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Abstract: This work considers global path planning enabled by generative adversarial networks
(GANs) on a 2D grid world. These networks can learn statistical relationships between obstacles,
goals, states, and paths. Given a previously unseen combination of obstacles, goals, and an initial
state, they can be asked to guess what a new path would look like. We performed experiments on a
64 × 64 pixel grid that generated a training set by using randomly positioned obstacles and goals.
The heuristic search algorithm A* was used to create training paths due to its significant presence
in the literature and ease of implementation. We experimented with architectural elements and
hyperparameters, converging to a pix2pix-based architecture in which the generator was trained to
generate plausible paths given obstacles and two points. A discriminator tried to determine whether
these maps were real or fake. Additionally, we defined a qualitative path-generation “success rate”
metric derived from the Fréchet inception distance (FID) and optimized our architecture’s parameters,
ultimately reaching a 74% success rate on the validation set. Furthermore, we discuss the applicability
of this approach to safety-critical settings, concluding that this architecture’s performance and
reliability are insufficient to offset the downsides of a black-box approach to path generation.

Keywords: path planning; machine learning; generative adversarial networks

1. Introduction

Many of the questions posed by planetary scientists rely on analyses that cannot be
performed remotely, but require in situ samples [1]. It has also been argued that in situ
mobility systems generally exhibit greater scientific return when capable of some form of
mobility [2] due to the increased sampling opportunities and sample diversity compared to
those of a system fixed in space. For these reasons, path-planning techniques for planetary
mobility systems are an area of active interest, as seen in the large body of literature that
has already been published on the subject [3]. In this paper, we assess the performance of
a general path-planning technique based on deep generative networks that is capable of
approximating the results of any path-planning algorithm.

Rovers are some of the most common systems for in situ science, and their utility is
roughly proportional to the area that they can cover throughout their operations phase
(all else being equal). A major area of focus for increasing the scientific return from
mobility systems is speed (for planetary rovers, the aim for next-generation systems is to
move hundreds of meters per hour, as compared to the tens of meters in current systems).
Effective autonomous mobility requires path planning that leverages both “local” and
“global” environmental information. Local information is used for high-resolution short-
term planning, while global information is used to avoid local optima and choose the most
effective path. This global information typically comes from images that are segmented
and processed into traversability maps and taken by supporting systems or orbiters.

Aerospace 2022, 9, 721. https://doi.org/10.3390/aerospace9110721 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9110721
https://doi.org/10.3390/aerospace9110721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-5014-4422
https://orcid.org/0000-0002-1984-8533
https://doi.org/10.3390/aerospace9110721
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9110721?type=check_update&version=2


Aerospace 2022, 9, 721 2 of 17

1.1. Mission Reference Architecture

As shown in Figure 1, we imagine an observer that senses the environment and
generates a path that is subsequently communicated to the mobility system. The ground-
based system executes on-board local path planning and receives high-level movement
suggestions from the airborne observer that are appropriately integrated into local path
planning. This paper is structured as follows: Section 1.2 defines the path-planning problem
and briefly reviews the concepts used throughout this work. Section 2 describes the image-
to-image approach to path planning. Section 3 contains architectural details relating to our
implementations. Section 4 outlines the results of our experiments and discusses what these
results can say about this approach’s applicability to a real-world scenario. Despite success
rates of 74%, we will see that a statistical approach to generative path planning is not well
suited for safety-critical applications. Offline network training would also complicate any
mission in uncertain or unknown environments, as thorough generalization tests would
have to be performed before deploying pre-trained networks.

Figure 1. Sketch of the reference architecture. A rover with limited visibility receives a global path
from a space-based asset.

1.2. Path Generation

Path planning is the generation of a sequence of states from an initial state to an end
goal through continuum space. An agent is in state A and desires to achieve state B; the
path-planning process generates a sequence of intermediate states that join A and B while
complying with the dynamic constraints acting on the mobility system. Constraints come
under many different forms. For problems described only by a pose vector, constraint
examples could be the system’s performance envelope (e.g., curve radius not inferior to x
meters) and obstacle avoidance. For larger state spaces, there can be a number of additional
constraints, such as resource limits, communication windows, etc. Since infinite feasible
paths might connect any two points, the objective of minimizing a cost metric (e.g., dis-
tance, time) is added in order to reduce the space of solutions. There is a vast literature
on motion planning, and we will provide the reader with pointers to relevant review
papers. Researchers have focused on aspects including finding the ideal representation for
physical space [4], algorithm design [5], optimal path generation [6], three-dimensional en-
vironments [7], information-based approaches [8], aerial applications [9], and underwater
applications [10]. A system may encounter undetected issues, such as small obstacles, unex-
pected hazards, or shifts in the terrain over time. Therefore, global path planning has been
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adapted to dynamic situations [11] and supported by local path-planning algorithms [12]
that perform obstacle avoidance and generate trajectories based on information gathered
from on-board sensors [13]. These local algorithms have been shown to be incapable of
guaranteeing success in particularly challenging environments [14,15]. Additionally, for
traversals beyond the on-board sensor’s range, finding the optimal path requires global
knowledge. In its absence, the agent might take a wrong turn or have to backtrack.

