (v, w0) ∈ D:

a) Causality: u|[0,t] = v|[0,t] ⇒ P[u,w0](t) = P[v, w0](t).
b) Rate independence: P[u ◦ φ,w0] = P[u,w0] ◦ φ, where φ is any time re-parametrization, continuous and

non decreasing.

The two properties above are shared by almost all hysteresis operators. Other useful properties of the play
operator are:

c) Lipschitz continuity: ∃L > 0 such that ‖P[u,w1
0] − P[v, w2

0]‖C0([0,T ]) ≤ L(‖u − v‖C0([0,T ]) + |w1
0 −

w2
0|), ∀ (u,w1

0), (v, w2
0) ∈ D, t ∈ [0, T ],

d) Semigroup property: P[u,w0](t) = P[u|[τ,t],P[u,w0](τ)](t− τ) ∀0 ≤ τ ≤ t, ∀ (u,w0) ∈ D, t ∈ [0, T ],

where ‖ · ‖C0([0,T ]) denotes the uniform norm in C0([0, T ]).
These facts make the play operator an easy and good model for our purposes, both from a mathematical and
applicative point of view.

Remark 2.1. In the sequel we will always consider the play operator as applied to continuous inputs. And
this is how it is introduced in Krasnosel’skǐı-Pokrovskǐı [21] and in Visintin [32]. Possible extensions to the case
of discontinuous inputs have been analyzed in Brokate-Sprekels [12], Krejč́ı-Laurençot [22], Recupero [29, 30].
Note that, when considering discontinuous inputs, in particular a special kind of jump/continuous functions
(the so-called regulated functions), one has to decide how to fill the gap in the jumps, in order to recover a
(at least approximating) continuous input. But a simple L1-convergence of the continuous approximation is not
sufficient for maintaining the memory feature of the operator, because L1-convergence does not detect the peaks
of the functions, which are instead very important in the hysteresis, rate/independent, memory effects. Indeed,
in that quoted literature, the required convergence takes also account of some kinds of convergence as functions
with bounded variations (BV). In general, in control problems, a BV-convergence is too strong, especially when
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Figure 2. The delayed relay operator with thresholds (−η, η).

speaking about convergence of controls. However, in the case of hysteresis in the controls, Section 3, the two
approaches (continuous and discontinuous inputs) may somehow overlap, leading to the same result. In the
case of hysteresis in the space, Sections 4.2 and 4.3, we are instead in some sense forced to use the continuous
inputs approach because the discontinuous one would require the use of controls which are atomic measures
instead of measurable functions, as we require in our model. Also note that we have mainly in mind mechanical
applications of our results for which atomic measure controls are probably not suitable, and moreover their
use is certainly forbidden (even if approximated) in the possible case when there is some restrictions on the
boundedness of the admissible controls. See also Remarks 4.5–4.6.

The second operator on which we focus is the delayed relay, which models a switching input-output
relationship between a time continuous scalar input z and a discrete time dependent output w ∈ {1,−1}.

Also in this case, we explain the behavior of the relation z 7→ w by using Figure 2 where the phase-portrait
of such a delayed switching rule is reported, i.e. the switching trajectories of the pair (z, w) are represented. In
particular Figure 2 corresponds to a delayed switching rule with thresholds (−η, η), η > 0. For example, suppose
that at certain time t, w(t) = 1. This means that we certainly have z(t) ≥ −η. The output w will remain equal
to 1, until z will remain larger than or equal to −η (i.e. until the pair (z, w) will belong to the closed line
[−η,+∞[×{1}). If, at a certain time, z becomes strictly lower than −η, then w switches to −1 and it will
remain equal to −1 until z will possibly become strictly larger than η. This is a hysteretic behavior with rate-
independent memory: when −η ≤ z ≤ η then the value of w depends on the past history of z. Hence we also need
an initial value of the output, w0 ∈ {−1, 1} such that (z(0), w0) ∈ (]−∞,−η]× {−1, 1})∪ ([−η,+∞[×{−1, 1}).
See Visintin [32] for more details and a possible analytical description of such a behavior. Now denote by
w(·) = hη[z](·) the delayed relay thermostat, and consider the scalar ODE

ż = g(z, w)

w = hη[z]

z(0) = z0 w(0) = w0

with g a suitably regular function. A solution is an absolute continuous function z(·) which solves the ODE in
any interval where w is constant and the switching in w occurs when, keeping moving with the previous mode,
the solution would be forced to cross the corresponding threshold (see Bagagiolo [4]). Note that, due to the
delayed thresholds, −η < 0 < η, the solution z, in any compact time-interval, can pass to one thresholds to the
other just a fixed number of times.
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Finally we recall that the play operator can be seen as the superposition of infinitely many delayed relay
(see Mayergoyz [26] and Visintin [32]). We are going to better explain, and use, such a kind of approximation
in Section 4.5.

3. Hysteresis in the controls

Let us consider a control affine driftless system of the type{
ż =

∑m
i=1 gi(z)ui

z(0) = z0
(3.1)

where z(·), z0 ∈ Rn and the vector fields gi : Rn → Rn are of class C∞.

Definition 3.1.

i) We denote by U (admissible controls) the set of the functions u = (ui)
m
i=1 : [0,+∞[→ Rm whose

components ui are piecewise constant functions.
ii) System (3.1) is said to be controllable if for any two points A = zA and B = zB in Rn there exists an

admissible control u ∈ U , defined on some time interval [0, T ], such that the trajectory of system (3.1), with
initial condition A, reaches point B in time T . If for all A,B ∈ Rn we can choose T independently from A and
B, then the system is said to be controllable in time T .

Note that, in general, we cannot pretend to control the system using only continuous controls. However,
under some suitable hypotheses, the class U of piece-wise constant controls, is sufficient. The next assumption
goes in that direction.

Assumption 3.2. System (3.1) satisfies the so-called Chow hypothesis (see Coron [17]), more precisely the Lie
algebra generated by the vector fields gi is fully generated, i.e.

dim
(
L ie{gi, i = 1 · · ·m}

)
= n

where L ie{gi, i = 1 · · ·m} is the space of the linear combinations X of iterated Lie brackets of the vector fields:
X =

∑q
`=1 λ`Y` with Y` = [gk, [· · · , [. . . , [gi,gj ] . . .]]] for i, j, k = 1 . . .m, and [gi,gj ] = ∇gj · gi −∇gi · gj

In particular, Assumption 3.2 guarantees that system (3.1) is controllable in time T for all T .
Let us now consider the following nonlinear system:{

ż =
∑m
i=1 gi(z)P[vi, w

i
0]

z(0) = z0
(3.2)

where P[vi, w
i
0] is the play operator applied to the input vi, with (vi(0), wi0) ∈ Ωρ, and the inputs vi are at

disposal of the controller. System (3.2) is obtained from system (3.1) by replacing any control ui with P[vi, w
i
0].

