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Abstract

Porous media systems are relevant in many research fields of chemical engineering:
packed bed catalytic reactors, filters, subsurface applications like carbon capture and
storage, and batteries. The microscale modelling, i.e. pore-scale, of a representa-
tive volume of the porous structure is a state-of-the-art methodology to obtain the
accurate evaluation of transport related properties, such as reaction rates or filtration
efficiencies. Computational fluid dynamics (CFD) has been widely employed to this
end. Nevertheless, these microscale simulations are computationally expensive, in
fact, high performance computing (HPC) systems and long computation times are
usually required to numerically solve the transport equations. Thus, these models
can hardly be integrated in multiscale modelling, or optimization workflows, where
fast response models are needed. Machine learning, and in particular deep learning
techniques, can be employed to train data-driven models as surrogates of CFD simu-
lations. Starting from a CFD based dataset, neural networks can be trained to obtain
accurate predictions of the quantities of interest, resulting in a fast surrogate model
to employ in the above-mentioned examples.

This methodological dissertation is a benchmark for the use of neural networks
as surrogate models for flow and transport in porous media. Two main applications
have been studied: the filtration of colloids in packed beds, and the discharge of the
cathode side of lithium-ion batteries. Even though these applications are governed
by very different transport equations, both reactive problems were successfully
modelled by neural networks, which is the main novelty of this work. In fact, main
efforts of this kind of machine learning coupling in the literature are addressed to the
prediction of the permeability of porous media, which is a geometry related factor,
but fewer have tackled more complex problems of common interest in chemical
engineering, with machine learning techniques. For the filtration case study two
categories of data-driven models have been developed: networks for the prediction of
integral properties, and networks for the prediction of local fields. The dataset for the
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training of those models has been created by the solution of the transport equation
on bi-dimensional and three-dimensional sphere packings by means of a finite
volume method. In the first case, simple fully connected neural networks have been
trained for the prediction of both the permeability and the filtration rate starting from
hand selected geometrical parameters, and operating conditions. Another approach
implemented for the prediction of the same objectives is the use of convolutional
neural networks (CNN), which are appropriate models for porous media applications
since they allow images of the porous structure as inputs, in this way the choice
of most relevant geometrical features is performed by the network itself. Instead,
multiscale convolutional neural networks have been employed for the prediction of
local concentration fields in porous media. In this case the dimensionality of the
model is not reduced, resulting in a complete surrogation of the CFD simulations,
thus the trained model gains interpretability compared to the previous ones.

The lithium-ion batteries case study allowed us to face a transient problem: in
order to do that, the time-dependent discharge of the cathode side of a lithium-
ion battery has been modelled by a modified multiscale neural network. For this
application, an autoregressive approach has been conceived and an appropriate
training strategy has been tailored in order to obtain accurate fields of concentration
and potential in the solid phase of the electrodes, both of which exhibit an evolution
in time during the discharge process. This method turned out to be a reliable and
accurate surrogate model for the prediction of discharge curves, also on new cathodes
geometries not originally investigated with the physics-based CFD model.

This dissertation proves the feasibility of training robust neural networks models
for different applications of flow and reactive transport in porous media. The guide-
lines presented in this work are meant to be employed to build accurate surrogate
models for multiscale models and optimization workflows not only for porous media
as proven here, but in general for complex reactive and transport systems of interest
for chemical and process engineering.
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Chapter 1

Introduction

Machine learning, in particular deep learning models, recently gained a lot of
interest in the research community. The application of these techniques in physics,
engineering, and, in general, in the computational field is increasingly catching up
attention in the machine learning community [8]. This methodological thesis is a
benchmark for the employment of deep learning models for systems of interest in
chemical engineering: flow and transport in porous media, specifically filtration
in packed beds, and lithium transport in lithium-ion batteries. From simple input-
output models to time dependent deep neural networks, this dissertation provides the
workflows, the computational details, and a critical discussion on the employment of
these models in the computational chemical engineering related to porous media.

In this introductory chapter the perspectives of machine learning in chemical
engineering are discussed in Section 1.1, while a literature review for the application
of deep learning in porous media modelling and the thesis outline are presented in
Section 1.2.

1.1 Machine learning in chemical engineering

Computational modelling is huge in chemical engineering. In the investigation
of (molecular) transport phenomena a plethora of methods and tools are involved
ranging from ab initio quantum chemistry methods, classical full atom and coarse-

Portions of the content of this chapter appear, in a modified form, in Marcato et al. (2023)[7]
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grained molecular dynamics methods, mesoscopic methods, continuum models,
among which computational fluid dynamics (CFD), chemical reaction engineering
models and process models. Each of these tools is characterized by a certain degree
of empiricism, which increases when moving from ab initio calculations to process
modelling. The computational models available nowadays are more complex than
the ones employed in the past, but it is still possible to distinguish between first-
principle models and data-driven models. In first-principle models, when a certain
degree of disagreement with experimental data is observed, the theory and the
hypotheses are improved. In data-driven models, in case of disagreement, the dataset
is improved. Indeed, also in first-principle models, there are unknown parameters,
that are identified through fitting, but still the difference persists.

In this context it is also useful to reflect on why models are employed. One
reason is because by building the model a deeper understanding of the problem is
gained. In this first case first-principle models are usually employed. Another reason
is because quantitative reliable predictions are needed for designing a process, for its
optimization, or for scaling purposes. In this context the main target is an accurate
prediction, not the deeper understanding of the physical problem. In this second case
a data-driven model can indeed be employed. In many cases one does computational
modelling for both reasons.

An example of data-driven models are machine learning models. The main issue
in facing a problem with machine learning is the necessity of a large amount of data,
usually referred to as “big data”. In many contexts huge datasets are available, as
for example, for social media and search engines. In chemical engineering this “big
data” is not always there, except if the data is produced already within a computer,
as it is the case with computer simulations obtained from computational models.
This is very easy to realize now, thanks to high performance computing, software
orchestrators, and high throughput workflows, which allow to produce a huge amount
of simulation data in a short time and at little cost.

High performance computing (HPC) represents a good reason why machine
learning is now so popular. Especially with graphical processing unit (GPU) ar-
chitectures, a large amount of data can be collected, stored and employed to train
data-driven models. Another reason for the recent increase in popularity of machine
learning is the availability of libraries that are easy to use and integrated into com-
plex workflows. In fact, even though the fundamentals of the deep learning theory
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have been introduced before the 90s, only with the advent of the CUDA platform
in 2007, the training of those algorithms became computationally feasible for the
practitioners of machine learning (i.e. data and computer scientists). Then, in 2015
and 2016 Google and Facebook released two open-source Python libraries: Tensor-
Flow and PyTorch, respectively. From that moment, deep learning tools became
concretely available to a wider community by greatly reducing their barrier to entry,
and chemical engineers as well.

The availability of these libraries, together with an outstanding open community
online and the study of deep learning, has given to traditional modelling researchers,
already familiar with statistics and coding, the opportunity to move quickly through
the learning curve and take an active role in the machine learning research. Open-
source physics-based toolboxes (like OpenFOAM for computational fluid dynamics,
LAMMPS for molecular dynamics and the different codes for discrete element
methods available) made chemical engineers developers, rather than simple users.
Nowadays in machine learning their contribution can go beyond being the creators
of the dataset or passive end-users of the simplest codes.

The objective of the deep learning model has to be clear and bounded. In fact,
the dataset creation and repartition, the training strategy and the model architecture
must be set in order to target the level of generalization required. The level of gener-
alization achieved by a machine learning model constitutes the basis of a study about
its reliability when it is employed in end-applications, such as optimization or multi-
scale modelling. It has been shown for some type of machine learning tools, such
as neural networks, that tailoring the model in terms of architecture, loss function
and input features to the prediction objective can improve its generalization efficacy
and reduce significantly the amount of data required during training. This activity
can be performed only knowing in depth the physics of the problem, that is why the
research process cannot be cleanly split into chemical engineering competence, and
data science competence.

Machine learning can have an impact on chemical engineering in a variety of
fields, such as:

• Molecular Dynamics force fields. Ab initio quantum chemistry methods are
very accurate, but the codes do not scale as efficiently as classical molecular
dynamics codes. It is possible to run a large number of small ab initio quan-
tum chemistry calculations, to train an artificial neural network and generate
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interatomic potentials. This allows the investigation of large systems, for long
times, with classical molecular dynamics simulations, characterized however
by quantum accuracy [9, 10].

• Multiphase CFD model closures. Similarly to what just discussed, in the
simulation of polydisperse multiphase systems with CFD, direct numerical
simulations methods, with fully-resolved interfaces, are very accurate, but
extremely computationally expensive. On the contrary, modelling approaches
in which the interface is not resolved (such as Lagrangian tracking, or Eulerian
multi-fluid models), are extremely cheap and can be employed to investigate
large systems for long times. Also in this case, direct numerical simulations
can be used to formulate closures for less detailed simulations. One typical
closure is for the drag force, or for dense polydisperse multiphase systems
[11, 12].

• Multiscale modelling. Most of the systems of interest in chemical engineering
have an intrinsic multiscale nature. It is necessary to rely on constitutive
equations to consider lower-scale phenomena. Constitutive equations are a
simplification of the real microscale behavior, and they fail outside of the range
of their validity hypotheses. Detailed microscale simulations could be called
by macroscale simulations in order to consider the actual complexity among
scales, however this approach can be unfeasible when physics-based models
are computationally expensive. In this case, machine learning models can be
trained on a dataset of microscale simulations to convey the information to a
higher scale. This approach has been proposed for complex rheologies [13]
and porous media problems [14–16].

• Identifying physics-based model parameters. In many cases in continuum
models the transport equations include terms not directly representing the
physical reality of the phenomenon at the molecular scale, but an appropriately
calibrated model: for example in the case of population balance equations [17],
this happens for the parameters of the aggregation or breakage kernels. Some of
the parameters are often only obtainable by repeated runs of CFD simulations
and an iterative comparison with available experimental data. In this case,
if one is able to train a reasonably accurate data-driven model which is able
to give a fast response, it is possible to conduct this parameter optimization
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much faster, and create a finely-tuned CFD model which is coherent with the
experimental ground truth.

• Process optimization and control. When an accurate data-driven model of the
process is available (such as a neural network surrogating the full simulation
results [18]), it is possible to use it to optimize the design of a process [19, 20],
be it its geometrical definition or the operating conditions at which the process
performance is maximum. Moreover the fast response model that has been
used upstream can also be used downstream for its in-line control, where
advanced model predictive control system can then be developed to smoothly
and accurately keep a process inside of the desired parameters of operation.

• Simulation on the loop: building a data-driven model with sparse experi-
mental data. One of the key features of machine learning is the necessity of a
dataset with which to train the model. Experimental points are usually limited
to small campaigns of experiments and the operating conditions are usually
explored in a rigid structured way. In this case the dataset can be enriched
by physics-based simulations, validated on the available experimental points.
This validated computational tool allows a flexible operating conditions explo-
ration and the possibility to obtain a dataset wide enough for the generalization
purposes of the machine learning model. Finally, the obtained data-driven
model can be easily called to address new experimental campaigns.

• Artificial intelligence in the laboratory. Machine learning models can find
employment in laboratory routines, when there is lack of fast models for
decision making. In this case computationally expensive simulations can
hardly be used, so fast response models can find application. First works in
this perspective are found in the energy storage field [21].

Given all of these examples, the place where machine learning and chemical engi-
neering modelling meet can be considered as a valuable ground for research and
investigation.



6 Introduction

1.2 Deep learning models for flow and transport in
porous media

Amongst the points just presented, in this dissertation we focus on the application
of machine learning models for the construction of surrogate models of flow and
transport in porous media. The study of flow and transport in porous media is of
the utmost importance in chemical engineering [22]. Many fields of application
in the traditional chemical industry are impacted by the understanding of these
phenomena, such as packed beds catalytic reactors [23, 24] and filtration devices
[25, 26]. Other examples can be found in large scale environmental applications,
such as groundwater extraction and remediation [27, 28], or enhanced oil recovery
[29].

Apart from the importance of porous media in these established sectors, it is ap-
parent how the study of transport phenomena in dispersed and random structures will
play an increasingly important role in the transition towards a sustainable and carbon
neutral economy. The study of flow in porous media is essential for the modelling
of carbon capture and storage processes [30, 31]. One other prominent example of
the pivotal importance in the energy transition is the growing attention to the study
of energy storage systems, and specifically batteries (both in their current Li-ion
and future beyond-lithium incarnations). Indeed, electrodes, in their microscale
reconstruction, are modelled as porous media impregnated by the electrolyte. Both
long-term safety of battery operation, energy density and battery cycle life, (which
constitute the main areas of improvement inasmuch their limits constitute the main
barriers to overcome towards a more pervasive grid electrification) are being investi-
gated by means of detailed studies of the transport of electrochemical species inside
the electrodes [32–34].

Traditional modelling is based on fundamental laws obtained from analytical
and experimental methods resulting in expressions of dimensionless numbers and
macroscale parameters, that characterize the geometry of the porous media. The
confidence of these laws is affected by uncertainties due to the non-linear correla-
tion between the defining features of the geometries and the resulting macroscale
parameters, respectively the input and output features of these models [35]. As a
way to improve these models confidence, and spurred on by the increasing avail-
ability of computational resources, in recent years a host of microscale models
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have been developed that completely describe porous media behaviour at the pore
scale [36–39].

Computational fluid dynamics is a well established modeling approach for flow
and transport in porous media. Depending on the complexity of the physical problem,
and on heterogeneity and size of the domains, both meshing and the subsequent
simulation can be highly time consuming and computationally expensive to run. For
this reason the use of high-performance computing (HPC) systems is often required
to solve the simulations in parallel.

When numerous simulations are needed (like in optimization algorithms and in
multiscale modeling [13, 40, 41]) or when real-time predictions are necessary (like
in-line plant control [42]), it would be extremely useful to have fast and accurate
models to predict the system behaviour (or performance) based on locally changing
microscopic-scale conditions. Given the clear multi-scale nature of porous media
transport phenomena, historically a lot of effort went into the development of such
tools, differing widely in approach, from theoretical upscaling approaches to the
development of phenomenological constitutive equations.

An example of the first class of solutions, aside from well known averaging
procedures [43] is the analytical development of models by means of asymptotic
homogenization, which has enjoyed great success in obtaining closed forms of
macroscale transport equations [44, 45] but which suffer (due to the complicated
analysis involved) in limits to its applicability both in treatable geometrical structures
[46] and transport regimes [47]. Other approaches are based on building constitutive
equations from both empirical or computational results and while they have been
vastly employed in many different fields [48–50], these relations are still prone to
fail when the geometries become random [51] and are hardly parametrizable [52].
Many solid research works have thus focused on simpler models [53, 54] and even
slightly more complicated pore/collector geometries have been found to noticeably
complicate things in terms of obtaining upscaled laws [55].

Then, one alternative to the mentioned approaches, which is gaining momentum
in the last few years, is to train specific neural network models in order to obtain
these fast response surrogate models. However, as of now, problem-specific design
choices have to be made to identify the most suitable neural network architecture for
each problem to be solved. In the porous media research, different kinds of neural
networks have been trained on datasets of physics-based simulations. Fully connected
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neural networks (FCNN) have been employed for the prediction of integral quantities
from effective hand-picked features [56–58, 16]. These techniques are effective and
their training is easy to carry on, but the resulting model is very sensitive to the
choice of input parameters, since the domain is described via upscaled parameters
that have no way of relaying spatial heterogeneity.

The increasing availability of GPUs and open-source deep learning libraries have
made the training of more complex neural networks computationally feasible. The
use of deep learning techniques such as convolutional neural networks (CNN) ease
the choice of the right integral descriptors of the porous media since the entire system
geometry is fed to the network as an image, and the network autonomously detects
the most effective features for the prediction of the objective output. It has to be
remarked that this does not result just in an automatic choice of relevant integral
features, but in a trained network that operates by “seeing” the system geometry and
is then able to make predictions based on the experience thus acquired [59, 60, 14].

CNN with encoding and decoding architectures have been used to train surrogate
models able to predict the flow field in different microscale porous media systems [61–
63] and for uncertainty quantification in macroscale subsurface applications [64–68]
Multi Scale Neural Network (MSNet) [69] came out to be a preferred alternative
to the previous ones, from both the computational point of view and, notably, its
generalization capability. In fact, it is possible to train this network with larger
geometric samples than what more classical approaches allow, which is fundamental
when dealing with representative elementary volumes of heterogeneous geometries
and/or complicated transport phenomena.

Nonetheless, as the main effort in the last years was addressed to the development
of neural networks models for the prediction of the permeability, or the microscale
prediction of flow fields, little was done to expand these methodologies to more
complex physical systems, which rely on the heterogeneity of both geometries and
operating conditions, and are of common experience in the chemical engineering
field.

In this dissertation flow and transport in porous media are modelled by means of
CFD tools and neural networks models are trained for the sake of obtaining accurate
and fast surrogate models. Two case studies are investigated: the filtration of colloids
by porous media and the microscale lithium reactive transport in cathodes of lithium-
ion batteries. Different neural networks models have been trained and tested as
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surrogate models of the filtration process in porous media: at first a simple fully
connected neural network has been trained for the prediction of integral descriptors,
then the use of convolutional neural networks is tested in order to avoid the choice
of the input integral parameters, and finally a complete surrogate of the microscale
models has been proposed by using multiscale convolutional neural networks. For the
lithium-ion batteries case study instead, an autoregressive multiscale convolutional
neural network has been conceived in order to obtain a time-dependent surrogate
model.

So, as a brief overview and reading guide, this dissertation is organized as
follows.

Chapter 2 gives an overview of the theoretical background of flow and transport
in porous media. In particular, both microscale governing equations of transport
and macroscale approaches are presented for the single fluid phase flow in laminar
conditions. Then, the basic theory of colloid filtration is proposed. After, the
microscale governing equations of charge and mass balance for lithium-ion batteries
are reported and discussed.

In Chapter 3 a review on neural networks (FCNN and CNN) theory is proposed
along with the basics of the training procedure.

In Chapter 4 the workflow for the construction of data-driven models is presented
and applied for the training of fully convolutional neural networks for the prediction
of integral quantities, namely the permeability and the filtration rate in bi-dimensional
porous media.