Path planning is a deeply studied problem for terrestrial robotics [5,16], and many
of the techniques used for path planning in terrestrial robots apply to space robotics
without much modification. Some critical challenges that are particularly marked for space
systems are related to the environment. The space environment is often partially observable,
highly uncertain, and extremely remote. The remoteness leads to costly systems, therefore
placing even greater safety constraints when compared to typical Earth-based systems.
Environmental uncertainty and the lack of complete observability place an emphasis on
online planning techniques, such as obstacle avoidance and re-planning, rather than offline
techniques, which may be based on poor data [17]. However, online planning alone cannot
reach globally optimal solutions.

Most work on global path planning for space systems is focused on Martian appli-
cations, starting with work in preparation and support of the Mars Exploration Rover
(MER) program [18,19] and similar work performed for the Mars Science Laboratory (MSL)
program and Mars 2020 (M2020). Path-planning techniques have also been assessed by
many other actors [20–23] for different mission architectures. A growing number of similar
investigations that are centered around lunar applications can be found [24,25], where both
governmental and commercial entities are pushing to deploy robotic systems in support
of the next phase of human space exploration. Other path-planning examples range from
balloon missions on Venus [26] to asteroid-hopping robots [27]. With the proliferation of
increasingly affordable space-based imaging systems, the quality, quantity, and availability
of global maps over which to perform planning are likely to grow, making path-planning
techniques inspired by mission architectures, such as that in Section 1.1, worth investigat-
ing. The clearest example of a similar mission architecture can be found in the Ingenuity
helicopter, which was used as a Scout for the Perseverance rover [28]. In this context,
our research is aimed at exploring novel path-planning techniques that may be applied
to mission architectures in which a mobility system is aided by global maps generated
by a supporting agent. Nevertheless, we want to be clear that the concept of learning a
computationally expensive algorithm and embedding this knowledge in a neural network
for fast evaluation is not limited to path planning, but can be applied with varying degrees
of success to any field in which there is a clear distinction among inputs, outputs, and
training data. An example of another aerospace field in which similar algorithms could be
applied is spacecraft trajectory planning and optimization [29].

In general, high-dimensional motion-planning problems with many constraints are
solved with sampling-based approaches that do not guarantee optimal solutions in a
finite runtime. Recent advances have framed similar problems as mixed-integer optimiza-
tion problems, which lead to both optimality and computational efficiency [18,30]. Such
approaches inevitably restrict the class of problems that can be efficiently tackled. Our
approach forsakes optimality in favor of generality, as it can applied to spaces with very
complex configurations that would not be compatible with mixed-integer formulations.

