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Long-time rigidity to flux-induced symmetry breaking in quantum quench dynamics

Lorenzo Rossi ,1 Luca Barbiero ,1 Jan Carl Budich ,2 and Fabrizio Dolcini 1,*

1Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino, Italy
2Institute of Theoretical Physics, Technische Universität Dresden and Würzburg-Dresden Cluster

of Excellence ct.qmat, 01062 Dresden, Germany

(Received 7 July 2023; accepted 5 October 2023; published 18 October 2023)

We investigate how the breaking of charge conjugation symmetry C impacts on the dynamics of a half-filled
fermionic lattice system after global quenches. We show that, when the initial state is insulating and the C
symmetry is broken nonlocally by a constant magnetic flux, local observables, and correlations behave as if the
symmetry were unbroken for a time interval proportional to the system size L. In particular, the local particle
density of a quenched dimerized insulator remains pinned to 1/2 in each lattice site for an extensively long time,
while it starts to significantly fluctuate only afterwards. Due to its qualitative resemblance to the sudden arrival
of rapidly rising ocean waves, we dub this phenomenon the “tsunami effect.” Notably, it occurs even though
the chiral symmetry is dynamically broken right after the quench. Furthermore, we identify a way to quantify
the amount of symmetry breaking in the quantum state, showing that in insulators perturbed by a flux, it is
exponentially suppressed as a function of the system size, while it is only algebraically suppressed in metals
and in insulators with locally broken C symmetry. The robustness of the tsunami effect to weak disorder and
interactions is demonstrated, and possible experimental realizations are proposed.

DOI: 10.1103/PhysRevB.108.155420

I. INTRODUCTION

One of the most surprising aspects of quantum mechanics
is the nonlocal effect induced by a magnetic flux. Indeed,
in striking contrast to classical particles, a charged quantum
particle can experience the presence of a flux even in regions
where no magnetic field is present. The Aharonov-Bohm ef-
fect [1,2] is a paradigmatic manifestation of this phenomenon.
Nevertheless, metals and insulators are known to exhibit a
quite different response to a magnetic flux, encoded within
the linear response theory in the Drude weight D [3–6]. Such a
quantity, which is obtained from equilibrium state correlation
functions, describes the current generated by a flux-induced
electric pulse. While D is finite for metals, it vanishes for an
insulator, implying that the ground state energy of an insulator
is insensitive to magnetic flux variations. It has also been
proven that, as long as flux changes adiabatically, such insen-
sitivity to a flux holds also beyond linear response theory, i.e.,
in higher order Drude weigths [7,8]. In this respect, insulators
exhibit a more “classical behavior” than metals, in view of the
localized character of their correlations [3].

In recent years, the experimental advances in cold atom
setups [9–12] have motivated an intense theoretical activity to
investigate the effects of a flux in far away from equilibrium
settings, like in quantum quenches [13–16], where the adia-
baticity condition does not hold. Most works have analyzed
flux quenches in fermionic ring-shaped lattice systems, where
a flux is suddenly switched on or off, mainly with the purpose
of determining whether a persistent current can flow in these

*fabrizio.dolcini@polito.it

conditions, how it is possibly affected by interactions, and
what is its nonlinear dependence on the flux [17–19].

It should be pointed out, however, that any flux quench pro-
tocol induces a local electric pulse, which is thus a classical
effect per se. In order to probe genuine quantum mechanical
nonlocal effects of the flux in the far from equilibrium dy-
namics, it is important to rather consider a constant magnetic
flux, and to quench other parameters. In these conditions, a
crucial question is still open: when an insulator is driven out
of equilibrium, how long does it remain insensitive to the
presence of a flux?

Interestingly, this type of problems can also be considered
from a different perspective, namely the impact of symmetry
breaking. In quantum systems, where the state is characterized
by a density matrix operator ρ and its evolution is governed
by the Hamiltonian H , one has to consider the effect of sym-
metries on both ρ and H , as they are not necessarily related.
Indeed a Hamiltonian may fulfill a given symmetry, despite
each of its degenerate ground states may not, as is the case for
the spontaneous symmetry breaking [20,21]. Conversely, the
ground state of a Hamiltonian may fulfill a symmetry, despite
H itself does not, because of other excited states.

Although the existence of a symmetry is per se a “binary”
concept –it is either fulfilled or not– one may wonder whether
and to what extent the effects of a symmetry breaking become
observable. A flux, for instance, breaks time reversal and
charge-conjugation symmetries in the Hamiltonian [22,23].
Yet, the rigidity of a band insulator to the flux can also be
regarded as an example where the ground state “does not see”
these symmetry breaking, and it behaves as if the symmetries
were fulfilled. When it comes to out of equilibrium conditions,
the effect of symmetries becomes more subtle. It is known,
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FIG. 1. Quantum dynamics resulting from a quench applied to
a dimerized ring-shaped model (14) with L = 80 cells (160 sites),
where the tunneling amplitudes, with initial values vi = 1 and wi =
0.5, are exchanged w ↔ v. The deviation δn from 1/2 of the on-site
density is shown as a function of time. (a) Case of a staggered
potential U = 1/10 breaking the charge conjugation symmetry C
locally. (b) Case of a nonlocal C-symmetry breaking induced by a
flux phase ϕ = π/2, where ϕ = 2π�/�0, with �0 denoting the flux
quantum.

for instance, that a symmetry can get dynamically broken
even when it is fulfilled by both the initial state and the
evolution Hamiltonian [24,25]. In general terms, one can thus
formulate the following problem: When a fermionic system
with a broken symmetry is driven far from equilibrium, how
and when will the effects of such symmetry breaking become
observable?

This paper is devoted to address the above questions.
Specifically, focusing on the breaking of the charge-
conjugation symmetry C, we analyze the quantum dynamics
of a half-filled fermionic model in a 1D ring-shaped dimerized
lattice, where a quench in the magnitude of the tunneling
amplitudes is performed. We show that, when C symmetry is
broken, the physical behavior at local level crucially depends
on (i) the localization properties of the quantum state and (ii)
the nature of the symmetry breaking (local vs nonlocal). In
particular, if the initial state exhibits power-law decay corre-
lations, as is the case of a metal, the effects of C-symmetry
breaking emerge at any time, regardless of whether the sym-
metry is broken locally or nonlocally.

However, if the quantum state is characterized by expo-
nentially decaying correlations, as is the case of an insulator,
a twofold scenario can emerge. A local breaking of the C sym-
metry straightforwardly impacts on local observables right
after the quench. In contrast, if the C symmetry is broken
nonlocally, the expectation values of local observables re-
main effectively pinned to the unbroken symmetry case for
a time that scales linearly with the system size. This result
is highlighted in Fig. 1, which shows the dynamical behavior
of a half-filled quenched Su-Schrieffer-Heeger (SSH) model
[26,27], comparing the cases where C symmetry is broken
locally by an on-site staggered potential [panel (a)], and non-
locally by a magnetic flux [panel (b)]. While in the former
case the site density deviates by δn from the uniform half-
filled value 1/2 right after the quench, in the latter scenario

the deviation remains exponentially small in the system size
L for a time that is proportional to L. Only after such a time,
the density starts to wildly deviate from the value 1/2 and
to oscillate. This phenomenon, which we dub tsunami effect,
manifests also in the particle current and in the evolution
of correlation functions. Notably, such an extensively long
time rigidity of these quantities occurs in spite of the chiral
symmetry of the SSH model, which gets dynamically broken
immediately after the quench, as we quantitatively prove.

These results represent one further step in the exploration
of the space-time scaling regime, which investigates the out of
equilibrium dynamics for timescales that scale linearly with
the system size. While in Ref. [28], this regime was recently
shown to provide a new way to topologically classify out
of equilibrium quantum systems, the present work highlights
that, when an insulator is driven out of equilibrium, the quan-
tum nonlocality induced by a flux becomes observable in such
a regime. Indeed, as we shall discuss, the tsunami effect can
also be regarded as a dynamical crossover characterizing the
local density as a function the ratio η between time t and
system size L.

The paper is organized as follows. In Sec. II, after briefly
recalling the definition and properties of charge conjugation
transformation C, we identify in general terms the implica-
tions of a C-symmetric many-particle quantum state on the
single-particle density matrix. Then, in Sec. III, we specify the
two-band model considered here, pointing out the difference
between local and nonlocal C-symmetry breaking. Section IV
is devoted to the investigation of the dynamics resulting from
the quench and to the demonstration of the tsunami effect. In
particular, for the SSH ring-shaped lattice threaded by a flux,
we show that the local density, current and correlations remain
rigid to the nonlocal C-symmetry breaking for an extensively
long time. After providing an intuitive explanation of such
effect in terms of Wannier functions, in Sec. V, we argue
that it can be quantitatively explained by introducing suitable
symmetry breaking quantifiers. This enables us to quantita-
tively distinguish global from local C-symmetry breaking, and
also to show that the phenomenon occurs even though the
chiral symmetry is dynamically broken immediately after the
quench. Moreover, in Sec. VI, we demonstrate the stability of
the tsunami effect to weak disorder and interactions. Finally,
in Sec. VII, we draw our conclusions and outline some possi-
ble experimental realizations to observe the predicted effect.

II. CHARGE CONJUGATION SYMMETRY

Let us consider a system of spinless fermions, possibly
interacting or with disorder, in a one-dimensional (1D) ring-
shaped lattice with periodic boundary conditions (PBCs). The
quantum state of the system, characterized by a many-particle
density matrix ρ, may be an equilibrium or an out of equilib-
rium state at a given time t . Without loss of generality, we shall
adopt a notation where lattice sites are grouped “in pairs.”
Each pair, labeled by an integer j = 1, 2, . . . , L, contains an
odd and an even site denoted as A and B, respectively, with
c†

jα, c jα (with α = A and B) denoting the on-site fermionic
creation and annihilation operators, respectively. The reason
for choosing this notation is that, although for the moment we
shall be quite general, later below we shall focus on dimerized
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lattices, and each pair will thus be identified as a cell that is
periodically repeated in the lattice.

A. Charge conjugation

Charge conjugation Cθ is a linear unitary transformation
(Cθ iC†

θ = i and C†
θ = C−1

θ ) locally mapping particles into holes
as follows [29]:

Cθc†
jαC

†
θ = (Uθ ) jα;lβ clβ, (1)

where a summation over repeated indices is meant, and

Uθ =
L⊕

j=1

(
e2iθ jA 0
0 −e2iθ jB

)
(2)

is a 2L × 2L block-diagonal matrix in real space, character-
ized by the set of phases {θ} = {θ1A, θ1B, . . . , θLA, θLB}. The
minus sign appearing in Eq. (2) for the even (= B) sites is
purely conventional and can always be included in the θ jB

phases.
A many-particle quantum state is charge conjugation sym-

metric if there exists a choice of the phases {θ} such that the
many-particle density matrix operator ρ fulfills CθρC

†
θ = ρ. To

identify the implications of such a symmetry, it is useful to
consider the single-particle reduced density matrix, which is
the tool needed to compute any one-body expectation value
(in particular observables and equal-time correlations), and is
defined as

ρ j1α1, j2α2 = 〈
c†

j2α2
c j1α1

〉 = Tr
[
ρ c†

j2α2
c j1α1

]
, (3)

with α1, α2 = A, B. The following general results, whose
proof can be found in the Appendix A, hold.

Theorem. If CθρC
†
θ = ρ for a set {θ} of phases in. Eq. (1),

then
(i) the single-particle reduced density matrix ρ in Eq. (3)

fulfills the following property

(ρ − I/2) + U∗
θ (ρ∗ − I/2) Uθ = 0, (4)

where Uθ is given by Eq. (2) and I is the identity in the 2L-
dimensional single-particle Hilbert space. A straightforward
implication of Eq. (4), obtained by taking its trace, is that N =
trρ = L, where N is the number of particles, i.e., half-filling
is a necessary condition for the state ρ to be C-symmetric. In
order to avoid trivial violations of the C symmetry, in the rest
of our paper we shall thus consider the half-filling situation.

(ii) The expectation value of the local density is

〈n jα〉 ≡ 1/2 ∀ j, α = A, B. (5)

Notice that this is a stronger implication than the overall
half-filling condition, for it holds also in the presence of inter-
actions or disorder, where translational invariance is a priori
broken.

(iii) If an initially C-symmetric quantum state ρi evolves
according to a C-symmetric Hamiltonian H (CθHC†

θ = H),
then the evolved state ρ(t ), remains C-symmetric at any time
[30]. This is due to the unitarity of C and implies, in particular,
that Eqs. (4) and (5) hold at any time.

〈n jα〉(t ) ≡ 1
2 ∀ j, t α = A, B. (6)

In the presence of C symmetry, the density thus remains
pinned to 1/2 even out of equilibrium. In the following, we
shall analyze whether and how Eq. (6) is modified by a C-
symmetry breaking.

