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ABSTRACT One of the foremost causes of death in males worldwide is prostate cancer. The identification,
detection and diagnosis of the same is very crucial in saving lives. In this paper, we present an efficient
gland segmentation model using digital histopathology and deep learning. These methods have the potential
to revolutionize medicine by identifying hidden patterns within the image. The recent improvements in
data acquisition, processing and analysis of Deep Learning Models has made Artificial Intelligence driven
healthcare a very lucrative area, in terms of data inference and delivering meaningful insights. This study
presents an automated method for segmenting histopathological images of human prostate glands. The
main focus is developing new methods for segmenting histopathological images of prostate gland using a
multi-channel algorithm with an attention mechanism to detect important areas. We compare our results with
a host of contemporary techniques and show that our method performs better at the segmentation task for
histopathological imagery. Our method is able to delineate gland and background parts with an average Dice-
coefficient of 0.9168. In this attention-based model we propose for semantic segmentation of prostate glands
the potential to provide accurate segmentation versus tumor features, which has significant implications for
medical screening applications.

INDEX TERMS Prostate cancer, image processing, histopathology images, digital image analysis, compu-
tational pathology, artificial intelligence.

I. INTRODUCTION

Prostate cancer is the one of the most common cancers
in males [1]. In 2020, there were close to 1.5 million
prostate cancer cases diagnosed worldwide. Besides being the
fifth leading cause of cancer death among men, the burden

The associate editor coordinating the review of this manuscript and

approving it for publication was Carmelo Militello

increases owing to lifestyle, stress, and an aging population
[2]. With a 10% fatality ratio, no serious clinical symptoms,
and the geriatric patient population being particularly vulner-
able, early detection of prostate cancer is important [3], [4],
[51, [6].

As a result of the severity of the condition, diagnosis
becomes a challenging task. The Gleason Score framework
has been developed by researchers in order to identify tumors.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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It has become the most used method for tumor identification.
An assessment of this score is based on the microscopic
examination of the cancer cell. It has been observed that
malignant tumors have a propensity to spread, unlike benign
tumors which are generally dormant. The pathologist score is
done on a scale of 1-5 by assessing the shape and cell arrange-
ment. Cancer cells largely correlated to the characteristics of
healthy cells are considered innocuous and hence receive a
low score [7].

The architectural configurations of prostatic carcinoma
serve as the sole basis for the Gleason grading system, which
is a key factor in treatment decision-making. Grades are
ranged between G1 to G5, with G1 denoting tissue with the
most severe degree of resemblance to healthy tissue and a
good prognosis, on the other hand G5 denoting tissue with
the lowest severe degree of differentiation and the poor-
est prediction [8]. Artificial intelligence has the potential
to enhance Gleason grading accuracy. Numerous automated
Gleason grading techniques were suggested, which improved
consistency.

Although the Gleason Score Technique is widely appli-
cable, it has certain limitations [9], [10], [11], [12], [13],
[14]. Due to its non-exact scoring and the need for manual
input, it is time-consuming. To overcome the shortcomings
of this method, deep learning models have been used to
analyze, identify, and detect cancerous tissue within prostate
tissue samples. To add to new knowledge in this area, the
purpose of this study is to develop a novel attention-based
model for semantic segmentation of prostate glands utilizing
histopathological images in order to fill research gaps and
identify related challenges in existing methods of detecting
cancerous tissues. The study has therefore implemented a
UNet-based model with a capability to segment the contours
of prostate glands using a U-Net architecture with a ResNet50
backbone, as described on the methodology section.

Il. BACKGROUND: HISTOPATHOLOGY AS AN IMAGING
MODALITY

Histopathology is a vital domain of biology involving study
and research of the microscopic structure of cells and tissues
within living things. It is a valuable tool for assessing the
health of organs and for detecting the presence of disease
[15], [16]. In the case of the prostate, its biological structure
typically consists of glands and stroma, with the stroma serv-
ing as supportive tissue around the gland [17]. Each gland
unit has a lumen (cavity within a gland) that is surrounded
by rows of epithelial layers. Typically, tissues are dehydrated
and embedded in molten paraffin wax after being collected
(often as biopsies) and preserved. The resulting block is
mounted on a microtome and separated into thin slices [18].
Following their attachment to microscope slides, the tissue
slices are rehydrated and made ready for staining once the
wax has been removed using a solvent [19]. One of the most
prominently used staining techniques is Hematoxylin and
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Eosin (H&E). This procedure involves applying hematoxylin
combined with a metallic salt, or mordant, followed by bluing
in moderately alkaline water. This procedure is frequently
followed by a rinse in a weak acid solution to eliminate extra
staining (differentiation) [20], [21]. Eosin (most frequently
eosin Y) is used to counterstain the tissue after hematoxylin
has been applied [18], [22], [23]. Conventionally, the results
are quite consistent, with cell nuclei stained blue and the cyto-
plasm and extracellular matrix colored pink [18]. A detailed
procedure for staining is mentioned here [24].