1.3. Machine-Learning-Based Approaches to Path Planning

There are many review papers that have described approaches to path planning, such
as randomized techniques [31], artificial potential fields [32], heuristic-search-based tech-
niques [33], any-angle techniques [34], and many more. Most of the attempts to include
machine learning in motion planning have historically been focused on augmenting the
planning process through data processing and state estimation techniques [8]. This ten-
dency to use machine learning to complement existing algorithms is unsurprising because
of the fragility and proneness to unexpected failure modes of data-driven approaches. Of
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the few attempts to use machine learning to perform global path planning that we could
find, most approaches have focused on reinforcement learning [35] and, more recently,
generative adversarial networks. In data-driven approaches, path optimality and com-
pleteness are rarely supported by theoretical guarantees; therefore, machine learning is
generally used to decrease the path generation’s computational burden from the points of
view of both time complexity and program memory. Neural networks are valuable tools
for learning complex relationships between data, allowing the mapping of an input state
directly to a path or action without the state exploration entailed by classical algorithms
(e.g., breadth-first search). The planning problem can be formulated as a sequence of
decisions that are not influenced by past actions and, therefore, falls under the theoretical
framework of Markov decision processes (MDPs) [36]. Reinforcement learning is a way to
learn effective policies for MDPs and, therefore, has been applied to global path-planning
problems [37]. Q-learning has been used to discover a collision-free path between two
states [12]. Similar results have been achieved with inverse reinforcement learning in
conjunction with convolutional neural networks and value iteration [38]. Another inverse
reinforcement learning approach using the maximum entropy paradigm to approximate
reward functions was presented in [39]. Computational experiments and theoretical ad-
vances have proceeded in parallel, as seen in the efficient framework for cost function
learning developed in [40] or that for risk-averse planning formulation presented in [41].
Another approach to machine-learning-based planning was proposed in [42], where deep
CNNs trained with standard backpropagation effectively approximated value iteration. A
dual-branch CNN architecture that avoids passing through an environmental mapping
was used to generate paths through value function approximation [42]. In the literature,
we found three previous works attempting to tailor generative adversarial networks to
global path planning and a similar approach for circuit routing. One approach [43], used
conditional generative adversarial networks (CGANs) [44] that took environmental maps
as input and paths generated using the rapidly exploring random tree (RRT) algorithm to
increase the underlying algorithm’s efficiency. Their neural architecture was based on an
encoder–decoder with skip connections (U-NET) generator [45] and a deep convolutional
neural network discriminator. RRT was run 50 times for every training point pair instance.
The probabilistic nature of RRT allowed for the generation of an “area of interest” rather
than a single path. The generative network learned to approximate this area of interest,
which could then be used as a new state space to run RRT. This newly learned domain
allowed faster RRT convergence compared to the reference state space. Another RRT-based
approach can be found in [46]. Their architecture had an encoder–decoder generator made
from convolutional and residual network [47] layers that enabled less detail loss compared
to that with a U-NET architecture. They also proposed a double discriminator, one for the
initial/target point pair and the other for the region of interest, to improve the generator’s
effectiveness. RRT’s inherent stochasticity led to the generation of these “areas of interest”,
and the approach was robust to noise in the generated images. Note that this approach
enhanced a path-planning algorithm rather than substituting it. A conceptually different
approach was proposed in [48], where a path planner based on the A* algorithm was
approximated with a CGAN using the pix2pix architecture [49]. Their generator used a
U-NET architecture with skip connections between layers. Their loss function was made
from a cross-entropy component for the generator summed with the adversarial loss. At
the same time, their discriminator focused solely on the path’s quality rather than also
taking obstacles as inputs.

In the realm of circuit routing, a partially successful generative approach based on the
pix2pix architecture can be found in [50]. It is interesting to note the similarities between
circuit design and motion planning, as the constraints posed on the circuit traces are
comparable to those in our application.
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2. Materials and Methods

Our approach to path planning is based on Ian Goodfellow’s work on generative
adversarial networks (GANs) [51]. These unsupervised models aim to learn patterns in
data in order to generate reasonable approximations of novel data points. A multitude
of research projects and commercial tools have been developed since the introduction
of generative networks, with use cases ranging from image super-resolution, face and
texture synthesis, natural language processing, medical diagnosis [52,53], computational
fluid dynamics [54], and many other engineering applications [55]. All GANs share a
high-level architecture in which a generator G is trained to produce samples starting from
a random noise vector. At the same time, a discriminator D tries to determine whether the
samples are real (taken from the training instances) or fake (generated). In other words,
the discriminator outputs the conditional probability label y that predicts if a sample is
part of the training set or the generator’s output [56] (Chapter 10.4). The two networks
are trained concurrently in a game-theoretic adversarial game that reaches higher fidelity
than generative modeling alone. The adversarial game can be formulated as a two-player
min–max problem in which the discriminator’s weights are changed at each training step
to decrease the likelihood of being fooled. In contrast, the generator’s weights are changed
in the direction that is more likely to mislead the discriminator. For the particular case of
two multi-layered perceptrons where the generator is passed a noise vector as input, this
adversarial game can be formulated as [51]:

minGmaxD

(
Ex pdata(x)[log D(x)] +Ez pz(z)[log(1− D(G(z)))]

)
(1)

where x is the data, and D(x) is the probability of a sample belonging to the data or the
generator’s output distribution pg. The idea behind a generative approach to path planning
is to use a GAN to learn the relationships between environmental maps, start and finish
points, and paths generated through a classical algorithm. This knowledge is embedded
into the network’s weights and allows the generation of plausible paths given a new map
and start/end points. The previous sentence implies two main points. Firstly, the path-
planning GAN should have an internal structure that can process images, and secondly,
the GAN should be able to condition its inputs with obstacle maps and goals.