B. Charge conjugation and gauge transformations

We conclude this section by observing that the matrix (2)
characterizing the charge-conjugation transformation (1) can
also be rewritten as Uθ = U0 �2

θ , where

U0 = ⊕ jσz (7)

is the matrix obtained for {0} = {θ jα ≡ 0 ∀ j, α} and

�θ =
L⊕

j=1

(
eiθ jA 0
0 eiθ jB

)
. (8)

This means that the charge-conjugation transformation Cθ in
Eq. (1) can be interpreted as the C0 transformation

C0 c†
jA C

†
0 = +c jA

C0 c†
jB C

†
0 = −c jB

, (9)

combined with a local gauge transformation on the fermionic
operators [31]

c†
jα = eiθ jα c̃†

jα, (10)

which is compactly written as

[0]
{θ}→ [g], (11)

where [0] denotes the original gauge of the c† operators and
[g] the new gauge of the c̃† operators. As a consequence of
Eq. (10), the entries of the single-particle density matrix (3)
also change by such phase factors,

ρ → ρ({θ}) = �θρ�∗
θ . (12)

One can thus reformulate the above theorem as follows. If a
quantum state ρ is charge-conjugation symmetric for a phase
set {θ}, then by performing the local gauge transformation
(10) and (11) the single-particle density matrix ρ({θ}) in the
c̃† basis fulfills

[ρ({θ}) − I/2] + U0 [ρ∗({θ}) − I/2] U0 = 0. (13)

In other words, one can equivalently define the charge con-
jugation transformation only as C0 in Eq. (9), provided that
the possibility to perform gauge transformations (10) is also
included. This is because the C0 symmetry may be present in
the state but hidden by an inappropriate choice of the gauge.

Since expectation values of observables are independent
of the choice of the gauge, in the following of the paper
we shall often harness this interpretation in terms of gauge
transformations.

III. MODEL, LOCAL VersuS NONLOCAL
C-SYMMETRY BREAKING

A. The model

So far, the above statements have been quite general.
In order to illustrate their applications we shall focus on a
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specific model in a dimerized lattice with PBCs, described by
the following Hamiltonian

H = γ

⎡
⎣ L∑

j=1

(
v ei ϕ

2L c†
jAc jB + w ei ϕ

2L c†
jBc j+1A + H.c.

)+

+U
L∑

j=1

(n jA − n jB)

⎤
⎦. (14)

The first line in Eq. (14) is the SSH model [26,27], where γ

is an energy scale unit related to the bandwidth, v and w are
the (real) dimensionless intracell and intercell hopping ampli-
tudes, respectively, while ϕ = 2π�/�0 is the phase related
to the magnetic flux � threading the ring, in units of the flux
quantum �0. The second line describes an on-site staggered
potential U in the two cell sites, in units of γ . For U 
= 0, the
full model (14) is known as the Rice-Mele (RM) model [32].

Let us recall a few aspects of the model Eq. (14) that will be
necessary to illustrate the gist of the tsunami effect. Exploiting
the cell translational invariance, the Hamiltonian (14) can be
suitably rewritten in momentum space as

H[φ] = γ

π∑
k=−π

(c†
kA, c†

kB) d(k) · σ

(
ckA
ckB

)
, (15)

where the k wave vectors, here measured in units of the
inverse cell size, are quantized as k = 2π n/L, where n ∈
{−�L/2, . . . , �(L − 1)/2}. Moreover σ = (σx, σy, σz ) are
Pauli matrices acting on the sublattice degree of freedom, and

d(k) =
(

v cos
ϕ

2L
+ w cos

(
k + ϕ

2L

)
,

− v sin
ϕ

2L
+ w sin

(
k + ϕ

2L

)
,U

)
(16)

denotes the vector field along the Brillouin zone. The spec-
trum consists of two bands E±(k) = γ ε±(k), where the
dimensionless dispersion relations ε±(k) = ±|d(k)| explicitly
read

ε±(k) = ±
√

v2 + w2 + 2vw cos

(
k + ϕ

L

)
+ U 2. (17)

As is well known, the spectrum (17) is gapped in the presence
of either dimerization (v 
= w) or on-site staggered potential
(U 
= 0), and gapless otherwise, while the flux phase ϕ leads
to a shift in the momenta. The quantity vm = max[∂kε(k)]
identifying the maximal (dimensionless) group velocity char-
acterizing the excitations along the ring is given by

vm =
√

A − √
A2 − B2

2
, (18)

where A = v2 + w2 + U 2 and B = 2vw. The single-particle
eigenstates |k,±〉 = |k〉 ⊗ |u±(k)〉 are determined through
the eigenvalue problem (d̂(k) · σ )|u±(k)〉 = ±|u±(k)〉, where
d̂(k) = d(k)/|d(k)| is the unit vector field.

In the SSH model (U = 0), the two regimes v > w

and v < w are known to identify two topologically distinct
insulators [33].

B. Local versus nonlocal C-symmetry breaking

Similarly to a quantum state ρ, a Hamiltonian H is charge
conjugation symmetric if there exists a set {θ} of phases such
that CθHC†

θ = H . On account of the above discussion about
gauge transformations, one can equivalently say that H is
charge conjugation symmetric if there exists a gauge transfor-
mation (10) such that C0H ({θ})C†

0 = H ({θ}), where H ({θ}) is
the Hamiltonian H re-expressed as a function of the gauge
operators c̃ jα, c̃†

jα .
It is straightforward to verify that the Hamiltonian (14)

does not exhibit charge conjugation-symmetry, unless U = 0
and ϕ = mπ . In particular, one can observe that the C symme-
try is broken locally by the on-site potential U 
= 0. Indeed,
for any site ( j, α), the projection

Hjα = P jαHP jα (19)

of the Hamiltonian on that site always fulfills Hjα −
CθHjαC†

θ 
= 0, for all choices of the {θ} phases in Eq. (1).
Equivalently, there is no gauge transformation (10) that can
remove the C-breaking potential U present in that site ( j, α).

In contrast, the presence of the flux phase ϕ 
= mπ breaks
C nonlocally, meaning that for any fixed local portion P of the
ring there is always a phase set {θ} leading to HP − CθHPC†

θ =
0, where HP = PPHPP is the Hamiltonian projected on that
portion. For instance, by choosing the following set of linearly
growing phases,

{θ�} ≡
{

θ j,A = ϕ

L ( j − 1
4 )

θ j,B = ϕ

L ( j + 1
4 )

j = 1, , . . . , L , (20)

the C symmetry is realized almost everywhere in the ring,
except in the link between sites (L, B) and (1, A), where C
symmetry is broken [34]. In other words, the gauge transfor-
mation (10) with phases (20) accumulates the entire flux phase
in such link. Similar phase choices accumulate the C-breaking
elsewhere. Note that the possibility of performing the gauge
transformation is the reason why the model Eq. (14), when
defined in a lattice with open boundary conditions (OBCs),
i.e., on a chain, is C-symmetric. Indeed, since a chain can be
regarded as a ring with one missing link, it is always possible
to get rid of the phase ϕ appearing in the tunneling amplitudes
by “accumulating” it along such a link. In contrast, in the
ring-shaped geometry considered here, the PBCs imply that
H − CθHC†

θ = 0 cannot be realized in all links, and at least
one C-breaking link will always be present for topological
reasons.

IV. TSUNAMI EFFECT

A. C-symmetry breaking for the ground state

We start from some preliminary analysis at equilibrium.
When the Hamiltonian (14) fulfills the C symmetry (U = 0
and ϕ = πm), its nondegenerate ground state at half filling
also does. If the C symmetry of the Hamiltonian is explicitly
broken by U 
= 0 or ϕ 
= πm, this will reflect on its ground
state. In particular, because of the dimerization, one expects
the density to deviate from Eq. (5) and to acquire the form

nA/B = 〈n j,A/B〉 = 1
2 ± δn ∀ j, (21)

155420-4



LONG-TIME RIGIDITY TO FLUX-INDUCED SYMMETRY … PHYSICAL REVIEW B 108, 155420 (2023)

where the deviation δn, which represents the sublattice un-
balance, is independent of the cell j because of the cell
translational invariance of model (14).

However, for U = 0, i.e., in the SSH model, Eq. (5) still
holds strictly for any length L, despite the C-breaking flux ϕ.
The reason is that such a model exhibits the additional chiral
symmetry S [33], which forbids deviations from Eq. (5) for
the ground state, even in the presence of the flux [30]. This
can be explicitly seen from the general expression

δn = − 1

2L

π∑
k=−π

d̂z(k), (22)

where d̂z(k) is the z component of the unit vector related to
d(k) in Eq. (16), and vanishes in the SSH model. In contrast,
in the RM model, the staggered on-site potential U 
= 0 does
lead to a deviation δn in Eq. (21), which in the thermodynamic
limit reads

δn = − 1

π

U√
U 2 + (v + w)2

K
(

4vw

U 2 + (v + w)2

)
, (23)

where K is the complete elliptic integral of the first kind.

B. Quench dynamics

While at equilibrium the effects of C-breaking induced by
the flux may be masked by the additional chiral symmetry S ,
when the system is driven out of equilibrium such a symmetry
gets broken dynamically because of its antiunitary character
[24,25], and its protection is lost in the dynamically evolving
quantum state. At first, one can thus expect deviations from
Eq. (5) to emerge also in the SSH model right after the quench.
As we shall see, this is not the case, though. Let us thus ana-
lyze a quantum quench protocol, where the system is initially
prepared in the ground state ρi of some initial (prequench)
Hamiltonian Hi. At t = 0, the Hamiltonian parameters are
suddenly changed (Hi → H f ), so that the dynamical evo-
lution ρ(t ) = exp[−iH f t/h̄]ρi exp[+iH f t/h̄] is governed by
the postquench Hamiltonian H f . We denote by di(k) and
d f (k) the vector fields characterizing Hi and H f , respectively,
in Eq. (15). As motivated in Introduction, the C-breaking
parameters, namely the flux phase ϕ and the local on-site
potential U , will be kept constant across the quench. We shall
mainly focus here on the quench protocol that exchanges the
hopping amplitudes, i.e.,

vi = 1 → v f = r,
wi = r → w f = 1,

(24)

where r is a dimensionless parameter characterizing the
dimerization strength (0 < r < 1). The cases of other quench
protocols will be addressed later. For the sake of complete-
ness, before presenting the results, a few technical details
are in order. The initial single-particle density matrix de-
scribing the ground state of Hi with its fully occupied
lower band is block-diagonal in k space, ρ i = ⊕kρ

i(k),
where ρ i(k) = |ui

−(k)〉〈ui
−(k)| = (σ0 − d̂i(k) · σ )/2, σ0 de-

notes the 2 × 2 identity matrix, and d̂i(k) = di(k)/|di(k)|
is the initial unit vector field. Because the quench dynam-
ics is decoupled is k space, the k block of the evolved
density matrix is ρ−(k, t ) = |u−(k, t )〉〈u−(k, t )|, where

|u−(k, t )〉 = exp[−id f (k) · σγ t/h̄]|ui
−(k)〉, and can always be

written as ρ−(k, t ) = [σ0 − d̂(k, t ) · σ]/2, where d̂(k, t ) is a
time-dependent unit vector given by [35]

d̂(k, t ) = d‖(k) + d⊥(k) cos[2|d f (k)|τ ]

+ d×(k) sin[2|d f (k)|τ ], (25)

where d‖(k) = [d̂i(k) · d̂ f (k)]d̂ f (k), d⊥(k) = d̂i(k) − d‖(k),
and d×(k) = −[d̂i(k) × d̂ f (k)], with d̂ f (k) = d f (k)/|d f (k)|,
and

τ = t γ

h̄
(26)

denotes the dimensionless time.
The knowledge of the single-particle density matrix

ρ, when rewritten in real space through ρ j1α1, j2α2 (t ) =
L−1 ∑

k eik( j1− j2 )(ρ−)α1α2 (k, t ) [see Eq. (3)], straightforwardly
provides the dynamical evolution of the site density expec-
tation value (diagonal entries) and all two-point correlations
(off-diagonal entries). Here below we shall illustrate the dy-
namical behavior of these quantities.