Ill. RELATED RESEARCH WORK

In recent years, segmentation techniques using deep learning
have provided better results as compared with many tradi-
tional implementations, contributing to further progress in
the research and development of this topic. A plethora of
related work has recently been published, particularly for the
improvement of accuracy in developing techniques for gland
segmentation from histopathological imagery [25]. Here in
this study, we primarily have focused on digital histopathol-
ogy images, but Magnetic Resonance Imaging (MRI) also has
been shown to be an effective modality for the segmentation
of prostate glands [26]. Here we also provide a review of
work performed using histopathological images for prostate
glands/ cancer cells segmentation and in the general overall
domain (breast, lung). MRI is one of the most powerful imag-
ing modality that can be used to capture detailed anatomical
information, such as structure of the prostate gland. It can also
be used to detect cancer cells in the prostate, which makes
it a valuable tool for segmenting prostate glands and cancer
cells. In this study, we used histopathology images to segment
prostate glands and cancer cells, but the technique can be
applied to other domains such as breast and lung.

Many of the studies have used CNN/U-Net as the basic seg-
mentation architecture, due to its profound results in object
segmentation and region identification in medical imaging.
Here we describe the following studies pertaining to this
architecture. Li et al. proposed a Multi-scale U-Net (with tile
size 400,200 and 100) for the segmentation of histopatho-
logical tiles into benign, stroma, G3 & G4 classes. They
compared the U-Net and Multi-Scale U-Nets Pixel-wise CNN
as a base model. They showed the superiority of having the
model trained over variable tile sizes due to their ability to
acquire global information within the region [27]. The same
authors experimented with a semi-supervised approach with
Expectation Maximization to generate pixel-wise probability
maps using variable-sized tiles [28]. Ing et al. experimented
with variants of Convolutional Nets for semantic segmen-
tation of high- and low-grade tumors [29]. Kalapahar et al.
showed the feasibility and superiority of Residual nets as the
backbone for the U-Nets, owing to their smooth gradients and
preventive actions for vanishing gradients [30].

The study of Singh et al. have used local and spatial infor-
mation to combine the findings of pixel-level classification
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into object-level segmentation for recognizing these regions
using an array of pixel and object-level classifiers [31].
Ali et al. performed multistage segmentation using wavelet
packet features and entropy values [32]. Ren et al. per-
formed semantic segmentation using an encoder-decoder
network. The sliding window approach was utilized for larger
images [33].

In their studies, Xu et al. focused on channel-based seg-
mentation with CNN (VGG Model). The three channels were
used to discriminate or segment background from foreground
pixels, to detect gland boundaries, to detect, discriminate,
or segment background from foreground pixels, and to detect
gland boundaries and individual glands. The network has
five structures for pooling with 512 x 512 x 3 as the input
shape. This model enhanced performance but suffered in
segmenting glands where the lumen is not visible, and it
could not detect glands in severe cases [34]. Silva-Rodriguez
et al. proposed a weakly supervised technique (WeGleNet)
for correctly segmenting cancerous regions in the gland cells
with global spatial information level Gleason score from the
clinical records [35].

Here we present some of the most prominent works in
the domain that can be used in prostate cancer diagnosis.
They are mainly focused on works that have published new
architectures in the deep learning domain. For example, Oda
et al. presented Boundary-Enhanced Segmentation (BESNet)
of Cells, which comprises UUNet-type structures but with
two decoders (Boundary, Region). This novel net trains on
the boundaries of the cell, and adaptively pays more attention
to difficult parts [36]. Naylor et al. devise an approach to
solving the problem of segmentation of overlapped nuclei,
by transforming the RGB space to distance maps (from the
pixels to the nearest background). A Neural net is then trained
with regression loss to minimize the predicted and actual
values [37].