2.1. Dealing with Images

High image generation or discrimination performance requires a different approach
from that of multi-layer perceptrons. Since the advent of modern GPUs, deep convolutional
neural networks (DCNNs) have been shown to be a very efficient and effective way to
learn features from images [57], and their use when paired with GANs was first shown
to be effective in [58]. Convolution layers are the central feature of convolutional neural
networks, as they embed an image into representations of decreasing size with each layer.
The inverse process can pass from a smaller representation to a larger one, thus passing
from a noise vector to an image. The central point of CNNs is that smaller representations
entail higher levels of abstraction, allowing the network to reason about more complex
structures than single pixels.

2.2. Conditioning Input

Another aspect of Goodfellow’s GAN paper was random noise input vectors. Solving
a path-planning problem cannot be done solely with noise vectors, but requires the condi-
tioning of the generator with an input map and target goals. Without input conditioning,
the generated path would be unaware of goals and obstacles and would resemble a random
path. Conditional generative adversarial networks (CGANs) are the solution to this issue,
as they were developed as an extension to GANs that accepts input conditioning. These
networks were introduced in order to automatically generate image tags [44], but have
been used for image-to-image translation tasks, such as passing from labels to images [49],
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colorizing black and white pictures, transforming sketches into photos, changing a picture’s
lighting conditions, and generating maps from satellite images and vice versa [59].

In practice, CGANs work as normal GANs, but with an additional input layer that
combines the noise vector with some other information y in a hidden representation. The
problem formulation is remarkably similar to that for normal GANs, with the addition of
conditional probabilities in the log loss computations [44].

minGmaxD

(
Ex pdata(x)[logD(x|y)] +Ez pz(z)[log(1− D(G(z|y)))]

)
(2)

2.3. Pix2pix

A widespread and successful CGAN architecture that has been used in most generative
approaches to path planning is the pix2pix architecture, which was first presented in [49].
The two main reasons for this architecture’s widespread use are its effectiveness and the
code base’s open availability. In pix2pix, both the generator and discriminator follow a
pattern where convolution, batch normalization, and Relu activation layers are alternated.
The convolution layers progressively abstract the image into smaller and smaller feature
maps; the Relu layers serve as rectifying activation functions and effectively allow the
approximation of nonlinear functions, while batch normalization improves the chances
of convergence for large networks by normalizing the inputs. The generator follows the
general U-net shape [45], that is, a reinterpretation of the encoder–decoder network, where
the input is first scaled down into a hidden representation up to a bottleneck point, after
which it is decoded and expanded to its original dimension. The discriminator used in
pix2pix is also a refinement of classical GAN discriminators. Rather than outputting a
single real/fake label for an image, Patch-GAN discriminators consider N×N pixel patches
across the generated image and create real/fake labels for each patch via a convolution
operation. The result is an average of the resulting labels. This patched approach to
discriminators is used in pix2pix because it encourages high-frequency sharpness in the
generated images, which is better than that with single labels [49]. Pix2pix’s objective
formulation differs slightly from a traditional CGAN by adding (from Equation (2)) a more
traditional L1 loss term to the CGAN loss LCGAN .

minGmaxD(LCGAN + λ(E[‖y− G(x|z)‖1])) (3)

3. Generative Path-Planning Approach

Our approach to assessing the GAN-based path planning that was described in
Section 2 leverages the results obtained in previous work (Section 1.3) by implement-
ing the most promising aspects and experimenting with architectural and hyperparameter
variations in an attempt to tease out as much performance as possible from current widely
available technology. The main decisions made were related to the architecture, algo-
rithm, and performance metrics. From the architectural perspective, we followed the
general framework provided by pix2pix. With the algorithmic choices, we refer to the
path-planning algorithm implemented. From this point of view, we chose the A* heuristic
global search algorithm [33], rather than an anytime algorithm, as in [44]. Our path plan-
ner aims to approximate an optimal solution rather than perform a speedup that would
reduce the search space for a stochastic algorithm. Mimicking an external agent suggests a
fuzzy global path to a mobility system that is only aware of its close surroundings. The
environment in our problem is described as a grid map [60]. We chose to represent this
map as a three-channel tensor (RGB image) rather than a smaller representation to allow
for goals and path cells to have a larger distance in the latent space from the map cells
than the distance that they would have if they were just a shade of gray. Additionally, we
chose RGB images because only three-channel images can be used to compute the success
metric described in Section 3.2. As seen in Figure 2, this comprised empty, obstacle, goal,
and path cells. The robot’s state consisted in its coordinates in the world. We assumed
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that the generated obstacles were increased in size by an amount equal to the robot’s size.
Therefore, any valid path was guaranteed to be safe.