1. On-site density and currents

Density. Even far from equilibrium, the cell translational
invariance enables us to write the on-site density as nA/B(t ) =
1/2 ± δn(t ), and it is thus sufficient to analyze the dynamical
behavior of the deviation δn(t ), which is independent of the
cell j. We recall that, if the C symmetry were fulfilled by the
initial state and by the Hamiltonian, i.e., if U = 0 and ϕ = 0,
the density would be pinned to 1/2 [see Eq. (6)] and the de-
viation would be strictly vanishing at any time, δn(t ) ≡ 0. In
the case of the RM model without flux (ϕ = 0), where the C-
symmetry breaking is induced locally by the on-site staggered
potential U 
= 0, the deviation is already nonvanishing in the
prequench state, and after the quench it significantly fluctuates
in time, as displayed in Fig. 1(a). In contrast, in the SSH
model (U = 0), where C symmetry is broken nonlocally by
the presence of a flux ϕ, the density remains effectively pinned
to 1/2 for a strikingly long time, proportional to the system
size L, after which the deviation starts to appreciably fluctuate
[see Fig. 1(b)]. This is the tsunami effect arising from quantum
dynamics. In order to gain more quantitative information,
we have investigated the limit of a strongly dimerized ring
(r � 1), where it is possible to find an analytical expression
for the density behavior in the considered quench protocol
(24). In particular, for even L, one has

δn(τ ) � L

2τ r
(−1)

L+2
2 JL(2τ r) cos(2τ ) sin ϕ, (27)

with JL denoting the Bessel function of order L. A similar
expression can be obtained for odd L (see Appendix B).
Equation (27) holds for times 2τ r < 2L, as can be seen from
Fig. 2, where we have compared the exact numerical evolution
(solid blue curve) with the asymptotic approximation (dashed
red curve), for a dimerization r = 0.1. While technical de-
tails of such derivation can be found in Appendix B, here
we emphasize the insights gained from Eq. (27). First, the
flux determines the maximal magnitude of density deviation,
which vanish in the C-symmetric case (ϕ = πm), as expected,
and are maximal for ϕ = π (m + 1/2) with m ∈ Z. Second,
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FIG. 2. Time evolution of the on-site density deviation [see
Eq. (21)] in a SSH ring with L = 12 cells (=24 sites), threaded by a
magnetic flux ϕ = π/2, undergoing the quench protocol (24), with
dimerization r = 0.1. The analytical expression (27) obtained in the
strongly dimerized limit (red dashed curve) perfectly reproduces the
numerically exact evolution (blue curve). The deviation δn is expo-
nentially small in the system size L [see Eq. (28)] for an extensively
long time.

the asymptotic expansion of the Bessel function shows that
for the time range 2τ r � √

L, one has

δn(τ ) �
(τ r e

L

)L
, (28)

i.e., the deviations from 1/2 are suppressed exponentially
with the system size L, whereas for longer time L � 2τ r <

2L the deviation δn(τ ) acquires a double period struc-
ture, namely, a longer period envelope function JL(2τ r) ∼
cos(2τ r − π/4)/

√
πτ r, characterized by an algebraic decay,

multiplied by the shorter period oscillatory function cos(2τ ).
Finally, by noticing that in the SSH model the maximal veloc-
ity (18) reduces to vm = w = r, the time

τ ∗
2 = L

2r
= L

2vm
(29)

represents an estimate of the onset of the tsunami effect, i.e.,
the time characterizing a dynamical crossover between the
exponential and the algebraic suppression in L of the density
deviation δn. Roughly, the onset time τ ∗

2 also represents the
time, at which δn reaches its first maximal value. As one can
see from Eq. (29), τ ∗

2 grows linearly with the system size
L while, at fixed L, it increases for lower values r, i.e., for
stronger dimerization.

We emphasize that, while for the specific protocol (24) it
is possible to gain the analytical expression Eq. (27) for the
density dynamics, the occurrence of the tsunami effect is by
no means restricted to such case. A qualitatively very similar
result emerges both if the quench is performed across the two
topologically distinct phases and within the same topological
phase, and also when hopping terms between next-to-nearest
neighbor cells are included. While the magnitude of the
density deviation δn after the tsunami onset quantitatively de-
pends on the specific values of the prequench and postquench
parameters, the tsunami effect is a quite generic phenomenon
occurring for any quench, provided that the C symmetry is

broken nonlocally by the flux and the initial state is insulating
(vi 
= wi).

The importance of an initially insulating state for the
tsunami effect can be understood by comparing the dynamical
density behavior in the case where the initial state is the half-
filled ground state of the nondimerized Hamiltonian Hi with
flux, i.e., a metallic ground state. By performing a quench to
a dimerized H f through the protocol

vi = 1 → v f = 1,

wi = 1 → w f = r,
(30)

one obtains a density deviation emerging immediately after
the quench, and scaling as O(1/L). Indeed, already for short
times τ � L/vm and small flux 0 < ϕ � π/2, one can find
for odd L

δn(τ ) � − sin[2(1 − r)τ ]

π

ϕ

2L
(31)

indicating that no tsunami effect is present for an initially
metallic state. A similar formula is found for even L.

Currents. When the tsunami effect starts to manifest itself
in the SSH model (see Fig. 2), the densities in sites A and B of
each cell start to fluctuate oppositely, nA/B(t ) = 1/2 ± δn(t ).
These fluctuations represent oscillating dipoles, which in turn
generate nonstationary currents. Specifically, in a dimerized
lattice one has intercell and intracell particle currents, given
by

Ĵ inter
j = γ

h̄
w
(
iei ϕ

2L c†
jBc j+1A − ie−i ϕ

2L c†
j+1Ac jB

)
(32)

and

Ĵ intra
j = γ

h̄
v
(
iei ϕ

2L c†
jAc jB − ie−i ϕ

2L c†
jBc jA

)
, (33)

respectively. Their expectation values can be computed by
exploiting the cell translational invariance

Jν = 1

L

L∑
j=1

〈
Ĵν

j

〉
ν = inter/intra (34)

and by means of the single-particle density matrix (3).
From the continuity equation ∂t (δn) = J inter − J intra, one can
straightforwardly deduce that the tsunami effect characteriz-
ing δn is also present in the currents (plots not shown here).

2. Correlations

The off-diagonal entries of the single-particle density
matrix (3) describe the two-point equal time correlation func-
tions, which only depend on the relative distance l between
two cells, due to cell translational invariance. For definiteness,
we have taken L to be even and, focusing on the “central” cell
j∗ = L/2 as a reference cell, we have analyzed its correlation
ρL/2+l,α;L/2,β (t ) with any other cell located at an arbitrary
distance l ∈ [−L/2 + 1, L/2] from j∗, with α, β = A, B. We
want to investigate when the presence of the magnetic flux
manifests itself in correlations.

Let P∗ = ( j∗, A) denote a reference point, namely, the A-
site of the reference cell, and P = ( j∗ + l, A) another A site,
as depicted by the red and black dots in Fig. 3(a), respectively.
As a result of the quench, excitations emerging from the
midpoint (grey dot) between P∗ and P start to propagate in
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FIG. 3. Correlations between the reference point P∗ (red dot) and
any other point P along the ring (black dots) evolve in time, as a result
of the quench because pairs of counter-propagating excitations depart
from intermediate ring points (grey dots) and reach the envisaged red
and black points. The nonlocal presence of the flux can be observed
only when two pairs of excitations, departed from intermediate points
Q1 and Q2, have covered the entire ring and have reached the two
points (red and black) simultaneously. The two panels illustrate two
types of gauges describing the presence of the magnetic flux thread-
ing the ring. (a) The flux phase ϕ is uniformly distributed along the
ring, so that the vector potential along each link is O(ϕ/L). (b) The
flux phase ϕ is accumulated only along the link located oppositely to
the reference point P∗.

opposite directions, with typical group velocities ±vm of the
postquench Hamiltonian H f [see Eq. (18)], and reach at the
same time the two points P∗ and P, which thus get correlated.
We emphasize that, although these excitations traveling along
the ring arc see the local phase ϕ/L across each cell (depicted
in blue in Fig. 3), this cannot encode the nonlocal effect of the
flux. Indeed, at such time these excitations have only traveled
a portion of the ring and cannot distinguish a chain with
OBCs, which is C-symmetric, from a ring with PBCs threaded
by flux that breaks C symmetry. The presence of the flux can
manifest itself only after excitations have explored the entire
ring. At a more formal level, this can be seen by applying the
gauge transformation (10) with Eq. (20), which removes the
tunneling amplitude complex phases from almost all links in
the Hamiltonian (14) and accumulates the entire flux phase ϕ

along the link opposite to the reference point P∗, as shown
by the blue link at P2 in Fig. 3(b). In this way, the correlation
function between (say) A sites is rewritten as

ρ L
2 +l,A; L

2 ,A = 〈
c†

L
2 ,A

c L
2 +l,A

〉 = e−i ϕ

L l ρ̃ L
2 +lA, L

2 A, (35)

where e−i ϕ

L l is a trivial time-independent phase factor, while
ρ̃L/2+lA;L/2,A = 〈c̃†

L/2,Ac̃L/2+l,A〉 is the correlation in the new
gauge.

Such a new gauge enables us to highlight the crucial role
of the localization properties of the quantum state. Indeed, if
the correlation term ρ̃L/2+lA;L/2,A in Eq. (35) has a quasilong
range, i.e., a spatially slow power law decay in l , as is the case

in a metal, the reference point P∗ does feel the presence of the
flux accumulated at the opposite site P2 of the ring, even in the
initial prequench state. In contrast, if the state is characterized
by exponentially decaying correlations, as is the case in an
insulator, ρ̃L/2+lA;L/2,A is initially independent of ϕ, and the
flux phase in P2 remains invisible to P∗. In order to analyze
when a nontrivial flux dependence emerges in an insulator, we
have thus first singled out the trivial phase factor in Eq. (35)
and then subtracted the correlations in the absence of flux.
Explicitly, the quantity

�ρ L
2 +l,α2; L

2 ,α1

.= ρ̃ L
2 +l,α2; L

2 ,α1

∣∣∣
ϕ 
=0

− ρ L
2 +l,α2; L

2 ,α1

∣∣∣
ϕ=0

(36)

encodes the nontrivial dynamical effects of the flux on the
quenched system. In Fig. 4(a), we have plotted |�ρ| of
Eq. (36) for α1 = α2 = A as a function of time and cell dis-
tance l , in a quenched SSH model of L = 80 cells (=160
sites), with dimerization parameter r = 0.7, and flux phase
ϕ = π/4. The plot shows that the tsunami effect is present
also in the correlations, since the difference �ρ from the
zero-flux case is vanishing until the extensive time

τ ∗
1 = L

4vm
, (37)

when a �ρ 
= 0 starts to be visible at the maximal distance
l = ±L/2 = ±40. Only after τ ∗

1 a nontrivial flux dependence
arises between the red reference point P∗ and the black point
P2 located symmetrically with respect to it (see Fig. 3). The
time (37), highlighted in Fig. 4 by a vertical red dashed line,
can be interpreted as the time when two pairs of counter-
propagating excitations departing after the quench from the
points Q1 and Q2 (grey dots) simultaneously reach P∗ and
P2, after traveling a distance L/4 each, thereby covering the
entire ring and probing the presence of the flux. This time is
of course independent of the chosen gauge (a) or (b) in Fig. 3.

After the time τ ∗
1 , the correlation �ρ dynamically prop-

agates along the ring following two symmetrical light-cone
trajectories in space time [blue lines in Fig. 4(a)], char-
acterized by a velocity 2vm resulting from the pair of
counter-propagating excitations traveling at ±vm. These light
cones intersect at distance l = 0 at the time τ ∗

2 given by
Eq. (29), as highlighted by a vertical black dashed line. Notice
that the A-A correlation difference �ρ at “zero distance” (l =
0) is nothing but the on-site density deviation δn = 〈nL/2,A〉 −
〈nL/2,A〉|ϕ=0. This is shown in Fig. 4(b), which represents a
cut at l = 0 of the correlation plot displayed in panel (a).
Notably, the time τ ∗

1 in Eq. (37) is a half of the time τ ∗
2

in Eq. (29). This is because a nonlocal effect such as the
presence of the flux impacts on nonlocal correlations earlier
than the local density, which thus experiences the tsunami
effect onset as last. Indeed, referring to Fig. 3, the density
in P∗ can be considered as the correlation between P∗ and
P ≡ P∗, and the effect of the flux can only appear when a pair
of counter-propagating excitations departing from the point
P2 have traveled a distance L/2 each, thereby probing the flux
presence over the entire ring.

Correlation lightcones then continue to evolve in the ring
space-time as shown in Fig. 4(a), where the bottom and
top are identified simply because of the PBCs. Notice that
crossings at minimal distance l = 0 always occur at times
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FIG. 4. Dynamics of the SSH ring [Eq. (14) with U = 0],
with L = 80 cells (= 160 sites), threaded by a flux (ϕ = π/4),
quenched with the protocol (24), with dimerization parameter r =
0.7. (a) density plot of the space-time behavior of correlations, with
l ∈ [−L/2, L/2] denoting the distance between two sites. (b) The
dynamical behavior of the site density deviation δn from 1/2 [see
Eq. (21)]. (c) The time evolution of the maximally localized Wannier
functions. (d) Time-evolution of the quantifiers of local breaking
for chiral symmetry (green curve) and charge-conjugation symmetry
(red curve).

τ ∗
2n = 2nτ ∗

1 = nτ ∗
2 , as highlighted by the black vertical dashed

lines, and roughly correspond to the maximal peaks of the
density shown in Fig. 4(b). Similarly, correlations at maxi-
mal distance l = ±L/2 always occur at times τ ∗

2n+1 = (2n +
1)τ ∗

1 = (n + 1/2)τ ∗
2 , as highlighted by the red vertical dashed

lines. At very long times, one observes that light cones start
to become less sharp, due to the dispersion related to the band
curvature.

