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Abstract—Recently, research has been focusing on the 
development of artificial intelligence ultrasound beamforming 
methods to improve the contrast and resolution of B-mode images. 
In this work, we propose an innovative beamforming domain 
transfer method using a generative adversarial network (GAN). 
The GAN takes as input a plane-wave (PW) delay and sum (DAS) 
image and generates an image as if it had been acquired using the 
focused modality and reconstructed with the filtered Delay 
Multiply and Sum (F-DMAS) beamforming technique. A 
Verasonics Vantage 256 system (L11-5v linear array) was used to 
acquire 560 (480 and 80 for train and test set, respectively) in-vivo 
musculoskeletal US images. Images were acquired on five muscles 
(gastrocnemius lateralis, gastrocnemius medialis, vastus lateralis, 
vastus medialis, and biceps) on both sides of 14 healthy volunteers 
(50% female). RF data were acquired both in plane-wave (PW) 
and focused mode and beamformed using the UltraSound ToolBox 
(USTB). The DAS beamforming method was employed for PW 
data, whereas the focused data were reconstructed using F-DMAS. 
Various dynamic ranges (dR) were employed to create the final 8-
bit PW DAS images (dR = 55, 65, 75, 85 dB) while an automatic 
dR was employed to optimize focused F-DMAS images. A Pix2Pix 
GAN architecture was designed to formulate the task of 
beamforming as the translation from one domain (PW DAS 
image) to another (focused F-DMAS image). Our GAN employed 
a UNet as the generator and a 3-layer fully convolutional 
PatchGAN as the discriminator. The proposed GAN architecture 
shows promising results, generating a GAN image comparable to 
the F-DMAS image, i.e., in terms of SSIM (0.5183 ± 0.0437 and 
0.5152± 0.0519 for GAN images vs DAS images and F-DMAS 
images vs DAS images). Overall, our GAN enhances image quality 
and simulates focused F-DMAS beamforming starting from a PW 
DAS image without needing to access the raw RF data, which is 
typically unavailable with clinical ultrasound devices.  

Keywords— ultrasound image enhancement, ultrasound 
beamforming, deep learning, generative adversarial networks, 
filtered delay multiply and sum beamforming 

I. INTRODUCTION 
Ultrasound (US) imaging is widely used in clinical settings, 

as it is a non-invasive and safe method [1]. B-mode images are 
reconstructed from the raw radiofrequency (RF) data acquired 
by the transducer through a process called beamforming. In 
addition to the traditional beamforming Delay and Sum (DAS) 
method [2], there are several alternative methods that aim to 
improve image quality in terms of resolution and contrast, such 

as filtered Delay Multiply and Sum (F-DMAS), minimum 
variance (MV), and coherence factor (CF) methods [2]–[6].  

In recent years, several deep learning models have been 
proposed for beamforming and enhancing ultrasound images 
[7]–[13]. The first works aimed to develop deep learning models 
that optimize specific steps of the beamforming technique, such 
as the estimation of apodization weights in the minimum-
variance methods [8]. Other studies showed the feasibility of 
using deep learning models for the formation of high-quality 
images from RF data acquired in plane-wave mode and synthetic 
aperture with a subsampled array [7], [11]. Several deep learning 
models have also been developed for simultaneously producing 
the beamformed image and segmentation masks of circular 
structures present in the image [12], [13]. Nair et al. 
[14]developed the first model based on a Generative Adversarial 
Network (GAN) for producing a DAS-like image and 
segmentation mask from RF data. Other studies designed a GAN 
model for the beamforming task [15]–[17]. 

However, all these methods show some limitations. All 
models were trained with raw data, which are often very difficult 
to obtain from conventional ultrasound scanners. This entails 
using mainly simulated data to train the models, which limits the 
model's generalizability and performance on experimental in-
vivo images. Furthermore, models were often trained with 
images generated with standard visualization parameters, such 
as a dynamic range (dR) value of 60 dB for all image types. 
Using a standard value of dR, some images may not be optimally 
displayed. In addition, most of the models focus on generating 
images in PW mode, although the focused mode is more widely 
used in clinical settings.  

The aim here is to propose a novel beamforming domain 
transfer method to improve PW DAS image quality by 
replicating focused imaging with F-DMAS using a GAN, 
without the need to access raw RF data. This is obtainable thanks 
to the paradigm shift proposed here in using a Pix2Pix GAN 
architecture for direct domain transfer from the pixels of the 
reconstructed PW DAS image to those of the focused F-DMAS 
image. The rest of this paper is organized as follows: Section II 
describes the dataset, the network architecture, and the training 
modality; Section III reports the results obtained using our 
model; Section IV includes a discussion about the results and 
future works. 