The study of Graham et al. provided a unique approach
to deal with the heterogeneity in the appearance of nuclei
by building a multi-scale stain-aware network (SAM-Net)
with a unique loss function. The net exploits the residual
connections and transfers the deep feature across the layers.
The loss function is pixel-wise cross entropy weighted by a
pre-defined weight map [38]. Xu et al., proposed a Semi-
supervised multiple-instance learning technique CAMEL.
This process further refines the labels using Max-Max and
Max-Min criteria [39]. In their study, Graham et al., attempted
to tackle the challenge of indistinguishable histological struc-
tures due to variability in appearance by building a net with
Minimizing Information Loss Dilation (MILD Net). The net
re-introduces the original image multiple times to counter
the loss due to max pooling and maintains the resolution
through spatial pyramid pooling with varying dilations [40].
Mahmood et al., shows the Conditional Generative Adversar-
ial Net (cGAN) enforces consistency in higher order spatial
space which is missing in traditional CNNs. This approach
performs better for organ segmentation in peculiar cases of
overlapping nuclei [41].
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The study of Chan et al., proposed a method for iden-
tifying a region of interest in WSI. Song et al., proposed
Multi-layer boosting Sparse Convolution (ML-BSC) for bet-
tering the nuclei segmentation, by using a boosting technique
with discriminative probabilistic Binary Decision Trees as
weak learners [42]. Typically, CNNs consider instances of
images being rotated as different images and hence attempts
to learn weights specifically to each orientation. Graham
et al., incorporated G-Convolution to make them equivariant
to rotations, this is advantageous to segment regions where
there is more variation in different orientations. But this
study increased the computational loads, as it required more
kernels [43]. To produce fine and crisp segmentation maps,
a framework must be able to ingest additional information.
HookNet proposed by Rijthoven et al., attempts to com-
bine (hook) context and high-resolution information into the
network across many branches. The authors claim that the
typical confusion between class instances is reduce due to the
contextual information [44].

Atrous spatial pyramid pooling has been widely assessed
in many investigations, as it enables the capture of a detailed
view without loss of resolution. Wan et al., combined
the UNet model with the contour concave point detection
algorithm for accurate nuclei segmentation and dealt with
cases like nucleus occlusions [45]. Qu et al. entered into the
semi/weakly and self-supervised learning domain to detect
the nuclei region and to refine the segmented maps using
conditional random field loss [46]. Lal et al., proposed a
Nuclei Segmentation Net (NucleiSeg) having the residual
connection and attention module to address the variable size
and overlapping nuclei regions. The attention module (part
of decoder) specializes in object detection and reduces false
positives [47]. Furthermore, the novel approach of NucleiSeg
yielded superior results compared to the conventional
approaches and demonstrated that attention-based models
can be advantageous for biomedical segmentation tasks. It
is therefore evident that by incorporating semi-supervised
learning, weakly supervised learning, and self-supervised
learning into the model, the model can learn from both labeled
and unlabeled data, allowing it to better detect the nuclei
regions. Additionally, the residual connection and attention
module helps to address the issue of variable size and over-
lapping nuclei regions, as well as reduce false positives.

In Sections IV (and subsections), we describe the database
description and methodology of the entire process, includ-
ing the preprocessing, training, and morphological post-
processing operations. As a final step, in Section V and VI
we demonstrate Results and the Ablation Study conducted.
Lastly in Section VII and VIII we discuss the findings;
present the Conclusion and Future Works.

IV. MATERIALS AND METHODS
A. DATA

The datasets used in this work were acquired by the Divi-
sion of Pathology of the A.O.U. Citta della Salute e della
Scienza in Italy and were previously used by Salvi et al. [48].
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Following a number of quality control checks, we created two
subsets of the designated database: a TRAINING subset (with
a total of 1000 histopathological images) and a TESTING
subset (with a total of 500 histopathological images) in order
to develop and fully evaluate the proposed attention-based
model for semantic segmentation of prostate glands.

B. METHODOLOGY - DATA PRE-PROCESSING

The first step in preprocessing for analysis of histopatholog-
ical images was the normalization of the respective image.
Here we examine the theoretical underpinnings of the color
deconvolution approach and determined how hematoxylin,
eosin stains, and the stroma mask could be obtained. After
this, the stroma mask was fused with the predicted output of
the model with region and boundary channels.

The goal of color deconvolution was to distinguish between
the effects of the various dyes used during the staining pro-
cess. It is noteworthy that the hematoxylin binds itself to
the cell nuclei with a deep blue-purple color, while eosin
stains stroma with a pinkish colour. As a result, there were
two stains total since the histology slides stained with H&E.
In accordance with the Beer-Lambert law, the amount of
stain absorbed tends to determine the colour intensity that
a particular cell component is likely to exhibit. Therefore,
the logarithm of the incident ratio (/y) to transmitted (/) light
intensity is used to define a medium’s absorbance, and it may
alternatively be represented as the product of the light beam’s
path length 1, the molar coefficient (extinction) &, and the
concentration ¢ of the absorbing quantum.

I
A = —logo(-—) =¢e.cl )
Io

The input (converted into a vector) is then mapped into optical
density (OD) space using Equation 1. It is important to note
that the OD space can be utilized to separate the contributions
of each stain because the corresponding OD value of each
pixel per channel is correspondent with the concentration of
absorbing quantum. The OD of an image can be expressed as
the product of the stain appearance color matrix (W) and stain
density map product (H). This allows for the separation of an
input (RGB) image into two distinct channels, each correlated
to the concentration of the specific stain.