If ui = vi, then it means that system (3.1) is not directly experiencing the actuation of the control ui, but
instead a sort of perturbation of it. This can be due, for example, to some kinds of damage in the mechanical
realization of the control or to some kinds of general hysteresis effect: think of the case where u = (ui)i is the
magnetic field but the system reacts to the magnetization of a ferromagnetic actuator, represented here by the
output of the play operator. However, note that in this case both the actual controls P[vi, w

i
0] and their inputs

vi are not in U (piecewise constant functions) but, due to the construction of the play operator, must belong to
the space of continuous functions C0.
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Figure 3. The solid line is the piecewise constant control ū the dashed one, one of the
approximating uk (see (3.3)). Here it is T = 4, n = 4, t1 = 1, t2 = 2 t3 = 3, t4 = 4 α1 = 1α2 =
−1, α3 = 1

2 , α4 = 2, k = 10 and w0 = 1
2 .

Our goal is to investigate the controllability properties of system (3.2). We are going to use the following
result (here and in the sequel for an interval I, χI is its characteristic function: χI(t) = 1 if t ∈ I, χI(t) = 0
otherwise.)

Lemma 3.3. For every piecewise constant function ū : [0, T ]→ Rm and for every initial state w0 = (wi0)mi=1,
there exists a sequence of continuous functions

(
vk = (vki )mi=1

)
k∈N, such that uk := P[vk,w0] converges to ū in

L1(0, T ) as k → +∞. Here P[vk,w0] stays for the vector
(
P[vki , w

i
0]
)m
i=1

.

Proof. First of all note that the components ūi of ū are not continuous (piecewise constant), therefore, we cannot
exactly generate them as outputs of the play operator, since the output of the play operator is a continuous
function. Hence we first approximate each ūi with a sequence of continuous piecewise linear functions.

Of course, we can argue for any single scalar component ui and hence we drop the notation of the index i
for simplicity. Let ū(t) =

∑n
j=1 αjχ[tj−1,tj ](t) be a piece-wise constant function (with 0 = t0 < t1 < · · · tn = T ,

and αj ∈ R). For every integer k > 0 sufficiently large, we consider the piece-wise linear function uk defined by

uk(t) = χ[0, 1k ](t)
(
kt(α1 − w0) + w0

)
+ α1χ[ 1k ,t1−

1
k ](t)

+

n−1∑
j=1

(
(αj+1 − αj)

(kt
2
− k

2
(tj −

1

k
)
)

+ αj

)
χ[tj− 1

k ,tj+
1
k ](t)

+

n−1∑
j=1

αjχ[tj+
1
k ,tj+1− 1

k ] + αnχ[tn−1+
1
k ,tn]

(t)

(3.3)
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Figure 4. On the left the function uk defined in (3.3) with the values as in Figure 3, on the
right the corresponding input of the play operator vk defined in (3.4), for ρ = 0.2.

In particular note that uk(0) = w0. By construction, the convergence uk → ū in L1(0, T ) is immediate. For any
k we then consider the following piece-wise linear function

vk(t) = χ[0, 1k ](t)
(
uk(t) + sgn(α1 − w0)ρ

)
+ (uk(t) + sgn(α2 − α1)ρ)χ[ 1k ,t1−

2
k ]

+

n−2∑
i=1

((
uk(t) + sgn(αi+1 − αi)ρ

)
χ[ti− 2

k ,ti+1− 2
k ]

)
Θ((αi+1 − αi)(αi+2 − αi+1))

+
((
sign(αi+1 − αi)2ρk(t− ti +

2

k
) + αi − sign(αi+1 − αi)

)
χ[ti− 2

k ,ti−
1
k ]

+ (uk(t) + sign(αi+1 − αi))χ[ti− 1
k ,ti+1− 2

k ]

)
Θ(−(αi+1 − αi)(αi+2 − αi+1))

+ (uk(t) + sgn(αn − αn−1)ρ)χ[tn−1− 2
k ,tn]

(3.4)

where Θ is the Heaviside function that is 1 if its argument is positive and 0 otherwise, and sgn is the sign
function. Some calculations may show that uk = P[vk, w0]. In particular, note that, being uk(0) = w0, we
have (vk(0), w0) ∈ Ωρ and also that vk is piece-wise monotone. Hence we can easily perform the construc-
tive description of the output of the play operator as in the previous section. Looking at the example in
Figure 4, vk(0) = uk(0) +ρ and, in the interval [0, 1/k] vk and uk increase together, reaching the values u(t/k) =
α1, v(t/k) = α1 +ρ; in the interval [1/k, t1−2/k] they both remain constant; in the interval [t1−2/k, t1−1/k] vk

rapidly decreases to the value α1−ρ, uk remaining constant; in the interval [t1−1/k, t1 +1/k] they both decrease
together, reaching the values uk(t1 + 1/k) = α2, v

k(t1 + 1/k) = α2 − ρ. We proceed in this way, concluding the
proof. 2

Remark 3.4. Observe that Lemma 3.3 implies that on the class of continuous and piece- wise linear functions
as in (3.3), the play operator is surjective, since there always exists an input like (3.4) whose output through
the play operator is exactly (3.3).

Remark 3.5. Note that uk and vk have sometimes to change their values by some fixed amplitudes (2ρ, or
αi+1 − αi) in a time interval of length 1/k. Hence their derivatives diverge when k → +∞. However, this is not
a problem for our construction because, the convergence of uk to u is only required in L1, and the derivatives of
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vk do not play any role, due to the rate-independence of the play operator: only the sequence of values reached
by vk in its history has a role.

Theorem 3.6. Let us assume the controllability of the non hysteretic system (3.1), Assumption 3.2. Given two
points A,B ∈ Rn and T > 0, let us consider the piece-wise constant control u ∈ U which steers system (3.1) from
A to B in time T , and let z be the corresponding trajectory. We consider the corresponding controls vk defined
as in Lemma 3.3. Then for any given initial data for the play operator, w0, the sequence of the trajectories zk
of the systems {

żk =
∑m
i=1 gi(zk)P[vki , w

i
0]

zk(0) = A
(3.5)

uniformly converges on [0, T ], as k → +∞, to the trajectory z of the non hysteretic system (3.1) with
controls ū.

Proof. Let zk be the unique solution of (3.5). Denoting by uk the output of the play operator in (3.5), by
Lemma 3.3 uk → ū in L1(0, T ) componentwise, and uk are equibounded in L∞(0, T ) by construction. Moreover
gi ∈ C∞ for all i and thus the solutions zk are both locally equi-bounded and locally equi-Lipschitz continuous.
By hypothesis, there exists a non hysteretic trajectory z of (3.1) with controls ū defined on the whole interval
[0, T ] (the controlled one, from A to B). This implies, by standard estimate arguments on the trajectories,
that the solutions zk of (3.5) exist on the whole [0, T ] too, and that they do not exit from a common compact
set. Indeed, we take a ball B that contains in its interior the trajectory z, and, for every k, take tk > 0 the
possible first instant such that zk(tk) ∈ ∂B. Obviously, every zk is defined at least in [0, tk]. If, by contradiction,
there exists a convergent subsequence tk → t ≤ T , then, being all contained in B, where the vectors gi are
equi-bounded (and so are the controls uk) and equi-Lipschitz, reasoning as in the following estimates, we would
get the contradiction ∂B ∈ zk(tk)→ z(t) ∈ intB.