Start

End

Path

Obstacle

Figure 2. Grid world representation. Cells with a value of [0,0,0] (black) are obstacles, while cells
with [255,255,255] (white) can be traversed. Red [255,0,0] and blue [0,0,255] cells are, respectively,
starting and ending positions, while green [0,255,0] cells represent path cells.

3.1. Input and Outputs

This method takes as an input a traversability map alongside a starting point and an
end goal. The output is a matrix that describes a path that imitates the line connecting the
starting point to goal generated via the A* algorithm. In real applications, the traversability
map would be generated from images of the terrain in conjunction with the robot’s mobility
model, as described in Section 1.2, although our case considers a toy problem in which the
maps are synthetically generated.

3.2. Success Metrics

As success metrics, we chose the Fréchet inception distance (FID) [61] due to its
consistency with human judgement and robustness to noise [62]. This metric was obtained
by feeding the ground-truth and generated images into the Inception V3 network [63] to get
feature maps. These features were compared, and a Weierstrassian “distance” metric was
derived. Computing the FID metric requires a three-dimensional tensor, as InceptionV3’s
architecture is built around RGB images. This is a limitation of our method, as the occupancy
information could be encoded into a much simpler space. In fact, a 2D matrix whose
positions were taken from the set {empty, occupied, start, end, path} would be sufficient.
We used the FID metric in two ways depending on the efficiency required. Working with
large image distributions leads to a slow evaluation time for every image pair using the
InceptionV3 network. This slowness is acceptable when evaluating the final result once
training is over. With each image’s FID, we can plot a distribution that can be used to
assess how effective the network is. We call each pairwise FID computation a Particular-
FID (PFID). The FID use case that requires efficiency rather than completeness is network
training. We would like to know how “good” the network is after each epoch without
pairwise comparisons. Still, since the loss is not a particularly informative parameter for
generative adversarial architectures [62], we use the FID metric taken by comparing an
aggregate of all ground truths with a total of all generated maps. This leads to a single
InceptionV3 evaluation and is significantly faster than pairwise comparisons. We call this
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aggregated FID the Overall-FID (OFID). As shown in Figure 3, the FID metric can be tied
to the types of artifacts that appear in the generated images. We noted from our results
that for FID values that were smaller than 100, most errors could be easily filtered out.
These errors consisted of pixels that were missing or slightly moved from the ground-truth
path and noise pixels that were not red, green, or blue. The errors changed in nature for
FID values that were greater than 100, and the way became irrecoverable. This happened
because multiple adjacent pixels could miss or be misplaced from the path, the origin
and destination could vary from their intended coordinates, and ghost sections of the
path could be generated at random positions on the map. Due to these observations, we
introduced a heuristic evaluation metric, the “success rate”, which was computed by taking
the percentage of the PFID over the validation set of a trained net below an FID value
of 100. This metric can quickly give an idea of how many generated paths can lead to
helpful guidance, but is limited by the heuristic nature of the “success FID” setpoint. A
more accurate version of this metric that could be implemented in future work would be
computed by applying a filter to the generated path and seeing what proportion of paths
are feasible after filtering.

Noise Noise + Deviations, Missing pixels
Noise + Deviations, Missing pixels +  
Missing chunks, Wrong start or end 

points, Incomplete sections

FID < 50 50 < FID < 100 FID > 100

Figure 3. Heuristic representation of what errors are generated depending on the FID metric.

3.3. Dataset Generation

Neural networks need training data and validation data. In our case, these data were
procedurally generated. A script created a set of 64 × 64 × 3 RGB grids of white space that
signaled empty cells. As shown in Figure 4, obstacles were signaled by black rectangles,
triangles, circles, and semicircles that were randomly placed throughout each map with
randomly varying sizes that were bounded by a maximum and minimum characteristic
length. Vacant and occupied cells together formed the map space M. We chose black and
white to maximize the vector distance between empty and occupied cells. Each map was
paired with a set of randomly generated starting points and end goals that formed the
point space P. These were, respectively, red and blue pixels. For each pair of goals, a
ground-truth track was generated by running the A* algorithm and saving the generated
path as green pixels. The set of paths was called the path space S. We split the generated
datasets, using 80% for training and 20% for validation. The number of maps, number
of goal pairs for each map, and sizes of the end and start goals were parameters that we
experimented with.