Once the stains are separated and estimated, they are
processed via range normalization. We have followed the
paradigm for stain normalization developed by Salvi et al.
[52]. This procedure involves normalizing the image as,
during the staining process, the histological specimen goes
through color variations after the interaction of dye and chem-
icals [53], [54]. Color normalization is the most prominent
step to standardize the stain appearance of the image (source).
This operation reduces the stain variability and improves the
robustness of computer-aided diagnostics and algorithms for
image quantification [49], [50], [51], [52].

To obtain the stroma mask, we first detected the white
regions of the images using fixed thresholding technique.
The hematoxylin and eosin stains were separated using the
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technique mentioned in [58]. To localize nuclei, we solved
an energy function Equation (2) (object-based threshold-
ing) to obtain the probability values of pixel values equal
or lower T(pp) and higher than T(p;) where in pg, p; are
the background and nuclei (pixel) distribution and T being
the threshold point. This technique (Multi adaptive nuclei
analysis) [59] helps us find the optimal threshold point for
demarcation. On similar lines, for stroma regions, two clus-
ters are identified in the Eosin Stain using k-mean clustering,
and stroma pixels are identified as the cluster with highest
intensity (mean).

E(T) = pg * varg * log (varg) + p% * vary * log (vary)

(@)

where var represents the variance of the pixel distributions.

To determine the Dice coefficient, which is a statistic used
to gauge the similarity of any two data samples, this image
was compared with the appropriate ground truth image. The
average and best values of all Dice coefficients were deter-
mined once all the pictures in a given dataset had passed the
full procedure. Figure 3 shows the entire block diagram of
post-processing operations.

C. METHODOLOGY - NETWORK ARCHITECTURE

The primary purpose of this study was to develop and imple-
ment a UNet-based model to segment the contours of prostate
glands using a U-Net architecture with a ResNet50 back-
bone. It should be noted that the study of Chen et al. [53]
has adopted a CNN trained purely on glandular regions in
order to increase the accuracy in the detection of cancer by
approximately 26.9%. It should also be noted that the net-
work follows an encoder-decoder architecture. The encoder
network, based on the ResNet50, down-samples the image
features to a lower-dimensional representation.

Immediately following this is a decoding algorithm that
is an exact copy of the encoder, except that it utilizes a
transposed convolution where the objective is to transfer all
the distinguishable features learned from the encoder onto
the higher dimensional space. This process allows for the
extraction of high-level features that are then used by the
decoder network to generate the final output. The model
output assigns a probability value to each pixel based on how
well it fits into a specific class. Consequently, this model
takes in 480 x 480 dimensional RGB images and produces
a probability map for three classes. There are three classes
of targets (pixels), namely glands, boundaries of gland, and
background. Consequently, we have adopted a method that
follows previous studies showing that such methods outper-
form traditional approaches [58].

In this study, is important to note that the encoder network
is pre-trained with ImageNet weights and is not trained [55].
During training, the weights of the lower decoder layer are
updated in order to fine-tune the network to the current
objective. This strategy enables the transferring of knowledge
about identifying basic features of images learned from the
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ImageNet weights. This approach is helpful to deal with
smaller datasets and optimize the time taken for training [56].
Additionally, data augmentation techniques were applied to
make the model more robust to variations in the images and
to prevent overfitting.

Finally, the network was trained for 100 epochs, with early
stoppage being triggered after 10 epochs of no improvement.
For each image, 9 patches were used during training, with a
learning rate of 1073 and a scheduler. The categorical cross-
entropy and Dice-Coefficient loss function and the Adam
optimizers were used. The proposed model was trained on
Google Colab Pro with NVIDIA-SMI 460.32.03 Tesla T4
GPU computer system.

D. METHODOLOGY - INCORPORATING THE ATTENTION
MECHANISM

In the field of deep learning, the attention mechanism has
played a significant role. This method allows a selective focus
on the necessary important objects (and relevant patterns) to
simplify calculation and improve accuracy. While doing so,
it pays relatively less attention to others (in this example,
concentrating on the gland region and ignoring the stromal
areas) [57].

An attention mechanism has been incorporated into the
layers to significantly improve the performance. A relation-
ship between an encoder and a decoder is what is meant by
an attention mechanism. Using this framework, it is feasible
to selectively focus on the necessary or more significant
portions of the supplied image. Additionally, it makes it easier
for the model to handle large input picture sizes.

480x480x3
480x480x3

Guided Loss
Final Qutput
_—

\J

*

240%240x64
240x240x64

Guided Loss L4
_—

+

120x120x64
v

Guided Loss L3
—

60x60x128

+
Guided Loss L2

60x60x128

+
»  ConyLayer

»  De-Conv layer

Attention Layer

Concate Layer

Guided Loss L1
—_—

15x15x512

FIGURE 1. The proposed attention-based U-Net model for semantic
segmentation of prostate glands using histopathological images.