In Chapter 5 the construction of a three-dimensional dataset of geometries and
subsequent simulations are detailed. Convolutional neural networks are trained on
the dataset for the prediction of the permeability, and the filtration rate. The results
of FCNN and CNN are compared and discussed.

In Chapter 6 a multiscale convolutional neural network has been adapted and
modified to predict the microscale concentration fields in filtration applications. The
choice of the most appropriate input features is explored in detail in the chapter.
This work has been done in collaboration with the research group of Prof. Maša
Prodanović (University of Texas at Austin, USA).

In Chapter 7 a transient problem is faced in a dataset of discharge simulations of
lithium-ion batteries, and an autoregressive multiscale neural network is proposed as
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a surrogate model. The comparison between autoregressive and classic approch is
proposed and discussed. This work has been done in collaboration with the research
group of Prof. Alejandro A. Franco (Laboratoire de Réactivité et Chimie des Solides
- Amiens, France).



Chapter 2

Theoretical background of flow and
reactive transport in porous media

As mentioned in the Introduction, data-driven models obtained by machine learning
techniques can be very useful when a fast response model is required. The training
of these models should be performed on a dataset tailored on the final application in
order to obtain a model capable of generalization toward new cases, so a deep under-
standing of the physics is essential to this end. To reach this detailed understanding,
and to create a large enough dataset for the training, accurate CFD simulations can be
performed. In this chapter the theoretical background of flow and transport in porous
media is summarized, both to describe the equations solved in the CFD simulations,
and also in regards to the wider context of these equations related to other oft-used
laws for porous media analysis. In the first Section 2.1 the basic definitions of
porosity, representative elementary volume, microscale and macroscale approaches
are provided. Then, the theory and the governing equations of momentum transport
are summarized for both the microscopic and the macroscopic scale, in Section 2.2.
A review regarding the transport of a scalar quantity follows, with reference to the
colloid deposition theory, in Section 2.3. Finally in section 2.4, the basics governing
equations of transport with electrochemical reaction are introduced with reference to
the lithium-ion batteries application.
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2.1 Porous media modelling fundamentals

2.1.1 Porosity and representative elementary volume

A porous medium is a portion of space filled by at least two phases: a solid and a
non-solid phase. The domain filled by a non-solid phase is the void space and is
constituted by a collection of pores. In the work conducted in the thesis project a
single-phase fluid flows in the void space and the pores are all interconnected (neither
unconnected nor dead-end pores are present). Thus the porosity, ε , can be defined
as:

ε = 1− Vsolid

Vtot
, (2.1)

where Vsolid is the volume of the solid and Vtot is the total volume of a representative
elementary volume (REV) portion of the domain. A sketch of this representative
elementary volume can be found in Fig. 2.1.

Fig. 2.1 Sketch of a representative elementary volume of a porous medium [1].

A REV is the smallest portion of the domain whose properties (i.e. the porosity
in a geometrical analysis) are statistically representative of the entire domain. Let’s
consider a point in the porous medium domain, P, and ∆V a portion of volume
centered in P [2], the porosity of the sub-domain i is:

εi = 1−
∆Vsolid,i

∆Vtot,i
, (2.2)
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Fig. 2.2 Definition of porosity and representative elementary volume [2].

The porosity depends on the volume of the sub-domain as it is qualitatively outlined
in Fig. 2.2.

When the volume, ∆Vtot,i, approaches 0, the porosity is 0 or 1 depending on the
phase (solid or non-solid) in which P is placed. Increasing the volume, ∆Vtot,i, the
porosity, εi, oscillates until a constant value is reached: the volume of the REV is
obtained, ∆V0. This behaviour holds for homogeneous porous media, which is the
case of this work, so when the porous medium properties do not significantly change
by considering different macroscopic samples of it.

2.1.2 Nomenclature for multiscale analysis

In the modelling terminology of transport phenomena, the term microscale (or
nanoscale) is usually employed when a fluid is modeled at its molecular level, in
contrast to the term macroscale, used when the fluid is modelled as a continuum. It
is possible to model a fluid as a continuum if its Knudsen number, Eq. 2.3 is lower
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than 0.01. It is defined as follows:

Kn =
λ

L
, (2.3)

where λ is the mean free path of the fluid molecules, L is the representative length
of the system.

The terminology usually employed in the modelling of porous media systems
is different, in fact, another scale should be taken into account: the scale of the
actual process or system under investigation (the macro scale), whose spatial scale
may be separated from the continuum scale by orders of magnitude. Therefore in
this field, the microscale is the scale of the pores (hence, pore scale) and not the
molecular scale: in this definition of microscale the continuum hypothesis holds and
the geometry of the porous medium is explicitly employed as a boundary condition
for the solution of the transport equations. In the macroscale instead, a coarsened
representation of the porous medium is considered averaging the fluid and solid
properties above the REV.

2.2 Single phase flow in porous media

2.2.1 Microscale models - Equation of motion

Under the continuum hypothesis the fluid flowing in the pore space of a porous
medium follows the equation of motion [70]:

∂

∂ t
ρv =− [∇ ·ρvv]−∇p− [∇ · τττ]+ρg, (2.4)

where the first term is the rate of momentum increase per unit volume (ρ is the
density and v is the velocity vector), the second term is the rate of momentum
addition by convection per unit volume, the third and fourth terms are the rate of
momentum addition by molecular diffusion per unit volume (p is the pressure, τττ

is the stress tensor), the fifth term is the external force per unit volume (g is the
acceleration vector, that can be the gravitational acceleration).
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The equation of motion becomes the well-known Navier-Stokes equation under
the hypotheses of Newtonian fluid and constant density:

ρ
∂

∂ t
v =−ρ [∇ ·vv]−∇p−µ

[
∇

2v
]
+ρg, (2.5)

where µ is the dynamic viscosity of the fluid.

In this work, no external forces have been taken into account, and, since it was
of interest having a steady state solution, the accumulation term has not been taken
into account. Finally, the Navier-Stokes equation that was solved (together with the
continuity equation) is:

∇ ·vv+∇
p
ρ
+ν

[
∇

2v
]
= 0. (2.6)

where ν is the kinematic viscosity of the fluid.

In microscale simulations of flow in porous media the porous structure geometry
is a boundary for the solution of the motion equation. A no-slip velocity on the
solid surface is usually set given its impermeability to fluid penetration. Among
the possible boundary conditions, it is possible to set either the inlet velocity, or
the pressure drop across inlet and outlet. The main advantage of using a pressure
drop as boundary condition is that a non-constant velocity profile will arise at the
inlet boundary which is more realistic for the bulk portion of a porous medium, as it
corresponds to a developed flow profile.

Even though the motion equation can be numerically solved, the spatial dis-
cretization required by those methods make it difficult to solve large porous media
domains. What is usually done with the computational resources available nowadays
is to model at the pore scale a bulk core of the porous structure. It is advisable
to solve the motion equation on a REV in order to obtain statistically meaningful
parameters as a result of the post-processing of the microscale solution.

The most common methods for the solution of the motion equation are the ones
of common experience in the fluid dynamics modelling, i.e. finite element and finite
volume methods, the latter of which is the one employed in this work. A body
fitted mesh is needed as computational grid in those methods, but, being the specific
surface of porous media large the number of cells/elements can rapidly increase
when refinements on the walls are applied. Lattice Boltzmann simulations are thus
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also widely employed, even though the motion equation is not directly solved. The
main advantage of this method is the use of a regular lattice as a computational grid.
The lattice is Cartesian, so real segmented (i.e. voxelized) images of porous media
(from tomographies or electron microscopy) can be employed without the need for a
meshing step. This obviously also contains a drawback, as the real geometry may
indeed have smooth surfaces, which a non-cartesian mesh can effectively help to
describe better and result in a discretization closer to the real geometry.

2.2.2 Macroscale models - Permeability

The first macroscale law that has been introduced for the motion of fluids in porous
media is Darcy’s law which correlates the flux with the pressure drop across a porous
medium by means of a coefficient of proportionality [71]:

q =
k
µ

∆p
L
, (2.7)

where q is the flux per unit area of the cross section (with units in m · s−1), L is the
length of the porous medium in the main direction of flow, and k is the permeability.
Darcy’s law was at first demonstrated experimentally, but it is possible to derive
it from first principles by averaging the Navier-Stokes equation (Eq. 2.6, or rather
Stokes’ equation) over the cross-section [2]. Darcy’s law can be extended to three-
dimensional flow in porous media as well:

u =− k
µ

∇p, (2.8)

where u is the superficial velocity vector. The permeability remains a constant if the
porous medium is homogeneous and isotropic, otherwise, in the case of anisotropic
porous media it becomes a tensor.

At this point it is relevant to distinguish between the effective velocity of the
fluid, v, the flux per unit area, q, and the superficial velocity, u. The effective velocity
of the fluid is the velocity of the fluid at the microscale, as it results from the solution
of the motion equation 2.4. The flux per unit area of the cross-section is the ratio
between the volumetric flow rate, Q, and the area of the cross section in the main
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flow direction, A, thus:

q =
Q
A
. (2.9)

The superficial velocity, u is the macroscale velocity of the fluid when the domain
is considered as homogeneous and no distinction between solid and fluid phase is
made. The magnitude of the superficial velocity, |u|, is equal to the flux per unit
area. The volume average (over the fluid domain) of the effective velocity and the
superficial velocity are related by the porosity of the porous medium, in fact, the
volume average effective velocity is the volumetric flux divided by the portion of
cross-section area in the fluid domain, so

v =
Q
Aε

=
q
ε
, (2.10)

in fact, it is possible to demonstrate that the volumetric porosity, ε , is equal to the
average areal porosity for a REV [2].

Although the most common way of calculating the permeability is by experiments
or flow simulations, the permeability depends on the porous media geometry, in fact,
relations have been proposed to evaluate it from geometrical parameters. The most
common of these is the Kozeny-Carman equation:

k =Cd2 ε3

(1− ε)2 , (2.11)

where C is a constant determined experimentally equal to 1
150 [2], and d is the mean

diameter of the grains/particles. For porous structures that cannot be modelled
as sphere packings the law is not effective. Merging Eq. 2.7 and Eq. 2.11 the
Blake-Kozeny equation for the pressure drop evaluation in porous media is obtained:

∆p
L

= 150
µq
d2

(1− ε)2

ε3 . (2.12)

The Blake-Kozeny equation can be derived with the well-known tube bundle theory.
The reader is referred to the chapter 4 and 5 of Bear (1988) [2] for an overview of
the possible derivations of those laws.

Darcy’s law holds for laminar flow in porous media, in fact, when the Reynolds
number exceeds 1-10 the transition of flow regime starts, above 60-150 turbulence is
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developed. The Reynolds number for flow in porous media can be defined as:

Re =
ρqd

µ
, (2.13)

where d is a characteristic dimension of the porous medium domain - for spherical
grains it can be their average diameter. For transition and turbulent flows Darcy-
Forchheimer’s law can be employed [72]:

∇p =−µ

k
u− ρ

k1
uu, (2.14)

where k1 is the inertial permeability.

As for the Blake-Kozeny equation, it is possible to derive a similar equation
from the bundle of tubes theory to model the pressure drop across porous media in
turbulent regime, the result is the Burke-Plummer equation:

∆p
L

=
7
4

ρq2

d
1− ε

ε3 . (2.15)

To take into account the transition regime it is possible to sum up the two contribu-
tions of Eq. 2.12 and Eq. 2.16 into the Ergun equation:

∆p
L

= 150
µq
d2

(1− ε)2

ε3 +
7
4

ρq2

d
1− ε

ε3 , (2.16)

which can be rearranged into the dimensionless groups, ∆p∗, and Re∗:

∆p
L

d
ρq2

ε3

1− ε
= 150

µ

d
(1− ε)

ρq
+

7
4
, (2.17)

∆p∗ =
150
Re∗

+1.75 (2.18)

2.3 Transport and deposition in porous media

In this section the study of transport of a scalar quantity (i.e. a concentration) in
a porous medium is detailed. The application of the modelling procedure is the
filtration of colloids in porous media in laminar conditions. Both the modelling at
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the microscale and macroscale are presented together with the theoretical hypotheses
of validity.

2.3.1 Microscale models - Advection-diffusion equation

In a filtration process particles dispersed in a solution deposit on a collector, the
dynamics of the transport is governed by three mechanisms:

• interception - a particle collides with the collector because of its steric hin-
drance.

• sedimentation - a particle whose density is higher than the fluid density follows
a different trajectory compared to the streamlines because of the gravitational
force field.

• diffusion - this mechanism occurs when the particles are subjected to Brownian
motion.

Depending on the operating conditions and on the particles/fluid nature the relative
predominance of the mechanisms can change, and with it the most suited modelling
technique [27].

In this work the particles to be filtered are colloids, whose density is about
5000− 10000 kg/m3 and whose characteristic length is smaller than 1 µm. For
this system it is possible to calculate the Stokes number, that is defined as the ratio
between the characteristic relaxation time of the particle and the one of the fluid. In
laminar conditions it reads as follows:

St =
relaxation time of the particle

relaxation time of the fluid
=

ρPd2
C

18µ

U∞

d
, (2.19)

where ρP is the density of the colloidal particles, U∞ is the fluid velocity far from
the collector. The resulting Stokes number is lower than 1, thus the relaxation
time of the particle is lower than the one of the fluid, so it is possible to assume
that the particles move along the streamlines of the fluid at the same velocity of
the fluid. This condition allows the modelling of the transport of the colloid as a
scalar in an Eulerian framework. Under hypothesis of low concentration in the fluid
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the diffusion of the colloid can be modelled by the Fick’s law, thus the advection
diffusion equation reads as follow:

∂C
∂ t

= ∇ · (D∇C)−v ·∇C, (2.20)

where C is the concentration and D is the diffusion coefficient of the colloid, which
can be evaluated by the Einstein equation [73]:

D =
kBT

3πµdC
, (2.21)

where kB is the Boltzmann constant, T is the temperature and dC is the colloid size.

Besides the considerations on the Stokes number, it is necessary to take into
account the short-range interactions of the colloid particles while approaching the
collector. In fact, the particles in proximity of the collector are subjected to hydrody-
namic retardation as a result of the increase of the drag force close to the collector
surface, thus the velocity of the particles decreases and their paths can detach from
the streamlines [74]. Another consequence is the reduction of the colloids diffusivity
which becomes a function of the wall distance [75, 76].

Absent other effects, the particles would not reach the collector because of the
viscous repulsion [77], but the Smoluchowski-Levich approximation can be applied
to this case study [78]. This approximation states that the hydrodynamic retardation
experienced by the colloid particles approaching the solid wall is balanced by the
London attractive forces [79].

Moreover in this work a chemical condition favorable to attachment is considered,
thus all the mesoscale forces of attraction and of repulsion are considered in a single
unitary attachment efficiency. This is the most used assumption when dealing with
modelling of this kind, and goes under the name of the clean bed filtration assumption,
as it correctly describes the early stages of the filtration process when the solid load
is very low and the collecting solid medium is “clean” resulting in heightened and
more effective deposition/trapping efficiency. This results in a constant diffusion
coefficient in space and in a perfect sink boundary condition at the collector surface,
which we implement as a homogeneous Dirichlet condition (C = 0). It is worth
noticing that the solution of the advection-diffusion equation with this boundary
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condition can also represent an instantaneous heterogeneous reaction on the grains
surface.

The solution of the advection-diffusion equation at the microscale is useful to
evaluate the source term for macroscale models of the filtration process. This process
is modelled as a reactive term so a filtration/reaction term is needed to express this at
the macroscopic scale, where the distinction between solid and fluid is lost, and thus
the analytical definition of a surface on which the heterogeneous reaction happens.
In the following section a quick literature review is proposed to this end.

2.3.2 Macroscale models - Filtration rate

At the macroscale the partial differential equation that describes the transport and
filtration of the colloid is the advection-dispersion-reaction equation:

∂Cε

∂ t
= ∇ · (εD∇C)−v ·∇C−K fCε, (2.22)

where D is the dispersion coefficient, and K f is the rate of filtration.

In the literature the first macroscale descriptor of the amount of colloid filtered
by the collector was the total collector efficiency [27, 80], η , defined as:

η = αη0, (2.23)

α is the attachment efficiency, ranging between 0 and 1 (considered unitary in this
work), and a collector efficiency η0. A unitary α means that all the particles colliding
with the collector remain attached, a unitary η0 would mean that all the particles
flowing towards the collector collide with it. The collector efficiency is made by
the contributions of the different filtration mechanisms (Brownian diffusion, ηB,
sterical interception, ηI , sedimentation, ηG), and it is possible to assume that these
contributions are additive [79, 27], so:

η0 = ηB +ηI +ηG. (2.24)

In the literature much effort was spent in finding analytical expressions for these
efficiency terms. At first Levich [78] conceived an expression for the Brownian
term under the above-mentioned Smoluchowski-Levich approximation for a single
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spherical collector:
ηB = 4.04Pe−

2
3 , (2.25)

where Pe is the Péclet number:
Pe =

qd
D

. (2.26)

Different relations are presented in literature for the other terms and for multiple
spherical collectors. Relations to link the filtration efficiency and the filtration rate
of Eq. 2.22 have been proposed as well [81, 52, 82].

The main disadvantage of using the filtration efficiency theory is its scale incon-
sistency, as demonstrated by Boccardo et al. [83]. They proposed a direct definition
of the filtration rate by volume averaging the microscale advection-diffusion equation,
resulting in:

K f =
F in

tot(C)−Fout
tot (C)

Ω⟨C⟩
, (2.27)

where F is the total (advective and diffusive) flux, Ω is the total volume of the
macroscopic porous medium, ⟨C⟩ is the volume averaged concentration. As detailed
in the work cited [83] this definition of the filtration rate, unlike η , can be used
directly as a reaction rate coefficient in a macroscopic scale form of the advection-
diffusion-reaction equation (Eq. 2.22) and will return scale-consistent results over a
wide range of Péclet numbers, whereas for diffusion-dominant problems (low Pe) or
certain computational model configurations classic η estimations will be incoherent.