Hence in the sequel we will treat the vector fields gi as uniformly bounded and Lipschitz continuous along
the trajectories. We have the following estimates for all t ∈ [0, T ] (writing uki = P[vki , w

i
0], and recalling that

zk(0) = z(0) = A)
‖zk(t)− z(t)‖ ≤
m∑
i=1

∫ t

0

(
‖gi(zk(·))‖∞|uk

i (s)− ūi(s)|+ ‖gi(zk(s))− gi(z(s))‖‖ū‖∞
)

ds

Denoting respectively by M ′ and L the uniform bound and Lipschitz constant of the functions gi and taking
M = max{M ′, ‖ū‖∞}, we get

‖zk(t)− z(t)‖ ≤ Ck +mML

∫ t

0

‖zk(s)− z(s)‖ds

where Ck = mM ′
∫ T
0
|uki (s) − ūi(s)| ds → 0 for the convergence of uki to ūi in L1. The last inequality, for the

arbitrariness of t ∈ [0, T ], by the Gronwall lemma implies

‖zk − z‖C0([0,T ]) ≤ CkemMLT

which converges to zero as k tends to infinity. 2

Remark 3.7. Theorem 3.6 is an approximate controllability result for the hysteretic system (3.5), i.e. given
any T > 0 any initial and final configurations A and B, and any initial output w0, we are always able to find a
sequence of piecewise linear controls v which allows us to arrive as close as we want to B, but in general, it is
not guaranteed that we can reach it.
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Remark 3.8. Note that the construction of the approximating controls vk obviously depends on the amplitude
ρ > 0 of the considered play operator, which here we denote by Pρ (see Fig. 1). On the other hand, since the
construction of the sequence

(
uki
)
k

is independent on the parameter ρ, we easily have a sort of robustness of

our approximating procedure, in the sense that vk → uk and Pρ[uk,w0]→ uk as ρ→ 0, uniformly in time.

4. Hysteresis in the state

In this section we start from the same smooth controllable system (3.1), and we want to analyze what happens
to its controllability properties when the play hysteresis operator is applied to the state variables (see (1.2)-
right). We will focus on a system (3.1) with a particular “triangular” structure, being a more general situation
far to be clarified. More precisely, we consider the following system of the type of (3.1) in R3

ẋẏ
ż

 =

1
0
0

u1 +

 0
1

f(x)

u2 (4.1)

i.e. g1 =

1
0
0

, g2 =

 0
1

f(x)

, f ∈ C∞.

Moreover we suppose that Assumption 3.2 is satisfied, i.e. the Lie algebra generated by g1 and g2 is fully

generated so that the system is controllable. More precisely, since [g1,g2] =

 0
0

f
′
(x)

, if f
′ 6= 0 then it is

dim
(
span{g1,g2, [g1,g2]}

)
= 3

We first give a motivating example of mechanical system with that kind of structure.

4.1. Example

System (4.1) is a generalization of the Heisenberg flywheel, (see Montgomery [27]). A point mass m (see
Fig. 5) is constrained to slide along a massless rod connected to a flywheel with moment of inertia I, and it is
able to rotate about it. Moreover the flywheel is attached to a table by a joint on which it spins freely. This
joint is frictionless thus it does not exert any torque on the system.

We denote by θ the angle of the flywheel relative to the table and by (x, y) the mass coordinates, measured
with respect to an external frame. We can exert a torque on the rod to rotate it relatively to the wheel and
we are able to slide the mass back and forth on the rod. Therefore we have two controls, the torque τ and the
sliding speed and three states (x, y, θ). Applying a linear transformation of the controls, the control laws of the
system become

ẋẏ
θ̇

 =

 1
0
αy

u1 +

 0
1
−αx

u2 (4.2)

with α = − I
m .

The vector fields of this control system are exactly the Heisenberg group vector fields. System (4.2) can be rewrit-
ten, after the change of coordinates (x, y, θ) → (x, y, z) = (x, y,−θ/2α + xy/2), as the following “triangular”
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Figure 5. The system of the Heisenberg flywheel.

one ẋẏ
ż

 =

1
0
0

u1 +

0
1
x

u2 (4.3)

This system has a lot of good properties, in particular it is controllable. Indeed the Lie algebra generated by

the two dynamic vector fields,

1
0
0

 and

0
1
x

 is fully generated. Indeed

[1
0
0

 ,

0
1
x

] =

0
0
1

 ⇒ dim
(
span{

1
0
0

 ,

0
1
x

 ,

0
0
1

}) = 3 (4.4)

4.2. The hysteretic system

We are interested in studying the controllability properties of the hysteretic version of (4.1)ẋẏ
ż

 =

1
0
0

u1 +

 0
1

f(P[x,w0])

u2 (4.5)

Note that the existence of the trajectory is guaranteed by the Lipschitz property of P. The following lemma
will be used.

Lemma 4.1. The image of the play operator is dense in the space of continuous piecewise linear functions x(·)
in [0, T ]. That is, for any such x(·), denoting x0 = x(0), there exists a sequence of continuous piecewise linear
functions vj(·) such that P[vj , x0](·)→ x(·) in L∞(0, T ).
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Figure 6. On the left, the solid line represents the continuous piecewise linear function x(·)
defined in (4.6) and the dashed line the approximating output P[vj , x0] with x0 = 0, n = 4,
t1 = 1, t2 = 2, t3 = 3, t4 = 4, α1 = 1, α2 = −1, α3 = 1

2 , α4 = 2 and j = 10, on the right the

input of the play operator with ρ = 0.2, vj(·) defined in (4.7).

Proof. Let us consider a general continuous piecewise linear function

x(t) =

n−1∑
i=0

(
αi+1t+

i∑
k=1

tk(αk − αk+1) + x0
)
χ[ti,ti+1](t) (4.6)

where (0 = t0 < t1 < · · · < tn = T ) is a subdivision of the interval [0, T ] and α1, ..., αn ∈ R are the slopes

(with the convention:
∑0
k=1 ξk = 0, whichever the quantities ξk’s are). Then consider the following sequence of

continuous piecewise linear functions

vj(t) = χ[0, 1
j

](t)
[
α1t+ sgn(α1)ρ+ x0

]
+

n−1∑
i=0

{
χ[ti+

1
j
,ti+1− 1

j
](t)(x(t) + sgn(αi+1)ρ)

+ Θ(αi+1αi+2)χ[ti+1− 1
j
,ti+1+ 1

j
](t)(x(t) + sgn(αi+1)ρ)

+ Θ(−αi+1αi+2)χ[ti+1− 1
j
,ti+1+ 1

j
](t)
[ j

2

(1

j
(αi+1 + αi+2) + 2sgn(αi+2 − αi+1)ρ

)
t

+

i∑
k=1

tk(αk − αk+1) + x0 + sgn(αi+1)ρ
]}

(4.7)

where Θ(·) is the Heaveside function.
Note that, applying the play operator to (4.7), then in the time intervals [ti + 1

j , ti+1 − 1
j ] it is P [vj , x0] = x.