In addition to reducing false positives, attention gates also
promote the updating of model parameters for relevant spatial
regions. The attention gate is built to accept two inputs — one
containing the spatial and contextual information, the second
being the gating signal from the decoder layer underneath it as
shown in Figure 1. The output from the attention gate is con-
catenated and further processed. A pictorial representation of
the attention gate is shown in Figure 2.
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FIGURE 2. Attention gate used to focus on important areas.

E. METHODOLOGY - MODEL DEVELOPMENT

Prior to model development, in total, we applied a 10-fold
data augmentation to each of the 1000 training images, result-
ing in a dataset of 10,000 images. Moreover, we divided
the image into nine equal-sized patches, giving the model
a total of 90,000 images. The segmented output result is a
hybrid instance level process which fuses the region, edge
and stroma mask to obtain the final (before post processing)
image. Figure 3 shows the entire process of the fusion of
images.

Next, we trained the model using the Dice Loss and Cross
Entropy Loss metrics across each encoder layer, which is
referred to as the guided loss, or GL. As there are four decode
layers, the summation was weighted, with the highest 50%
to the last layer and equal weight assignment to the rest of
12.5%. Ultimately, the output was acquired only from the
last layer following the mathematical expression for the loss
function:

LExp = wDiceLDice + wCrossLCross 3)

where, wDice and wCross are the respective weights of
the Dice loss (LDice) and the weighted cross-entropy
(LCross).

The images were divided into 9 patches of dimension
480 x 480 each as a requirement since training on a large
image (of dimension 1500 x 1500) was computationally
expensive. By computing more images with a smaller size,
the model is able to train faster and more efficiently. Figure 4
displays flowchart of the modelling process.

The modification taken over each process is shown in
Figure 5.

F. METHODOLOGY - POST-PROCESSING OPERATIONS

Although CNN'’s semantic segmentation can accurately iden-
tify most glandular areas, it may not recognize all of them.
As a result, it is possible for the CNN output to contain
incorrect or incomplete gland outlines. The proposed strategy
uses a hybrid segmentation approach based on identifying all
the stromal areas, which in practice means locating anything
that is not a gland, as direct segmentation of the prostate
glands is a difficult task. During the stroma segmentation, the
background of glands can be identified, allowing the glands
to be recognized more precisely. Stroma recognition is easier
than gland detection due to the great variety of glandular
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FIGURE 3. Process to obtain the fused images for constructing and evaluating the proposed
attention-based U-Net model for semantic segmentation of prostate glands.

Input Image Ground Truth
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= coefficients
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FIGURE 4. Flowchart of the methodology to showcase the schematic
representation of the algorithm.

Input Image Model OQutput

Ground Truth

After Post-processing 1

FIGURE 5. The results showing the image after the processing operations.

patterns, especially in diseased conditions. To identify all
stromal regions, a BGR image combining structure-based
detection and CNN output is produced. To identify every
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stromal area, the suggested technique applies a SoftMax-
driven active contour model to the fusion (final) image.

One popular robust and adaptable technique called the
Chan-Vese model for active contours [60] has the ability to
segment a wide variety of pictures. These include an image
that could be very challenging to segment especially when
using ““classical”” segmentation techniques (e.g., thresholding
or gradient-based techniques). This approach is based on
the Mumford-Shah functional [61] for segmentation built on
energy minimization issues.

To describe this model, let €2 be an open bounded set of R2,
with d€2 its boundary. Let ko: 2 —R be a given image and
C(s) is a piecewise parameterized representation of Cj [0, 1]
a curve. The region inside C is denoted by w, and the region
outside C as 2 \ w. Moreover, C; denotes the average pixel
intensity inside C, and C, will denote the average intensity
outside C (i.e., C; = C1(C), C» = C2(C)). The region for
the objective function is shown in Figure 6.

The objective of Chan-Vese algorithm is to minimize the
energy functional F(Cy, C», C) defined by:

F (Cy, Cy,C) = p.Length (C) + v.Area (inside (C))

+M]§ o (x, ¥) — €1 Pdxdy

#ha f oy - bty @
Here the first and second integral are for inside and outside C
region where in i, A1, A2 > 0 and are hyperparameters.

Hence, we are in search of the best values of Cy, C;, and
C to minimize the above-mentioned function. In the level set
method, C C  is represented by the zero-level set of some
Lipschitz function a: 2 — R

Which can also be written as

&)

108987

C=dow= {(x’y)Q : oz(x,y) = 0}



IEEE Access

M. A. Inamdar et al.: Novel Attention-Based Model for Semantic Segmentation of Prostate Glands

FIGURE 6. The region for the objective function.