This dissertation wants to offer a deep-learning based tool for the reliable surroga-
tion of pore-scale modelling with the widest possible applicability, from large ranges
of operating conditions (Péclet numbers) to different sizes of geometric models. This
objective calls for a robust and automatic estimation of macroscopic transport and
reaction features, and as such this definition of K f was preferred, and will be used
throughout the following chapters when dealing with surface reaction/deposition.

2.4 Electrochemical reactions in porous media: the
Li-ion batteries case study

Lithium-ion batteries (LIBs) are electrochemical systems employed as electric energy
storage devices. LIBs are characterized by high specific energy and power - essential
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Fig. 2.3 Lithium-ion battery sketch. Image from [3].

for portable devices applications - high capacity and cyclability compared to other
kinds of batteries [84]. A simplified representation of a LIB is shown in Fig. 2.3.
During discharge cycles under galvanostatic conditions, the lithium ions stored in
the anode de-intercalate from the electrode to the electrolyte, then they reach the
cathode/electrolyte interface, and intercalate into the cathode electrode. Meanwhile
the electrons flow from the anodic current collector to the cathodic current collector,
because of the oxidation of the anodic material and the reduction of the cathodic
material.

State-of-the-art cathodes for lithium ion batteries are made by nickel manganese
cobalt (NMC) oxides, and anodes are made by graphite, so the reactions are here
summarized in reference to these materials. The half-reaction taking place at the
NMC cathode is:

Li1−xMO2 +xLi++xe− −−⇀↽−− LiMO2 (2.28)

Lithium ions oxidize the transition metal, the cobalt oxides, thus the lithium cobalt
oxide is generated in the discharging mode, while the opposite reducing reaction
takes place in charging mode. The half-reaction taking place at the graphite electrode
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is:

LixC6 −−⇀↽−− C6 +xLi++xe− (2.29)

So the full reaction is the following:

LixC6 +Li1−xMO2 −−⇀↽−− C6 +LiMO2 (2.30)

during discharge the reaction takes place from left to right, and it takes place from
right to left when the battery is charging.

The modelling of batteries is crucial to ensure their optimal usage in terms of safe
charging and discharging cycles; beyond their use for the continuous improvement
of battery management systems, these models are also essential in researching new
types of batteries [85], e.g.: new chemistries, new electrode production processes,
and so on. Accurate multiscale models can help researchers to understand the effect
of operating conditions on the battery performance, as well as the impact of electrode
properties, or the physics beyond degradation phenomena. The main objective in
this research field is to exploit models and experiments in synergy to speed up the
discovery of new batteries and the understanding of the degradation phenomena that
impact the life cycle of state of the art batteries [86].

Pseudo 1D and 2D models [87] were developed for the electrochemical modelling
of batteries and can be easily employed since they don’t require a high computational
power. Many open-source implementations can be found, for example the Python
library PyBaMM [88] which implements the well-known Newman model [89]. Full
microscale models have been recently developed thanks to the increasing computa-
tional resources available nowadays: these 4D models (3D microscale geometry plus
time dependency) do not require integral geometrical descriptors of the electrodes
since the charge and transport equations are solved employing the precise microscale
geometry of the electrode-electrolyte interface as boundary [90]. Pore network
modelling has also been applied recently for the simulation of LIBs [91]. Geometric
characterization of the electrodes is necessary in these modelling methodologies:
integral parameters for pseudo 2D models, and the entire geometry in 4D models. In
literature both in-silico reconstruction [92] and digital images were employed to this
end [93].
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Fig. 2.4 Cathode structure reproduced by DEM. On the right the particle size distribution of
the AM, and the features of the cathode [4].

2.4.1 Electrodes porous structure

Electrodes are porous media made by different solid phases immersed in the elec-
trolyte. The components of an electrode are the active material (AM), which takes
part into the electrochemical reaction, the carbon, which ensures electrical conduc-
tion throughout the electrode, and the binder, that binds the components together
into a stable structure. The active material granulometry (∼ 1−10 µm characteristic
size of AM particles) constitutes a phase easily distinguishable from the carbon
(∼ 50−150 nm) and the binder components, which instead for modelling purposes
constitute a single phase called carbon binder domain (CBD) [94]. In Fig. 2.4
a cathode structure has been reproduced in-silico by means of a discrete element
method (DEM), detailed in Appendix A.

2.4.2 Microscopic transport equations

In this work a dataset made by microscale simulations of half-cells (cathode side)
has been employed for the training of machine learning models. In this section the
transport equations numerically solved to this end are summarized. The transport
equations of mass and charge balance must be solved in three domains, Fig. 2.4:
AM, CBD, and electrolyte.
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In the electrolyte the charge conservation reads as follows [95]:
∇ · il = 0,

il =−σl∇φl +
2RT σl

F
(1− t+)

(
1+

∂ (ln f±)
∂ (lnCl)

)
∇ ln(Cl),

(2.31)

where il is the ionic flux in the electrolyte, σl is the electrical conductivity of the
electrolyte, φl is the electric potential in the electrolyte, F is the Faraday constant, R
is the perfect gas constant, t+ is the transport number of the lithium ions, f± is the
mean molar activity coefficient, Cl is the lithium ions concentration in the electrolyte.
The first term is the charge conservation equation, where ∇ · il is null because of
the cell neutrality. The current density is made by two terms, in fact, ions migrate
because of the difference in electric potential, whose contribution depends on the
electrical conductivity of the electrolyte, and because of the concentration gradient,
i.e. the diffusion in the electrolyte, which is related to the diffusion coefficient of
the ions by the transference number. The activity coefficient takes into account the
interactions between ions in the solution, in fact, the concentration of the ions is
not compatible with a dilute approach, thus the concentrated solution theory applies
[96].

The transport equation for the concentration of lithium ions within the electrolyte
can be expressed as

∂Cl

∂ t
+∇ ·

(
−Dl∇Cl +

ilt+
F

)
= 0. (2.32)

In the NMC portion of the electrode the charge conservation equation is the
Ohm’s law in steady state conditions:

∇ · (σs,AM∇φs) = 0, (2.33)

where σs,AM is the electrical conductivity of NMC, and φs is the potential of the
electrode. The mass balance inside the electrode can be modelled by Fick’s law,
which describes the diffusion of lithium in the NMC electrode:

∂Cs

∂ t
−∇ · (Ds∇Cs) = 0, (2.34)
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where Cs is the lithium concentration in the NMC electrode, and Ds is the diffusion
coefficient of lithium.

The CBD is modeled as an homogeneous porous medium domain, so the transport
equations are solved in the domain without taking into account its geometrical
structure and the electrolyte infiltrated, the transport properties are averaged over the
entire domain, so the charge transport is modelled as follows:

∇ · (σs,CBD∇φs) = 0, (2.35)

where σs,CBD is the electrical conductivity of the CBD, and is expressed as a function
of its porosity. The mass balance in the CBD is:

∂εCBDCl

∂ t
+∇ ·

(
−Dl,e f f ∇Cl +

ilt+
F

)
= 0,

il =−σl,e f f ∇φl +
2RT σl,e f f

F (1− t+)
(

1+ ∂ (ln f±)
∂ (lnCl)

)
∇ ln(Cl),

(2.36)

where σl,e f f and Dl,e f f are the effective electrical conductivity and lithium ions
diffusivity in the CBD. They are defined as a fraction f of the electrolyte properties:

Dl,e f f = f Dl, σl,e f f = f σl. (2.37)

The electrochemical reaction, Eq. 2.28, is modeled at the interface by means of
the Butler-Volmer kinetics equation:

ise = kF Cαa
l Cαc

s (Cmax
s −Cs)

αa

[
exp
(

αaFη

RT

)
− exp

(
−αcFη

RT

)]
, (2.38)

where k is the reaction rate coefficient, αa and αc are the anodic and cathodic transfer
coefficients, and η is the overpotential which is defined as:

η = φs −φl −Eeq, (2.39)

where Eeq is the electrode equilibrium potential. On the surface of Li metal, which
is the reference electrode for the half-cell configuration, the contribution to the
overpotential of the solid electrolyte interface (SEI) formation is taken into account
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using an additional resistance term RSEI:

η = φs −φl −RSEIi−Eeq. (2.40)



Chapter 3

Deep learning fundamentals

In this chapter the fundamentals of neural networks modelling are summarized. As
mentioned in Chapter 1, in this thesis work neural networks have been trained to
obtain data-driven models for flow and transport in porous media. Thus, the aim
is to provide the reader with the nomenclature that will be employed throughout
the dissertation to describe those models. Specific details of the neural network
architectures, and insights in the training procedure are delivered in the computational
details sections of Chapters 4, 5, 6, 7. In the following sections the workflow to
build a data-driven model and the classification of machine learning models are
presented in Section 3.1, after the main features of fully connected neural networks
(FCNN) in Section 3.2, and convolutional neural networks (CNN) in Section 3.3
are summarized. The reader is referred to the excellent literature in the field to the
theory of machine learning and neural networks modelling [97, 6, 98].

3.1 Machine learning models

Data-driven models are obtained from the training of an algorithm with a dataset, and
their tuning does not require the complete knowledge of the underlying physics or, in
general, the deterministic relations that bind the input and output of the model. In Fig.
3.1 a workflow for the application of machine learning algorithms is sketched. At
first, it is necessary to choose an appropriate dataset for the problem to be modelled;
the data points of the dataset are called samples which are structured in inputs
(features), and one or more output (label or target). The dataset is pre-processed
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Fig. 3.1 Workflow for the application of machine learning techniques.

to improve the quality of the input to the machine learning algorithm. The most
common pre-processing operations are the scaling of the features, and the control
over the outliers. The following step consists in the choice of the features to use
as input: in fact, effective, causal, and independent features are fundamental to
have fast training and obtain accurate models. After that, it is possible to train the
machine learning model, whose parameters are optimized during this process in
order to minimize the loss function. Finally it is possible to improve the predictive
performance of the model tuning the hyperparameters or improving the quality of
the dataset and the number of samples.

Depending on the supervision type during training the machine learning algo-
rithms can be classified as:

- supervised learning: each sample is labelled and the prediction objective
of the training is to match the label of the samples. These techniques are
employed for classification (distinction among categories) and regression tasks
(prediction of numerical values);

- unsupervised learning: input samples do not have labels. These techniques
are used for clustering tasks (split data into sub-groups with common charac-
teristics), for visualization (to display data in a compact way and detect unpre-
dictable patterns), for reducing the dimensionality (to simplify the dataset), or
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for anomaly detection. Thus, these techniques can also be employed for the
pre-processing of the dataset;

- reinforcement learning: the learning system, called agent, performs actions and
gets positive or negative awards depending on the quality of its performance,
in this way the system learns autonomously the best strategy, called policy.

In this thesis supervised techniques are employed to obtain regression models. In
the next sections a brief explanation of the scaling strategies are proposed.

3.1.1 Pre-processing: scaling of the input features

The scaling step is fundamental in the pre-processing phase of the workflow. Scaling
of the data is helpful when the input features have different orders of magnitude to
assure an equal contribution of the features for the prediction of the output, and to
speed up the training as well. Here follows some of the most common techniques, x′

is the feature array, and x is the scaled array:

• min-max normalization - the values are scaled to range between a minimum a
and a maximum value b.

x = a+
(x′ − min(x)′) (b−a)

max(x′)−min(x′)
, (3.1)

• average normalization - the values are scaled of the mean value, x̄′, and
normalized by the difference between the maximum and the minimum of the
feature array;

x =
x′ − x̄′

max(x′) − min(x′)
, (3.2)

- standardization - the features array is scaled as in the previous strategy, but is
normalized by its standard deviation, σ :

x =
x′ − x̄′

σ
. (3.3)

the standard deviation is defined as:

σ =

√
∑

Ndata
i=1 (xi − x̄)2

Ndata
, (3.4)
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where Ndata is the number of samples in the dataset.

3.2 Fully connected neural networks

Neural networks are a wide category among machine learning algorithms. These
techniques are the core of deep learning, and allow to model complex non-linear
problems. The inspiration in the conception of these models is the neurons func-
tioning in a biological brain. The analogy with biological neurons can be useful to
catch the principle of functioning of these models. Neurons are cells present in the
cerebral cortex of animals and are made up of a cell body containing the nucleus,
ramifications called dendrites and a longer extension called axon, the terminal part of
which branches off into telodendrons having tiny structures called synapses which are
connected to the dendrites of other neurons. Neurons exchange electrical impulses,
called signals, through the synapses, when one of them receives a sufficient number
of signals in the unit of time it is able to transmit an electrical signal to the neurons
to which it is connected. Although they are rather simple units, neurons are able to
perform complex operations as they are organized in highly articulated structures
made up of billions of units, in fact, each neuron is connected to thousands of others
[99].

Fig. 3.2 Diagram of a threshold logic unit (TLU).

As neurons are the constitutive block of the nervous tissue, the Threshold Logic
Unit (TLU, Fig. 3.2) is the basic unit of a neural network. An artificial neuron
of this type is connected to numerical input values (x1,x2, . . . ,xN) through weights
(w1,w2, . . . ,wN), the operations it performs are first a weighted sum of the input and
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then it applies an activation function [97]:

y = f (w1x1 +w2x2 + . . .+wNxN) = f
(
wT x

)
. (3.5)

The traditional activation functions used, represented in Figure 3.3, are:

• the logistic function

σ(y) =
1

1+ e−y ; (3.6)

• the hyperbolic tangent

tanh(y) = 2σ(2y) − 1; (3.7)

• the Rectified Linear Unit (ReLU):

ReLU(y) = max(0,y). (3.8)

ReLU is the simplest activation function and avoids the vanishing gradient issue in
deep neural networks [100], for a deeper analysis of the advantages/disadvantages
in the use of ReLU and the new alternatives proposed in the last years the reader is
referred to Section 6.2 of Chapter 6.

Fig. 3.3 Classical activation functions.
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Several TLUs make a structure called perceptron, Fig. 3.4. Each TLU is con-
nected to each input neuron, which outputs the input values as they are. The bias is
an additional neuron of the layer that is not connected to an input feature.

Fig. 3.4 Sketch of a perceptron.

The calculations performed by a perceptron can be summarized as follows:

y1 = f
(
w1,1x1 + . . .+w1, jx j + . . .+b1

)
; (3.9)

y j = f
(
wi,1x1 + . . .+wi, jx j + . . .+bi

)
; (3.10)

yN = f (wN,1x1 + . . .+wN, jx j + . . .+bN); (3.11)

So:
y = f (Wx+b), (3.12)

where W is the weight matrix, x is the feature array, b is the bias vector, y is the
output array.

The development of algorithms for the training of perceptrons has its roots in
neuroscientific theories, in particular in Hebb’s law (or Hebbian learning): after the
interaction between two neurons their connection becomes stronger, this idea was
summarized in the famous phrase by Siegrid Löwel: “Cells that fire together, wire
together”, i.e. the cells that transmit signals at the same time are linked together. In
the context of neural networks, two neurons are connected in a much stronger way
the greater the weight that binds them. The training algorithm can be summarized by
Eq.(3.13) [97]:

wk+1
i, j = wk

i, j +λ (ŷi − yi)x j, (3.13)
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where wi, j is the weight linking the ith input neuron and the jth output neuron, x j

is the jth input value of the current sample, yi is the output of the ith neuron for the
current sample, ŷi is the target output for the current sample. The learning rate λ of
Eq. (3.13) is a parameter related to how fast the network adapts its parameters at
the end of each epoch (i.e. the iterations) or after each batch (when the training is
performed in mini-batches) of the training. If λ is too high the system will quickly
adapt to optimize the predictions on the new data despite the contribution of previous
data to the learning procedure, instead, if the learning rate is too low, the system is
subject to greater inertia but is less affected by noisy, or non-representative data, Fig.
3.5. Too high or low values of learning rate are just qualitative indications, in fact,
there is not a rule for the choice of this parameter. Even though the most common
range is in between 10−2 −10−5, depending on the problem tackled it is necessary
to test the effect of different values.

Fig. 3.5 Qualitative effect of the learning rate on the training, L is the loss function, the aim
of the training algorithm is to reach the minimum of the loss function [5].

In order to solve increasingly complex and non-linear problems, neural networks
with multiple layers have been introduced, Fig. 3.6: multi-layer perceptron, or fully
connected neural networks in this thesis.

Fully connected neural networks have an input layer, an output layer and several
hidden layers. The output layer contains a single neuron in regression problems,
or a number of neurons equal to the number of possible categories in classification
problems. The outputs of a layer are the inputs of the next layer, therefore the
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Fig. 3.6 Sketch of a multi-layer perceptron (MLP).

calculations that the network in Fig. 3.6 performs can be summarized as follows:

y3 = f 3{W3 f 2 [W2 f 1 (W1x+b1)+b2]+b3}, (3.14)

where the superscript indicates the layer.

The number of neurons per layer, the number of hidden layers, and the learning
rate value are examples of hyper-parameters of the network, thus they are set with
heuristic rules, or sensitivity studies, or by tuners available in the deep learning
libraries.

3.2.1 Training of a neural network: gradient descent

The training of a neural network is performed through a backpropagation algorithm,
whose aim is to minimize the loss function - a metric related to the error between
the predicted and target (the true) values. The dataset available for the modelling is
partitioned into three sets: the training set, which is used for the training of the neural
network, the validation set, which is employed for online evaluation of the network
performance, and the test set, which is employed to evaluate the generalization
capability of the trained network. This subdivision is fundamental to evaluate the
generalization performance of network, hence through the test set it is possible to
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evaluate the capability of the network to apply the acquired knowledge on new input
data, likely avoiding overfitting.