3. Wannier localization length

We have thus seen that, when the C symmetry is broken,
the dynamical response to a quench dramatically depends
on whether the symmetry is broken locally, like in the RM
model (U 
= 0), or nonlocally, like in the SSH model with flux
(ϕ 
= 0). In particular, in the latter case the local observables
and correlations appear effectively robust to the C-breaking
and behave as if C symmetry were preserved for an extensively
long time, as shown in Figs. 1 and 4. Here we would like to
interpret this effect in terms of Wannier functions. Indeed we
recall that the ground state of a band insulator can always
be considered as a Slater determinant of Wannier functions,
localized around the various lattice cells. In particular it is
possible to identify maximally localized Wannier functions
(MLWFs), whose spread provides the physical localization
length of the system. While in the thermodynamic limit (L →
∞), the definition of MLWFs is well established [36–39], in
the case of finite size systems with PBCs analyzed here, their
derivation requires some care. However, this can be done by
harnessing concepts of directional statistics [40], and an angu-
lar localization length λ can be identified in the ring (details of
this derivation are given in Appendix C). This quantity enables
us to understand the difference between the local vs nonlocal
C-symmetry breaking. Indeed, in the RM insulator, a localized
function is directly affected by a local potential U 
= 0 present
within its localization length. In contrast, in the SSH insulator,
a Wannier function cannot be sensibly affected by the flux
ϕ, which requires to probe the entire ring. This is clearly
seen by invoking again the gauge transformation illustrated
in Fig. 3(b), where the Wannier function centered around the
reference point P (sketched as a red dashed Gaussian curve)
cannot “see” the flux accumulated on the other side of the
ring. In contrast, in a metal, where Wannier functions are
delocalized, namely algebraically decaying in space [36–39],
the nonlocal C-symmetry breaking due to the flux can be felt
by the ground state.

Focussing now on the SSH model, we have also determined
the dynamical evolution of the MLWF localization length λ

after the quench. The result is displayed in Fig. 4(c) and shows
that λ starts to increase after the quench. We recall that the
Wannier (angular) localization length λ also determines the
typical lengthscale, over which two ring cells are correlated.
Thus the lightcones shown in Fig. 4(a) and describing the
evolution of correlations in space-time can also be seen as the
dynamical spreading of the Wannier localization length λ.

The increase of λ reaches a maximal value roughly at the
time τ ∗

1 . By comparing with Fig. 4(a), we recall that τ ∗
1 is

the time when the tsunami effect appears for the very first
time, and it occurs in the correlation length of two maximally
separated points (l = ±L/2), as highlighted by the red dashed
vertical line in Fig. 4. This means that τ ∗

1 corresponds to the
time where the Wannier functions have widespread enough to
explore the entire ring and to probe the existence of the flux.
A closer inspection shows that the maximum of the Wannier
spreading actually occurs with a slight delay with respect to
τ ∗

1 . This is due to the fact that, because of the curvature of
the band dispersion relation, excitations do not all propagate
at the same velocity, as is also clear from the color fringes
in Fig. 4(a). Thus, while τ ∗

1 corresponds to the earliest arrival
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of the counter-propagating excitations traveling with maximal
velocity vm, the maximal spreading of the Wannier func-
tion occurs when also slowlier excitations have traveled the
distance L/2.

After reaching the maximum, the localization length λ

decreases and reaches a local minimum roughly at time τ ∗
2 ,

which is the latest time when the tsunami effect manifests
itself, and it occurs at the minimal distance correlation (l = 0),
namely the on-site density [see Fig. 4(b), and black dashed
vertical lines]. After such time, λ(t ) exhibits an oscillatory
behavior, where minima and maxima roughly occur at the
times τ ∗

2n and τ ∗
2n+1, respectively, up to the delays originating

from the band curvature.

4. Charge conjugation vs chiral symmetry breaking

Before concluding this section, a remark is in order about
the different impact of charge conjugation and chiral symme-
tries at local level. We recall that the chiral transformation S
is an antiunitary transformation (S iS† = −i and S† = S−1),
whose action

Sc†
jAS† = +c jA

Sc†
jBS† = −c jB

(38)

can be compactly written as

Sc†
jαS† = (U0) jα;lβ clβ, (39)

where U0 is given in Eq. (7). Notice that, differently from C,
the action of S is unaffected by a gauge transformation (10),
due to its antilinear character.

The SSH Hamiltonian HSSH [i.e., Eq. (14) with U = 0] is
known to fulfill the chiral symmetry [33] (SHSSHS† = HSSH)
and so does its ground state, even in the presence of a magnetic
flux. Thus, at equilibrium the presence of the chiral symmetry
S forces the local density to equal 1/2 in each site, thereby
“masking” the explicit C-symmetry breaking due to the flux.
However, when the SSH model is driven out of equilibrium
by a quench, the S-symmetry is dynamically broken [24,25].
This is because, despite its similarity with the unitary charge-
conjugation C0 [see Eq. (9)], S is antiunitary. Physically, this
means that the tsunami effect, i.e., the extensively long lasting
rigidity to the nonlocal C breaking caused by a magnetic flux,
is by no means due to the chiral symmetry protection, which
only occurs “accidentally” in the equilibrium ground state.

In order to support this conclusion, one can introduce a
local quantifier Qν

loc of symmetry breaking, which measures
at any time “how much” the symmetry (ν = C,S) is broken
at local level in the instantaneous quantum state. While details
about the definition and the evaluation of these quantifiers will
be given thoroughly in the next section and in Appendix D,
we feel appropriate to anticipate here the dynamical behav-
ior of these local quantifiers Qν

loc, illustrated in Fig. 4(d).
Specifically, the green curve depicts the local quantifier of
the chiral symmetry breaking, which becomes non vanishing
immediately after the quench, as a hallmark of the dynamical
symmetry breaking of S . In contrast, the red curve describes
the quantifier for the charge conjugation symmetry C, which
remains exponentially small (in system size) until the time
τ ∗

1 , i.e., the time at which correlations start to experience the

presence of the flux. Only for τ > τ ∗
1 , the SSH model can

feel the actual breaking of the C symmetry. In turn, this also
shows that, despite the abrupt dynamical breaking of the chiral
symmetry, local observables may still be rigid to dynamical
changes.

V. SYMMETRY BREAKING QUANTIFIERS

In this section, we introduce and discuss in details the
quantifiers of symmetry breaking that have been anticipated
at the end of the previous section. These quantities are meant
to identify “how much” a given symmetry is broken in a quan-
tum state. This will enable us to quantitatively distinguish the
impact of local versus nonlocal C-symmetry breaking and also
to characterize the difference between breaking the discrete
symmetries relevant for our problem, namely charge conjuga-
tion symmetry C and chiral symmetry S . Similar ideas, based
on entanglement, have been recently applied in Ref. [41] to
quantify the breaking of continuous symmetries.

A. General definition of C-symmetry and S-symmetry
breaking quantifiers

1. Charge conjugation

We start from the charge conjugation symmetry. As dis-
cussed in Sec. II, if a quantum many-particle state ρ is
C-symmetric (CθρC

†
θ = ρ), then the related single-particle re-

duced density matrix ρ fulfills Eq. (4). If the quantum state ρ

breaks C symmetry, i.e., if CθρC
†
θ 
= ρ for any set of phases

{θ}, Eq. (4) is also violated [42], and one can introduce a
quantifier for C-symmetry breaking of the quantum state in
terms of the single-particle density matrix. We shall consider
two different quantifiers.

Global quantifier. The first natural option, straightfor-
wardly suggested by Eq. (4), is to define

QC
glob = 1√

2L
min
{θ}

||bC ({θ})||

= 1√
2L

min
{θ}

√√√√ L∑
i, j=1

∑
α,β=A,B

|bC
jα,iβ ({θ})|2, (40)

where

bC ({θ}) = ρ + U∗
θρ

∗ Uθ − I (41)

is a Hermitean matrix in the single-particle Hilbert space,
||bC || =

√
(bC )†bC is its norm, and the minimum is computed

over all possible realizations of phases in Eq. (2). Since Uθ

is diagonal in real space, the matrix U∗
θ ρ∗ Uθ appearing in

Eq. (4) differs from ρ∗ simply by additional phases in the
off-diagonal entries. Moreover, by noticing that ρ + U∗

θρ
∗ Uθ

is a positively defined matrix, it can be shown that QC
glob rep-

resents the minimal mean squared deviation of its eigenvalues
λ(s)({θ}) � 0 (with s = 1, , . . . , 2L) from the C-symmetric
case λ(s)({θ}) ≡ 1, i.e.,

QC
glob = min

{θ}

√√√√ 1

2L

2L∑
s=1

(1 − λ(s)({θ}))2
. (42)
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We shall dub such a quantifier global, for it involves the entire
single-particle density matrix ρ, which can therefore by used
to compute expectation values of any (local or nonlocal) one-
body observables.

Local quantifier. If, however, one is interested in measuring
observables localized in one specific portion of the lattice,
the knowledge of the entire ρ is unnecessary, and only a
sub-block of ρ is needed. For definiteness, let us focus, e.g.,
on one lattice site P∗ = ( j∗, α∗). In order to evaluate, the
expectation values of the local density 〈c†

P∗cP∗ 〉 at P∗, of the
intercell or intracell currents 〈Ĵ intra

j∗ 〉 and 〈Ĵ inter
j∗ 〉 across P∗ [see

Eq. (32) or (33)], or also to compute the correlation 〈c†
P∗cP〉

between P∗ and any other lattice site P = ( j∗ + l, β ), only
the ( j∗, α∗)-th row (or column) of ρ is used. In particular, if
the system is translationally invariant, the expectation value
of a local observable is actually independent of the cell, and
correlations only depend on the spatial cell distance, implying
that the choice of the reference cell j∗ is irrelevant. One can
thus introduce a local C-breaking quantifier as

QC
loc = min

{θ}
∣∣bC

j∗α∗ ({θ})
∣∣

= min
{θ}

√√√√ L∑
i=1

∑
β=A,B

∣∣bC
j∗α∗,iβ ({θ})

∣∣2. (43)

A few remarks are in order. First, we note that both quantifiers
(40) and (43) are defined upon minimization over all possible
choices of the {θ} phases appearing in the definition of charge
conjugation Eqs. (1) and (2). Because each phase set {θ}
identifies a gauge transformation [see Eqs. (10) and (11)],
the minimizing phase set {θ} also corresponds to the optimal
gauge [g], where the C0 symmetry is broken the least. This
minimization is needed since C symmetry may be present, but
hidden in a unsuitable choice of the gauge, like, e.g., in the
case where model (14) is defined in OBCs.

Second, because expectation values of observables must be
gauge independent, they must be evaluated by writing both the
state and the operator in the same gauge, i.e.,

〈O〉 = tr[Oρ] = tr[O({θ})ρ({θ})], (44)

where O = ∑
I,J OIJc†

I cJ = ∑
I,J (O({θ})IJ c̃†

I c̃J is a one-body
observable, and I and J is a compact notation for the site, I =
(i, α) and J = ( j, β ).

2. Chiral transformation

Proceeding similarly for the chiral transformation Eq. (39),
one can prove (see Appendix A for details) that, if ρ is sym-
metric under the chiral transformation (SρS† = ρ), then the
single-particle density matrix ρ fulfills

(ρ − I/2) + U0 (ρ − I/2) U0 = 0, (45)

where U0 is given by Eq. (7). Note that, differently from
Eq. (4), the second term of Eq. (45) does not contain ρ∗.
Introducing the matrix

bS = ρ + U0ρ U0 − I, (46)

the global and local quantifiers of chiral symmetry breaking
are defined as

QS
glob = 1√

2L
||bS|| = 1√

2L

√√√√ L∑
i, j=1

∑
α,β=A,B

∣∣bS
jα,iβ

∣∣2 (47)

and

QS
loc = ∣∣bS

j∗α

∣∣ =
√√√√ L∑

i=1

∑
β=A,B

∣∣bS
j∗α,iβ

∣∣2. (48)

Notice that no minimization over the phase sets {θ} is needed
for the quantifiers QS

glob and QS
loc because the chiral transfor-

mation Eq. (38) is unaffected by gauge transformations (10),
due to its antilinear character.

B. Quantifiers for the ground state of the two
band model Eq. (14)

Let us now harness the quantifiers introduced above to
evaluate the amount of symmetry breaking on the ground state
of the two-band model (14). In particular, we shall compare
the effects of a local C breaking (U 
= 0 and ϕ = 0) to the
case of a nonlocal C breaking (U = 0 and ϕ 
= mπ ). To this
purpose, we observe that because the phase ϕ appears divided
by the number 2L of sites in the Hamiltonian (14), for L � 1
each C-breaking hopping term is of order O(ϕ/L). In order to
make a correct comparison, we thus require to have the same
scaling law for the local C-symmetry breaking induced by the
on-site potential, and we shall re-express U in Eq. (14) as

U = u

L
. (49)

In this way, the nondimerized case [v = w in Eq. (14)] and
the dimerized case [v 
= w] describe a metal and an SSH in-
sulator in the thermodynamic limit, respectively, with a small
additional C-breaking term O(ϕ/L) or O(u/L).