Inside (C) =w = {(x,y) Y «a (x,y) > 0}} 6)
Outside (C) = Q\w = {(x,y) 2V «a (x,y) < 0} @)

Hereby, now framing the question which involves, evolving
«(X,y), when the evolved contour C in each time t is the
zero-level set «(X,y),

Hence, the final function in terms of «(x,y) will be

F(C1, o C) = u.ffxa (x, y) [9et (x, y)| dxdy
vf. H (o (x,y))dxdy

+ Mf luop (x,y) — C11*H (& (x, y)) dxdy

+ Azf o (5. y) — Co2 H (1 —  (x, y)) ddy

®)
where, H is a pointwise function. Figure 7 shows the obtained
output using the Chan-Vese Algorithm.

As a result of the CV algorithm, the output image was
subjected to morphological operations including erosion,
dilation, contour identification, convex hull [62] and filling.
It is important to note that we have used bounding contours to
minimize dilation and improve results. Our final step was to
limit the presence of objects with a minimum area to remove
unnecessary regions.

V. RESULTS

In order to test the proposed attention-based U-Net model
for semantic segmentation of prostate glands and interpret
our findings, we have used the Dice coefficient, which mea-
sures how similar any two binary masks are by comparing
them directly. In the Dice analysis approach, a coefficient
ranges between 0 and 1, with a value near to 1 suggesting a
greater degree of resemblance. To assess model performance,
we compute the average Dice coefficient of the training or
testing dataset. Figure 8 shows the Dice scores and Intersec-
tion over Union (IoU) values of 5 images randomly sampled
from our test dataset, along with the respective images:
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FIGURE 7. Original image and output from Chan-Vese algorithm.

Input Image Ground Truth Qutput Result

DC:0.9387

loU:0.8844

DC:0.8811

loU:0.7408

DC:0.961

lol):0.8198

DC:0.7195

loU:0.8232

DC:0.9354

loU:0.8788

FIGURE 8. Samples outputs from the tested dataset utilizing the
attention-based U-Net model for semantic segmentation of prostate
glands.

The proposed model appears to have performed much
better in the task. Table 1 compares and summarizes the
results.
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TABLE 1. A summary of the results obtained from previous investigations.

Authors Dataset

Results

Ltjetal.;[27] Pvt Dataset

10-fold cross validation 65.8%
JACC across stroma, Gleason 3,
Gleason 4 and benign glands; and
75.5% across (stroma, benign
glands, prostate

cancer

Ltjetal.; [28] Pvt Dataset

Semi-supervised approach 49.5%
on an independent set

Ing et al. [29] Pvt Dataset

FCN-8s: mIOU of 0.759 and an
ACC of 0.87,

two SegNet variants, and multi-
scale U-Net: mIOU of 0.738 and
accuracy of 0.885.

Kalapahar et al. [30] Pvt Dataset

Pixel-level Cohen’s quadratic
Kappa of 0.52 using ResNets

Singh et al. [31] Pvt Dataset

DC 0.5203 + 0.2517 (Train)
DC 0.4931 + 0.2557 (Test)

Ali etal. [32] Pvt Dataset

Bin Acc: 90%

Ren et al. [33] Pvt Dataset

DC 0.8394 + 0.1382 (Train)
DC 0.8308 + 0.1495 (Test)

Xu et al. [34] Pvt Dataset

DC 0.8106 + 0.1257 (Train)
DC 0.8079 + 0.1264 (Test)

Rodriguez et al. [35] Pvt Dataset

pixel-level kappa of 0.61 and a
macro-averaged F1-score of 0.58,

Salvi et al. [48] Pvt Dataset

DC 0.9073 + 0.0989 (Train)
DC 0.9016 + 0.1087 (Test)

Our proposed method Pvt Dataset

Best

DC 0.9978 (Gland) (Train)
DC 0.9787 (Tumor) (Train)
DC 0.9682 (Gland) (Test)
DC 0.9611 (Tumor) (Test)
Average

DC 0.9328 (Gland) (Train)
DC 0.9217 (Tumor) (Train)
DC 0.9111 (Gland) (Test)
DC 0.9043 (Tumor) (Test)

JACC: Jaccard Index, ACC: Accuracy, mIOU: mean Intersection over Union

In this study, K-fold cross-validation (with 10 splits) was
conducted to validate our results. Initially, the dataset was
divided into 10 equal parts, nine of which were used for
training, and the remaining part for testing. In this manner,
all combinations of partitioned data parts were incorporated
into training and testing. This process yielded an average Dice
coefficient of approximately 0.92+0.0011 (for the Glands)
and 0.9140.0041 (for the Tumors). Thus, it can be said that
post-processing techniques, especially morphological opera-
tions, improve Dice scores.

When evaluating the model with performance metrics,
the output masks were assessed based on Precision, recall,
IoU and Dice scores. The precision is meant to assess false
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positives; the recall is meant to assess the model’s accuracy
in selecting the outputs in designated pixels; and the Dice
score measures the intersection of two masks. Table 2 shows
the magnitude of the metrics during training the model, and
Figure 9 shows how recall and precision vary over epochs. It
is evident from these results that our model is generalizable in
the sense that it can adapt to new data images and still produce
credible results.