The algorithm consists of the following steps:

• forward propagation - evaluation of the output of each layer:

y0 = x, (3.15)

ym+1 = f m−1(Wm+1xm +bm+1) for m = 0, 1,..., M - 1, (3.16)

y = xM, (3.17)

where M is the number of layers of the network;

• backward propagation - evaluation of the sensitivity, a quantity related to the
gradient of the error function with respect to weights or biases. The sensitivity
of the last layer M is evaluated as follows:

sM =−2ḞM(nM)L (y, ŷ) (3.18)

where L is the loss function (usually the mean square error, or the mean
absolute error). Given the sensitivity in layer M it is possible to calculate the
sensitivity of the previous layer:

sm =−2Ḟm(nm)(Wm+1)
T sm+1 for m = M - 1,..., 2, 1, (3.19)

where Ḟ is the diagonal matrix:

Ḟm (nm) =

ḟm (nm
1
)

· · · 0
... . . . ...
0 · · · ḟm (nm

Sm

)
 , (3.20)

where Sm is the number of neurons in layer m and ḟm
(

nm
j

)
is defined as:

ḟm (nm
j
)
=

∂ f m
(

nm
j

)
∂nm

j
, (3.21)
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n is a vector whose i-th element represents the input due to all neurons and the
bias of the previous layer:

nm
i =

Sm−1

∑
j=1

wm
i, ja

m−1
j +bm

i ; (3.22)

• Updating of weights and biases - through the definition of gradient descent:

Wm (k+1) = Wm (k)−λ sm (zm−1)T
, (3.23)

bm (k+1) = bm (k)−λ sm . (3.24)

3.3 Convolutional neural networks

CNNs are a class of neural networks suited to deal with grid-like objects as input
features [6], for example two-dimensional or three-dimensional images, or videos.
The CNN layers implement the convolution operation:

y = f

(
F

∑
i=1

x∗ki +bi

)
, (3.25)

where ∗ denotes the convolution operation, x is the input, y is the output of the
operation, f is the activation function, ki is the kernel, F is the number of kernels,
and bi is the bias term. The kernel is a trainable array of floating point numbers,
whose size and number is an hyperparameter of the network to be set, it is applied on
the image as sketched in Fig. 3.7. When the input features are bi-dimensional images,
the filter is two-dimensional as well, the size 3-by-3 is the most computationally
efficient size for GPU computations [101].

CNNs have exhibited excellent performance in deep learning tasks compared to
classical fully connected neural networks both in terms of generalization capability
and computational cost of the training [102]. This is partly due to the fact that
convolutional kernels share their parameters, because the same filter slides on the
image and is applied in different regions, thus every output is connected just on a
small portion of the input, this property is referred to as sparse connectivity. As a
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consequence, CNNs are characterized by equivariance to translation, so the layers
learn the influence of the images features independently from their location.

As with other deep learning algorithms, CNNs may suffer of gradient vanishing
issues [100], thus the choice of an appropriate activation function is crucial to assure
the contribution of each neuron to the final prediction.

Fig. 3.7 Sketch of the operation of a convolutional layer [6]. The kernel is applied sliding on
the image, and its weights are optimized during the training.



Chapter 4

Fully connected neural networks for
the prediction of integral parameters

In this chapter the workflow for the creation of neural networks models from a
CFD based dataset is detailed. Fully connected neural networks have been trained
herein for the prediction of the permeability and the filtration rate in bi-dimensional
porous media. The main novelty of this work is the construction of data-driven
models for the prediction of the filtration performance. In fact, machine learning
models have been widely proposed for the prediction of the permeability [59, 103,
104, 62, 69, 60], but little has been done towards the prediction of more complex
integral parameters. The CFD simulations are performed using the finite volume
method implemented in OpenFoam, and are employed to calculate the permeability,
from the flow simulations, and the filtration rate, from the transport simulations.

The methodology adopted can be summarized as follows: at first the CFD model
is set up, then the range of variation of the geometric parameters and the operating
conditions is set, thus a number of simulations are performed with those features
ranging in established boundaries. After, the permeability and the filtration rate are
calculated for every simulation, in this way the dataset is created: each simulation is
a sample made up by the input features and the corresponding results. The neural
network is trained with a portion of the dataset and the performance is evaluated on
the remaining part (following the usual split between training and testing/validation

The content of this chapter, in a modified form, has been published in Marcato et al. (2021)[16]
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datasets). Finally the accuracy of the neural network in the prediction of the perme-
ability and the filtration rate is compared with traditional analytical correlations that
link those outputs with the chosen input features. The proposed workflow is entirely
open-source, since both the CFD codes and the networks modelling is performed by
means of open-source codes (OpenFOAM) and Python libraries.

4.1 Computational details

4.1.1 CFD model setup

For this work, we considered simplified bi-dimensional porous media, the geometries
are made by a square containing non-overlapping circles (or grains in this work)
placed randomly imposing a periodic constraint in the direction orthogonal to the
main flow direction, i.e. the circles that cross the upper boundary are completed
in the lower part of the domain, and viceversa; this is shown in Fig. 4.1. Both
monodisperse and polydisperse grain diameter distributions have been considered.
The dimension of the computational domain, i.e. the number of grains, is established
as a result of a representative elementary volume (REV) study [105, 2]. To this end
a wide bi-dimensional geometry is created, then areas with an increasing number
of grains are considered and the porosity is calculated. As Fig. 4.2 shows, we can
consider a REV constituted by 100 elements in the monodisperse case and 150
for the polydisperse one. The spatial discretization is set imposing a minimum
number of cells per diameter. In case of monodisperse distributions 20 cells per
diameter, in case of polydisperse distributions 10 cells per minimum diameter of
the distribution, corresponding to 30 cells per mean diameter, Table (4.1). Grid
independence studies for analogous physical systems can be found in previous works
[51, 106]. The geometry and the mesh are built with the mesh generators blockMesh
and snappyHexMesh.

The system is considered isothermal at temperature equal to 298 K, the fluid is
Newtonian with density equal to 997 kg m−3 and kinematic viscosity equal to 0.89
×10−6 m2 s−1, equal to pure water viscosity at ambient temperature. The fluid flows
in laminar conditions, in fact, the Reynolds number does not exceed 0.015, so no
turbulence models are required in the simulations. The gravity is not considered in
this model. The solver simpleFoam is employed for the resolution of Eq. 2.6. The
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boundary conditions set on the grains surface are no-slip condition for velocity, and
zero gradient of pressure. On the upper and lower boundaries a cyclic boundary
condition is set. A constant pressure at the inlet (the left boundary on Fig. 4.1) and a
null pressure at the outlet (the right boundary on Fig. 4.1) are imposed, as to obtain a
fully developed velocity profile entering the porous medium.

The colloid transport is modeled as a scalar transport of the normalized particle
concentration C, thus the scalarTransportFoam solver is employed for the resolu-
tion of Eq. 2.20 in steady state conditions. A normalized inlet concentration equal to
1 and a zero gradient of the concentration are imposed as boundary conditions at the
inlet and at the outlet of the porous medium respectively; a cyclic boundary condition
is set at the upper and lower boundaries. On the grains surface a null concentration
is imposed, representing the clean-bed filtration described earlier.

The numerical details (convergence criteria, and discretization schemes) are
summarized in Appendix C.

Fig. 4.1 Sample of geometries considered in the simulation of flow and transport in porous
media. Left: monodisperse geometry; right: polydisperse geometry.
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Fig. 4.2 Representative elementary volume (REV) study: evaluation of the porosity as a
function of the number of grains considered in the computational domain. Left: monodisperse
geometry; right: polydisperse geometry.

4.1.2 Dataset

As mentioned in the introductory section the dataset for the training of the networks is
made by CFD simulations. In order to obtain a dataset wide enough for the networks
training the simulations are performed in parallel on an HPC cluster equipped with
29 nodes with CPU 2x Intel Xeon E5-2680 v3 2.50 GHz 12 cores.

The CFD model described in the previous section is used as simulation template
for the setup of all the simulations being part of the final dataset. Different operating
conditions and geometric parameters are set, in particular: the inlet pressure of
the fluid, p, the size of the colloidal particles, dc, the diameter of the grains, d, the
porosity of the medium, ε and, just for the polydisperse geometries case, the standard
deviation of the grain diameter distribution, σ . In Table 4.1 the ranges of variation
of those parameters are summarized. The simulations are set up with a random
combination of the parameters whose values are uniformly extracted from the ranges
of Table 4.1. The parameters are selected randomly, and not in a structured way,
for each simulation in order to explore in the dataset the effect of a combination of
parameters as wide as possible and reduce the bias in the model.

The computational domain of each simulation is the same, thus the number of
grains, i.e. the circles, is set to match the corresponding porosity. The domain size
has been chosen to guarantee a suitable REV in the case of both largest porosity
and grain diameter, as a consequence a valid REV for all the other combinations of
porosity and average diameter.



44 Fully connected neural networks for the prediction of integral parameters

The resulting dataset is made by 962 samples for the monodisperse case and 996
samples for the polydisperse case.

Parameter Range of variation

p 0.0836 - 0.50 Pa
d 100 - 200 µm
σ 0.1 - 0.3 (-)
ε 0.5 - 0.65 (-)
dc 30 - 100 nm

Table 4.1 Range of variation of the geometrical parameters and operating conditions, selected
as predictors, for the setup of the simulations.

4.1.3 Neural network setup

The data-driven models are trained with the dataset created as it is described in the
previous paragraph. The porosity of the porous medium, the mean grain diameter
and the standard deviation of the grain distribution (in the polydisperse case), are
the predictors for the evaluation of the permeability of the porous media, calculated
by Darcy’s law, Eq.(2.7). The same geometric parameters, the inlet pressure of the
fluid, and the colloid dimension (i.e. the diffusion coefficient of the species) are the
predictors for the evaluation of the filtration rate, Eq. 2.27. Every sample fed to the
neural network training algorithm is the result of a CFD simulation performed with
a different set of these predictors.

The fully connected neural networks are trained using the Adam optimizer [107]
until the maximum number of epochs is reached (20000) or when the MSE on
the test set remains unchanged for a number of epochs equal to 1500. Different
learning rates were employed in order to evaluate the value corresponding to the
best performance of the network, in particular the following values of λ have been
tested: 10−1,10−2,10−3,10−4,10−5. Different architectures of the networks were
also tested, starting from a shallow network composed by a single hidden layer with
32 neurons, then hidden layers are added with an increasing number of neurons: 64,
128, 256.
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The performance of the model is evaluated on the test set of the dataset, for each
sample of this set the relative error between the CFD result and the model prediction
is calculated, Eq. 4.1. Then, the average error of the neural network is calculated as
the average of the error on each sample, the different architectures and learning rate
tested are compared on the basis of the average error, the maximum error and the
standard deviation of the error on the test set.

Error =
ŷ− y(CFD)

y(CFD)
. (4.1)

The hyperparameters evaluated in this study are the learning rate and the neural
network architecture, the best combination of the two for each result (permeability
of the porous media and filtration rate of the colloid) and for each system (monodis-
persed and polydisperse grain diameter distribution) is researched resulting in four
different networks. The choice is made based on the lowest average relative error on
the test set. In Fig. 4.3 the average relative error as a function of the learning rate
for the four different architectures is reported. For the prediction of the permeability
of the porous media in the monodisperse case the learning rate is chosen equal to
10−1 and the architecture of the network is {32 64}, i.e. two hidden layers with
respectively 32 and 64 neurons. For the prediction of the permeability of the porous
media in the polydisperse case the learning rate is chosen equal to 10−3 and the
architecture of the network is {32}, i.e. one hidden layer with 32 neurons. For the
prediction of the filtration rate of the colloid in the monodisperse case the learning
rate is chosen equal to 10−2 and the architecture of the network is {32 64 128}, i.e.
three hidden layers with respectively 32, 64 and 128 neurons. For the prediction of
the filtration rate of the colloid in the polydisperse case the learning rate is chosen
equal to 10−2 and the architecture of the network is {32 64}, i.e. two hidden layers
with respectively 32 and 64 neurons.
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Fig. 4.3 Hyperparameter tuning of the fully conncted neural network: mean relative error
on the test set as a function of the learning rate (10−1, 10−2, 10−3, 10−4, 10−5) and of
the network architecture ({32} in red, {32, 64} in blue, {32, 64, 128} in green, {32, 64,
128, 256} in black, refer to the end of Section 2 for the bracket nomenclature). Top: error
on the prediction of permeability; bottom: error on the prediction of filtration rate; left:
monodisperse grains; right: polydisperse grains.

4.2 Results and discussion

In this section the results of the CFD simulations are presented and both analytical
and data-driven models are proposed for the prediction of the upscaled parameters
described before, namely permeability k and filtration rate Kf.

4.2.1 Flow field results

The results of the CFD simulations are at first compared with the Ergun equation 5.3.
The inertial term of the Ergun equation in the cases of this work is negligible since
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all the samples fall in the laminar regime. The results obtained from the simulations
are not completely in agreement with the equation because the geometries are bi-
dimensional whereas Ergun’s equation is valid for three-dimensional packed beds.
Similar results were obtained in a past work [51] for a smaller number of simulations
performed. The polydisperse geometries, referring to the polydisperse grains, deviate
less from the theoretical equation compared to monodisperse ones, moreover the
higher is the standard deviation of the grain diameter distribution the lower is this
deviation, Fig. 5.9. This behavior can be explained considering that the most likely bi-
dimensional description of a monodisperse 3D porous medium is a 2D polydisperse
geometry. In fact, if we imagine to cut with a surface a three-dimensional sphere
arrangement in the flow direction we obtain circles with different diameter and most
of them will not be in contact. Two contour plots for a qualitative description of the
flow field are presented in Fig. 4.5, where the fluid flows from left to right and it is
possible to appreciate the presence of the periodic boundary conditions on the upper
and lower boundaries.

The permeability is the first upscaled parameter we have approached for testing
the workflow proposed in the previous section. It is a well known descriptor of a
porous medium from the geometrical point of view, and in our case it is calculated
by comparing the results of the CFD simulations with Darcy’s law, Eq. 2.7. The
Kozeny equation:

k =Ck
ε3

(1− ε)2M2
s
, (4.2)

where Ms is the specific surface of the porous medium (m2/m3), instead is an
expression for the permeability that depends just on geometrical parameters: it is
exploited as an analytical model to compare with the results of the data-driven model.
The Kozeny constant is evaluated by fitting of the CFD results, Fig. 4.6, resulting
in Ck equal to 0.084 for both monodisperse and polydisperse geometries. The
average error associated to the prediction of the permeability by the Kozeny equation,
calculated according to Eq. 4.1, is equal to 10.1% for monodisperse geometries and
8.2% for polydisperse geometries. The error linked to the polydisperse geometries
is lower than in the monodisperse case, even in this case this behavior is amenable
to the most likely 3D approximation of the first ones. The specific surface has been
evaluated in an analytical way starting from the radii of the grains and the dimensions
of the geometries, we proved that the quality of the predictions of the Kozeny law
does not change if the specific surface is evaluated from the meshed geometry.
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monodisperse geometries polydisperse geometries
k K f k K f

Average error 5.52% 3.24% 4.92% 2.69%
Maximum error 25.85% 10.35% 20.03% 11.99%

Standard deviation 4.43% 2.44% 3.48% 2.49%
Table 4.2 Performance of the fully conncted neural networks.

The performance of the optimized fully connected neural networks is shown in
the parity diagrams of Fig. 4.7, where the results of the CFD simulations and the
result of the model are compared. In Table 4.2 the average error, the maximum
error and the standard deviation of the error are reported. The fully connected
neural networks are able to predict the permeability with an average error of 5.5%
and 4.92% respectively for monodisperse and polydisperse geometries, instead the
Kozeny equation results in errors of 10.1% and 8.2% respectively, so the neural
networks perform better with average errors about 40% lower than the traditional
correlation for the geometries proposed and for the range of operating conditions
explored in this work.

Fig. 4.4 Comparison of CFD results (black points) with Ergun’s equation (red line). Left:
monodisperse geometry; right: polydisperse geometry with σ (i.e. standard deviation in
diameter distribution) between 0.1 and 0.15 in green, between 0.15 and 0.25 in blue, between
0.25 and 0.3 in red.
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Fig. 4.5 Contour plot of the fluid velocity (ms−1), from left to right. Left: monodisperse
grain distribution geometry (Re = 0.0071); right: polydisperse grain distribution geometry
(Re = 0.0021).

Fig. 4.6 Evaluation of the Kozeny coefficient through linear regression. Left: monodisperse
geometry; right: polydisperse geometry.
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Fig. 4.7 Parity diagrams of the permeability prediction on the test set for the optimal
fully conncted neural networks trained with the best hyperparameters. Left: monodisperse
geometry; right: polydisperse geometry.

4.2.2 Transport field results

The particle deposition simulations are performed as described before on top of the
flow field results. In Fig. 4.8 two contour plots of the concentration at the steady
state are reported. The two cases proposed differ for the geometry and for the
Pèclet number, Eq. 2.26. So at high Pèclet numbers the convective term prevails
on the diffusive one and as a consequence the filtering performance of the porous
medium decreases. The time required for the resolution of each CFD simulation,
considering both simpleFoam and scalarTransportFoam solvers, is 1.2 hours in
the case of monodisperse grains geometries and 4 hours in the case of polydisperse
grains geometries, which have an higher number of cells.

The data-driven model we designed is aimed at the prediction of the filtration
rate, K f , as defined in the previous chapter Eq. 2.27. From the literature [83] we
know that this upscaled parameter is correlated to the Pèclet number through the
Damköhler number, which in this work we define as follows:

Da =
K f L

q
. (4.3)

The classic upscaled parameter for the evaluation of the filtration performance is the
deposition efficiency η , whose best adimensional descriptor1 is the Pèclet number

1if one considers only Brownian diffusion, as it is the case in this work



4.2 Results and discussion 51

[27, 108, 109]. In this work we have chosen to employ the more reliable macroscale
parameter K f (as explained in [83]), but the same functional dependence holds. Thus
we consider a relationship of the form:

Da = APeB, (4.4)

The values of parameters A and B obtained from the best fit of the results dataset,
Fig. 4.9, the following values are obtained: A = 6.394×109, B = -0.928 for the
monodisperse geometry, A = 7.413×109, B = -0.973 for the polydisperse geometry.
The average error of the prediction is equal to 12.2% for the first case and 11.9% for
the second case.

The performance of the optimized neural networks is evaluated in the parity
diagrams of Fig. 4.10 where all the predictions on the test set samples are reported:
the average error is equal to 3.24% for the monodisperse case and 2.69% for the
polydisperse case. In Table 4.2 more details on the data-driven models accuracy
are reported. Even in this case the data-driven model is able to predict better
the deposition efficiency with respect to the classical relationship structured on
dimensionless number dependency. In the limit of the cases explored in the current
dataset, the error associated to the predictions is one order of magnitude lower than
the one correlated to the analytical correlation, Eq. 5.7. The neural networks training
process took about 4 minutes and the trained model is able to predict almost instantly
its output.