We have first considered the global C-symmetry breaking
quantifier QC

glob in Eq. (40). The minimization over the phase
set {θ}, performed over various physically reasonable phase
choices [43], leads to the result shown in Fig. 5(a), where
the global quantifier QC

glob is plotted for all these cases as
a function of the systems size L. All curves in the log-log
plot exhibit a linear behavior, indicating that QC

glob is always
decaying algebraically with the system size L, with a power
law determined by the slope. In particular, QC

glob ∼ 1/
√

L in
the metallic case (red and black curves), while QC

glob ∼ 1/L
is found for the insulating SSH case (cyan and blue curves),
regardless of whether the symmetry is broken locally by the
staggered potential U or nonlocally by the flux ϕ.

Let us now turn to the local quantifier in Eq. (43). For
definiteness, we have chosen P∗ = (L/2, A) as a reference
site, i.e., the site α∗ = A in the “central” cell j∗ = L/2, and we
have computed how QC

loc scales with L for the various cases, as
displayed in Fig. 5(b). For a metallic ground state where the C
symmetry is broken locally (red curve) and nonlocally (black
curve), QC

loc still exhibits an algebraic decay QC
loc ∼ 1/

√
L

with the system size. Similarly, for the insulating SSH ground
state an algebraic decay QC

loc ∼ 1/L is again observed when
the C symmetry is broken locally by the on-site staggered
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FIG. 5. (a) The global quantifier QC
glob of C-symmetry breaking,

Eq. (40), is shown in a log-log scale as a function of the number
of cells L, for the ground states of four different Hamiltonians:
the metallic case (v = w) and the insulating SSH case (v = 1 and
w = 0.7), where the C symmetry is broken locally by an on-site
potential u = 1 (red and cyan curves, respectively), and broken non-
locally by a flux ϕ = π/2 (black and blue curves, respectively).
(b) The behavior of the local quantifier QC

loc of C-symmetry breaking,
Eq. (43), is shown in a log-log scale as a function of L, for the
same ground states as in panel (a). For the case of the SSH insu-
lator with C symmetry broken nonlocally by the flux (blue curve),
QC

loc ∼ exp[−L/�] decreases exponentially with the system size L
(here � � 5.3), in striking contrast with the algebraic decay of the
other local quantifiers and of all global quantifiers.

potential (cyan curve). Thus, in all these three cases, the
local quantifier QC

loc in Fig. 5(b) exhibits the same scaling
behavior as the corresponding global quantifier QC

glob shown
in Fig. 5(a). However, in the case of an insulating SSH ground
state where the C symmetry is broken nonlocally by the flux,
one finds an exponential decay for the local quantifier QC

loc ∼
exp(−L/�) with � depending on the dimerization parameter
r, as shown by the blue curve in Fig. 5(b).

The strikingly different scaling law of QC
loc obtained in the

case of SSH model with flux, as compared to both QC
loc in

the other cases and to the global quantifier QC
glob in all cases,

provides a quantitative characterization of the insulator local
rigidity to the flux from the perspective of charge conjugation
symmetry breaking.

At a mathematical level, this difference originates from the
different phase sets {θ} that minimize the quantifiers Eqs. (40)

and (43) in the various cases. While these technical aspects are
discussed in details in Appendix D, here we point that the lo-
cal insensitivity of insulators to a nonlocal symmetry breaking
induced by the flux can be understood in more physical terms
as follows. Because expectation values 〈O〉 are independent of
the gauge choice, when considering observables OP∗ localized
around (say) an arbitrarily chosen site P∗ = ( j∗, α∗), it is
always possible to evaluate 〈OP∗ 〉 in the gauge sketched in
Fig. 3(b), where the flux is accumulated along a link located
farther than the localization length λ from P∗. This is realized
by inserting in Eq. (10) the phase set {θ�} given in Eq. (20). In
such a gauge, the ( j∗, α∗)th row of the single-particle density
matrix ρ({θ�}), which contains the actual entries involved in
the evaluation of 〈OP∗ 〉 through Eq. (44), becomes effectively
independent of the flux phase ϕ, due to the finite localization
length of the insulator [see Fig. 8(b) in Appendix D]. At
the same time, any possible spur of ϕ also disappears from
the expression OP∗ ({θ�}) of the local operator in that gauge,
precisely because it is localized around P∗ only. This is the
case for the on-site density operator, but also, e.g., for the
current operator across P∗, where the flux phase appearing
in the native gauge [see Eqs. (32) in (32)] is removed by
the gauge transformation from the neighborhood of P∗. In
conclusion 〈OP∗ 〉 is independent of the flux.

C. Dynamical evolution of the quantifiers

There is one further interesting advantage provided by the
introduced symmetry breaking quantifiers Qglob and Qloc. Be-
cause they are functions of the single-particle density matrix
ρ of the system, as ρ dynamically evolves, one can monitor
how the amount of symmetry breaking changes with time
when the system is driven out of equilibrium. To this purpose,
some care must be taken for the charge conjugation quanti-
fiers, though. Indeed, if the minimization over the phase set
{θ} in Eqs. (43) and (48) were performed at every time, the
minimizing set {θ}(t ) would change the definition of charge
conjugation transformation Cθ (t ) on the run [see Eqs. (1) and
(2)]. This would have serious implications, for it would lead
to a time-dependent gauge transformation [see Eq. (11)] and
thereby introduce a vector potential in the Hamiltonian (14)
describing a spurious space and time-dependent electric field,
with vanishing circulation along the ring. In order to avoid
such an unphysical effect, one has thus to first determine
the phase set {θ}i minimizing QC

glob and QC
loc for the density

matrix of the initial state. This identifies the definition of
charge conjugation transformation Cθ i that is the least broken
at t = 0. Then, by keeping such phase set frozen, i.e., by
consistently retaining the definition of Cθ i , one can inserting
the dynamically evolving ρ(t ) into bC ({θ i}) in Eq. (41), and
thus evaluate how |bC

j∗α∗ ({θ i})| changes with time. This is how
we determined the red curve in Fig. 4(d), which shows that the
C symmetry remains effectively unbroken until the time τ ∗

1 ,
causing the tsunami effect. In contrast, the chiral symmetry
breaking quantifier QS

loc does not require any minimization
over {θ} by definition, as observed in Sec. V A. The dynamical
evolution is thus straightforwardly obtained by inserting ρ(t )
into Eqs. (46) and (48). The obtained green curve in Fig. 4(d)
clearly shows that in a quenched SSH insulator threaded by a
flux the chiral symmetry is dynamically broken immediately
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after the quench, whereas this is not the case for the charge
conjugation, which remains effectively unbroken up to the
extensively long time τ ∗

1 , i.e., t = Lh̄/4γ vm.
We conclude by observing that, because the symmetry

breaking quantifiers are based on the single-particle reduced
density matrix ρ of the quantum state, they are closely related
to measurable quantities. Indeed the diagonal entries of ρ de-
scribe the local particle density and can be directly measured,
while its off-diagonal entries encode all two-point correlation
functions, which can be experimentally detected with various
techniques, e.g. quantum gas microscopy [44,45] and matter
wave interferometry [46]. The symmetry breaking quantifier
sets an upper bound for the deviations of density or correlation
functions from the symmetric case. This is shown precisely in
Fig. 4: As long as the C-breaking quantifier remains negligible
[red curve in panel (d)], the correlations and the density devi-
ation do not feel the effect of the C-breaking flux [see panels
(a) and (b)]. Only after the quantifier has become a significant
fraction of unity, can these quantities start to deviate from the
zero-flux case.

VI. ROBUSTNESS OF THE EFFECT

While in Sec. IV the tsunami effect has been explicitly
demonstrated in a clean and noninteracting system, we shall
now relax these hypotheses and address the generality and ro-
bustness of this effect by studying its stability against disorder
and interactions.

A. Effects of disorder

Let us start by introducing some disorder in the tunneling
amplitudes of Eq. (14). We shall thus consider the disordered
SSH Hamiltonian

Hdis
SSH = γ

L∑
j=1

(
v j ei ϕ

2L c†
jAc jB + w j ei ϕ

2L c†
jBc j+1A + H.c.

)
(50)

with

v j = v(1 + σ ξ j ),
w j = w(1 + σ η j ).

(51)

Here v and w represent the average magnitude of the tunneling
amplitudes, σ is a parameter identifying the disorder strength,
and (ξ j, η j ) ∈ [−1/2; 1/2], with j = 1, . . . , L, are 2L uni-
formly distributed random numbers. Notice that disorder in
the tunneling does not alter the C-symmetry properties with
respect to the clean case, and the Hamiltonian (50) exhibits
charge conjugation symmetry for ϕ = πm with m ∈ Z.

We perform a quench in the average values v and w of
Eq. (51) according to the protocol (24) and analyze the dy-
namics of the local density. Due to the lack of translational
invariance, one has n j,A/B = 1/2 ± δnj , where the local devi-
ation δn j from half filling now depends on the cell, in general.
In Fig. 6, we report the dynamical behavior of δn on a given A
site, which is qualitatively well representative of the result for
any site, and also of the spatial average over all A sites (not
shown here). While the green curve refers to the clean case
(σ = 0) and is plotted as a reference, the orange and purple

0

0

δn

vmt

L
[ /γ]

0.1

0.2

−0.1

−0.2

0.25 0.750.5

FIG. 6. Effects of disorder (51). The dynamical behavior of δn,
the local density deviation from 1/2, is plotted as a function of time
for a quenched SSH ring, for various values of the disorder strength
σ [see Eq. (51)], namely, σ = 0 (clean case, green curve), σ = 0.1
(orange curve), and σ = 0.2 (purple curve). The number of cells is
L = 12 (= 24 sites), the dimerization is r = 0.1, the flux phase is
ϕ = π/2 and quench protocol is specified in Eq. (24).

curves describe the effects of disorder strength σ = 0.1 and
0.2, respectively. As one can see, while the disorder strength
reduces the amplitude of the tsunami effect, the qualitative be-
havior and the extensively long time needed for its appearance
remain unaffected.

In order to understand this effect, we recall that any finite
amount of disorder in the tunneling amplitudes of a 1D system
is sufficient to localize the single-particle eigenstates of the
Hamiltonian in the thermodynamic limit [47,48]. However,
in the case of a finite system, the localized versus extended
nature of the single-particle eigenstates effectively depends
on the ratio between localization length and system size. In
particular, since the localization length depends on the single-
particle energy, a fraction of the single-particle eigenfunctions
might extend over the entire system for sufficiently weak
disorder. Hence, the system behaves as if a fraction of the
particles could still propagate throughout the ring and reveal
the existence of the flux once the extensive time has elapsed.

B. Effects of interaction

Let us now probe the stability of the tsunami effect against
particle-particle interaction. In particular, we shall add to the
SSH Hamiltonian [Eq. (14) with U = 0] the following term:

H int = γ V
L∑

j=1

(n jA + n j+1A − 1)

(
n jB − 1

2

)
(52)

describing a nearest neighbor interaction between particle
density fluctuations (n jα − 1/2) from the half filling value
1/2. Here V is the dimensionless coupling constant express-
ing the interaction strength in units of the energy unit γ

appearing in Eq. (14). Importantly, the interaction term ful-
fills SH intS† = H int (chiral symmetry) and CθH intC†

θ = H int

(charge conjugation symmetry) for any choice of θ phases in
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Eqs. (1) and (2), so that the total Hamiltonian

H = γ

L∑
j=1

(
v ei ϕ

2L c†
jAc jB + w ei ϕ

2L c†
jBc j+1A + H.c.

)+ H int

(53)

still fulfills the chiral symmetry, while the charge conjugation
symmetry is only broken by the global constraint imposed by
a finite flux in the noninteracting SSH term.

For sufficiently strong interaction strength V , exceeding a
critical value Vc, the half-filled ground state of the model (53)
is known to exhibit a transition from a band insulator to an
interaction-induced insulating phase. In particular, a repulsive
interaction V > Vc > 0 leads to degenerate charge-density
wave phases characterized by a uniform density imbalance
between A and B sublattices. By contrast, an attractive inter-
action V < −Vc < 0 leads to a regime of degenerate states
characterized by phase separation, where fermions equally
populate the A and B sublattices while remaining compressed
in one half of the system [49]. The critical value Vc of
the transition depends on the dimerization strength and on the
sign of interaction, e.g., for r = 1/3 one has Vc = 4 for the
repulsive case, while Vc � 0.87 for the attractive case [49].

While the analysis of the dynamical effects of strong in-
teraction is far beyond the purposes of the present work, one
can argue that, because the ground state on the noninteracting
model is insulating, the inclusion of sufficiently weak inter-
actions (|V | � Vc), leads to an interacting ground state that is
nondegenerate and adiabatically connected to the noninteract-
ing case. Moreover, when the quench is applied, the velocity
of the resulting excitations is expected to be sightly enhanced
by a repulsive interaction and slightly reduced by an attractive
one [50,51]. Because such velocity determines the spreading
of correlations and thereby the onset of the tsunami effect, we
expect interactions to modify quantitatively, but not qualita-
tively, the phenomenon. In order to test these expectations, we
have adopted a numerically exact diagonalization method to
determine the initial interacting ground state and to investigate
the out-of-equilibrium behavior governed by the Hamiltonian
(53), under the quench protocol (24). While being limited to
small system sizes (here L = 7, i.e., 14 sites), this approach
allows us to explore the dynamical evolution at arbitrary long
times.