Fig. 1.  Overview of our GAN-based beamforming domain transfer algorithm. The PW DAS image is used as the source domain, while the focused F-DMAS 
image is employed as the target domain. The output of the Generator (generated image), together with the actual F-DMAS image, is passed to the Discriminator 
(D).    

II. MATERIALS AND METHODS 

A. Dataset  
Fourteen healthy volunteers were enrolled for dataset 

creation. The study protocol was approved by the Local Ethics 
Committee and all enrolled subjects signed an informed consent 
before the acquisition.  The Verasonics VantageTM Research 
Ultrasound System was used to acquire RF data from 5 different 
muscles (gastrocnemius lateralis, gastrocnemius medialis, 
vastus lateralis, vastus medialis, and biceps) on both sides (right 
and left). Musculoskeletal ultrasound images were considered 
based on previous studies that have shown how a quantitative 
texture analysis can discriminate between healthy and 
pathological images of the muscles and tendons [18], [19]. An 
ad-hoc Verasonics acquisition protocol was written to acquire 
PW and focused images simultaneously, which were then 
beamformed using the USTB Toolbox [20]. The DAS method 
was used to reconstruct the PW images, while F-DMAS was 
employed for RF data acquired in the focused mode.  Four 
different values of dR were employed to display the PW DAS 
images (55, 65, 75, and 85 dB), while an automatically adjusted 
dynamic range value was used for the focused F-DMAS images 
[21]. The final dataset included 560 in-vivo musculoskeletal US 
images, 480 for the training set, and 80 for the test set. The 
training set was subject-specific, meaning that all images 
acquired from subjects of the test set were present only in the 
test set. In this way, the model was tested on all muscle images 
(gastrocnemius lateralis, gastrocnemius medialis, vastus 
lateralis, vastus medialis, and biceps) of unseen subjects. 

B. Generative Adversarial Network (GAN)  
We present here a GAN for domain transfer between US 

images, from PW DAS to focused F-DMAS images. GANs are 
unsupervised generative networks that take advantage of 
adversarial training [22].    

 

 

Adversarial training consists of a generative and a 
discriminative model trained through an objective function 
using a two-player min-max game. The model trains so that the 
generator learns to fool the discriminator by generating images 
as similar as possible to the target, while the discriminator 
classifies the image as real or false, trying not to be fooled. In 
this study, a Pix2Pix GAN was developed for the beamforming 
domain transfer task. Our GAN employed a UNet architecture 
[23] as a generator network and a three-layer fully convolutional 
PatchGAN [24] as a discriminator. This framework allows the 
architecture to learn a direct pixel to pixel image transformation, 
conditioned on the input image. The input size of both generator 
and discriminator was set to 2048x2048 pixels (original size of 
the US images employed in this study). Fig. 1 displays the 
overall architecture of the GAN. 

Both generator and discriminator models were trained with the 
Adam optimizer with an initial learning rate of 10-4 for 150 
epochs, and the entire models were updated every 16 images 
(batch size). The training was performed on a NVIDIA RTX 
3090 24 GB using Pytorch framework. After training, the best-
stored model of the generator was selected according to loss 
values. 

C. Validation parameters 
Two rectangular regions of interest were selected in the 

muscle images to estimate the contrast, generalized contrast to 
noise ratio (gCNR) [25], signal to noise ratio (SNR) [26] and 
peak SNR (PSNR) [26]. We placed one ROI inside the muscle 
(ROI1) and the second one on the aponeurosis (ROI2). Fig. 2 
shows an example of the ROIs in an example vastus lateralis 
image. Structural Similarity index (SSIM) and root-square-
mean error (RMSE) were computed on the entire images. These 
validation parameters were chosen as image quality indices 
(contrast, gCNR, and SNR) and similarity indicators between 
the F-DMAS and GAN image (PSNR, SSIM, and RMSE). To 
estimate the similarity between the real F-DMAS and GAN  

 

 



Fig. 2.  Comparison between the real DAS, real F-DMAS and GAN images 
for two sample muscles of the test set.  

image, PSNR, SSIM, and RMSE were computed by comparing 
the F-DMAS image with the DAS image and the GAN image 
with the DAS image. 

III. RESULTS 
The results of the validation metrics are listed in Table I and 

II. Table I reports the quality metrics estimated in DAS, F-
DMAS and GAN images. Table II reports the similarity metrics 
between F-DMAS and GAN images. 