VI. ABLATION STUDY

In this research, in addition to presenting the efficacy of
the attention-based U-Net model for semantic segmentation
of prostate glands, we have performed ablation studies to
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TABLE 2. The results with more metrics of the proposed attention-based
U-Net model for semantic segmentation of prostate glands.

METRIC TYPE METRIC VALUE
SENSITIVITY 0.8818
SPECIFICITY 0.9987

PRECISION 0.9822
= Recall Precision

1.2

1

‘E 0.8
5

g 06
S

S 04

0.2

0

1 6 11 16 21 26 31 36 41 46 51 56
Epochs

FIGURE 9. The performance metric represented as the Recall vs. Epochs,
and Precision vs. Epochs.

provide an in-depth look at each proposed module’s con-
tribution within the proposed overall architecture, to gener-
ate the results. With the State-Of-The-Art (SOTA) models,
we conducted ablation studies on the proposed module and
corroborated the claims. It is noteworthy that the skip links
in U-Net can serve as communication channels between the
corresponding encoding and the decoding layers.

In reality, U-Net serves as the framework for the proposed
model, but it does lack distinct network highlights, resulting
in a segmented image that is significantly less realistic. Addi-
tionally, the fundamental idea of residual blocks is related to
the addition of an ““identity connection’ that can cross several
layers. With this link, the current layer’s result is combined
with the input from the preceding layer, and the input for the
next layer is the sum of these outputs.

During our ablation studies, the residual connections have
also been added to the UNet model’s design to address the
degradation and saturation problems, as well as to extract
additional features at each layer. In principle, the Res-UNet
model provides better segmentation quality than the UNet
model when residual connections are combined with it. By
restricting activations to relevant regions, the attention gate
improves spatial precision at each layer. As a result, segmen-
tation correctness was improved in terms of the Dice score
and the mean value of the Intersection Over Union (IoU) with
attention gates over the backbone.

In Figure 10, we show the comparison between learnings
of mid-layers of the net with- and without the Attention

108990

Mechanism in order to demonstrate the importance of this
module on the overall efficacy of the proposed U-Net model.
Evidently, the learning curve i.e., the curvatures with the
proposed attention mechanism appears to be similar to the
ground truth value. Nevertheless, the guided decoding stage is
the network’s primary architectural feature, which enhances
the learning process by incorporating it at the individual
layers. As a result, the segmentation outcomes have been
further enhanced by the better development of features and
their use in the overall loss function.

Here we wished to connect the interpretability of the model
(through Figure 10) with the Explainable Artificial Intelli-
gence (XAI) [65] which recently has been gaining tremen-
dous popularity in the Al domain. While the terminology is
new, the concept of making the system’s working components
interpretable and explainable has been already established.
This includes the introduction of ethics, security and fairness
to the system; and removal of ‘favoring’ and ‘ignorance’
related to a specific class. In this study, we attempted to
understand the working of the model specifically regarding
the proposed attention module, hence exploring it through the
‘Model specific approach’. In the Figure 10, as explained in
that section, we show the outputs from the decoder part of
U-Net. It could be seen that the model makes an informed
decision (of predicting a pixel values) by cumulative loss
gathered by its previous loss (except the first). This could also
be corroborated by the gradual decrease in the Guided Loss
across the decoder part.

Table 3 shows the quantitative contrasts demonstrated
between the objective model on predominantly employed
architectures. It is evident that the highest dice score and
IOU were generated by the proposed ResNet U-Net with
Attention, followed by the InceptionResNetV2 U-Net and
the ResNet U-Net model. Therefore, the presented results
demonstrate that the proposed model has achieved a superior
segmentation accuracy relative to several SOTA models.

As an additional task, we have trained our objective model
using two main types of loss functions, namely the Dice loss
and the weighted cross-entropy loss function. In order to find
the best combination among each, we experimented with all
these combinations and exploited the best technique. Table 4
shows the results. According to our results, Cross-Entropy
with Dice Loss is the best loss function for this application.

VII. DISCUSSION

The domain of prostate cancer detection has been of particu-
lar interest to many research efforts. This interest stems from
the fact that it is challenging both in terms of pattern recog-
nition and classification, due to the overlap in the featuring
and similarity in identifiable patterns [63], [64]. Several open
segmentation and classification tasks in leading competitions
have demonstrated remarkable results using deep learning
techniques. These are based on the Gleason score, the most
trusted method, but they still suffer from internal variability.
Our study presents an improved segmentation algorithm for

VOLUME 11, 2023



M. A. Inamdar et al.: Novel Attention-Based Model for Semantic Segmentation of Prostate Glands

IEEE Access

Layer 1

Layer 2

a) Resnet with Attention Layer

Layer 1 Layer 2

Layer 4

b) Resnet without Attention Layer

FIGURE 10. Comparative analysis of intermediate layers with, and without the attention mechanism with left begin with attention layer and the

right without the attention layer.