The result is shown in Fig. 7, which displays the dynamical
evolution of the density deviation δn for a quenched inter-
acting SSH model with dimerization r = 0.1, threaded by
a flux ϕ = π/2, and for three values of interaction V . The
green curve refers to the noninteracting case (V = 0) and is
meant as a reference case, while the red and black curves
describe the cases of weakly repulsive (V = 0.1) and weakly
attractive interaction (V = −0.1), respectively. As one can
see, the density deviation δn still remains extremely small
for an extensively long time, after which it starts to take
seizable values, therefore indicating that the tsunami effect is
not destroyed by weak interactions. Also, an inspection of the
density oscillation maxima shows that in the repulsive (attrac-
tive) case the onset of the tsunami effect occurs slightly earlier
(later) than the non interacting case, in agreement with our
expectations. We note, however, that attractive interactions

0
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FIG. 7. Effects of interaction term Eq. (52). The dynamical be-
havior of the local density deviation δn is plotted as a function of
time for a SSH ring with L = 7 cells (= 14 sites), threaded by a
flux (ϕ = π/2) and undergoing a quench (24) with dimerization
r = 0.1, for various values of the interaction strength V , namely,
V = 0, (green curve), V = +0.1 (red curve), and V = −0.1 (black
curve).

tend to suppress the magnitude of the fluctuations more than
the repulsive case. This seems to be the dynamical counter-
part of what happens for the ground state, where, for given
dimerization r and interaction magnitude |V | of interaction,
the attractive case is closer to the critical value Vc than the
repulsive case.

VII. DISCUSSION AND CONCLUSIONS

We have investigated the quantum dynamics of a quenched
fermionic system on a 1D dimerized ring-shaped lattice with
PBCs. By analyzing the effects of an explicit breaking of the
charge-conjugation symmetry C on the local observables and
correlations, we have shown that the impact of the symmetry
breaking in the Hamiltonian is felt by local observables in a
way that heavily depends on the localization properties of the
initial quantum state and on the local vs nonlocal nature of the
C breaking. In particular, if the C symmetry is broken non-
locally by a magnetic flux and the localization length of the
quantum state is finite (insulator), local observables behave is
if C symmetry were unbroken, in striking contrast with what
happens in metals or in insulators with C symmetry broken
locally by an on-site potential.

While at equilibrium or in adiabatically slow dynamics, the
rigidity of an insulator to a flux was known, the most spectacu-
lar effect that we found is that such rigidity to the C-symmetry
breaking persists even in far from equilibrium conditions,
i.e., when a quantum quench is applied. In particular, local
observables effectively retain their C-symmetric values for a
time that scales linearly with the system size, and only after
such time can the effects of nonlocal C-symmetry breaking
become visible. A clear evidence of this phenomenon, that
we have dubbed tsunami effect, is shown in Fig. 1, which
displays the dynamical evolution of the local particle density
deviation δn from 1/2 resulting from a quench, and reveals the
striking difference between local C-symmetry breaking (RM
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model with on-site potential) and nonlocal C-symmetry break-
ing (SSH model with flux). In the strongly dimerized limit,
we have also been able to determine an analytical expression
for the dynamical behavior of δn [see Eq. (27) and Fig. 2],
characterized by an exponential suppression as a function of
the system size L before the tsunami onset [see Eq. (28)]. As
discussed in Sec.IV B, the tsunami effect is not limited to the
quench protocol (24) and to the strongly dimerized limit. It
is a general phenomenon occurring for any quench protocol,
provided that the C symmetry is broken by a flux and the initial
state is insulating. In contrast, when the initial state is metallic,
the deviation δn appears as O(1/L) right after the quench [see
Eq. (31)].

The long time invisibility of the C-breaking flux at local
level is a physical effect that is of course completely indepen-
dent of the gauge chosen for the vector potential. However, in
each arbitrary point where, e.g., the density is evaluated, it can
most suitably understood in the gauge sketched in Fig. 3(b),
where the entire flux phase is accumulated to opposite side of
the ring.

Moreover, the tsunami effect also manifests itself in the
correlation function, as displayed in Fig. 4(a). In fact, the
earliest manifestation of the flux occurs in the nonlocal corre-
lations of two maximally separated points (l = ±L/2), again
only after an extensive time τ ∗

1 in Eq. (37). As shown in
Fig. 4(c), this time can also be seen as the moment when the
Wannier function localization length λ, which is spreading as
a result of the quench, reaches its maximal value and has thus
explored to entire ring, thereby experiencing the presence of
the nonlocal flux. As highlighted by red and black vertical
dashed lines in Fig. 4, the time τ ∗

2 where the tsunami effect is
perceived on the density, i.e., on local correlations at l = 0, is
twice longer than τ ∗

1 .
In order to characterize this phenomenon, we have also

introduced the quantities Qglob and Qloc, which quantify how
strongly a symmetry is broken in an arbitrary quantum state
by means of its single-particle density matrix, at global and
at local level, respectively. This has enabled us to obtain
two results. First, as far as the equilibrium ground state is
concerned, the known insensitivity of insulator to a flux can
be interpreted as a local rigidity to the C-symmetry breaking.
Explicitly, the “amount” QC

loc of local C-symmetry breaking
of a SSH ring threaded by a flux is found to be exponentially
small in the system size L, while it only exhibits an algebraic
decay in insulators with local C-symmetry breaking and in
metals (see Fig. 5). We have also shown that this can be
straightforwardly understood in a suitable gauge, as illustrated
in Fig. 3(b). Second, in terms of out of equilibrium dynam-
ics, the obtained evolution of the local quantifiers QC

loc and
QS

loc has allowed us to demonstrate that the tsunami effect,
i.e., the predicted robustness to charge conjugation symmetry
breaking, is completely unrelated to the presence of the chiral
symmetry, which is instead lost right after the quench because
of its dynamical breaking, as shown in Fig. 4(d). Furthermore,
by including weak disorder and density-density interaction,
we have proven that the tsunami effect is not destroyed by
these effects (see Figs. 6 and 7).

Space-time scaling regime. We also emphasize that our
work represents further advances in the exploration of the
space-time scaling regime, where the out of equilibrium

quantum dynamics is analyzed for timescales t that are pro-
portional to the system size L. It was recently shown that this
regime offers a different perspective to identify out of equi-
librium topological classification of quantum systems [28], as
compared to the more conventional short time limit [12] and
adiabatic limit [52–56]. In terms of the parameter η = 2πt/L
that identifies the ratio between time and system size (see
Ref. [28]), the standard thermodynamic limit corresponds to
η → 0. In this limit, the system cannot experience the pres-
ence of the flux and it behaves as if charge conjugation were
effectively unbroken. In contrast, at finite values of η, non
trivial effects emerge. Specifically, by re-expressing our result
Eq. (27) in terms of η, the tsunami effect can be regarded
to as a dynamical crossover characterizing the density devi-
ation δn. Indeed, for η < ηc, where ηc = π h̄/γ vm, we find
an exponential suppression δn ∼ e−κ (η)L as a function of the
system size, typical of an insulator [with κ (η → ηc) = 0].
In contrast, for η > ηc, one finds the slow algebraic decay
δn ∼ 1/

√
Lη3 with L, typical of a metal, so that the quantum

nonlocality induced by a flux appears. Our result thus proves
that only in the space-time scaling regime one can observe
such “insulator-to-metal” dynamical crossover.

Experimental realizations. Finally, we would like to dis-
cuss some possible strategies to implement the model in
Eq. (14) and to probe its out-of-equilibrium behavior. Al-
though dimerized lattice models have been realized with cold
atoms in optical lattices in various setups over the last decade
[57–61], most of these implementations are based on lattices
with OBCs, whereas a crucial aspect for the observation of
the tsunami effect is a ring-shaped geometry with PBCs and a
flux. Recent experimental advances offer promising perspec-
tive to realize this type of setup. A first proposal is based on
Rydberg atoms in optical tweezers [62], which allow one to
engineer spin models equivalent to the fermionic Hamiltoni-
ans discussed here, also with dimerization [63]. In particular,
in recent experiments based on twezeer engineering, a tun-
able flux was obtained by exploiting the synthetic dimension
of Rydberg atoms [64,65], and ring-shaped geometries have
also been recently designed [66]. A further experimental plat-
form suitable to test our findings could possibly be based on
SU(N ) ultracold fermions in optical lattice [67–69]. In that
case, effective rings can be created in synthetic dimension by
coupling the different internal states of the specific atomic
species. More precisely, the use of Raman lasers enables
one to convert an internal state into a different one, thereby
mimicking effective tunneling processes, with a twofold ad-
vantage. On one hand the couplings between different internal
states are tunable, thus making possible to achieve effective
dimerizations. On the other hand, complex tunneling pro-
cesses can be easily engineered [9,10], in order to mimic the
effect of a magnetic flux. Finally, quantum gas microscopy
[44], widely used in tweezer and optical lattice setups, allows
for an accurate detection of the local density and therefore for
an accurate probing of the effects predicted here.
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APPENDIX A: PROOF OF THE THEOREM

In this Appendix, we prove the theorem stated in Sec. II A.
Let us assume that the many-particle state ρ of the system is
invariant under charge conjugation, i.e., Cρ C† = ρ. In order to
prove Eq. (4), we introduce the multi-index J = ( j, α) to label
the cell j and the site α = A, B, and observe that the charge
conjugation transformation (1) can be written as

Cc†
I C† =

∑
N

UIN cN , (A1)

where U is the matrix written in Eq. (2). In the following
proof, we shall actually be slightly more general, and de-
rive the relation of the single-particle density matrix for an
arbitrary unitary matrix U, whence Eq. (4) will follow as a
particular case. We thus observe that the expectation value of
any one-body observable O = ∑

I,J OIJc†
I cJ can be written as

〈O〉 = Tr{ρ O} =
∑
I,J

OIJTr{ρ c†
I cJ} = tr{Oρ}, (A2)

where ρ is the single-particle reduced density matrix and the
symbols “Tr” and “tr” denote traces over the Fock space and
the single-particle Hilbert space, respectively. At the same
time, because of the C symmetry, the expectation value can
also be written as (sum over the repeated indices is implicit
here below)

〈O〉 = Tr{C†ρ CO} = OIJTr{ρ Cc†
I C†CcJC†}

= OIJUINU∗
JMTr{ρ cN c†

M}
= OIJUINU∗

JMTr{ρ( δNM − c†
McN )}

= OIJUINU∗
JM (δNM − ρNM )

= OIJ (δIJ − [Uρ U†]IJ ) = OIJ (δIJ − [Uρ U†]∗JI )

= tr{O[I − (Uρ U†)∗]}. (A3)

Because both equalities (A2) and (A3) must hold for any
operator O, one deduces that

ρ = I − (Uρ U†)∗. (A4)

So far in this proof, U is an arbitrary unitary matrix. In par-
ticular, in the case Eq. (2) considered in the Main text, one
straightforwardly obtains Eq. (4). Moreover, by recalling that
the diagonal entries of the single-particle density matrix are
the expectation values of the particle density, 〈n jα〉 = ρ jα, jα ,
and by taking the diagonal entries of Eq. (4), one deduces
that 2ρ jα, jα − 1 = 0 ∀ j, α, which straightforwardly implies
Eq. (5). Finally, the statement (6) of the theorem was proven
in Ref. [30].

In a similar manner, one can prove Eq. (45) related to the
implication of chiral symmetry on the single-particle density
matrix. The main difference with respect to the above proof

is that, because of the antilinear character of S , in the first
line of Eq. (A3), one has to replace OIJ → O∗

IJ = OJI . After
substituting U with the matrix U0 entering the definition (39)
of chiral symmetry, Eq. (45) is eventually obtained.