Instead in the time intervals [ti+1 − 1
j , ti+1 + 1

j ], it is ||P [vj , x0]− x||∞ = 1
j |αi+1| which converges to zero when

j →∞. We then have

P[vj , x0](·)→ x(·) for j →∞ in L∞(0, T )

2

Let us suppose that system (4.1) (the non hysteretic one) is controllable, for example as said before suppose
that the Lie algebra of vector fields g1 and g2 is fully generated. Then for any initial and final conditions
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Figure 7. From this picture it is evident that the initial couple (x0, w0) should stay on the
line.

A = (xA, yA, zA) and B = (xB , yB , zB), there exists (ū1, ū2) piecewise constant that steers system (4.1) from
A to B in time T > 0. In particular, due to the structure of the vector fields, ū1 generates a corresponding
continuous piecewise linear trajectory x̄ s.t x̄(0) = xA, x̄(T ) = xB , moreover ū2 is such that, together with f(x̄),
it generates trajectories ȳ, z̄ such that ȳ(0) = yA, ȳ(T ) = yB and z̄(0) = zA, z̄(T ) = zB .

In order to steer the hysteretic system (4.5) from A to B, the idea is to look for a control u1(·) whose integral
x(·) is such that x̄(·) = P[x,w0](·). In this way using such a control u1 and the same ū2, as in the non hysteretic
case, we can steer (xA, yA, zA) to a point whose (y, z)- coordinates are the desired ones (yB , zB), leaving the
tuning of the first one to a later time. More precisely we have the following result.

Theorem 4.2. Given the controllability of the non hysteretic system (4.1), for any initial and final configura-
tions A and B and for any w0 such that (xA, w0) ∈ Ω̄ρ, there exists a sequence of piecewise constant controls

(uj1, u
j
2) and a final time T ∗ ≥ T such that the solution (xj(·), yj(·), zj(·)) of system (4.5) starting from A is

such that

xj(T ∗) = xB yj(T ∗) = yB zj(T ∗)→ zB as j →∞

Proof. Let ū = (u1, u2) be the piecewise constant control which steers (4.1) from A to B, and let x̄ be the
x-component of the corresponding continuous piecewise linear trajectory such that x̄(0) = xA and x̄(T ) = xB .
It is clear that in general w0 is not equal to xA. Let t̄ > 0 and in system (4.5) choose a control u1 such that
(x(t̄),P[x,w0](t̄)) = (xA + sign( ˙̄x(0))ρ, xA) and u2(t) ≡ 0 in [0, t̄]. In this way the couple (x(t̄),P[x,w0](t̄)) will
be exactly on one of the two lines x± ρ see Figure 7

Now the value of the input of the play operator and of its output at time t̄ are exactly the ones required
by Lemma 4.1, so for t > t̄, let vj(t− t̄) be the function introduced in the preceding Lemma 4.1. Moreover let

uj
′

1 (t) be the control that steers vj(T ) to xB in time ∆T , and define the time T ∗ = t̄+ T + ∆T . Then we choose
as controls for the hysteretic system (4.5)


uj1(t) = u1(t) for 0 ≤ t ≤ t̄
uj1(t) = ∂vj

∂t (t− t̄) for t̄ ≤ t ≤ T + t̄

uj1(t) = uj
′

1 (t− T ) for T + t̄ < t ≤ T + t̄+ ∆T = T ∗
(4.8)
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uj2(t) ≡ 0 for 0 ≤ t ≤ t̄
uj2(t) ≡ ū2(t− t̄) for t̄ ≤ t ≤ T + t̄

uj2(t) ≡ 0 for T + t̄ < t ≤ T + t̄+ ∆T = T ∗.

(4.9)

Note that in each of the time intervals [0, t̄] and [T + t̄, T + t̄+ ∆T ] the variable x is affine and its end-points do
not depend on j therefore the two arcs of the trajectories remain in a compact set. Moreover in the time interval
[t̄, T + t̄] we can follow the argument sketched in Theorem 3.6 in the previous section according to which since ū2
is bounded by hypothesis, f is C∞ and since vj is bounded (thus also f(P[vj , w0])) the hysteretic trajectories
zj(t) do not exit from a common compact set. Therefore in this case also we can consider f bounded and
Lipschitz along trajectories.

With the controls chosen in (4.8)-(4.9) we have, according to the definition of uj
′

1 , x(T ∗) = xB . Moreover
y(T ∗) = yB since we are using exactly the control ū2 up to time T and then zero. Finally

|z(T ∗)− z̄(T )|

=
∣∣∣∫ t̄

0

0 dt+

∫ T+t̄

t̄

(
f(P[vj , w0](t− t̄))− f(x̄(t− t̄))

)
ū2(t− t̄) dt+

∫ T∗

T+t̄

0 dt
∣∣∣

≤
∫ T

0

∣∣(f(P[vj , w0](t− t̄))− f(x̄(t− t̄))
)∣∣‖ū2‖∞ dt

≤ LT‖ū2‖∞‖P[vj , w0]− x̄‖∞ → 0 as j →∞

(4.10)

where L is the Lipschitz constant of the function f and we have used the convergence of P[vj , w0] to x̄ in L∞

given by Lemma 4.1. 2

Proposition 4.3. In the case in which f(x) = x, i.e. the classical Heisemberg system, we have the exact
controllability in the hysteretic case.

Proof. First of all note that, according to (4.4) in order to move only in the z direction the strategy is to move
along the direction of the Lie bracket of the two vector fields. It is well known that this can be achieved choosing
for example controls

u1 =


α 0 ≤ t ≤ T
0 T ≤ t ≤ 2T

−α 2T ≤ t ≤ 3T

0 3T ≤ t ≤ 4T

u2 =


0 0 ≤ t ≤ T
β 2T ≤ t ≤ 3T

0 2T ≤ t ≤ 3T

−β 3T ≤ t ≤ 4T

(4.11)

and that, after a period of 4T , we have (see, for example, Coron [17], page 130)

∆z = z(4T )− zA = T 2αβ. (4.12)

This means that, starting from (xA, yA, zA) and using the controls in (4.11), after the time interval 4T the
system is in position (xA, yA, zA + T 2αβ).