TABLE 3. Comparison of the proposed attention-based U-Net model for
semantic segmentation of prostate glands relative to the other model
architectures. The best model is boldfaced.

METHODS DICE SCORE 10U
INCEPTIONRESNETV 0.8921 (Mean) 0.875 (Mean)
2 U-NET
0.9413 (Best) 0.9231 (Best)
0.8325
0.8892 (Mean) (Mean)

RESNET U-NET

09112 (Bes) ) 8929 (Best)

RESNET U-NET

WITH ATTENTION 09278 (Mean)

0.91 (Mean)

0.9788 (Best) 0.9574 (Best)

(OBJECTIVE MODEL)

healthy versus cancerous glands. With the addition of the
Attention mechanism to the current method (U-Net), we have
been able to streamline the focus areas and better delineate the
glands.

Although our method focuses solely on CNN-based seg-
mentation, the use of appropriate post-processing tech-
niques and attention mechanisms contributed significantly
to the improved results. Moreover, we believe that enlarg-
ing the dataset to include more variation in terms of region
and conditions enhance the model robustness and improve
its performance. Additionally, we are confident that the
proposed model, when combined with hybrid techniques,
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TABLE 4. Comparison of the proposed attention-based U-Net model
using a range of loss functions. The best model is boldfaced.

DICE
LOSS VARIANTS SCORE 10U
0.9064
DICE LOSS (Mean) 0.8853(Mean)
WEIGHTED  CROSS  0.8973
ENTROPY (Mean) 0.8762 (Mean)
DICE LOSS WITH
WEIGHTED ~ CROSS o -
ENTROPY ~
o) (Moan) 0.910079 (Mean)
(OBJECTIVE MODEL)

has the potential to yield even better results in future
implementations.

To instill further confidence in the proposed model and to
prove its superiority we conducted the ablation study sum-
marized in Figure 10, which clearly shows the effect of the
attention mechanism. The two subplots depict the mid layer
outputs of the model. The pictures have been produced by
up-sampling the outputs from the respective layers. These
mid-layers are the ones where the guided loss is being added
and evaluated. It is evident that the outputs delineation (with-
out the post-processing) is improved in the model with the
attention module. This is mainly due to a special focus on the
specific regions given by the attention module. Experimenta-
tion with different combinations of loss function is conducted
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and shown in Table 3, which shows that the employed com-
bination works best especially in such scenarios. Overall,
the presented study demonstrates an approach for segmenta-
tion of gland and cancerous cell regions in histopathological
images with a novel attention mechanism and a combination
of loss function for achieving better results.

In terms of output, the attention module with dual com-
bination of loss function works much better, as shown in
Table 3 and 4. The dual loss combination, i.e. Dice coefficient
and cross entropy, focuses on each pixel level correction
with accurate border delineation. Notwithstanding, in terms
of computational complexity the model is bulky, and consists
of many learnable parameters, enabling the model to extract
and learn the hidden patterns, but at a cost of being resource
intensive. Knowledge distillation [66] could help in reducing
the resources and to trim the model with the same output
results.

VIil. CONCLUSIONS, LIMITATIONS AND FUTURE WORKS
Based on histopathology imagery, a novel Attention Res-
UNet model has been developed for the segmentation of
prostate glands. The results demonstrated that the model
learns from Guided loss at each decode layer, resulting in
refined feature maps. In the future, improved combinations
of loss functions may be used in conjunction with weight
optimization procedures. With respect to the limitations of the
present study, we note that a larger network was used, conse-
quently, requiring a substantial computation time. Therefore,
future studies could investigate and optimize the network size
versus performance efficiency of the proposed Attention Res-
UNet model based on ablation-based studies. Furthermore,
the current training procedure could be further improved
by considering more sophisticated optimization strategies,
such as adaptive learning rate and momentum, which have
been successfully proven in the field of deep learning. Addi-
tionally, a deeper investigation of the model performance
improvement under varying network sizes should be con-
ducted in future studies.

Inculcating XAl techniques into our study was done to
debunk the ‘black-box’ notation prominently given to DL
models due to their predictions made without valid decision-
making logic. The presented combination of Guided Loss
function enhances the learnability of model through the lay-
ers, and the attention module enables it to provide special
focus to specific regions for better precision and accuracy.
Our paradigm has the potential to greatly improve healthcare
services for quick and better identification of major diseases,
while providing interpretable insights. As a future direction
to the work, we think that XAl techniques will greatly add to
the value of this domain, particularly in terms of visualization
and the working of the model, and to understand the back-
end logics prior to making decisions, such as discrimination
within class region.
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