APPENDIX B: CALCULATION OF THE DENSITY
DEVIATION IN THE STRONGLY DIMERIZED LIMIT

Here we provide details about the calculation of the dy-
namical evolution of the site density resulting from the quench
protocol (24) applied of the SSH model threaded by a flux ϕ.
In particular, we shall demonstrate the asymptotic behavior
Eq. (27). Exploiting the cell translational invariance one, can
write

nα (t ) ≡ 1

L

∑
j

〈n jα〉 = 1

L

∑
k

〈nkα〉

= 1

L

∑
k

(ρ−)αα (k, t ) = 1

2
± δn(t ), (B1)

where the ± sign refers to α = A, B, respectively. Recalling
from Sec. IV B of the main text that the evolution of the
k block is ρ−(k, t ) = [σ0 − d̂(k, t ) · σ]/2 and that d̂(k, t ) is
given by Eq. (25), one has

δn(t ) = 1

2L

∑
k

(d̂i(k) × d̂ f (k))z sin[2|d f (k)| τ ]

= 1 − r2

2L

π∑
k=−π

f

(
k + ϕ

L
, τ ; r

)
, (B2)

where τ is the dimensionless time given in Eq. (26), r is the
dimerization parameter, and

f (k, τ ; r) = sin k
sin[2τ

√
1 + r2 + 2r cos k]

1 + r2 + 2r cos k
. (B3)

Here we have exploited Eq. (16) and the form (24) of the
quench protocol, where the pre and postquench Hamilto-
nian exhibit the same single-particle spectrum [see Eq. (17)
for U = 0]. Because f (k, τ ; r) is a 2π -periodic function of
its argument k, by exploiting its Fourier series expansion
f (k, τ ; r) = (2π )−1 ∑+∞

n=−∞ cn(τ ; r) exp[ikn], some straight-
forward algebra enables one to rewrite

δn(t ) = (1 − r2)

4π

+∞∑
m=−∞

cmL(τ ; r)eimϕ, (B4)

where

cmL(τ ; r) =
∫ π

−π

dk f (k, τ ; r) e−ikmL

=
∫ π

−π

dk sin k
sin[2τ

√
1 + r2 + 2r cos k]

1 + r2 + 2r cos k
e−ikmL.

(B5)

By noting that c−mL = −cmL and that c0 = 0, one can rewrite
Eq. (B4) as

δn(t ) = i
(1 − r2)

2π

+∞∑
m=1

cmL(τ ; r) sin(mϕ). (B6)
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So far, no approximation has been made. We shall now take
the limit of strong dimerization r � 1 and approximate the
coefficients (B5) as

cmL(τ ; r) �
∫ π

−π

dk sin k sin[2τ (1 + r cos k)] e−iκmL

= πmL

2τ r
imL+1JmL(2τ r)[ei2τ + (−1)mLe−i2τ ]. (B7)

Assuming, e.g., L even and inserting Eq. (B7) into Eq. (B6),
one obtains

〈δn̂〉 � −
+∞∑
m=1

(−1)
mL
2

mL

2τ r
JmL(2τ r) cos(2τ ) sin(ϕm). (B8)

In particular, in the time domain 2τ r < 2L, the first term with
m = 1 is dominant over the other ones, and one finally obtains
Eq. (27) that well captures the behavior of Fig. 2.

APPENDIX C: MAXIMALLY LOCALIZED WANNIER
FUNCTIONS IN A FINITE SIZE RING

In this Appendix, we provide some details about the calcu-
lation of the MLWFs in a finite size ring-shaped lattice with
cell translational invariance. The construction given below is
based on the assumption to deal with a many-particle state that
is the half-filled ground state of a two-band Hamiltonian, with
a completely filled lower band and a completely empty upper
band.

It is worth emphasizing that this approach is not limited to
the initial ground state of the prequench Hamiltonian. Indeed,
when a quench is performed in a system with cell transla-
tional invariance, the evolved many body state can always be
regarded, at any given time t , as the half-filled ground state of
a fictitious two-band Hamiltonian H (t ), where time appears
as a parameter. This is because, as pointed out in Sec. IV B,
the dynamical evolution of the single-particle density matrix
is decoupled in k space, ρ(t ) = ⊕k∈BZρ−(k, t ), where each
evolved k block can be written as the ground state ρ−(k, t ) =
[σ0 − d̂(k, t ) · σ]/2 of a two-level system with Hamiltonian
h(k, t ) = d̂(k, t ) · σ, where d̂(k, t ) is the unit vector given in
Eq. (25). Thus the evolved many-particle state at time t is the
half-filled ground state of the fictitious Hamiltonian H (t ) =
γ
∑

k c†(k)[d̂(k, t ) · σ]c(k), with two flat bands E±(k) = ±γ .
Keeping in mind that the outline approach holds time by

time, in the remaining part of this Appendix we shall make
our notation lighter and drop the time t . We define the lower
band Wannier state centered at the cell m, in the Bloch gauge
g, as

|m −〉[g] = 1√
L

∑
k

e−ikm eig(k)|k −〉, (C1)

where, without any loss of generality, we have labeled
the cells as m = 0, , . . . , L − 1. Moreover, |k −〉 = |k〉 ⊗
|u−(k)〉 represents the single-particle lower band Bloch state
in an arbitrary reference gauge, which we choose for definite-
ness as

|u±(k)〉 = [2(1 ∓ d̂z(k))]−1/2

(
d̂x(k) − id̂y(k)
±1 − d̂z(k)

)
, (C2)

where d̂x(k), d̂y(k), d̂z(k) are the components of the unit vec-
tor d̂(k) given in Eq. (25) and describing the quench dynamics
of the two-band model (at time t).

The Wannier wave function is thus obtained by projecting
the Wannier state (C1) on the real space state 〈 jα|, with j =
0, , . . . , L − 1 denoting any cell and α = A, B the sublattice
index, and by exploiting 〈 j α|k −〉 = exp[ik j]uα

−(k)/
√

L. One
obtains

ψ
g
m,−( j, α) = 〈 j α|m −〉[g]

= 1

L

∑
k

eik( j−m) eig(k)uα
−(k) (C3)

and the corresponding probability of finding the particle in the
jth cell is given by

Pg
m−( j) = ∣∣ψg

m−( j, A)
∣∣2 + ∣∣ψg

m−( j, B)
∣∣2. (C4)

Note that, by construction, the various Wannier wave func-
tions (C3) labeled by m are related to each other by a
translation, namely ψ

g
m,−( j, α) = ψ

g
0,−( j − m, α), so that it is

sufficient to analyze the properties of the Wannier function
ψ0,− labeled by the cell m = 0. For this reason, we shall
henceforth drop the “0,−” subscript, and simply redenote
ψ0,−( j, α) → ψ ( j, α) and P0,−( j) → P( j).

In particular, we now want to evaluate the expectation
value and the variance of the position operator. In an chain
lattice with OBCs or in an infinitely long system the position
operator is naturally defined as the Hermitean operator X̂
whose one-body representation in the real space is identi-
fied by the diagonal matrix X = diag(1, . . . , L − 1, L) ⊗ σ0,
where L is the number of cells. However, because of the
ring-shaped geometry considered here, such operator would
manifestly break the PBCs. It is thus useful to adopt a reg-
ularized position operator Ê = exp[i2π X̂/L], which is not
Hermitean, but whose one-body representation in the site ba-
sis is the diagonal matrix E = diag(ei 2π

L , ei 4π
L . . . , 1) ⊗ σ0 that

fulfills the PBCs.
If one computes the expectation value of Ê on the single-

particle Wannier function ψ ( j, α), one obtains a complex
number 〈

ei 2π
L X
〉
[g] ≡

∑
j

ei 2π
L jPg( j) ≡ �[g] ei�[g] (C5)

with modulus �[g] and phase �[g]. Equation (C5) can now
be interpreted in terms of directional statistics [40], i.e.,
as the result of a stochastic process where points are ran-
domly distributed on a unit circle according to the probability
distribution Pg( j), where j = 0, , . . . , L − 1 identifies an
“angular” position 2π j/L along the circle, with the cell L − 1
being the “left” nearest neighbor of cell 0. It is possible to
show that the phase �[g] can be interpreted as the center of the
Wannier function, which in the present case of a finite size sys-
tem is gauge dependent, while the modulus �[g] in Eq. (C5) is
closely related to the (gauge dependent) spread of the Wannier
function through �X = √

1 − �2 L/2π . This correspondence
becomes apparent when taking the thermodynamic limit, as
we shall see below. However, even for a finite size system, one
can notice that, if the distribution Pg( j) is sharply peaked on
one “angle” 2π j/L, then the phase � in Eq. (C5) represents
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such an angle and the modulus is maximal, � � 1. In contrast,
if Pg( j) is uniform along the ring, then the modulus � is
minimal, � � 0.

In order to determine the MLWFs, we have to determine
the gauge g∗ such that �[g∗] is maximal, or equivalently
�2[g∗] is maximal. It is possible to find an exact solution to
the problem. Indeed, we can rewrite Eq. (C5) as

�[g] ei�[g] = 1

L2

∑
j,α

∑
k,q

ei(q+δk−k) jei[g(q)−g(k)](uα
−(k))∗uα

−(q)

= 1

L

∑
k

〈ug
−(k + δk)|ug

−(k)〉, (C6)

where we have denoted |ug
−(k)〉 = eig(k)|u−(k)〉, δk = 2π/L,

and we have exploited the Kronecker-δ obtained from the
summation over j. The quantity ξ

g
−(k) = 〈ug

−(k + δk)|ug
−(k)〉

is a complex number whose modulus is gauge independent
(and smaller than 1), while its phase critically depends on the
gauge. In order to maximize �[g], one needs to choose the
gauge g∗, in which the phases of all ξ g(k) in Eq. (C6) are
as equal as possible, so that the terms sum as coherently as
possible over k. Such optimal gauge choice can be determined
by observing that

ϕB− =
∑

k

arg{ξ g
−(k)} mod 2π, (C7)

which can be regarded as the discrete version of the Berry
phase, is a gauge independent quantity. This becomes appar-
ent by writing (mod2π )

ϕB− =
∑

k

Im(ln ξ
g
−(k)) = Im

(
ln
∏

k

ξ
g
−(k)

)

= Im{ln[, . . . , 〈ug
−(k + 2δk)|ug

−(k + δk)〉
×〈ug

−(k + δk)|ug
−(k)〉, . . . , ]}

= Im

{
ln

[
tr
∏

k

ρ−(k)

]}
, (C8)

where ρ−(k) = |ug
−(k)〉〈ug

−(k)| is a gauge invariant projector.
Thus one can define the gauge g∗(k) as

arg{ξ g∗
− (k)} = Im{ln ξ

g∗
− (k)} = ϕB−

L
∀k, (C9)

which represents the gauge, in which the (discrete version
of the) Berry connection is constant. It is also possible to
show that ϕB− tends to the actual Berry phase when taking
the thermodynamic limit.

It is then straightforward to notice that such a gauge is
characterized by the following properties. The phase �, which
represents the angular center of the Wannier wavefunction,
coincides with the discrete version of the Berry phase

�[g∗] = 1

L
ϕB−, (C10)

whereas the modulus � takes the maximal possible value

�[g∗] = max
[g]

�[g] = 1

L

∑
k

|ξ g∗
(k)| = 1

L

∑
k

|ξ g(k)|. (C11)

Furthermore, it is possible to show that, in the thermodynamic
limit L → ∞, i.e., δk → 0, one has

�[g] → � ≡
(

2π

L

)
1

2π

∫
dk 〈ug

−(k)|i∂k|ug
−(k)〉, (C12)

i.e., the Wannier center becomes gauge independent and,
when converted into spatial coordinates 〈X 〉 = L�/2π (in
units of the lattice spacing), it coincides with the known result
reported in Refs. [37–39]. Moreover, the modulus � tends to

�2[g] → �2 ≡ 1 −
(

2π

L

)2 1

2π

∫
dk ||∂kug

−(k)〉|2

+
(

2π

L

)2[ 1

2π

∫
dk 〈ug

−(k)|i∂k|ug
−(k)〉

]2

,

(C13)

which implies that the Wannier spread in spatial coordinates
reads

�X =
√

〈X 2〉 − 〈X 〉2 = L

2π

√
1 − �2 (C14)

given in Ref. [36–39]. It is thus evident that maximizing
� corresponds to minimizing the spreading of the Wannier
functions.

In conclusion, it is possible to exactly find the MLWFs
even in a finite size 1D ring-shaped lattice. Such functions
have a center of mass with linear coordinate ϕB−/2π , where
we have converted the angular position into the linear one
through the factor L/2π . Moreover the angular spread of the
MLWFs can be identified from Eq. (C14) as

λ = 2π

L
�X =

√
1 − �2[g∗]. (C15)

This quantity is what we have plotted in Fig. 4(c)

APPENDIX D: MINIMIZATION OF SYMMETRY
BREAKING QUANTIFIERS QC

glob and QC
loc

Here we discuss some technical details about the phase set
{θ} that minimizes the charge symmetry breaking quantifiers
(40) and (43), in the various cases described in Fig. 5. It turns
out that there are two types of sets minimizing the quantifiers
QC

glob and QC
loc. The first one is

{θu} ≡
{
θ j,A = +δ/2
θ j,B = −δ/2 j = 1, , . . . , L (D1)

with δ denoting a staggering, while the second one is given by
Eq. (20).