At first we are interested in studying the controllability properties of the hysteretic version of (4.1)ẋẏ
ż

 =

1
0
0

u1 +

 0
1

P[x,w0]

u2 (4.13)

where P[x,w0] denotes the play operator applied to the real variable x with initial datum w0. We will show
that system (4.13) is controllable. The proof is based on the surjectivity of the play operator on a certain class
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of functions. In a first time interval [0, t1] we use a control u2 which drives the variable y from yA to yB and
z from zA to a certain z̄ and we set u1 = 0. Now observe that, for suitable α̃, β̃, we can consider two controls
as in (4.11), which we call ũ1, ũ2, such that in an interval of time ∆t = 4T drive the non hysteretic system
(4.1) from z̄ to zB and drive x and y back to their initial values. Also note that, assuming z 6= zB (otherwise
the variable z is already set), we certainly have α̃ 6= 0. For the hysteretic Heisenberg system (4.13), we have
first to suitably arrange the initial datum: in a time interval [t1, t2] we switch off u2 and turn on u1 in such a
way that the pair (x(t2), w(t2)) = (x(t2),P[x,w0](t2)) is in one of the two boundary lines of Ωρ, in particular
w(t2) = x(t2) − ρ if ũ1(0) > 0 or w(t2) = x(t2) + ρ if ũ1(0) < 0 (see Fig. 7). Now, note that if we translate
the controls ũ1, ũ2 to the time interval [t2, t2 + 4T ] and integrate them, we obtain continuous piecewise linear
functions which belong to a particular class of continuous functions on which we have already proved that the
play operator is surjective (see Rem. 3.4 regarding Lem. 3.3). Therefore, denoting x̃(t) = x(t2) +

∫ t
t2
ũ1(s)ds for

all t ∈ [t2, t2 + 4T ], it is possible to find a control v1 in [t2, t2 + 4T ] such that the output of the play operator
acting on the corresponding trajectory x (ẋ = v1) gives exactly x̃, i.e.

∃v1 s.t. ∀ t ∈ [t2, t2 + 4T ], x(t) =

∫ t

t2

v1(s) ds ⇒ P[x,w(t2)](t) = x̃(t).

Now using this control v1 and the control ũ2 corresponding to the trajectory t 7→ ỹ = yB +
∫ t
t2
ũ2(s)ds in the

time interval [t2, t2 + 4T ], the system the system steers the point (xA, yB , z̄) to the point (x(t2 + 4T ), yB , zB).
Finally it suffices to set u2 = 0 and use a control u1 that adjusts the x variable in a time interval [t2 + 4T, t3]
in order to get x(t3) = xB . 2

Remark 4.4. Note that the strategy proposed for system (4.3) is not valid for a generic Lipschitz function
f , indeed for a generic nonlinear f , a control loop like (4.11) does not lead to a displacement (4.12) for any
T but only for small ones. Thus it is only a local approximation of the displacement for small times, and it
cannot be used to prove the exact controllability of the system, for any initial and final position. Nevertheless
the approximating strategy is still valid and can be used to get at least the approximate controllability result.

Remark 4.5. One can think to use directly the limit of the controls uj for the hysteretic system, but the
sequence of controls uj1 converges only point-wise to the piecewise constant control ū1, and this control is not
good for the hysteretic system. Indeed, using it, we are not able to reproduce the trajectory x̄ as the output
of the play operator. Indeed, the play operator is continuous only with respect to the topology of uniform
convergence but we can grant only pointwise convergence.
Moreover note that the result obtained using the extended definition of the play operator for discontinuous inputs
[12, 22, 29, 30], would require the use of measure control instead of measurable ones. More precisely the good dis-
continuous input v such that P [v, w0] = x̄, can be obtained using a control which is ū1 + 2ρ

∑
number of jumps δti ,

where δti is the Dirac delta function centered in the jumping times. This control is a measure which is not the
class of controls in which we are more interested, that are the measurable controls.

Remark 4.6. Note that the controls in (4.8) are not equi-bounded in L∞ as j →∞ but only in L1. However
this is not a problem for our construction since our control generates the input of the play operator and we do
not require that it converges strongly but only that its output does. Moreover our strategy shows how to move,
in the limit j → ∞, between two fixed points A and B, not how to reproduce the non-hysteretic trajectory
x̄, compare with Remark 4.5. Instead, using uj1, we generate a trajectory vj whose output through the play
operator strongly converges to x̄.
Moreover, note that if the admissible controls must take value in a compact set (i.e. they are equibounded),
then our approximation procedure, even if we use the extended version of the play operator to discontinuous
inputs, can no longer be applied, since the controls uj1 are clearly unbounded as j →∞. Indeed, with controls
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in a compact set we only have the estimate

||P[vj , w0]− x̄||∞ ≥
1

M
(max

i
|αi|),

where M is the bound on the controls (see also the estimate just under Fig. 6). Hence, even in the limit, only
a partial controllability result may in general hold.

Remark 4.7. Note that as in remark 3.8 also in this case we have a sort of robustness of the system.

4.3. Generalization

In the previous paragraph we have considered “triangular” systems of the form (4.5), and that structure was
crucial in the proof of the result. The controllability of different systems with hysteresis in the space is still
under investigation. However, here we give a controllability result for a further generalization of that particular
“triangular” structure, to the case of more hysteresis dependent variables. More precisely, we achieve it iterating
the procedure previously described.

Let us start from the following system
ẋ1
ẋ2
ẋ3
ẏ4
ẏ5

 =


1
0
0
0
0

u1 +


0
1
0

f2(P[x1, w
1
0])

0

u2 +


0
0
1
0

f3(P[x1, w
1
0],P[x2, w

2
0])

u3. (4.14)

Suppose that ū = (ū1, ū2, ū3) is the piecewise constant control that steers the non hysteretic system from A
to B and let x̄1(t), x̄2(t) be the corresponding continuous piecewise linear trajectories. The idea is to mimic
what we have done in the previous example. Therefore the first thing to do is to bring (x1, w

1) and (x2, w
2)

to a good position, like in Figure 7, i.e. the points (x1, w
1) and (x2, w

2) in the graph (x,w) have to be on
the boundary of the set Ωρ (see (2.1)). Thus we put u3 ≡ 0 and we choose suitable u1 and u2 such that
(x1(t̄), w1(t̄)) = (x1A + sgn( ˙̄x1A)ρ, x1A) and (x2(t̄), w2(t̄)) = (x2A + sgn( ˙̄x2A)ρ, x2A). Then using Lemma 4.1 we
reproduce the trajectory x̄1(t), x̄2(t) using a sequence of controls (uj1, u

j
2) that produce the play operator input

functions (vj1, v
j
2). In this way at a certain time t̄+ T we have that x3(t̄+ T ) = x3B and y5(t̄+ T )→ y5B . More

precisely

uj
1(t) = u1(t)

uj
2(t) = u2(t)

uj
3(t) ≡ 0

for 0 ≤ t ≤ t̄

uj
1(t) =

∂v
j
1

∂t
(t− t̄)

uj
2(t) =

∂v
j
2

∂t
(t− t̄)

uj
3(t) ≡ ū3(t− t̄)

for t̄ ≤ t ≤ T + t̄. (4.15)

Now it is important to note that, due to the structure of the vector fields, the direction ∂x1 , ∂x2 and ∂y4 can
be generated using only the first two controls. Therefore we now consider only the subsystemẋ1ẋ2

ẏ4

 =

1
0
0

u1 +

 0
1

f2(P[x1, w1(t̄+ T )]

u2. (4.16)

This system is exactly the one of the example for which we already showed that it is possible to find a
sequence of controls that steers it from (x1(t̄+ T ), x2(t̄+ T ), y4(t̄+ T )) to (x1B , x2B , y4B ).
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It is possible to generalize this idea and consequently the proof of Theorem 4.2 to systems with the following
coordinates: z := (x1, · · · , xm, ym+1, · · · , y2m−1) and control vector fields gi of the following type

g1(z) := ∂x1

gi(z) := ∂xi + fi(x1, · · · , xi−1)∂ym+i−1 i = 2 · · ·m.