 Contrast, gCNR, and SNR values show that the F-DMAS 
and the GAN images are comparable. Indeed, the metrics values 
estimated in GAN images are similar to the values estimated in 
F-DMAS images (gCNR=0.44± 0.11 vs 0.43± 0.11 for the F-
DMAS and GAN images), while differing from those of DAS 
images (gCNR=0.37± 0.15 vs 0.43± 0.11 for DAS and GAN 
images). The obtained PSNR, SSIM, and RSME values 
demonstrate that the focused F-DMAS images and GAN images 
are comparable, showing similar values when computed in 
comparison to the PW DAS images (Table II). Fig. 2 shows the 
comparison between the real F-DMAS and GAN images of two 
example images of the vastus lateralis and gastrocnemius 
lateralis muscles, which were generated from the PW DAS 
images of the test set. 

IV. DISCUSSION 
In this work, we propose a Pix2Pix GAN that is designed to 

formulate the task of beamforming as the translation from one 

domain (DAS PW image) to another (F-DMAS focused image), 
enhancing image quality and simulating the F-DMAS 
beamforming method without the need to access RF data, which 
is typically not available with clinical ultrasound devices.  

The developed model makes it possible to obtain enhanced 
ultrasound images with increased contrast and resolution that is 
observable with the F-DMAS beamforming method, starting 
from an already reconstructed PW DAS image. This can be 
useful for both clinical and quantitative analyses, for example, 
texture parameter analysis, which can be influenced by the 
beamforming method [27]. In addition, enhanced image quality 
can help the quantitative analyses to determine tendon 
abnormalities [18] or for the assessment of changes in muscle 
mass and structure in patients with steroid myopathy [19]. 

The proposed approach overcomes some of the major 
limitations of previous works in literature [7]–[13], [28]. The 
first advantage of the proposed model is the possibility of 
improving image quality by generating an image with a different 
acquisition mode from the original one. In fact, the model 
generates an image as if it were acquired in focused mode 
starting from an image acquired in PW mode. Our model is 
therefore useful for improving PW DAS image quality, and 
unlike other studies in the literature, [8], [12], [13], it does not 
require raw data which are often not accessible from clinical 
ultrasound devices. Furthermore, our dataset consists of 
experimental in-vivo muscle images, which were acquired using 
the Verasonics VantageTM research ultrasound system and not 
simulated data, as is usually the case [8], [12], [13]. 

 Moreover, the proposed model also takes into consideration 
the optimization of visualization parameters, such as the 
dynamic range. Indeed, by training the model with images 
obtained with various dR values as source images coupled with 
one image obtained with an optimized automatic dR as the 
target, the model learns not only the pixel-to-pixel translation 
between beamforming methods, but it also learns to generate 
images with an optimized dynamic range value [21], which 
improves visualization.  

TABLE I.  VALIDATION METRICS IN THE TEST IMAGES USING MANUALLY 
SELECTED ROIS. CONTRAST VALUES ARE EXPRESSED IN DB 

Metrics  PW DAS Focused F-DMAS GAN images 

Contrast 
(dB) 

3.02± 5.27 2.05± 0.32 2.10± 0.37 

gCNR 0.37± 0.15 0.44± 0.11 0.43± 0.11 

SNR 4.45± 2.24 2.48± 0.52 2.44± 0.46 

 

TABLE II.  PSNR, SSIM, AND RSME ESTIMATED IN TEST IMAGES. 
PSNR VALUES ARE EXPRESSED IN DB 

Metrics PW DAS vs 
Focused F-DMAS 

PW DAS vs 
GAN images 

PSNRROI1 (dB) 18.25±3.39 18.38±3.31 

PSNRROI2 (dB) 16.40±3.04 16.02±3.02 

SSIM 0.5152 ± 0.0519 0.5183 ± 0.0437 

RMSE 47.92 ± 13.17 48.62 ± 13.51 
  

 



This work is not free from limitations. First, the proposed 
model was trained and tested using only musculoskeletal 
ultrasound images. In future works, we will investigate the use 
of the proposed model with B-mode images acquired from 
different locations, such as the carotid artery or the thyroid. 
Moreover, the proposed GAN model can only be used to 
generate focused F-DMAS images. However, in the literature, 
there are several other beamforming methods that can improve 
image quality and can therefore be employed for image quality 
improvement [3]–[6].  

V. CONCLUSION 
In this work, we present a novel method of beamforming 

domain transfer that does not require access to raw RF data. This 
is obtained through a GAN that generates a focused image as if 
it were reconstructed by the F-DMAS method starting from an 
image acquired in PW mode and reconstructed by the DAS 
method. Overall, promising results have been obtained, which 
encourages further analyses aimed at generalizing the use of 
GANs for the pixel-to-pixel enhancement of ultrasound images. 
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