Aerospace 2022, 9, 721 9 of 17

Map 𝑖

Pair 𝑗

Pair 𝑗 + 1

Path 𝑗

Path 𝑗 + 1

=

=

…

… … …

Figure 4. Dataset structure. Each map of procedurally generated obstacles was subjected to multiple
goal pairs that were used to generate a path via A*.

3.4. Architecture

Our network’s architecture was based on pix2pix (Section 2) and can be observed in
Figure 5. The generator took as input a map and a point image (M and P), which were each
passed through a convolution layer with 32 channels. The results of this operation were
concatenated into a single map with 32 × 32 × 64 dimensions and fed to a U-Net. The U-
Net’s encoder was made from an alternation of Convolution–LeakyRelu and Convolution–
BatchNormalization–LeakyRelu layers with filters of 4 × 4 pixels. On the other hand, the
decoder network used Deconvolution–BatchNormalization–LeakyRelu and Deconvolution–
Tanh layers. Skip connections were established between encoder and decoder layers of
the same size as anticipated in Section 2, skip connections improve performance for deep
architectures by providing alternative pathways for the gradient during backpropagation.
The main parameter that we experimented with was the U-Net’s bottleneck size by varying
the number of layers in the U-Net. The discriminator took as input the map M, goals P,
and either the ground-truth or generated path P. Similarly to the generator’s encoder, the
discriminator concatenated the input maps into a single data structure that was passed
through Convolution–LeakyRelu and Convolution–BatchNormalization–LeakyRelu layers
with 4 × 4 filters. The final layer was a pure convolution layer that generated a 6 × 6 truth
map. The 36 truth values were averaged to determine whether the overall map was true
or false.

The training algorithm that we used was outlined in the original pix2pix paper [49]. It
is helpful to acknowledge that the essential hyperparameters were batch size and several
training epochs. We varied these hyperparameters during the experiments to look for
an optimal combination. The optimizer used to update the generator and discriminator
weights at each epoch was the Adam optimizer [64].

We implemented the architecture using the PyTorch machine learning framework and
used Anaconda virtual environments for code portability. Training and validation maps
and paths were generated in external Python scripts, where the PIL and NumPy libraries
were used to facilitate operations with images.
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V

Map: 64x64x3

Start-End: 64x64x3

Dataset Generator

Validation set

Generated path: 64x64x3

Discriminator

+ ++ + + +

Skip connections

32x32x32

Map: 64x64x3

Start-End: 64x64x3

A* path: 64x64x3

16x16x128

8x8x256

4x4x512

2x2x512

32x32x64

16x16x128

8x8x256

7x7x512

6x6x1

Conv + LRelu

Legend:

Conv + BN + LRelu Conv Deconv + BN + LRelu Conv + tanh

Figure 5. High-level GAN architecture sketch. The number of layers in the generator changed
throughout the experiments.

To streamline the presentation of the results, we labeled our tests with names that
describe the network architecture, gain, number of epochs, batch size, and dataset size. The
naming convention is outlined in Equation (4).

number_of_epochs.batch_size.network_ID.dataset_ID (4)

The number of epochs and network size have a one-to-one correspondence between
the name and ID, while the network and dataset ID can be read in Table 1.

Table 1. Labeling conventions for the experiments.

Network ID Network Description Dataset ID Dataset Size Goal Size

01 Baseline 01 44,500 1 × 1
02 4 × 4 × 512 bottleneck 02 110,500 1 × 1
03 1 × 1 × 512 bottleneck 03 110,500 4 × 4

4. Results

In the next subsections, we explore our efforts to improve the network’s performance
by varying the hyperparameters and some architectural details. For a quantitative view, we
refer to Table 2. Each experiment ID describes the value of each hyperparameter according
to the relationship described in Equation (4). Table 1 can be used to infer the sizes of
the datasets, goals, and bottlenecks starting from the experiment ID. No changes in the
GAN algorithm were attempted in order to stay in line with our intention to assess what
performance can be expected from existing generative algorithms.

Table 2. Success metrics of the various experiments.