Suppose all fi ∈ C∞, and that the vector fields are bracket generating and thus the associated control system
is controllable.

The hysteretic system that we want to investigate is now

ż =

m∑
i=1

gi(P[z,w0])ui (4.17)

where by P[z,w0] we mean the component wise scalar play operator. To steer the system from a fixed point
A := zA to a fixed point B := zB , it suffices to iterate the preceding procedure. The idea is the following:
suppose that ū is the piecewise constant control that steers the non hysteretic system from A to B and let
x̄1(t), · · · , x̄m−1(t) be the corresponding trajectory of the first m − 1 coordinates. For the structure of the
vector fields these x̄i(t) are continuous piecewise linear functions. After reaching the input-output relation
between (x1, · · · , xm−1) and (w1, · · · , wm−1) given by Figure 7 (i.e. (xi, wi) ∈ ∂Ωρ for all i = 1, . . . ,m − 1),
since we know that the play operator has dense image on the continuous piecewise linear functions, we are able
to find sequences vji (t) such that their output P[vji ](t) converge to x̄i(t) as j →∞, and use the corresponding

controls uji (t) :=
∂vji
∂t (t) for i = 1, . . .m − 1 and ujm(t) := ūm(t). In this way for sure y2m−1 → yB2m−1, but the

other coordinates can be different. Thus the strategy now is to set um ≡ 0 and find controls u1, · · ·um−1 which
adjust the coordinate y2m−2 in the non hysteretic system. This is possible since the chosen vector fields structure
allows one to generate the ym+i−1-direction using only the first i controls.

Remark 4.8. Observe that even if the type of vector fields for which the preceeding procedure works seems to
be restricted, they belong to Carnot groups of step 2. These groups are widely used in sub-riemannian geometry
and control theory (see Agrachev et al [1]), and describe a wide class of mechanical systems, starting from the
Heisenberg flywheel system to its other generalization.

Remark 4.9. Note that the essential property of the play operator used to build the approximating sequence of
controls is Lemma 4.1, i.e. the fact that it has dense image in the space of continuous piecewise linear functions.
This means that the theorem on the approximate controllability is valid also for other hysteresis operators. An
example is the so called sweeping process (see Moreau [28] and Colombo et al. [16]) which is built as follows.
Consider a moving set C(t) in Rn, depending on the time t ∈ [0, T ], and an initial condition z0 ∈ C(0). In
several contexts, the modelization of the displacement z(t) of the initial condition z0 subject to the dragging,
or sweeping due to the displacement of C(t) pops up. It is natural to think that the point z(t) remains at rest
until it is caught by the boundary of C(t) and then its velocity is normal to ∂C(t). It is a kind of one sided
movement. Formally, the sweeping process is the differential inclusion with initial condition

z(t) ∈ −NC(t)(z(t)), z(0) = z0 ∈ C(0)

where NC(z) denotes the normal cone to C at z ∈ C. The sweeping process has the property of having dense
image in the space of continuous piecewise linear functions. This is clear since in dimension one it behaves exactly
as the play operator (see Kopfova-Recupero [20]), more precisely it is the case when C(t) is a translation of a
symmetric closed convex set C:

ż(t) ∈ −Nu(t)+C(z(t)).
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4.4. The case of switching hysteresis

Again, we consider the system

ż =

m∑
i=1

gi(z)ui,

but now we suppose that every gi incurs in a discontinuity across an hyperplane of Rn. In particular (because of
an approximation point of view as well as a possible intrinsic hysteretic behavior, see Liberzon [24]) we describe
such a discontinuity by a delayed relay. For every i = 1, . . . ,m let ξi ∈ Rn be a unit vector, representing the
unit normal to the discontinuity hyperplane, and we consider the delayed relay with hysteresis as in the figure.

For every i = 1, . . . ,m and for every wi ∈ {−1, 1}, we have a field gwi
i . We then consider the controlled

systems

ż =

m∑
i=1

g
wi(z·ξi)
i (z)ui, (4.18)

that is, each field gi is subject to switch, in dependence on z · ξi, with a delayed rule.

Assumption 4.10. For every m-string (w1, w2, . . . , wm) ∈ {−1, 1}m, the m fields (gw1
1 ,gw2

2 , . . . ,gwm
m ) satisfy

Assumption 3.2, i.e. their Lie algebra is fully generated.

The controllability question is now whether, given, A,B ∈ Rn, there are or there are not piece-wise constant
controls ui which steer the system from A to B in a finite time T > 0.

Just as an example, suppose that m = 2 and that ξ1 and ξ2 are respectively the first and second element of
the canonical basis of Rn. Then we may have the situation of Figure 8, for the projection of the trajectory on
the first two coordinates, where, for a given control u = (u1, u2), the filled curve is the evolution with (g−11 ,g1

2),
the short dashed curve is the evolution with (g1

1,g
1
2), the long dashed curve is the evolution with (g1

1,g
−1
2 ) and

the point-dashed one is the evolution with (g−11 ,g−12 ).
The state space Rn is then divided in 2m (non-disjointed) sectors, every one indexed by the corresponding

m-string of 1 and −1. For example, with respect to the figure, we have the sector indexed by (1,−1) which
is [−η,+∞[×]−∞, η]× Rn−2. When we start to move inside one of the sectors, then we continue to move in
the same mode (gwi

i )i until we leave that sector, and after that we move in the new modality (corresponding
to the index of the new sector) determined by the delayed switching rule. Since the sectors have non-empty
intersection, then, together with the starting point zA ∈ Rn, whenever it belongs to more than one sector, we
must also give the initial sector (i.e. the initial index (wi)i, i.e. the initial evolution mode). Note that, every
point zB ∈ Rn stays in the interior of a sector and hence, in our controllability problem, we can always equip zB
with the index of that sector. More precisely, in the following, we are going to decide to reach zB with exactly
that mode of evolution in the last part of the time interval.
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Figure 8. The projection of the trajectory on the first two coordinates.

Remark 4.11. If the discontinuity is not “delayed”, then the trajectory may not even exist when using piecewise
constant controls. Indeed, consider the following simple example. Suppose m = 2 ξi = ei, g1

i = ei = −g−1i . Now,
for each wi, we have the unique switching threshold zi = 0 (not delayed). Hence the sectors (after projection on
the first two coordinates) are the quadrants of R2 with intersections on the axes. Then, for example, starting
from the sector (1, 1), it is impossible to leave it just using piecewise constant controls. Indeed, take for example
(the projection of) A = (0, 1) and (w1, w2) = (1, 1) (the first quadrant). To leave, we have to take u1 = −1
because g1

1 = (1, 0). But then immediately g−11 will become (−1, 0) and hence we have no existence of the
trajectory if u1 is constant in at least small time interval [0, δ]. Anyway note that, even in the case of not
delayed discontinuity we may still have controllability. But we may be forced to consider some state-dependent
restrictions of the set of admissible controls, and then the controllability conditions may be less immediate and
useful. Instead, considering a “delayed discontinuity” allows us to still use all the set of admissible controls and
then to obtain a more standard and manageable set of controllability conditions.