Fig. 4.8 Contour plot of the normalized concentration. Left: Monodisperse grain distribution
geometry (Pe = 990.0); right: Polydisperse grain distribution geometry (Pe = 252.5).
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Fig. 4.9 Evaluation of the correlation between the Damköhler number and the Pèclet number.
Left: monodisperse geometry; right: polydisperse geometry.

Fig. 4.10 Parity diagrams of the filtration rate prediction on the test set for the optimal
fully conncted neural networks trained with the best hyperparameters. Left: monodisperse
geometry; right: polydisperse geometry.

4.3 Conclusions

In this chapter we described a successful open-source workflow for the realization
of a dataset starting from a campaign of CFD simulations aimed at the training of
neural networks for the prediction of fluid dynamics quantities. Fully connected
neural networks have been employed to predict the permeability and the filtration
rate for the investigated cases. In conclusion:
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• The average error on the test set for the permeability it is lower than 6% and
for the filtration rate, which has never been predicted with machine learning
tools before, is lower than 3.5% for both geometrical models;

• The networks allow more accurate predictions of the permeability and the
filtration rate compared to traditional analytical expressions, with average
errors lower than 4% in the range of operating conditions explored in this
work;

• The data-driven models, once trained, can instantaneously give a satisfactorily
accurate output, while a CFD simulation requires a certain amount of com-
putational time. In our case each CFD simulation requires from one to four
hours to be solved and the training takes four minutes. The increase in the
predictive velocity can be exploited in multiscale modeling, in-line control
and optimization problems;

ML algorithms, in particular neural networks, are promising tools in modeling
advancement of intrinsically random problems as porous media are. To enhance the
predictive accuracy new elaborated input features could be employed, such as the
tortuosity and the pore size distribution, paying attention to the choice of parameters
that can be experimentally evaluated. To avoid the arduous selection of parameters
representing the randomness of the media, another way to solve the problem is to
submit the entire geometry as training input for the neural network: in this way the
algorithm itself could select the most important features in the image. In this case
more sophisticated techniques must be used, such as convolutional neural networks,
which will the focus of the next chapter.



Chapter 5

Convolutional neural networks for the
prediction of integral parameters

In this chapter fully connected neural networks (FCNN) and convolutional neural
networks (CNN) for the prediction of the permeability and the filtration rate are
compared for the prediction of properties in three-dimensional porous media. This
work applies (and expands) the workflow that we proposed in the previous chapter
[16] and that is summarized in Fig. 5.1 for three-dimensional geometries. At first
porous media geometries are created in silico, then the computational grids are built
for the CFD simulations, that are in turn solved so as to prepare a dataset for the
training. While for the FCNN case the neural network is provided with integral
descriptors of the porous media geometries, in the CNN case the entire geometry
together with the operating conditions input parameters are fed to the network model.
Both these techniques give good predictions of the permeability and the filtration
rate in porous media, with average errors lower than 5%.

Beyond this similarity in performance, this proven effectiveness of CNN in
building a predictive model for non-trivial transport/reaction phenomena, with no
need for arbitrary and potentially unsuccessful parameter hand-picking, will have
important consequences in the construction of a general model, as it will be expanded
upon in the remainder of this chapter. In closing, a numerical exploration of the
coupling between these deep-learning models and CFD is presented: namely, we
conducted a sensitivity study on the size of the dataset used in training the CNN in

The content of this chapter, in a modified form, has been published in Marcato et. al (2022) [14]
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Fig. 5.1 Workflow for the construction of neural networks models for porous media applica-
tions: 1) in silico creation of the geometries, 2) setup and solution of the CFD simulations, 3)
preparation of the dataset for the FCNN - integral descriptors as input and output- and for the
CNN - entire geometry and integral descriptors as input and integral descriptors as output.

order to determine the minimum number of CFD simulations to be solved for the
sake of obtaining an accurate data driven model, as well as a preliminary tuning of
the relevant hyperparameters for the deep-learning model.

5.1 Computational details

5.1.1 CFD model setup

The porous media geometries for the CFD simulations, Fig. 5.2, were created in silico
by means of the open-source toolbox Yade which implements a discrete element
method (DEM). This tool was selected for the purpose of obtaining periodic packings
of spheres with a low computational cost, in fact, the creation of a representation of
hundreds of spheres takes only a few minutes. Since a dataset of hundreds of CFD
simulations is required for the training of the neural network model, the fast creation
of geometries is an advantage to reduce computational costs. The DEM model
integrates the motion equations for each particle of the packing, so the position of a
single particle is updated at each time step using the acceleration (a) computed from
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the total force acting on the particle (F) and its mass (m) (5.1):

ma = ∑
i

Fi. (5.1)

The forces taken into account are the interparticle normal and shear forces. A
periodic boundary condition is set up for the sake of studying the behaviour of a
material in bulk, and as such avoiding the wall effects on the packing. A detailed
explanation of the method is provided in Appendix A.
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Fig. 5.2 The porous media geometries were created in silico by means of YADE with a
Gaussian particle size distribution.

The smallest representative elementary volume (REV) was identified in order
to fix the minimum number of grains necessary for a macroscopic characterization
independent from the size of the porous medium. Since the grain size distribution
of the geometries follows a Gaussian distribution, the REV study was performed
considering the highest standard deviation. The geometries for the CFD simulations
are made by 250 grains, this dimension is selected on the basis of a representative
elementary volume study. The study was conducted on Gaussian particle size
distributions having the highest standard deviation (Tab. 6.1) in this way the study
can be extended to all the cases explored in the dataset. In Fig. 5.3 it is possible to
visualize how the porosity changes with the number of grains. Given the number of
grains (50-1450), 100 representations of the same geometry were made by means of
Yade, on the chart the average of the porosity on the 100 representations is reported,
with the error bar representing the standard deviation. In Fig. 5.4 the relative error
between the average porosity at a certain dimension and the average porosity of the
larger geometries we created (1450 grains) is reported. For porous media having
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Fig. 5.3 Representative elementary volume study: the mean and the standard deviation of the
porosity are reported for 100 representations of each packing composed by a certain number
of grains. The study is performed with the highest standard deviation of the particle size
distribution

more than 250 grains, the corresponding error on the porosity is lower than 1%, this
is the basis on which we selected the dimension of our porous media geometries.

The geometries were used for the CFD simulations, that were solved by using the
finite volume method implemented in the open-source toolbox OpenFOAM v7. We
refer in this paragraph to the solvers and tools of this software, which are essentially
the same employed for the construction of the dataset detailed in Chapter 4, we
briefly recall them in this paragraph. The system is considered isothermal at 298K
and the fluid phase has the properties of pure water, therefore it is a Newtonian fluid
with density equal to 997 kg m−3 and kinematic viscosity equal to 0.89 ×10−6 m2

s−1.
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Fig. 5.4 Representative elementary volume study: the relative error on the average porosity
is reported for 100 representations of each packing composed by a certain number of grains.

The fluid flows in the porous media in laminar conditions, so it is not needed
to model the turbulence, and the effect of gravity is not considered. The solver
simpleFoam is employed for the resolution of Eq. (2.6). The boundary conditions
applied for the numerical solution of these equations are a pressure drop between the
inlet and outlet boundaries, a no-slip condition on the grains surface and symmetry
conditions on the other faces of the simulation box.

The transport of the colloid in the fluid is modelled as a scalar transport of
the normalized concentration C, due to the hypothesis mentioned in the previous
paragraph. The scalarTransportFoam solver is employed for the resolution of Eq.
(2.20) in steady state conditions. At the inlet boundary a normalized concentration
equal to one is imposed, instead at the grains surface a null concentration is set. The
null normalized concentration can be physically interpreted as a clean bed filtration
[51] or as an instantaneous reaction on the grains surface.

The computational grid, i.e. the mesh, was constructed by means of the Open-
FOAM tools blockMesh and snappyHexMesh and a grid independence study is
performed. The operating conditions of the simulation for the grid independence
study were selected so that the highest Péclet number is reached, in fact, all the CFD
simulations that were solved for the creation of the dataset have a Péclet number
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Fig. 5.5 Grid independence study: effect of the number of cells on the permeability and on
the filtration rate, refer to Tab. 5.1 for the details on the meshing strategies.

lower than 1500. Figure 5.5 reports the effect of the number of cells on the perme-
ability (on the right axis) and the filtration rate (on the left axis). In Table 5.1 the
meshing strategy and the errors are reported, the errors are calculated as the relative
error between the current strategy and the last strategy at which correspond the
highest number of cells, so the most accurate result. The meshing strategy adopted
for all the CFD simulations solved in this work is the N, Fig. 5.6, which represents
an acceptable trade-off between the accuracy and the computational cost of the
simulations since the relative error on the permeability is 0.62%, the error on the
filtration rate is 5.1% and the CFD simulation requires 19 hours on a single core to
be solved.
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Fig. 5.6 Zoom on the computational grid of a sample representation, the meshing strategy is
the N of Tab. 5.1.

Table 5.1 Grid independence study: relative error between each strategy (A-Q) and the R
strategy on the permeability and the filtration rate. C.P.D.: number of Cells Per mean
Diameter, R.L.: Refinement Level in snappyHexMesh.

Meshing
strategy C.P.D. R.L.

Computational
time [h]

Error on
permeability [%]

Error on
filtration rate [%]

A 16 0 0.2 18.61 1.17
B 18 0 0.3 16.17 7.77
C 20 0 0.5 13.69 14.90
D 22 0 0.6 11.66 20.61
E 24 0 0.8 9.90 24.94
F 26 0 1.1 8.49 28.03
G 16 1 1.7 5.63 30.68
H 18 1 2.7 4.31 29.65
I 20 1 3.5 3.38 27.18
J 22 1 4.5 2.68 24.12
K 24 1 6.0 2.15 20.79
L 26 1 6.8 1.74 17.54
M 16 2 12.8 0.94 9.12
N 18 2 19.0 0.62 5.10
O 20 2 21.0 0.39 2.44
P 22 2 28.5 0.22 0.83
Q 24 2 40.5 0.09 0.03
R 26 2 38.6 0.00 0.00
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5.1.2 Neural networks setup

The dataset is employed for the training of neural networks models. In this work
FCNNs and CNNs are trained and tested.

Two FCNNs were trained, one for the prediction of the permeability and one for
the prediction of the filtration rate. The permeability is predicted starting from the
geometrical parameters of the porous media: porosity, mean diameter and standard
deviation of the grains diameter distribution. The filtration rate is predicted starting
from the same geometrical parameters, together with the operating conditions of the
filtration simulation: the inlet pressure of the fluid and the diffusion coefficient of
the colloid. Different architectures and learning rates were investigated in order to
determine an optimal neural network model, in the following sections the outcomes
are presented and discussed.

Even for the CNN models two networks had to be trained. The one for the
prediction of the permeability receives exclusively as input the entire geometry of
the porous media. The geometry was analytically defined by means of Yade as a list
of centres and radii, for the purpose of providing the CNN with a compatible input a
voxelization representation is created. Starting from a STL file the Python’s library
Trimesh was used for the voxelization of the geometry. The resulting array contains
0 in the solid phase and 1 in the fluid phase, afterwards the Euclidean distance
transform was applied to the resulting array so as to provide a more descriptive input
to the CNN [62], resulting in each voxel, i.e. component, in the solid phase being
marked with 0 and each voxel in the fluid phase with the distance from the closest
solid voxel, a detailed description of this procedure can be found in Appendix B.
The CNN for the prediction of the filtration rate takes as input the same geometry
together with the inlet pressure of the fluid and the diffusion coefficient, which are
concatenated to the flattened output of the CNN portion. The architecture of the
CNN is summarized in Fig. 5.7. The hyperparameter tuning in this case was done
on the choice of the learning rate, on the scaling of the input data and on the use of
the batch normalization layers, in the following section these results are discussed.

The numerical inputs and outputs for both types of neural networks were scaled
between −1 and 1 in order to optimize the activation function effectiveness. The
optimization algorithm that was used for the training in this work is Adam [107]
which is considered the best overall choice among the gradient descent optimization
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algorithms [110]. The loss function minimized by the algorithm is the mean squared
error, Eq. (5.2), which is defined as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 , (5.2)

where n is the number of samples used during training, ŷi is the true output (namely,
the CFD simulation results, representing the ground truth in our model) and yi is the
output of the neural network prediction. Given the entire dataset, 70% of it was used
as training set, and the remaining part as validation and test set, respectively 20%
and 10%.

The training of the neural networks was performed on graphics processing units
nVidia Tesla V100 SXM2, the Python libraries Keras and Tensorflow were used
for the setup, the training and the testing. The computational time for the training
of the FCNN is about 30 minutes, instead the training of the CNN takes around 15
hours using the entire dataset of 280 samples.
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Fig. 5.7 Summary of the convolutional neural networks architectures. The CNN for the
prediction of the permeability receives as input the porous media geometry - in this image the
input is represented as the packing of spheres for the sake of clarity of presentation, whereas
the actual input to the CNN is the Euclidean distance field from the closest solid. The CNN
for the prediction of the filtration rate receives both the geometry, the inlet pressure and the
diffusion coefficient. The parameters of each layer are reported in the blocks, all unspecified
parameters are set as the Keras defaults.
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Feature Range of variation

Mean diameter [µm] 100 - 200
Standard deviation 0.0 - 0.3
Inlet Pressure [Pa] 8.2×10−5 - 9.74×10−4

Colloid diameter [nm] 30 - 100
Table 5.2 Range of variation of the features in the dataset. The mean diameter and the
normalized standard deviation (i.e.: standard deviation normalized by mean diameter) of the
particle size distribution are the input features for the creation of the geometries. The inlet
pressure and the colloid diameter are the input features for the CFD simulations.

5.2 Dataset

280 simulations were solved for the creation of the dataset employed for the training
of the neural networks. The samples in the dataset differ in some operating conditions
and in some geometrical parameters: the inlet pressure of the fluid in the porous
media, the colloid dimension (thus the colloid diffusion coefficient), the mean
diameter and the standard deviation of the grains size distribution. These features
variation ranges as detailed in Tab. 6.1.

The CFD simulations were performed in single core on an HPC cluster equipped
with 29 nodes with CPU 2x Intel Xeon E5-2680 v3 2.50 GHz 12 cores RAM of 384
GB. The computational time for each simulation is about 19 hours, Tab. 5.1.

5.3 Results and discussion

5.3.1 CFD results

In Fig. 5.8 two contour plots of the velocity and the normalized concentration for
a sample simulation are reported. The pressure drop through porous media can be
related to the Reynolds number through the Ergun equation (5.3):

∆Pρ

G2
0

dg

L
ε3

(1− ε)
= 150

1− ε

(dgG0)/µ
+1.75, (5.3)

where G0 is the mass flux, dg is the surface averaged mean diameter, ε is the porosity,
L is the porous medium length in the flux direction. The dimensionless numbers Re∗
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and ∆P∗ can be introduced so that the Ergun equation results in:

∆P∗ =
150
Re∗

+1.75, (5.4)

For the creation of the dataset 280 simulations were performed, in Figure 5.9 each
point represents a CFD simulation, instead the straight line represents the Ergun
equation. As it is possible to notice there is a good agreement between the microscale
CFD results and the analytical correlation.

Fig. 5.8 Contour plot of the velocity (A) and of the normalized concentration (B) for a sample
of the dataset.

10 3 10 2

Re*

104

105
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Fig. 5.9 Comparison between the CFD results (points) and the Ergun equation (line) Eq.5.3.

Concerning the transport simulations results, the upscaled filtration rate K f , Eq.
(2.27), can be related to the Péclet number via an advective Damköhler number, Fig.
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5.10. Those are defined as follows:

Da =
K f L

q
, (5.5)

Pe =
qdg

D
. (5.6)

The filtration rate is usually interpreted via a power-law relationship with the Péclet
number [27, 109, 78], resulting in the following exponential relationship [83]:

Da = APeB, (5.7)

where A and B are the coefficients that best fit the results, in our case A = 1.20 and
B =−0.65. The fitting was performed by linear regression on all the data points of
the dataset.

It has to be noted that while in this specific case it was possible to find a con-
stitutive equation relating Péclet (i.e. operating conditions) and Damköhler (i.e.
filtration efficiency) with a clear power-law functional form, it has been shown that
for arbitrary and realistic geometries this is not the case, as it can be seen in Boccardo
et. al. (2014) [51], resulting in the need of a model able to interpret these features -
this will be explored in the following section.

This effect of complex geometries on fluid flow-reaction structures presents itself
more clearly in the diffusion-limited low-Péclet range in Fig. 5.10 where a correct
estimation of dispersive fluxes is complicated by the complex random geometry by
the arising of terms depending on the correlation between solute concentration and
flow velocity spatial fluctuations [38]. The reader is referred to this literature for
more details.
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Fig. 5.10 Comparison of the CFD results (points) and the Damköhler Péclet correlation (line)
Eq.5.7.

5.3.2 Neural networks

In this section the results of the neural networks modelling are presented. For the
case of the FCNN, different kinds of architectures and different learning rates were
explored in order to tune the model. In Table 5.3 the results are summarized. Four
different learning rates, in a range commonly used, are proposed: 10−3, 10−4, 10−5,
10−6; four different architectures were tested with an increasing number of hidden
layers - from one to four hidden layers - the number of components in the square
brackets of Table 5.3 is the number of hidden layers and the value of each component
is the number of neurons per layer. The different learning rates and architectures
do not strongly affect the results. The best set of results for the prediction of the
permeability can be found with a learning rate equal to 10−3 and architecture type:
[128, 64, 32]; these parameters result in an average error of 2.46% and a maximum
error of 7.62%. The best set of results for the prediction of the filtration rate is a
learning rate equal to 10−4 and architecture type: [128, 64, 32]; these parameters
result in an average error of 2.20% and a maximum error of 7.66%. The parity
diagrams for these cases are displayed in Fig. 5.11.