Experiment ID Final Epoch OFID Success Rate

50.16.01.01 38.31 38.45%
150.16.01.01 30.29 43.68%
50.16.01.02 29.21 47.52%
200.16.03.02 27.07 48.62%
200.128.02.02 27.16 N/A
80.16.02.02 19.88 56.69%
150.16.02.03 10.70 73.88%
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4.1. Epoch Variation

Mostly, we saw that the OFID metric improved over each training epoch with an
asymptotic behavior. This was wholly expected and compatible with neural network
training patterns. The asymptotic behavior implied that the training process was able to
reach a point of diminishing returns, after which the computer resources were inefficiently
employed, and overfitting became more probable. This phenomenon was tracked through
the loss function over time for classical neural networks. Still, for GANs, we need to
use a success metric, as loss alone is not sufficient to completely understand what is
happening to the results due to the adversarial nature of the game. As shown in Figure 6,
the point at which improvements were negligible was around 100–150 epochs depending
on the specifics of each test. We experimented with 50, 80, and 200 epochs, but eventually
converged on 150 epochs as a reasonable tradeoff between time and accuracy. In future
iterations, we will consider implementing early stopping based on the variation in the
rolling average of the OFID metric.

Figure 6. Training process: overall FID trend.

4.2. Dataset Size

We tested only two dataset sizes due to their long generation time. The first dataset
consisted of 44,500 paths, while the second one comprised 110,500 paths. We noted that
the larger dataset improved the generalization capacity at a constant epoch number. This
behavior was expected, as the number of batches used for each training step increased for
the larger dataset. The trade-off here was that larger datasets led to more training time
for each epoch and the generation of the dataset increased. Choosing the optimal dataset
size can be tricky, since larger is always better for neural network datasets. Still, since
we noted an OFID increase of 10% with a doubling of the training set, we decided that
further increases were not worth the additional computational time. This is in line with our
intention to probe the effectiveness of this path-planning strategy, not to try to extract the
maximum possible performance from our network. Therefore, costly optimizations leading
to a few percentage points in OFID gain were not considered.

4.3. Bottleneck Size

The bottleneck represents the degree of compression applied to the generator’s input
maps. Optimizing the size of the bottleneck layer is a matter of trial and error, as it
is a tradeoff between complexity and compression, where both a lack of or excessive
compression in the feature map can lead to non-satisfactory performance. We experimented
with this metric by adding or removing convolution blocks, starting from a baseline
architecture with a 2 × 2 × 512 bottleneck. We first tried shrinking the bottleneck to a
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1 × 1 × 512 block and then expanding it to a 4 × 4 × 512 element. We noted no significant
improvement for the 1 × 1 × 512 case, while increasing the bottleneck size to 4 × 4 × 512
yielded a 10% increase in the success rate. This is symptomatic of excessive compression in
the smaller bottleneck architectures.

4.4. Initial and End Goal Size

We noted in the experiments that the attempted architectural changes did not lead
to success rates greater than 50%. This means that over half of the validation paths were
not sufficiently clear or coherent to allow navigation. A common source of error that we
observed was incorrect starting points and endpoints. This was where coherence within the
path was respected (no missing pixels or incomplete sections), but the beginning and end
points were incorrect, leading to a high PFID. This led us to believe that information about
the start and end goal pixels was being compressed into an unusable state. Subsequently,
random noise artifacts were mistaken as goals, and a path was plotted between these two
points. These considerations led to the idea of increasing the goal’s size from a 1 × 1 square
to a 4 × 4 square on the grid. The goal itself did not change, meaning that the A* path
was still a computer starting from a single pixel, but the goal’s representation increased
from 1.6% to 6.2% of the map’s characteristic length. In principle, this would decrease
the probability of excessive compression while introducing a topological risk of goals and
obstacles intersecting. Due to this risk, we rejected the map instances where the goal pixel
would be placed on vacant space, but the 4 × 4 representation of the goal would intersect
with an obstacle. This goal size change significantly affected the network’s performance,
which jumped from hovering below 50% to 74%. This is visible in Figures 6 and 7, where
the 150.16.02.03 line had a significantly better OFID asymptote, and its PFID distribution
was visibly skewed towards lower FID than those in the other experiments.

Figure 7. Trained networks: FID distribution over the validation set.