Theorem 4.12. Given Assumption 4.10, system (4.18) is controllable. That is, for every A,B ∈ Rn, and for
every initial m-string (w1, . . . , wm) ∈ {−1, 1}m, compatible with A (i.e. A belongs to the corresponding sector),
there exist T > 0 and piece-wise constant controls ui which steer the system from A to B in time T .

Proof. As already said, we can always consider B as belonging to the interior of one sector and decide to reach
it with that mode of evolution. Note that the initial sector of A is given by the initial values of wi which are
not at our disposal. We distinguish various cases depending on A.

First case: A and B belong to the interior of same sector S. We look for an admissible trajectory connecting
them without leaving S. Since each sector is connected we can follow the construction proposed in Laumond
et al. [23]. At first we consider a continuous path γ : [0, 1] → Rn of finite length (not necessarily admissible),
connecting A to B and not leaving the interior of the sector. Let us define δ := mint∈[0,1] dist(γ(t), ∂S) > 0.
Let K ⊂ Rm be a closed ball centered at the origin and, for every z ∈ Rn and T > 0, define Rz(T ) the set of
configurations reachable from z by an admissible trajectory before the time T and only using u ∈ K. For any
z ∈ γ([0, 1]) there exists Tz such that Rz(Tz) is contained in S and since each Rz(Tz) is open (by the Chow
condition Ass. 3.2, see Coron [17] ) it contains a ball of radius εz, B(z, εz), with εz < δ so that it does not
intersect ∂S. Let us take a finite covering by N balls of this kind of the compact set γ, whose centers belongs
to γ. We may suppose that z1 = A = and zN = B are in such set of centers. We can also arrange the labels
in such a way that z2 6= z1 and B(z1, εz1

) ∩ B(z2, εz2
) 6= ∅, otherwise we would have not a covering of γ with

open balls centered in γ. Similarly, if z2 6= B we may arrange that z3 6= z2, z1 and B(z2, εz2
) ∩ B(z3, εz3

) 6= ∅.
We proceed in this way. For any i take zi,i+1 ∈ B(zi, εzi)∩B(zi+1, εzi+1). Thus there is an admissible trajectory
from zi to zi,i+1 and another one from zi,i+1 to zi+1 that do not exit from Rzi(Tzi) ∪ Rzi+1(Tzi+1) ⊂ S. The



20 F. BAGAGIOLO AND M. ZOPPELLO

sequence (zi)
N
i=1 is finite and we can conclude that there exists an admissible path from A to B, running for a

time T ≤
∑
i Tzi

, that does not exit the sector and, in particular, that allows us to not switch dynamics.
Second case: A and B do not belong to the same sector, but A is internal to its initial sector. We restrict

ourselves to the case where the sectors of A and B differ by one switching only (their switching m-dimensional
labels differ by one component only). The other cases can be constructed iteratively in a similar way. In this
case we make a first step: starting from A we use a piece-wise constant control which allows us to reach the
switching boundary between the sector of A and the one of B and without leaving the sector of A. In particular,
we may reach a point which is not a “multiple-switching” point, but a “single-switching” point between the
sector of A and B (referring to the example in Fig. 8, it is not a corner point of the kind (±η,±η) where both
switching may occur). This can be done following the strategy of step one until an interior point sufficiently
near the boundary, and then, again thanks to the Chow condition, we can use a dynamics that allows us to
reach the boundary and then switch. We are now in the situation of the previous case, since the point on the
boundary on which we are arrived, after the switching is now an internal point of the sector of B. Note that
without the delayed relay we do not switch in the interior of the other sector.

Third case: A belongs to the boundary of its initial sector. Again, thanks to the Chow condition
(Assumption 4.10), we may initially use a control that makes the trajectory switch and so almost immedi-
ately reach a point in the interior of one of the sectors. Then we proceed as in one of the previous cases.
2

4.5. Switching and play hysteresis: approximation and controllability

In the previous subsection we have treated the case where the system is affected by a delayed switching
hysteresis, with discontinuous output. Let us note that the hysteresis given by the play operator is instead a
continuous hysteresis (the output is continuous). Actually, the play operator can be seen as a superposition of
an infinitely many quantity of delayed relays, and then it can be in some sense approximated by a big, but
finite, number of delayed relays.

For any r ∈ [0, 1] let hr represent the relay with threshold (−1 + r, r). For a given scalar time-continuous
input ζ, and for given initial output states for each relay (which we do not display for simplicity of notations)
let us consider the following “macroscopic” output

w(t) =

∫ 1

0

hr[ζ](t)dr.

Since any relays is identified by r ∈ [0, 1], the output states of the relay is, at any time t, a function ot : [0, 1]→
{−1, 1}, r 7→ hr[ζ](t). We consider the following hypothesis

∃ rτ ∈ [0, 1] such that oτ (r) = 1 if r < rτ , oτ (r) = −1 if r > rτ . (4.19)

If (4.19) is satisfied for some τ ≥ 0, then, subject to the evolution of ζ, the pair input-output (ζ, w) evolves, for
t ≥ τ , inside the following hysteresis-loop, with the described evolution by the arrows, which exactly corresponds
to a truncated play operator with slope 2 and width ρ = 1 (see Fig. 9).

In particular, if (4.19) holds, then for every time t ≥ τ , there exists rt ∈ [0, 1] such that ot(r) = 1 for r < rt

and ot(r) = −1 for r > rt, i.e. (4.19) holds. If instead the initial output does not satisfy (4.19), then the
evolution of (ζ, w) is not necessarily described by the hysteresis-loop as in Figure 9, but, whenever at a time t,
the hypothesis is satisfied, then the evolution will remain inside that hysteresis loop for all subsequent times.
Also note that, if at a certain time t it is ζ(t) ≥ 1 (respectively, ζ(t) ≤ −1), then all the relays are switched on
1 (respectively, −1) and (4.19) is satisfied. Hence, acting if necessary on the input ζ, we can always suppose to
start the evolution satisfying (4.19).
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Figure 9. Truncated play hysteresis-loop.

Figure 10. Here we have represented the case of k = 4 relays, with thresholds
(−3/4, 1/4), (−1/2, 1/2), (−1/4, 3/4), (0, 1).

Now, instead of considering a continuum of relays indexed by r ∈ [0, 1], we consider k relays, k ∈ N \ {0},
h1, . . . , hk, with the hypothesis that, for every i = 1, . . . , k, hi has thresholds (−1 + i/k, i/k). We then consider
the macroscopic output

wk[ζ](t) =
1

k

k∑
i=1

hi[ζ](t). (4.20)

Now, at any time t, the output states of the k relays is a function otk : {1, . . . , k} → {−1, 1}. Similarly to
(4.19), we consider the following hypothesis:

∃ iτk ∈ {1, . . . , k} such that oτk(i) = 1 if i < iτk, o
τ
k(i) = −1 if i > iτk. (4.21)

If (4.21) is satisfied for some τ ≥ 0, then the pair (ζ, wk) evolves, for t ≥ τ , inside the following discrete
hysteresis-loop (see Fig. 10) which evidently approximates the continuous hysteresis-loop of Figure 9.