The CNN architectures were set up as described in the previous section. In order
to find the optimal architecture and training strategy, a limited number of alternatives
between the many available were explored, in particular the learning rate, as for the
FCNN, the scaling of the input data, and the batch normalization layers presence.
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For the permeability neural network the learning rates tested were 10−4, 10−5 and
10−6, while for the filtration rate neural network 10−3, 10−4, 10−5. The scaling
proposed in this work is a min-max strategy (min equal to 0 and max equal to the
maximum Euclidean distance in the dataset). In Table 5.4 the results are summarized.
As it is possible to catch, the presence of the normalization layers have a powerful
effect on the results. For both the prediction of the permeability and the filtration
rate the best architecture is found if the batch normalization layers are absent and if
the scaling is applied. The best learning rate is equal to 10−5 for the prediction of
the permeability, which leads to an average error of 2.33% and a maximum error of
12.24%. The best learning rate is equal to 10−4 for the prediction of the filtration
rate, leading to an average error of 4.90% and a maximum error of 12.75%. The
parity diagrams for these cases are displayed in Fig. 5.12.

Results in Tab. 5.3 and Tab. 5.4 show that both the FCNN and the CNN accurately
predict the permeability for the case study approached in this work. This means
that the input features fed to the FCNN precisely describe the geometry, and the
convolutional layers of the CNN grasp the most effective features autonomously from
the image fed to the network. The FCNN predicts better the filtration rate if compared
to the CNN, even though the latter still has good accuracy in absolute terms. The
difference in the prediction of the filtration rate can be addressed to the architecture of
the CNN, in fact, this particular architecture may need further hyperparameter tuning.
However from these results it is possible to deduce that the present methodology is
promising for other applications and porous media geometries. In particular the use
of CNN will be more and more useful for geometries whose featurization is more
complex.

Regarding the dataset, it was created from 280 simulations in order to train the
neural networks, then some parameters and training strategies were explored in
order to train an optimal model. The hyperparameter tuning is performed on the
largest dataset because it is necessary to have results independent from the dataset
size. After having chosen the best set of hyperparameters/strategies, it is useful to
understand how many samples are actually necessary for the sake of obtaining a
certain prediction accuracy. For this purpose we trained the same neural network with
an increasing number of samples and we compared the accuracy on the same test set,
for both the prediction of the permeability and the filtration rate and for both FCNNs
and CNNs. In Fig. 5.13 the average prediction error, in red, and the maximum error,
in blue, on the test set is reported versus the dimension of the dataset (training plus
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validation set). At least 50 samples are required for reaching a good accuracy, for
both types of neural networks (FCNN in solid line and CNN in dashed line). In Fig.
5.14 the same study is proposed for the filtration rate prediction, in this case more
samples are required, around 100 for FCNN, and 200 for CNN. Generally this is
due to the highest number of parameters that characterize this problem compared to
the permeability prediction. The need for more samples in the case of CNN for the
filtration rate prediction is probably due to potential improvements on the structure
of the treatment of multiple topological/integral inputs.

Table 5.3 Hyperparameter tuning of the FCNN. The average error and the maximum error
on the test set (in brackets) are reported for the different architectures and learning rates.
Underlined, the chosen best architecture/hyperparameter coupling.

Permeability
10−3 10−4 10−5 10−6

[32] 2.45% (8.18%) 2.55% (8.03%) 2.52% (8.52%) 2.51% (9.0%)
[64,32] 2.49% (8.31%) 2.46% (8.53%) 2.51% (8.88%) 2.41% (9.09%)
[128,64,32] 2.46% (7.62%) 2.46% (8.49%) 2.42% (8.30%) 2.43% (8.67%)
[256,128,
64,32] 2.47% (8.44%) 2.49% (8.73%) 2.51% (8.04%) 2.49% (8.51%)

Filtration rate
10−3 10−4 10−5 10−6

[32] 2.23% (10.57%) 2.27% (9.34%) 2.26% (8.24%) 2.81% (9.21%)
[64,32] 2.05% (10.56%) 2.21% (9.74%) 2.54% (8.11%) 2.67% (11.74%)
[128,64,32] 2.27% (11.7%) 2.20% (7.66%) 2.41% (9.64%) 2.69% (12.0%)
[256,128,
64,32] 2.17% (10.12%) 2.34% (9.13%) 2.28% (9.09%) 2.44% (8.99%)
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Fig. 5.11 Parity diagrams for the predictions on the test set of the permeability (A) and the
filtration rate (B) by the use of FCNN.

Permeability

Norm. Scaling 10−4 10−5 10−6

✓ ✗ 5.57% (22.50%) 15.00% (48.40%) 27.90% (95.07%)
✗ ✓ 3.14% (15.93%) 2.33% (12.24%) 2.39% (12.24%)
✓ ✓ 7.27% (21.57%) 17.44% (55.34%) 24.65% (58.34%)
✗ ✗ 39.74% (100.44%) 3.03% (13.66%) 2.52% (12.53%)

Filtration rate

Norm. Scaling 10−3 10−4 10−5

✓ ✗ 5.90% (15.58%) 6.62% (19.00%) 8.55% (27.90%)
✗ ✓ 5.02% (14.99%) 4.90% (12.75%) 6.44% (23.33%)
✓ ✓ 6.68% (24.91%) 7.85% (29.09%) 8.69% (32.49%)
✗ ✗ 25.01% (65.00%) 25.83% (66.67%) 6.40% (18.20%)

Table 5.4 Hyperparameter tuning of the CNN. The average error and the maximum error
on the test set (in brackets) are reported for the different learning rates, for the presence of
batch normalization layers and for the scaling of the input data. Underlined, the chosen best
architecture/hyperparameter coupling.
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Fig. 5.12 Parity diagrams for the predictions on the test set of the permeability (A) and the
filtration rate (B) by the use of CNN.
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Fig. 5.13 Effect of the number of samples in the training and validation set on the prediction
of the permeability for the FCNN and the CNN - the networks were tested on the same test
set.
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Fig. 5.14 Effect of the number of samples in the training and validation set on the prediction
of the filtration rate for FCNN and CNN - the networks were tested on the same test set.

5.4 Conclusions

Prior work has documented the efficacy of training neural networks for the prediction
of the permeability in various types of porous media systems [104, 111, 60, 59, 112].
However, the majority of these works has focused just on models that deal with
geometrical descriptors. Since the applications of porous media systems in chemical
engineering are usually related to catalytic chemical reactions and filtration (more in
general, fast surface reactions), we developed a methodology for the prediction of
the filtration rate in porous media. Both fully connected and convolutional neural
networks were tested in our workflow [16]. The main difference between these two
approaches is the input to the model, in the first case hand selected features are the
input to the FCNN, in the second case the entire image is fed to the networks, which
is able to autonomously detect the features in the image for the prediction of its
target output.

While the two models exhibit similar (and satisfactory) accuracy, it is notable
that a comparable number of CFD simulations between the two cases were sufficient
to reach such accuracy, notwithstanding the clearly higher complexity of the con-
volutional model with respect to the classical fully connected network. Even more
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so, in the light of the much higher flexibility of use of the model based on CNN,
which (at the cost of higher computational cost for its training) will prove to be much
more useful by means of opening to this kind of analysis even systems featuring
complicated geometries - as are frequently found in chemical engineering both in
purification/filtration apparatuses, and in packed bed catalytic reactors. Beside its
usefulness in dealing with complicated structures, these convolutional models have
already proven in this work to be able to treat complicated phenomena, by providing
a way to robustly construct accurate models even in cases for which it may not
be immediate (or feasible) to choose integral input features with which to build a
predictive analytical model - case in point the problem of colloidal filtration, as
explored in this work. The long term application of this methodology will be the
use of neural networks for the prediction of other microscale properties that lack
analytical models that correlate them to microscale properties.



Chapter 6

Multiscale convolutional neural
networks for fields prediction

What seems a natural evolution of the research presented so far is to build CNNs
that can be employed to surrogate the microscale local solution of the flow and
transport equations. CNNs with encoding and decoding architectures have been used
to train surrogate models able to predict the flow field in different microscale porous
media systems [61–63]. Multiscale neural networks (MSNet) [69] came out to be a
preferred alternative to the previous ones, from both the computational point of view
and, notably, their generalization capability. In fact, it is possible to train the network
with larger geometric samples than what more classical approaches allow, which is
fundamental when dealing with representative elementary volumes of heterogeneous
geometries and/or complicated transport phenomena.

Nonetheless, as the main effort in the last years was addressed to the development
of architectures for the microscale prediction of flow fields, little was done to expand
these methodologies to more complex physical systems, which are of common
experience in the chemical engineering field. The complexity does not arise only
from the different prediction objectives, but also from the kind of input necessary
for the network. When the main objective is the prediction of the permeability, as
in the above mentioned studies, it can be evaluated from the prediction of the flow
fields. In laminar flow regime the permeability is just related to the geometry of the
porous media [2, 113], so a dataset at constant pressure drop is sufficient. Instead,

The content of this chapter, in a modified form, has been published in Marcato et al. (2023) [18]
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in coupled flow and solute transport problems, different pressure drops (or other
operating conditions) impact the ultimate solute concentration field even if the flow
regime does not change.

In this chapter we provide proof of the capability of these CNN models to
surrogate CFD simulations of transport and reaction under a wide range of different
transport conditions that are common in chemical engineering problems. It is evident
that these models, in the limit of their accuracy, can integrate the knowledge that
can be extracted from CFD simulations and used to construct workflows needing a
large number of “calls" to the CFD model, like in multiscale modelling. In general,
deep learning based surrogate models can help when it is hard or impossible to build
appropriate constitutive equations for upscaled parameter estimation, due to difficulty
in choosing the relevant microscale parameters (or dimensionless numbers) in order
to construct the right functional form for the needed predictive model. Some other
times still, and this is very relevant for porous media, it may be impossible to find
or evaluate these parameters, like in the case of evaluating the effect of a complex
geometry on flow, transport, reaction, and their interplay. A model able to “see”
and interpret geometries and shapes as they are (as convolutional neural networks
provably do in many different contexts) instead of through the lens of integral
parameters (porosity, pore shape, surface area, et c.) would be more successful.

Thus, the objective we set for this work was to obtain a network able to predict
concentration fields in porous media in the case of a heterogeneous surface reaction
(or equivalently filtration) when dealing with a wide range of Reynolds and Péclet
number. To this end, we modified the original MSNet and trained it with a “ground
truth” dataset of CFD simulations of flow and reactive transport over many geometri-
cal realizations and different operating conditions. As a result of this study, beyond
only having a working neural network for the solution of this problem, we also
propose a wide-ranging study of the different possible input features employable,
resulting in the best set of features that allows the network to satisfactorily generalize
its predictions to new geometries and operating conditions.

6.1 Dataset

The training of the neural network requires a dataset that encompasses a wide variety
of geometries and operating conditions, and in this work we carried out 800 CFD
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simulations of flow and transport in bi-dimensional porous media, all with different
operating conditions and domain geometries. We’ve chosen to perform this quite
extensive number of simulations precisely for the purpose of exploring the effect of
the size of the training dataset on the neural network performance.

The samples of the dataset are chosen so to explore a wide range of diameter
of the circles, porosity of the 2D packing, pressure drop across the porous medium,
i.e. the Reynolds number, and diffusion coefficient, i.e. the Péclet number. These
features range of variation is listed in Tab. 6.1.

The mesh created for the CFD simulations is stair-stepped (castellated in Open-
FOAM parlance) in order to ease the use of the resulting concentration fields for the
training of the neural networks without needing an interpolation from a body-fitted
mesh (with non-Cartesian structure) to the matrix-like data structure needed by the
neural network training calculations.

Then, a grid independence study was performed in order to choose the size of
these computational grid elements, by monitoring the medium permeability and the
average concentration in the domain with varying mesh cell size. Since in the dataset
of CFD simulations a wide range of operating conditions was explored, the grid
independence study was performed on the sample subjected to the highest Péclet
number, the most critical condition from the computational point of view, due to the
smaller boundary layer on the surface of the grains caused by the null concentration
boundary condition. In Fig. 6.1 the study is reported, with the green line highlighting
the chosen mesh strategy, corresponding to a linear discretization of the square
domain of 1536 cells. The relative error between the average concentration and the
permeability calculated from the simulations performed with the chosen meshing
strategy and the most refined grid tested is, respectively, 0.5% and 0.1%. The results
of the chosen strategy can thus be considered fully grid independent.

Parameter Range of variation

p 0.30−0.50 Pa
dg 100−200 µm
ε 0.5−0.65 (-)
D 3.13×10−11 −5.71×10−10 m2s−1

Table 6.1 Range of variation of the features chosen for the creation of the geometries and the
solution of the CFD simulations.



6.2 Multiscale convolutional neural networks 77

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Number of cells 1e6

4.14

4.16

4.18

4.20

4.22

Pe
rm

ea
bi

lit
y 

[m
2 ]

1e 10

0.72

0.73

0.74

0.75

0.76

No
rm

al
ize

d 
Co

nc
en

tra
tio

n 

Fig. 6.1 Grid independence study performed for the CFD simulations. The average concen-
tration in the domain (blue diamond markers) and the permeability (red bullet markers) were
monitored. The green line indicates the grid independent result whose strategy was chosen.

6.2 Multiscale convolutional neural networks

CNNs are a class of neural networks suited to deal with grid-like objects as input
features [6], like images. The CNN layers implement the convolution operation:

y = f

(
F

∑
i=1

x∗ ki +bi

)
, (6.1)

where ∗ denotes the convolution operation, x is the input, y is the output of the
operation, f is the activation function, ki is the kernel, F is the number of kernels,
and bi is the bias term. The kernel is a trainable array of floating point numbers of a
certain size that is applied on the image. In this work the input features are images
so the filter is two-dimensional and of size 3-by-3 which is the most computationally
efficient size for GPU computations [101].

CNNs have exhibited excellent performance in deep learning tasks compared to
classical fully connected neural networks both in terms of generalization capability
and computational cost of the training [102]. This is partly due to the fact that
convolutional kernels share their parameters, because the same filter slides on the
image and is applied in different regions, thus every output is connected just on
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a small portion of the input, which is referred to as sparse connectivity. As a
consequence, CNN are characterized by equivariance to translation, so the layers
learn the influence of the images features independently from their location.

The training of neural networks aims to optimize the trainable parameters of the
network to minimize the loss function, which is done with the back-propagation
algorithm. In this work we used the Pytorch [114] implementation of Adam [107],
which is one of the most employed and stable gradient descent optimizers [110].

As with other deep learning algorithms, CNNs may suffer of gradient vanishing
issues [100], thus the choice of an appropriate activation function is crucial to assure
the contribution of each neuron to the final prediction. The selection of the activation
function is one of the many choices to be made for the design of the neural network
model.

The most used activation functions nowadays are the Exponential Linear Units
(ELUs), nevertheless activation functions like the Gaussian Error Linear Unit (GELU)
seems to be a promising alternative for convolutional networks [115]. For this work
we tested both the use of a ELU, the continuously differentiable exponential linear
unit (CELU), and GELU, as it will be discussed in the following section of the chapter.
Since there was no apparent impact of the activation function on the accuracy of the
predictions for our trainings, we decide to use CELU, the original and widely tested
activation function of MSNet. The continuously differentiable exponential linear
unit (CELU) reads as follows [116]:

CELU(x) = max(0,x)+min
(

0,α ·
(

e
x
α −1

))
(6.2)

where α is a parameter controlling saturation for negative inputs [117]. CELU avoids
saturation of the output unlike other activation functions traditionally employed in
neural networks, such as the sigmoid function, and avoids the dead ReLU problems
being an ELU activation function [118].

Now the main characteristics of MSNet are summarized. This architecture was
originally presented by Santos et al. [69], so the reader may refer to this work for a
more detailed description.

MSNet is a convolutional neural network structured in scales, where each scale
aims to predict the property field structure at a different level: a sketch of the
mechanism is presented in Fig. 6.2. The architecture has two purposes: 1) letting
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each scale focus on different length scales of the field (i.e. the scale with the largest
field of vision can capture the global trend of the field) and 2) allowing to train
computationally large images in a single-GPU (which is not feasible with a model
such as U-Net [119] or Res-Net [120]). The scale that deals with the full domain
size is denoted as scale 0, subsequent scales (1 through N) receive the same input
as the previous scale but coarsened by a factor of two. The last scale N receives the
coarsest representation of the input feature, consequently, its output is the coarsest
representation of the predicted field. This output is refined and fed to the previous
scale together with the refined input feature. The output of the N−1 scale is summed
with the refined output of scale N. This procedure is replicated for all the intermediate
scales, and can be summarized as follows:

ŷN−1 = CNNN−1(XN−1,R(ŷN))+R(ŷN), (6.3)

where ŷN is the predicted field at scale N, CNNN is the fully convolutional neural
network of scale N, XN is the set of input features coarsened by a factor 2N , R() is
the refinement operation.

The coarsening of the input features and the output fields is performed by a
nearest neighbor averaging, meaning that the value of every 22 group of pixels
is averaged into a single pixel. Instead, the refinement procedure consists in a
masked nearest-neighbors re-scaling that maintains the shape of the geometry of
the solid portion. For a more detailed explanation of the operation the reader may
refer to Section 2 of the original MSNet work [69]. The coarsening and refinement
operations conserve the average over space, and the coarsening of a refined image
gives back the original image. It is important to notice that the coarsening operation
is performed just once before the training in order to calculate the coarse fields of the
input features and of the true concentration fields, that will be employed during the
training as ground truth at each scale. The time required to perform the refinements
is not rate determinant during the training, as just 0.8% of the time of the training is
spent in the refinement calculations.

The loss function employed in the training of MSNet takes into account the
prediction error of each scale. The contribution of each scale is given by the mean
squared error between the predicted field ŷ and the true field y (coarsened at the
corresponding level) divided by the variance of the true field, σ2

yi
, so the global loss
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function L is:

L =
N

∑
s=0

NS

∑
i=0

〈
(yi,s − ŷi,s)

2
〉

σ2
yi

, (6.4)

where the index s refers to the scale, i refers to the sample, NS is the number of
samples in the training set, the operator < . > refers to the spatial average on the
domain.

The architecture of the neural network is the same for every scale and is summa-
rized in Fig. 6.2. The networks are fully convolutional and the size of the images is
maintained along the layers of the scale. The first four blocks are made by a convo-
lutional layer whose kernel size is 32, followed by a normalization layer, after that
the CELU activation function is applied. A fifth block without activation function is
then added in order to not constrain the output.