5. Discussion

While a 74% success rate is an impressive result for a path-planning method that knows
very little about both paths and planning, the critical point is that these experiments were
conducted in ideal circumstances. The maps were small at 64 × 64 pixels, and the obstacles
were limited to four shapes. The limited obstacle set aided the network by diminishing the
number of features that it had to learn to navigate. In a sense, the problem’s dimension
was reduced by limiting the shapes of obstacles encountered. In an actual application, even
considering perfect terrain classification, the “obstacle pixels” would be arranged in more
diverse patterns that would require additional training. We chose to limit the dataset’s
scope to provide an upper bound to the performance that can be expected. If a network
does not generalize well with a limited obstacle set, its performance can only worsen when
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exposed to a real environment. This success-rate reduction effect can only worsen when
considering an exploration setting, where the training set will only be an educated guess
on the operational environment’s details. In future work, it would be interesting to train
and validate this approach on real-world traversability maps to measure the performance
degradation that can be expected when transitioning from ideal to realistic settings. It is also
worth noting that the training process embedded the capability of generating paths around
a specific and limited obstacle set into the network’s weights. Real-world traversability
maps are not made from such a small set of obstacle geometries; therefore, the network
would not generalize well with the current weights to more realistic examples. Moving
to real-world testing would require training the network from scratch on a more realistic
traversability map dataset. Such a task would add the additional step of converting the
dataset into a traversability map and was, therefore, avoided in this work so as to avoid
potential pitfalls in terrain labeling or traversability estimation. Our intention was solely to
probe the performance limits of the path-planning approximation algorithm under ideal
circumstances. In other words, we overfitted our network to a fictitious world where only
simple obstacles of varying sizes exist in order to bound our expectations of performance
in more realistic scenarios. Real traversability maps are not made of a limited set of regular
shapes, which poses challenges to the network’s generalization capacity. Thus, these results
can be interpreted as a higher bound to this architecture’s success rate. Larger input
images pose an additional challenge, as they are likely to lead to training instabilities for an
unmodified pix2pix architecture [65]. Extensions and modifications have been proposed
to apply CGANs to high-resolution images, with mechanisms such as improved objective
functions, coarse to acceptable generators, and multi-scale discriminators [66]. Recent
developments in high-resolution, real-time adversarial network usage for image generation
can be seen in the computer graphics industry [67]. These impressive improvements signal
ever-increasing image translation capabilities and warrant further investigations into this
path-planning approach. Another way to tackle high-resolution maps (that can also be
applied to classical planning algorithms) is to down-sample high-resolution images into
a lower-resolution space over which the algorithm can plan a path. The down-sampled
path can then be up-scaled to the original resolution. This method leads to further sub-
optimalities and potentially missing small-scale obstacles that may get deleted during the
down-sampling process.

The main issue with this approach is that unsuccessful paths are generated with
neither success guarantees nor failure awareness. When an infeasible path that leads to
a dangerous state is generated, the pix2pix architecture is unaware that it is generating a
path that violates safety constraints. Therefore, the robot would unknowingly guide itself
to a risky state if not interrupted by additional reasoning layers that check and enforce
these constraints. The minimum acceptable success rate would likely change depending
depending on the mission’s risk posture. This is why we framed our architecture as a
navigation aid that guides global path planning for agents with limited perception. In
this setting, there could be instances in which high-success-rate networks could learn to
imitate a global path-planning algorithm and be helpful to the ground-based agent without
excessively endangering it by providing low-level guidance. However, due to a failure rate
of 26% despite being trained and validated on small maps with a limited obstacle set, we can
say that our pix2pix-based architecture (and associated hyperparameters) requires further
tuning before being deployed to any path-planning approximation task. Higher success
rates and robust generalization capacity would have to be shown before transitioning to
real-world hardware experiments. Given the reference architecture described in Section 1.1,
the GAN-based path-planning algorithm that we propose would not be tasked with online
local path-planning, but would rather be tasked with generating a path suggestion aimed at
improving the quality of the local path planner offline. Safety-critical algorithms deployed
on the rover would be proven, verifiable, and highly safe algorithms, while the global path
suggestion could be fuzzier and less reliable, as even incorrect suggestions would merely
delay the local path planner’s solution when extended to a global context.
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Deep learning and computer vision are fast-moving fields with vast swaths of knowl-
edge being added each year; therefore, it is not unreasonable to expect significant improve-
ments with architecture changes or hyperparameter tweaking. For this reason, it is worth
revisiting this approach with improved network architectures and more realistic datasets
in the future. Furthermore, it is worth attempting to adapt this technique to other levels of
planning (e.g., mission planning) to either achieve a speedup of existing search algorithms
or approximate the results of said algorithms.

6. Conclusions

We implemented and tested a generative approach to global path planning based on
the pix2pix-based conditional generative adversarial network architecture. We trained the
architecture on paths generated on procedural obstacles maps of 64 × 64 RGB pixels via
the A* heuristic search algorithm. We experimented with the effects of several training
epochs and the sizes of the goals, bottleneck, and dataset. The most effective combination of
architecture and hyperparameters that we found was capable of successfully approximating
the path generated with the A* algorithm by 73.88% on validation maps generated with
the same procedural rules as those of the training maps. While this specific approach to
path planning is not suitable for safety-critical path planning, the results are promising
enough to recommend attempting future iterations of this approach as generative network
technology improves.
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