In this case, it can be seen that, if we start from an initial output state that does not satisfy (4.21), then
after a finite number of switches, (ζ, wk) necessarily enters the hysteresis-loop of Figure 10 and will remain
there for all the times. Moreover note that, when we are in that hysteresis-loop, at any time t (4.21) is satisfied
and there is a bijection between the possible values of the output wk and the k-tuple (1, . . . , 1,−1, . . . ,−1) =
(h1[ζ](t), . . . , hk[ζ](t)) of the relays outputs, image of the function otk.
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Obviously, the larger k, the better the discrete hysteresis loop in Figure 10 shape, approximates the shape
of the continuous one in Figure 9.

We now consider the controllability of the system

ż =

m∑
j=1

gj(P[z · ξj ], z)uj (4.22)

where P is the truncated play operator as in Figure 9, and ξj , j = 1, . . . ,m are linearly independent unit vectors.
Moreover, we assume the following hypothesis

∀ wj ∈ [−1, 1] the m fields z 7→ gj(wj , z) satisfy the controllability

hypothesis, i.e. their Lie algebra is fully generated (Ass. 3.2).
(4.23)

We take k ∈ N \ {0}, and replace the truncated play operator P by wk as in (4.20). We then get the
“approximating problem” of controlling the system

ż =

m∑
j=1

gj(wk[z · ξj ], z)uj . (4.24)

Theorem 4.13. System (4.24) is exactly controllable.

Proof. We can restrict ourselves to the case with an initial output states satisfying (4.21). Then for any j =
1, . . . ,m the evolution of the pair (z · ξj , wk[z · ξj ]) is inside the discrete hysteresis-loop of Figure 10 and wk[z ·
ξj ] is uniquely generated by the admissible k-tuple (h1[z · ξj ], . . . , hk[z · ξj ]) = (1, . . . , 1,−1, . . . ,−1). Hence,
for any j and any of those k-tuple (which, by (4.21) and our choice of the thresholds, are exactly k + 1:
(−1,−1, . . . ,−1), (1,−1, . . . ,−1), . . . , (1, . . . , 1)) we have a field (see Fig. 11)

z 7→ g
(h1,...,hk)
j (z).

The proof can be done as in Theorem 4.12. Indeed, also in the case of superposition of k switchings, the
strategy used to reach the final point depends on the location of the initial one. More precisely, even in this
multiple switching situation, we can distinguish different intersecting sectors, no-one with empty interior, so
that any point in Rn stays in the interior of a sector, (see example in Fig. 11). Thus if the initial and final points
are in the interior of the same sector we can use the strategy of case 1 of Theorem 4.12, if instead one end-point
is in the interior of a sector and the other end-point is in the interior of another sector, then the strategy can
be the one of case 2 of Theorem 4.12, maybe switching more than once. Finally if the starting point is on the
boundary of a sector the strategy will be the same of case 3 of Theorem 4.12. All the strategies make use of
controllability Assumption (4.23). 2

Remark 4.14. For a result of controllability of (4.22), one should pass to the limit in k → +∞, in the
controllabilty problem (4.24). This will be the subject of future studies. Here we note that problem (4.22) seems
to be not exactly fitting the similar problem in (1.2)-right, because of the explicitly presence of the variable z
inside the fields with hysteresis. Moreover, in this case, a triangular feature as in Sections 4.1 and 4.2 seems
to be not necessary. One crucial point is the controllabilty hypotheses (4.23). That hypothesis can be rather
natural in some cases. Let us consider the system (without hysteresis)

ż =

m∑
j=1

g̃j(z)uj (4.25)
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Figure 11. Multiswitching dynamics in the case of m = 2 fields, and k = 4 relays (com-
pare with Fig. 10), and with ζ1 = e1, ζ2 = e2 the first and second vectors of the canonical
basis of Rn. Here (compare with Fig. 8) it is represented the projection on the plane
(z1, z2) of a possible trajectory starting from z1 < −3/4, 1/4 < z2 < 3/4 with w4[z1](0) =
−1 corresponding to (−1,−1,−1,−1), and w4[z2](0) = 0 corresponding to (−1,−1, 1, 1).

The filled trajectory evolves by (g
(−1,−1,−1,−1)
1 , g

(−1,−1,1,1)
2 ). The dashed trajectory evolves

by (g
(−1,−1,−1,−1)
1 , g

(−1,1,1,1)
2 ). The pointed trajectory evolves by (g

(−1,−1,−1,−1)
1 , g

(−1,−1,1,1)
2 ).

The long-dashed trajectory evolves by (g
(−1,−1,−1,1)
1 , g

(−1,−1,1,1)
2 ). The dashed-double-pointed

trajectory evolves by (g
(−1,−1,1,1)
1 , g

(−1,−1,1,1)
2 ).

where the fields g̃j satisfy the controllability conditions (Chow). Actually, due for example to some kind of
damage, we do not exactly face that system, but a perturbation of it of the form

ż =

m∑
j=1

(g̃j(z) + fj(P[z · ζj ]))uj

where fj : R → Rn. This can be seen as a generalization of a linear system with feedback control which is
affected by some damage (see Tarbouriech et al. [31] and Visintin [32] for more details on damaged systems and
hysteresis.) Another possible model is

ż =

m∑
j=1

fj(P[z · ζj ])g̃j(z)uj (4.26)

where fj : R→ R. More generally

ż =

m∑
j=1

gj(z,P[z · ζj ])uj (4.27)
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where gj : Rn+1 → Rn. Again the perturbation can be seen as a damage in the feedback control. Since systems
(4.25) is controllable, under some reasonable hypotheses on the perturbation fj , the presence of the hysteretic
term does not affect the controllability of the “non-perturbed” part, that is (4.23) holds.

When we perform the discrete approximation of the play operator (4.20), as already explained, if we are in
the hysteresis-loop as in Figure 10, to any possible value wjk of the output of wk[z · ζj ] a unique suitable k-string,

sjk ∈ Sk, of 1 and −1 is associated (where Sk is the set of all such suitable k-string). In any sector where the

string does not change (see Fig. 11), we then move with the fields z 7→ g
sjk
j (z) = gj(z, w

k
j ). By (4.23), for every

choice of the strings sjk, the fields z 7→ g
skj
j (z) satisfy the controllability condition.

Note that, for example in the case (4.25), for every fixed string skj , it is ∇gs
k
j

j (z) = ∇gj(z). So (4.23), which
involves the Lie brackets of the vector fields and thus their derivatives, is not so unrealistic in the case, for
example, of small magnitude perturbation fj . Similar considerations may be done in the case (4.26). Moreover
also note that (4.23) does not take care of the evolution of the perturbation variable t 7→ wj(t) = P[z · ζj ](t),
which certainly may further affect the controllability of (4.27). On the contrary, the discrete problem makes use
of (4.23) only, because it leads to use it in the sectors where the variable wjk (as well as the k-string sjk) does
not evolve, but, on the other side, when k increases, the number of those regions also increases and they also
present finer granularity. The passage to the limit k → +∞ it is certainly worth studying.
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