The number of kernels of each convolutional layer depends on the scale: 22s+1.
Finally, the network ends with a convolutional layer with a single kernel size of 12

in order to reduce the dimensionality of the output to a single image, which is the
predicted field.

Conceptually MSNet can grasp both short range and long range correlations in
the field thanks to using the same features at different resolutions, resulting in good
generalization capability for the flow field prediction, and the related permeability
prediction. From the computational point of view, using the same input features at
different resolutions allows for a higher number of kernels at the coarsest scales and
a lower number of them at the finest scales: as a consequence, the training is faster
and the memory requirements are decreased.

MSNet for the prediction of concentration fields

The MSNet architecture was originally conceived for the prediction of flow fields.
Since the main objective was the prediction of the permeability, a dataset of sim-
ulations in laminar conditions at constant pressure drop was employed [69]. As
mentioned, while permeability is strictly related to fluid flow, it is determined only
by the geometric features of the porous medium [2, 113]: as a consequence, this
geometrical description was the only input feature needed by the network for the
prediction of the field. In this work the architecture was employed for the prediction
of concentration fields, and the main effort was headed in the choice of the most
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Fig. 6.2 MSNet workflow (left) and CFD workflow (right). A set of input features is chosen
for the prediction of the steady-state concentration field (presented in rainbow color scale
in the figure). The input features tested are the Euclidean distance transform, the time of
flight, the local thickness, the operating pressure drop, and the diffusion coefficient. Each
scale is made by a convolutional network block that is detailed on the left. The coarsening
and masked refinement operations are employed to transfer information between scales. The
CFD workflow is summarized on the right. The output of the simulations is the ground truth
for the training of neural network.
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appropriate input features. In this section the input features tested are described
and information about their extraction is provided, while their effectiveness on the
prediction of the concentration field is discussed in the following section. In the
proposed dataset both the porous media geometries and the operating conditions of
transport affect the concentration fields, so the neural network must be provided with
both features.

Concerning the geometrical description of the porous media the features tested
are: the Euclidean distance transform, the linear variation distance from a boundary,
the time of flight, and the local thickness, Fig. 6.3.

The Euclidean distance transform is applied to the binary images of the porous
media, where 0 labels the solid phase and 1 the fluid phase. As a result, for each
pixel of the fluid phase the Euclidean distance is calculated from the closest solid
pixel, i.e. the closest solid grain, Fig. 6.3A.

As stated in the previous section, CNNs are invariant to translation, but the
concentration values in the pore space are linked to their position with respect to
the inlet boundary. Even though MSNet is able to grasp the spatial correlations
at different scales, being the transport of species concentration a strictly oriented
phenomenon, it is necessary to provide the neural network with this information. It
can be conveyed by a simple linear variation of the coordinate in the flow direction,
Fig. 6.3B, or with more informative features that can account for the tortuosity of
the porous medium.

The time of flight describes the tortuosity in the porous medium as the shortest
distance of a point from a chosen boundary, Fig. 6.3C. In order to calculate it a
boundary value problem of the Eikonal equation is solved:

F(x)|∇(t(x))|= 1, (6.5)

where F(x) is the speed at which the boundary x evolves in time t. The fast marching
method implemented in scikit-fmm [121] was employed in this work to compute the
time of flight.

The boundary selected is the inlet boundary of the transport simulations, and
the speed field is the Euclidean distance field, Fig. 6.3A. Commonly the speed
field is set with a constant value in the pore space and zero in the solid phase:
however, the resulting time of flight field does not highlight the preferential paths and
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a mostly linear variation of the coordinate is returned, since the circular obstacles
have a negligible influence on the boundary path. If a non constant speed field
as the Euclidean distance is employed, it is possible to extract a more informative
feature describing the preferential paths in the porous media that are of the utmost
importance in the shape of the concentration fields.

Other geometric features have been taken into consideration to aid the neural
network for the non-trivial prediction of the concentration field, such as the local
thickness, i.e. size of the maximum inscribed sphere, Fig. 6.3D. To obtain this
feature, we used the approach implemented in PoreSpy [122] which consists in
finding which group of pixels can accommodate a sphere of a given radius. Given the
number of sizes and the bins in the size distribution, the algorithm detects the largest
pore applying the Euclidean distance transform to the image. Then the algorithm
searches for all the smaller spheres between zero and the largest one by using the
Fast Fourier Transform convolution.

All the above mentioned features are not computationally expensive, the time
required for their calculation is in the order of a few seconds per sample. As a
consequence the choice of these features can easily scale to a three-dimensional
dataset.

The operating conditions characterizing the dataset are the pressure drop across
the porous media, and the diffusion coefficient of the chemical species transported.
The latter is provided to MSNet as an image with the value of the diffusion in each
pixel of the pore space. The pressure drop feature can also be supplied to the network
in this way, like the diffusion coefficient, or it can be merged with the information
about the distance from the inlet boundary (Fig. 6.3B) since the pressure decreases
along the flow direction. Scaling the features of this kind (linear variation and time
of flight) by the value of inlet pressure allows for a more compact set of features to
pass to the CNN. Lastly, a unique feature for the operating conditions such as the
ratio between the pressure drop and the diffusion coefficient was tested in this work
too.

Concerning the scaling of the input features, those are scaled by their mean value
over the whole dataset. In the case of the output concentration field instead, no
further scaling is needed, as it is already normalized between 0 and 1 from the CFD
simulations.
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Fig. 6.3 Geometrical input features tested as input to MSNet for the prediction of the
concentration fields. A - Euclidean distance transform of the binary image; B - Linear
variation of the coordinate in the main flow direction; C - Time of flight in the main flow
direction; D - Local thickness. Colors represent values normalized within each metric’s
range, transitioning from blue (minimum) to red (maximum).

Since the output concentration is always between 1, at the inlet boundary, and 0,
at the grain surface, a normalizing layer was added at the output layer of MSNet to
prevent the prediction of nonphysical results.

The number of scales chosen for the MSNets trained in this work is 6, which
represents a good trade off between limiting the number of trainable parameters and
obtaining a well coarsened representation at the last scale. In fact, the field of vision
(FoV), i.e. the number of pixels of the input affecting each pixel of the output, is
defined as follows for MSNet:

FoVMSNet = (L(ksize −1)+1)2n, (6.6)

where L is the number of convolutional layers of the network (5 in this MSNet), ksize

is the size of the kernels (3 in this MSNet), and n is the number of scales. Given the
size of the CFD simulations fields (1536×1536), the FoV of the finest scale (n = 0)
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is equal to 11 voxels and the one of the coarser scale (n = 5) is equal to 352. We
performed the trainings on NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB.

6.3 Results and discussion

6.3.1 CFD simulations for the creation of the dataset

The neural network for the prediction of the concentration field is trained on a
dataset made by CFD simulations. Two CFD simulations are solved to obtain the
(normalized) concentration fields, as summarized in the workflow of Fig. 6.2. At
first the velocity field is obtained from the coupled solution of the continuity and
Navier-Stokes equations, after that the scalar transport is simulated by the solution
of the advection diffusion equation.

Each complete simulation constitutes a sample point of the dataset. The total
number of simulations solved is larger than the minimum set size required for the
training of an MSNet for concentration prediction: this was done to perform a
sensitivity analysis on the number of actual samples required to obtain a satisfactory
accurate prediction.

An HPC cluster was employed to solve many (single core) simulations at the
same time. In this way, 800 simulations have been solved. The time required to
create the castellated mesh, and to solve the two CFD simulations is about 20 hours
on an HPC cluster equipped with 29 nodes with CPU 2x Intel Xeon E5-2680 v3 2.50
GHz 12 cores RAM of 384 GB.

A random combination of the input features in the range displayed in Tab. 6.1
results in a range of Reynolds numbers of 3.96×10−4 - 1.58×10−2, and in a range
of variation of the Péclet number of 23 - 1500. Thus a wide range of transport
conditions in laminar flow was explored in the dataset resulting in a challenging
dataset for MSNet.

In Fig. 6.4 the flow field and the concentration fields for three samples of the
dataset are shown. The lower is the Péclet number, the higher is the contribution of
diffusion with respect to the convective term (which regulates the residence time of
the chemical species in this reactive system). As a result, the average concentration
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Fig. 6.4 Contour plots of the velocity and concentration fields for three samples of the dataset.
A lowest Péclet number - the diffusive term prevails. B intermediate Péclet number. C
highest Péclet number - advection term prevails, the chemical species flows easily through
the porous medium.

in A is lower than the average concentration in B, which is lower than the average
concentration in C.

6.3.2 Neural networks

Choice of the input features

The choice of the input features for the prediction of the concentration field is of the
utmost importance for the generalization capability of the neural network.

The prediction accuracy of the networks is visually depicted with the fields of
local errors between the predicted concentration field and the CFD result. In addition,
three metrics are employed in order to easily compare the prediction accuracy on the
test set:

• The percentage error on the average concentration of the field;

• The root mean squared error (RMSE) of the concentration profiles in the flow
direction;
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• The RMSE of the concentration profiles in the direction perpendicular to the
flow.

The result of these metrics for each sample of the test set is averaged in order to
obtain a metric for the entire test set.

A B C D E F G
Linear variation normalized

by the pressure drop
✓ ✓

Pressure drop ✓ ✓ ✓

Pressure drop/Diffusion coefficient ✓ ✓

Diffusion coefficient ✓ ✓ ✓ ✓ ✓

Euclidean distance ✓ ✓ ✓ ✓ ✓ ✓

Time of flight ✓ ✓ ✓ ✓ ✓

Local thickness ✓

< e >test

on average concentration
13.5% 5.7% 5.3% 3.3% 3.3% 5.3% 5.5%

RMSEtest

on concentration profile parallel to flow
0.104 0.034 0.027 0.023 0.024 0.032 0.027

RMSEtest

on concentration profile perp to flow
0.074 0.054 0.042 0.042 0.042 0.044 0.044

Table 6.2 Input features tested for the training of MSNet. The different combinations are
compared on the error on the prediction of the average concentration, on the RMSE of the
concentration profiles in the flow direction and in the perpendicular direction to flow.

In Tab. 6.2 the different combinations of input features tested are summarized,
and the metrics previously described are reported for each set of features. In case A,
just the basic features are provided, namely the operating conditions (pressure drop
and diffusion coefficient) and the geometrical conditions, by means of the Euclidean
distance, Fig. 6.3 A. The three metrics show the highest error, and the predicted field
is not physical since there are zones in the fluid where the concentration increases
moving towards the outlet boundary; in a filtration problem, or a depleting reaction,
this obviously should not happen, Fig. 6.5. This is due to the lack of information
about the distance from the inlet boundaries: in fact, precisely because the convo-
lutional layers are invariant to translation as mentioned earlier, it is necessary to
provide the network with the position with respect to the inlet boundary.
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If the distance from the inlet boundary is given as a coordinate linear variation,
Fig. 6.3B, normalized by the pressure drop, case B, the accuracy remarkably im-
proves. The error on the average concentration in the fields decreases from 13.5% to
5.7%, the RMSE for the concentration profile in the flow direction decreases from
0.104 to 0.034, and the RMSE for the concentration profile in the perpendicular
direction to flow decreases from 0.074 to 0.054.

The time of flight, Fig. 6.3 is an alternative option for giving the information
about the distance from the input boundary to the network. Compared to the linear
variation of the coordinate, the time of flight embeds the description of the tortuosity
in the geometry and underlines the presence of preferential paths. If both features
(time of flight and linear variation of the coordinate) are fed to the network, case
C, the improvement of the generalization capability does not increase in a relevant
manner.

On the other hand, if just the time of flight is employed, together with the
Euclidean distance, the diffusion coefficient and the pressure drop, case D, the
accuracy remarkably increases. This results in an error on the average concentration
of 3.3%. The redundant information about the distance is not useful for the network,
so it is preferable to just provide the network with the time of flight.

Then, since it is desirable to reduce the number of input features, in order to
decrease the memory load on the GPU and the number of trainable parameters, and
as a consequence the computational cost of the trainings, the compression of the
two operating conditions features into a single one was tested. Employing the ratio
of pressure drop and diffusion coefficient, case E, the prediction accuracy remains
unchanged, so this solution is preferable to the previous one.

Following the same approach, a training without the Euclidean distance feature
was performed in order to reduce the number of input features to the minimum, case
G. In this case the generalization capability is not preserved, in fact, the error on
the average concentration increases again from 3.3% to 5.5%. Thus, the Euclidean
distance can not be missed in the set of features for the prediction of the concentration
fields.

The last set of features tested is the same of case D but with the additional feature
of the local thickness, case F. The new geometrical feature does not improve the
accuracy, so it’s not worth it to add local thickness to the set of input features.
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Given the presented results, the best set of features was found to be the one from
case E, where the operating conditions are provided in a single feature in the form of
the ratio of the pressure drop and the diffusion coefficient, and the geometric features
into two features, the Euclidean distance and the time of flight. This last feature is
particularly effective since the preferential paths information is clearly correlated to
the concentration field patterns.

The results of the training of MSNet with the best set of features are reported
in Fig. 6.6, where the predictions for four samples of the test set are shown. The
percentage error on the average concentration between the result of the CFD and the
prediction of MSNet is in the label of each sample. One point of note is that, beyond
these quantitative error measures, the network is able to predict qualitative transport
features with satisfactory precision, for example the low-concentration tails in the
wake of the grains.

Since the samples in the test set differ from those in the training set for all the
input features, including circles diameter and most importantly their placement,
it is significant to note that these results describe the performance of this model
on a generalized form of this transport and reaction problem. If this model were
employed on a similar system (one never seen in the training of the network),
equivalent performances to those reported would be expected.

In Fig. 6.7 the profiles corresponding to the fields of Fig. 6.6 represent an
alternative way to evaluate the prediction error of the network. Also in this case, it
can be appreciated that the average profiles predicted by MSNet quite closely follow
the shape of the profiles calculated from the results of the CFD simulations.
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Fig. 6.5 Prediction of MSNet ŷ for case A of Tab. 2. If the distance from the inlet boundary
is not provided to the network the resulting concentration field shows non physical behaviors,
like the increase of the concentration along the flow direction. In the profile plot the increase
of the concentration is evident (CFD: solid blue line, MSNet prediction: dashed orange line).
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Fig. 6.6 Prediction of MSNet for four samples of the test set. From left to right: concentration
field resulting from the CFD simulations, concentration field predicted by MSNet with the
input features of case E Tab. 6.2, field of local error computed as the pixel-wise difference
between the CFD result and the MSNet prediction.
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Fig. 6.7 Profiles of average concentration in the direction of flow and in the perpendicular
direction to flow (CFD: solid, MSNet: dashed) for the four samples of Fig. 6.6.

Multiscale vs single scale

It is important to notice that the accuracy of the results obtained is deeply connected to
the multiscale approach of the network. The generalization capability of MSNet relies
both in the choice of the appropriate input features and in the intrinsic multiscale
approach. This allows the network to extract information from the input features from
different scales and, most of all, to employ a larger number of trainable parameters
compared to classical CNN (considering a fixed amount of available RAM in the
GPU).

To give a concrete example of the improvement afforded by this multi-scale
approach, we tested the performance of a fully convolutional neural network, which
is the case of a MSNet with a single scale.

The setup of the network was the same as the MSNet trained and presented in
this work in terms of training strategy, dataset re-partition, and features choice. The
architecture of the fully convolutional network was chosen maintaining the same
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structure of the single scale (5 convolutional layers - on the left of Fig. 3). The
number of filters of the convolutional layer was tuned in order to control the number
of trainable parameters of the model. It would be necessary to match the number
of trainable parameters (161 millions) of MSNet to have a consistent comparison
between the model. Since the training was performed on the same GPU (NVIDIA
Volta V100 GPUs, Nvlink 2.0, 16GB), it was not possible to match that amount for
memory limitations of the GPU, so the number of filters of the tested network was
tuned in order to obtain the highest number of trainable parameters allowed by the
memory size of the GPU (1.3 millions).

The prediction accuracy on the test set of the trained fully convolutional neural
network was evaluated in terms of the three metrics proposed in the manuscript, and
is summarized in Tab. 6.3

The error on the prediction of the average concentration is higher than MSNet,
but in particular the error on the profiles are one order of magnitude higher than
MSNet, meaning that the local predictions are of poor quality.

Furthermore, the size of the samples that can be achieved with the setup of this
work is higher that the one we employed (1536x1536). We tested that the maximum
size achievable would be 5120x5120, so this MSNet can be trained on even bigger
images of porous media.

Table 6.3 Comparison between MSNet and a fully convolutional neural network (single scale
MSNet). The training was performed on the same GPU.

MSNet Fully Conv.

Number of parameters 161M 1.3M

errortestset
on average concentration 3.3% 4.9%

RMSEtestset
on concentration profile parallel to flow 0.023 0.18

RMSEtestset
on concentration profile perp to flow 0.042 0.17
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Table 6.4 Prediction accuracy of MSNet using CELU or GELU as activation functions

CELU GELU

errortestset
on average concentration 3.3% 3.4%

RMSEtestset
on concentration profile parallel to flow 0.023 0.023

RMSEtestset
on concentration profile perp to flow 0.042 0.041

Choosing an activation functions: CELU vs. GELU

The choice of the activation function can have an impact on the accuracy of the
predictions for deep neural networks, which is the case of our network. It is well
known that the most classical sigmoid function should be avoided to prevent vanish-
ing gradients - since its derivative is null for large negative and positive numbers, so
the associated weights would not be updated during training [123].

The ReLU activation function was introduced as a computationally inexpensive
alternative to prevent this issue, in fact, its derivative is 1 for positive numbers, and
null for negative numbers. On the other hand the so-called dead ReLU appears when
a large number of neurons are never updated [118].

To face this new issue Leaky ReLU or Exponential Linear Units (ELUs) have
been proposed throughout the years, where the common strategy is to have non zero
values as output for negative inputs.

Among the ELU family the most promising seem to be the functions CELU and
GELU [115], which were then tested in MSNet. In Tab. 6.4 the accuracy of MSNet
using GELU and CELU is summarized: the quality of the predictions is actually the
same. Thus, we decided to employ the CELU activation function since it was the
one already used in the original MSNet implementation.