When the flux is absent (ϕ = 0) and the C symmetry is
broken locally by the on-site potential U , the staggering value
minimizing the quantifiers is δ = 0, and the two {θ} sets (D1)
and (20) both coincide with {θ} ≡ 0. This holds for both QC

glob

and QC
loc, regardless of whether the ground state is metallic

or insulating. It simply reflects the fact that a change in the
gauge [see Eq. (10)] has no effect whatsoever on the on-site
potential, whereas it can introduce a C-symmetry breaking in
the hopping terms.
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When U = 0 and the C symmetry is broken non locally by
a flux ϕ, however, the two phase sets (D1) and (20) qualita-
tively differ, and one becomes more favorable with respect
to the other. In particular, recalling Eqs. (10) and (11), it
is straightforward to see that the phase set (D1) identifies a
transformation to a gauge where the flux is described by a
vector potential uniformly distributed along all the links of
the ring, as pictorially sketched in Fig. 3(a), with at most a
staggering δ in alternating links. Such a set Eq. (D1) turns out
to be the most favorable for the global quantifier QC

glob, for
both the metallic and insulating states. Yet, the value of the
small optimal staggering δ = O(1/L) depends on the dimer-
ization parameter r (with δ = 0 for the nondimerized metallic
case), implying that the C symmetry is least broken when the
vector potential has larger magnitude in the weaker links (say
w) than in the stronger links (say v). In contrast, the set (20)
leads to the gauge pictorially illustrated in Fig. 3(b), where
the vector potential is accumulated along the link located at
P2, i.e., on the opposite side of the ring with respect to the
considered reference point P∗. This gauge turns out to be
the most favorable for the local quantifier QC

loc, for both the
metallic and the insulating states.

The different impact of the two phase sets {θu} and {θ�}
can now be illustrated by comparing the structure of the
single-particle density matrix ρ({θ}), when evaluated in the
two corresponding gauges [see Eq. (12)]. This is sketched
in Fig. 8, where the ivory areas correspond to exponentially
small entries of ρ, the blue areas describe how the flux phase ϕ

is distributed in its finite-valued entries, which are highlighted
as orange areas and are arranged along a diagonal stripe,
whose width is determined by the correlation length λ of the
quantum state. For the uniform set {θu} [see Fig. 8(a)], the flux
phase ϕ is uniformly distributed in all entries of ρ, consis-
tently with the corresponding gauge in Fig. 3(a). In contrast,
for the phase set {θ�} [see Fig. 8(b)], the flux phase appears
only along the frame of ρ, which corresponds precisely to the
point P2 located at the opposite side of the ring with respect
to the reference point P∗, as also seen in the corresponding
gauge in Fig. 3(b).

The global quantifier QC
glob in Eq. (40) involves all entries

of ρ, through the matrix bC in Eq. (41). In contrast, the local
quantifier QC

loc in Eq. (43) picks up only the ( j∗, α∗)-th row
of ρ, here highlighted as a dashed box, which contains the
correlations between the reference point P∗ (red spot) and any
other site P. From Fig. 8, one can understand the different
scaling laws obtained in Fig. 5(b). Indeed, when the flux is
absent, i.e., for a local C-symmetry breaking induced by the
staggered on-site potential, the structure of ρ is the same in
both panels of Fig. 8, and the quantifier depends only on
correlation length λ, which can be identified with the local-
ization length of the Wannier functions. While an insulator
exhibits a finite localization length, the Wannier functions in
a metal are delocalized and the correlations extend with a
slow algebraic decay from the diagonal over the entire density
matrix ρ, causing the weaker decay QC

loc ∼ 1/
√

L obtained
in the metallic case [red curve of Fig. 5(b)], as compared to
QC

loc ∼ 1/L found in the insulating SSH case [cyan curve of
Fig. 5(b)].

FIG. 8. Sketch of the structure of the single-particle density ma-
trix ρ of the ground state of the SSH model with flux, evaluated in
real space for two different {θ} phase sets. The ivory areas identify
the exponentially small entries of ρ, while the cyan pattern highlights
how the flux phase ϕ is distributed over the finite-value entries, here
marked as the orange areas. (a) The case of the phase set {θu} in
Eq. (D1), corresponding to the gauge illustrated in Fig. 3(a): the flux
is uniformly distributed over the various ρ entries. (b) The case of
the phase set {θ�} in Eq. (20), corresponding to the gauge illustrated
in Fig. 3(b), where the flux phase is accumulated in the farthest
link with respect to the considered reference point P∗. The dashed
box highlights the ( j∗, α∗) row, which determines QC

loc in Eq. (43)
and describes the correlations between the chosen reference point
[specifically, the site P∗ = (L/2, A), depicted as a red spot] and any
other lattice site. An insulator is locally insensitive to a flux because
in the in the local C-breaking quantifier QC

loc, the flux phase only
appears in the exponentially small tails located at the box ends, since
the localization length λ is much smaller than the system size L.

When the C symmetry is broken non locally by the flux
ϕ, however, the structure of ρ in Figs. 8(a) and 8(b) differ in
the way the flux phase is distributed, and the {θ�} is the most
favorable set for Qloc. In the metallic state the correlation is
quasilong ranged, i.e., the orange area extends with a power
law decay over the entire row, up to the edges of the dashed
box: The reference point P∗ can experience the presence of the
C-breaking flux, even if accumulated at the opposite ring side.
This results in the algebraic decay, QC

loc ∼ 1/
√

L shown in the
black curve of Fig. 5(b). In contrast, because an insulator has
a finite localization length λ, only sites located within such
distance are correlated with P∗. The C-breaking flux phase is
present only at the ends of the dashed box in Fig. 8(b), i.e., in
entries that are exponentially small in the system size, leading
to the exponential suppression QC

loc ∼ exp[−L/�] found in
the blue curve of Fig. 5(b).

Notice that, although the flux is effectively vanishing at
local level, the global quantifier Eq. (40) involves all entries of
the single-particle density matrix ρ, including the blue corners
in Fig. 8(b) where the flux phase is accumulated. For this
reason, the phase set {θ�} is the most favorable for QC

loc, but
unfavorable for QC

glob as compared to {θu}.
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[10] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman,
Light-induced gauge fields for ultracold atoms, Rep. Prog.
Phys. 77, 126401 (2014).

[11] N. Goldman, J. C. Budich, and P. Zoller, Topological quantum
matter with ultracold gases in optical lattices, Nat. Phys. 12, 639
(2016).

[12] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topologi-
cal bands for ultracold atoms, Rev. Mod. Phys. 91, 015005
(2019).

[13] P. Calabrese and J. Cardy, Time dependence of correlation func-
tions following a quantum quench, Phys. Rev. Lett. 96, 136801
(2006).

[14] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[15] J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body
systems out of equilibrium, Nat. Phys. 11, 124 (2015).

[16] A. Mitra, Quantum quench dynamics, Annu. Rev. Condens.
Matter Phys. 9, 245 (2018).

[17] A. De Luca, Quenching the magnetic flux in a one-dimensional
fermionic ring: Loschmidt echo and edge singularity, Phys. Rev.
B 90, 081403(R) (2014).

[18] Y. O. Nakagawa, G. Misguich, M. Oshikawa, Flux quench in a
system of interacting spinless fermions in one dimension, Phys.
Rev. B 93, 174310 (2016).

[19] L. Rossi and F. Dolcini, Nonlinear current and dynamical
quantum phase transitions in the flux-quenched Su-Schrieffer-
Heeger model, Phys. Rev. B 106, 045410 (2022).

[20] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1
(Pergamon Press, Oxford, 1959).

[21] X.-G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, Oxford, 2004).

[22] S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig,
Topological insulators and superconductors: tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[23] C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu, Classification
of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[24] M. McGinley and N. R. Cooper, Topology of one-dimensional
quantum systems out of equilibrium, Phys. Rev. Lett. 121,
090401 (2018).

[25] M. McGinley and N. R. Cooper, Classification of topological
insulators and superconductors out of equilibrium, Phys. Rev.
B 99, 075148 (2019).

[26] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[27] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations
in polyacetylene, Phys. Rev. B 22, 2099 (1980).

[28] L. Rossi, J. C. Budich, and F. Dolcini, Topology in the space-
time scaling limit of quantum dynamics, Phys. Rev. B 107,
L241402 (2023).

[29] In order to avoid nonlocal effects that are trivially induced
by nonlocal transformations, we shall limit ourselves to the
physically local transformation (1) mapping particles into holes
on the same site, up to a possible phase factor.

[30] L. Rossi, F. Rossi, and F. Dolcini, Real-space effects of a
quench in the Su-Schrieffer-Heeger model and elusive dynami-
cal appearance of the topological edge states, New J. Phys. 24,
013011 (2022).

[31] Note that the phases in Eqs. (1) and (10) differ by exhibit a
factor 2, due to the nature of C-transformation, which exchanges
c† ↔ c.

[32] M. J. Rice and E. J. Mele, Elementary excitations of a lin-
early conjugated diatomic polymer, Phys. Rev. Lett. 49, 1455
(1982).

[33] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on
Topological Insulators (Springer, Berlin, 2016).

[34] Note that the transformation (10) with the phase set Eq. (20)
would break translational invariance.

[35] C. Yang, L. Li, and S. Chen, Dynamical topological invariant
after a quantum quench, Phys. Rev. B 97, 060304(R) (2018).

[36] W. Kohn, Analytic properties of Bloch waves and Wannier
functions, Phys. Rev. 115, 809 (1959).

[37] N. Marzari and D. Vanderbilt, Maximally localized generalized
Wannier functions for composite energy bands, Phys. Rev. B
56, 12847 (1997).

[38] I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized
Wannier functions for entangled energy bands, Phys. Rev. B 65,
035109 (2001).

[39] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally localized Wannier functions: Theory and
applications, Rev. Mod. Phys. 84, 1419 (2012).

[40] N. Fisher, Statistical Analysis of Circular Data (Cambridge
University Press, Cambridge, 1993).

[41] F. Ares, S. Murciano, and P. Calabrese, Entanglement asymme-
try as a probe of symmetry breaking, Nat. Commun. 14, 2036
(2023).

[42] This is certainly true if the many-particle state is Gaussian, ρ ∝
exp(−∑

I,J c†
I MI,J cJ ) with M† = M, a condition that is fulfilled

in all the noninteracting models considered here. In strongly
interacting systems, however, signatures of the C-breaking may
appear in many-body observables only, while being absent in
one-body observables.

[43] Taking into account the cell translational invariance, the pres-
ence of dimerization and the flux, we have considered phase

155420-19

https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevLett.74.2847
https://doi.org/10.1103/PhysRev.133.A171
https://doi.org/10.1103/PhysRevLett.65.243
https://doi.org/10.1103/PhysRevB.44.7844
https://doi.org/10.1103/PhysRevLett.74.972
https://doi.org/10.1103/PhysRevB.102.165137
https://doi.org/10.1007/s10955-020-02654-5
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/nphys3215
https://doi.org/10.1146/annurev-conmatphys-031016-025451
https://doi.org/10.1103/PhysRevB.90.081403
https://doi.org/10.1103/PhysRevB.93.174310
https://doi.org/10.1103/PhysRevB.106.045410
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevLett.121.090401
https://doi.org/10.1103/PhysRevB.99.075148
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.107.L241402
https://doi.org/10.1088/1367-2630/ac3cf6
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevB.97.060304
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1038/s41467-023-37747-8


ROSSI, BARBIERO, BUDICH, AND DOLCINI PHYSICAL REVIEW B 108, 155420 (2023)

sets of the form θ j,A/B = a j + θ ± δ/2, where θ , a, and δ are
treated as variational parameters.

[44] Ch. Gross and W. S. Bakr, Quantum gas microscopy
for single atom and spin detection, Nat. Phys. 17, 1316
(2021).

[45] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T.
Fukuhara, Ch. Gross, I. Bloch, C. Kollath, and S. Kuhr, Light-
cone-like spreading of correlations in a quantum many-body
system, Nature (London) 481, 484 (2012).

[46] Th. Schweigler, V. Kasper, S. Erne, I. Mazets, B. Rauer,
F. Cataldini, T. Langen, Th. Gasenzer, J. Berges, and J.
Schmiedmayer, Experimental characterization of a quan-
tum many-body system via higher-order correlations, Nature
(London) 545, 323 (2017).

[47] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[48] P. A. Lee, T. V. Ramakrishnan, Disordered electronic systems,
Rev. Mod. Phys. 57, 287 (1985).

[49] J. Fraxanet, D. González-Cuadra, T. Pfau, M. Lewenstein, T.
Langen, and L. Barbiero, Topological quantum critical points in
the extended bose-hubbard model, Phys. Rev. Lett. 128, 043402
(2022).

[50] J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys. 58,
977 (1995).

[51] L. Barbiero and L. Dell’Anna, Spreading of correlations in a
quenched repulsive and attractive one-dimensional integrable
system, Phys. Rev. B 96, 064303 (2017).

[52] Y. Ge and M. Rigol, Topological phase transitions in finite-size
periodically driven translationally invariant systems, Phys. Rev.
A 96, 023610 (2017).

[53] J. Motruk and F. Pollmann, Phase transitions and adiabatic
preparation of a fractional Chern insulator in a boson cold-atom
model, Phys. Rev. B 96, 165107 (2017).

[54] Y.-C. He, F. Grusdt, A. Kaufman, M. Greiner, and A.
Vishwanath, Realizing and adiabatically preparing bosonic in-
teger and fractional quantum Hall states in optical lattices, Phys.
Rev. B 96, 201103(R) (2017).

[55] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler,
S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P.
Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin,
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