Effect of the dataset dimension

A sensitivity analysis on the dimension of the dataset was performed in order to
detect the minimum number of samples necessary to achieve the accuracy presented
previously. An increasing number of samples are employed during training, from
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200 to 800, the entire dataset. In Fig. 6.8 the results are reported, for each dataset size
the training was reproduced three times. It is possible to conclude that at least 400
samples are required to achieve an accuracy on the average concentration of around
3.5%. The test set used to evaluate the generalization capability of the networks was
the same. The use of a specialized neural network architecture and of appropriate
input features, both conceived for the prediction objective, is essential to decrease
the amount of samples necessary to obtain a satisfactory accuracy.

We tested these calculations on OpenFOAM on the test set of our dataset, and
in Fig. 6.9 is reported a parity diagram for the filtration rate predicted by MSNet,
and as a result of the CFD simulations. The Figure proves the capability of the
neural network to predict the filtration rate, bringing a proof of concept of a possible
application of this approach - letting the surrogate model calculate the upscaled
parameter (for as many times and in as many different conditions) needed in a macro-
scopic transport and reaction model instead of building a complicated constitutive
equation. In this respect the trained Pytorch models could be be easily embedded
(for example) into the C++ code of the CFD software (OpenFOAM), taking care of
computing the terms necessary to evaluate the filtration rate discussed above.

6.4 Conclusions

Neural networks, both fully connected and convolutional, have been widely employed
to train data-driven models that can provide much faster predictions compared to
the traditional alternative of performing computationally expensive physics-based
simulations. In this work a multi-scale convolutional neural network was trained to
reproduce the full concentration profile of different samples, which is commonly
obtained via CFD simulations. This approach differs from other recently proposed
machine learning workflows by being able to predict the entire concentration field of
a large image, instead of just a scalar quantity. Our approach yields a a robust and
flexible model that can be integrated in multiscale modelling workflows.

We studied the effect of different input features that inform the machine learning
model about the boundary conditions, and that distill additional information about
the geometry of the medium, for example, global and local paths available for flow.
We showed that the Euclidean distance, the time of flight, the pressure drop, and
the diffusion coefficient are sufficient to obtain very accurate pixel-wise predictions
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Fig. 6.8 Effect of the number of samples on the accuracy of the predicted fields. On the
right: variation of the average error on the average concentration in the test set. On the left:
variation of the root mean squared error in the parallel and perpendicular direction to flow on
the average concentration in the test set. The test set is the same in all the cases.
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Fig. 6.9 Filtration rate predicted by MSNet.

for a wide range of sphere pack arrangements under varying operative conditions (a
wide range of Péclet and Reynolds numbers).

This workflow is applicable to a wide range of systems that involve transport and
reactions in porous media. The input features used in this Chapter uniquely describe
the domain, hence these can be employed in new geometries and different physical
phenomena. The dimension of the domain or the computation of the input features
do not represent a problem for this approach, in fact, it is possible to train our model
on three-dimensional datasets to create a model able to provide predictions with a
similar prediction time.

These models, as it was shown, can be of use in aiding scale-bridging procedures
for multi-scale simulations, or for the prediction of process-scale performance of
reaction phenomena determined by complex micro-scale structures.

Thus, in conclusion, this methodology was demonstrated to be able to success-
fully provide predictions in a split-second of otherwise computationally intensive
CFD simulations.



Chapter 7

Autoregressive neural networks for
transient fields prediction

Electrodes at the microscale can be modelled as porous media. In Chapter 2 the
electrodes microstructure is described: active material (AM), carbon binder domain
(CBD), and electrolyte coexist, and transport equations of charge and mass balance
can be solved at the microscale on these regions to simulate the charge/discharge
behaviour of the battery. As discussed in the previous chapter for the filtration
application, these microscale simulations are time consuming and computationally
expensive, even more notably when a transient problem is faced, which is the case of
charge/discharge simulations.

In this chapter the work done in collaboration with the research group of Prof.
Alejandro Franco in the Laboratoire de Réactivité et Chimie des Solides (LRCS) in
Amiens (France) is presented. An autoregressive multiscale neural network (MSNet)
is trained to obtain a surrogate model for the discharge of the cathode side of a
lithium ion battery. The starting point of the chapter is the description of the dataset,
in Section 7.1: the simulations described therein were performed by the collaborators
at LRCS, for the purposes of the construction of a suitable dataset for testing the
construction of the new autoregressive MSNet. Then, the modifications to MSNet
are detailed in Section 7.2, and finally the Results in Section 7.3, and the Conclusions
of the work are summarized in Section 7.4.

The content of this chapter, in a modified form, has been published in Marcato et al. (2023) [124]
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7.1 Dataset

The dataset employed for the construction of the data-driven model is made by
half-cell microscale simulations focused on the cathode side, whose geometries are
reproduced in-silico.

The workflow proposed for the creation of the geometries mirrors the experimen-
tal production steps of electrodes, as summarized in Fig. 5.1A. The key steps to be
reproduced to obtain a full digital twin of the fabrication process are:

1. the preparation of the slurry with all the components;

2. the slurry casting on the current collector;

3. the solvent evaporation from the cast;

4. the calendering of the dried electrode;

5. the battery assembly.

For modelling purposes two solid phases are usually considered, as detailed in
Chapter 2: the active material (AM) and the carbon binder domain (CBD), made by
the binder and the conductive carbon, which actually constitute a single phase after
the evaporation of the solvent.

The in-silico reproduction of the electrode geometry is preferred in this context,
because, even though 3D images obtained from synchrotron X-ray tomographies
are available [125], their segmentation in the three phases (AM, CBD, electrolyte)
is not straightforward and still an open research problem to be addressed [126].
The capability of reproducing the electrodes geometries for modelling purposes is
essential when a big campaign of simulations is needed, which is the case of this
study.

To this end the processes at points 2, 3, 4, are modelled by using a molecular
dynamics code, LAMMPS [127], as detailed in Rucci et al. [128]. At first, given
the granulometry of the AM and of the CBD before the evaporation, a random
configuration of particles is produced. Then, the slurry is equilibrated at constant
pressure and temperature imposing Lennard-Jones and Granular Hertzian potentials
between particles. After that, the evaporation of the solvent is modelled imposing the
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Fig. 7.1 A) The physics-based digital twin process replicates the experimental production
of electrodes which are then used in the electrochemical simulations to create a dataset. B)
The digital twin results are then used to train the machine learning surrogate model for the
prediction of new 3D time-changing fields in new geometries.

shrinkage of the CBD particles until a set value is reached. Finally the calendering
of the electrode is simulated imposing a compression on the dried particles. The
computational details of this workflow can be found in Prof. Franco research group
articles [129, 4, 95, 128].

The electrochemical simulations have been performed using the finite element
method implemented in COMSOL on the cathodes geometries. In particular, the
partial differential equations of charge and mass balance reported in Chapter 2 are
solved in the AM, CBD, and electrolyte phases. The parameters present in the
equations, Eq. 2.31-2.40, are set as reported in Tab. 7.1.

The starting point for the dataset used for the training of the neural networks is
a set of different electrode geometries, varying in terms of AM/CBD proportions
and calendering degree. Each geometry is then employed for simulations at different
discharge rate, i.e. the C rate. These values are summarized in Tab. 7.2, all the
possible combinations of those parameters have been simulated in order to create the
dataset, thus a total of 45 transient simulations.

Since the dataset simulations were solved with COMSOL, a finite element
method, the computational grid is unstructured. This is not compatible with the
(matricial) data shape needed by a convolutional neural network, so the results have
been interpolated into a structured grid, in order to be conveyed to the network as an
image. The interpolation consists at first in the creation of the Cartesian grid by means
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Parameter Value/Reference

Porosity of CBD εCBD 0.27 [130]
Maximum Li concentration of NMC C(s,max) mol/m3 48207
Initial DOL of NMC 0.45925
Reaction rate coefficient of NMC kNMC (m/s) 4.38e-11 [131–133]
Ionic conductivity of electrolyte σl (S/m) Ref [134] at 20°C
Electrical conductivity of NMC σs,AM (S/m) 0.01
Electrical conductivity of CBD σs,CBD (S/cm) −173.967ε +0.1593
Deformation of the CBD phase because of calendering ε Ref [95]
Factor for effective transport correction in CBD f 0.05
Diffusion coefficient of Li+ Dl (m2/s) Ref [134] at 20°C
Diffusion coefficient of Li in NMC Ds (m2/s) Ref [135]
Transport number of Li+ t+ Ref [134] at 20°C

Activity dependence of Li+
(

1+ ∂ (ln f±)
∂ (lnCl)

)
Ref [134] at 20°C

Anodic transfer coefficient αa 0.5
Cathodic transfer coefficient αa 0.5
SEI film resistance RSEI (Ωm2) 0.001

Table 7.1 Parameters employed in the equations of the electrochemical model of Chapter 2.

of a voxelization algorithm (as detailed in Appendix B), in the grid ‘1’ is assigned to
the phase to be interpolated and 0 elsewhere.Then the fields are interpolated from the
unstructured grid to the structured one by means of the Gaussian kernel interpolator
available in Paraview. The size of the Cartesian grid cells is 0.5 µm, which is the
resolution of the elements in the original unstructured grid [95].

The dataset is made by samples, where a sample for a transient problem is
defined as the collection of all the time-frames available from a simulation of a given
electrode geometry and undergoing a certain discharge rate, so its dimensions are:
(Number of time-frames, x, y, z). In a battery simulation the time required for a
discharge process is linked to the C rate: if the C rate is doubled, the time required to
completely discharge the battery is halved. In the dataset available the time-frames
have been saved according to the C rate, thus resulting in samples with the same
number of time-frames. It is important to underline that the time-frames are not saved
at each time-step of the transient simulation because the memory load necessary to
save them would have been prohibitory. A total number of 25 time-frames is available
for each sample, for 2C discharge the time interval between two time-frames is 50 s,
for 1C discharge rate 100s, for 0.5C discharge rate 200s. In this chapter we will refer
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Parameter Set

AM %wt 85-87-90-93-95
Calendering degree (%) 0-10-20

C rate 0.5C-1C-2C
Table 7.2 Parameters varied for the creation of the dataset.

to the normalized time-frames as ∆t∗. The number of time-frames to extract from the
simulations and employ in the training in order to describe a transient problem by
means of a neural network is for sure an hyperparameter to be further investigated in
order to evaluate its impact on the accuracy of the prediction.

7.2 Autoregressive MSNet

The multiscale convolutional neural network presented in Chapter 6 can be employed
for the prediction of steady-state fields and can generalize on different geometries
and operating conditions. For transient problems appropriate architectures have to be
chosen. Recurrent neural networks, such as long-short term memory networks [136],
have been widely employed in data science, but may not be the most appropriate
structure for a problem of this kind. In this work MSNet has been modified in order
to deal with a transient dataset, and to predict a sequence of fields starting from the
initial conditions.

The most intuitive way to approach this problem is to consider the problem as a
Markovian process, where each time-step result depends just on the previous one, as
it is in the solution of a transient physics-based simulation. Therefore, the network
should take as input the geometrical descriptors and the operating conditions (as it
is done with how it will be called in this chapter: the “classic" approach), together
with a temporal feature, which is: the initial condition for the prediction of the first
time-frame, or the previous time-frame for the prediction of the following ones.

Given this premise the easiest solution to perform the training is to concatenate the
input features with the previous time-frame field (the true field from the simulations)
and train the network as the standard MSNet. In this way the training is carried on the
shuffled time-frames, so the transient problem is decomposed as single frame samples.
Nevertheless for testing purposes the first prediction is carried on concatenating the
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Fig. 7.2 Classic and autoregressive MSNet for the prediction of time-dependent fields.

input features with the initial condition, then the first output is concatenated with the
other features for the prediction of the second time-frame, so on and so forth until the
last prediction. This is obviously necessary since in the test mode the intermediate
time-frames are not available, thus the network predictions have to be employed as
input for the following time-frames.

Another training solution is to mimic the testing process, so that even during the
training the input features are concatenated with the previous time-frame network
prediction, and not the true field of the physics-based simulation. Using this approach
the transient nature of the dataset is preserved, since MSNet is provided with the
samples (each one with the time-frames from the initial condition to the final time-
frame) at each epoch.

This autoregressive training approach, sketched in Fig. 7.2, can be summarized
as follows 1:

ŷ(0,1) = MSNet(X0,Xinitial) (7.1)

ŷ(0,2) = MSNet(X0, ŷ(0,1)) (7.2)

...

ŷ(0,T ) = MSNet(X0, ŷ(0,t−1)) (7.3)

for a generic time-frame t, MSNet performs the following operations:

ŷ(0,t) = NN0(X0, ŷ(0,t−1),R(ŷ(1,t)))+R(ŷ(1,t)) (7.4)

1The nomenclature of MSNet architecture is kept as in Chapter 6, a new index is introduced
referring to the time-frame, so y(n,t) refers to the nth scale and the tth time-frame.
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...

ŷ(N−1,t) = NNN−1(XN−1, ŷ(N−1,t−1),R(ŷ(N,t)))+R(ŷ(N,t)) (7.5)

ŷ(N,t) = NNN(XN , ŷ(N,t−1)) (7.6)

Even in this case both geometrical descriptors and operating conditions have to
be fed to MSNet. The Euclidean distance transform (Appendix B), the AM-CBD-
electrolyte repartition, and the distance between current collector and separator have
been employed as geometry features, respectively A, B, C of Fig. 7.3. The C rate
value has been provided as operating condition input. It is important to notice that
these features are unchanged for the predictions of the different time-frames of the
same sample. Both input and output features have been scaled in order to range
between 0 and 1, so MSNet predicts normalized concentration and potential fields.

Fig. 7.3 Geometrical descriptors employed as input to MSNet (cathode: 85% AM, calen-
dering: 0). Plot A: inverted Euclidean distance, plot B: AM/CBD/electrolyte repartition, C:
current collector separator distance

The size of the samples is: (72,72,244) so three scales have been trained in the
network in order to ensure a good field of vision. The number of filters has been
improved compared to the original MSNet in order to optimize the local prediction
in 3D. The number of filters is set to 14, which is the maximum size allowed by the
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RAM limitations of the GPUs employed in this work. This three-scale configuration
of MSNet is represented in Fig. 7.4.

Fig. 7.4 Workflow of the MSNet architecture. Each scale takes as input the same set of
features, at different resolutions, thanks to coarsening operations (only the binary geometry
feature is shown). The convolutional layers (blue blocks) have an increasing number of
filters for increasing scales to optimize the tradeoff between the total number of trainable
parameters and the memory requirements during training.

7.3 Results

The main prediction objective of this study is the reconstruction of the discharge
curves, which describe the potential decay as a function of the degree of lithiation of
the cathode. So MSNet was employed for the prediction of the lithium concentration
field in the AM phase, and the potential field in the solid phase (AM + CBD) of the
electrode. From these predicted fields it is possible to integrate their quantities over
the phases and obtained the desired discharge curves.

At first the two training approaches proposed in the previous section are com-
pared for the prediction of the concentration field, then the best approach among the
two is employed for the prediction of all the fields required for the reproduction of
the discharge curves. In the first approach the training inputs are the geometrical



106 Autoregressive neural networks for transient fields prediction

Fig. 7.5 Error on the prediction of the average concentration for the time-frames and the
different C rates.

descriptors, the C rate, and the previous time-frame field (from the physics-based sim-
ulation). In the second approach the training inputs are the geometrical descriptors,
the C rate, and the previous network-predicted time-frame field. The comparison
is based on the prediction of the lithium concentration on three test samples: AM
weight percentage: 90, calendering degree: 10, C rate: 0.5C, 1C, 2C.

In Fig. 7.5 the relative error between true and predicted average lithium concen-
tration is reported for the different C rates along subsequent time-frames. It is evident
that by using the first approach the error increases with time, while this does not
happen with the second approach. In Fig. 7.6 three time-frames for the test sample
at discharge 1C are compared for the two approaches. For each time-frame the true
(from the finite elements simulations) and predicted local concentration fields are
displayed for a slice of the 3D domain, and the pixel-wise error is reported on the
right. It is possible to see that using a “classical” (not autoregressive) approach
even the local prediction deteriorates in time, in fact, the radial profile of the lithium
concentration is lost in time in favor of a random noisy concentration field.

The different behavior in generalization is due to the error propagation in time.
When MSNet is trained with the true fields as input, the network is not trained to deal
with slight (but cumulating) fluctuations of prediction errors as input fields, thus it is
not trained to dampen these fluctuations, on the contrary it magnifies the errors in the
predictions leading to a big propagation of the error. In the second approach, during
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Fig. 7.6 Local true and predicted concentration fields for three time-frames of a slice of the
3D sample (1C). For each time-frame: concentration field from the physics-based simulation,
prediction by the classical MSNet, relative error between true and classical approach, predic-
tion by the autoregressive MSNet, relative error between true and autoregressive MSNet.

the training the network learns how to dampen fluctuations in the input resulting in
much better generalization.
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Given these results, the autoregressive MSNet was employed for the prediction of
the transient concentration and potential fields. The predictions of the concentration
and potential fields over time are summarized in Fig. 7.7, for each time-frame the
true field from the COMSOL simulations is reported, then the predicted field, and
the local relative error. The average quantities are needed to obtain the predicted
discharge curves of Fig. 7.8. In these charts the potential is expressed as a function
of the lithium concentration for the different C rates.
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Fig. 7.7 Local true and predicted potential fields for three timeframes of a slice of the
3D sample (1C). For each timeframe: potential field from the physics-based simulation,
prediction by the autoregressive MSNet, relative error between true and autoregressive
MSNet.
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Fig. 7.8 Discharge curves showing potential versus concentration values for C rates equal to
2C, 1C, 0.5C. True values from simulations compared with predictions by AR-MSNet.
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7.4 Conclusions

In this chapter, focused on an energy storage application, we have decided to tackle
a single, but central, aspect of the field of computer-aided battery research: the
problem of facilitating the optimization processes needed in the design of energy
storage systems. In the fast-moving landscape of modern battery design, with its
demand for ever growing performance in multiple areas, this means computational
loads that workflows based on traditional modelling cannot bear. A wide variety of
low-order, data-driven, and in general surrogate models are thus being studied and
employed to aid in this prospect.

Our tools of choice for this effort are neural networks, and especially convolu-
tional neural networks. The effectiveness of this kind of machine learning technique
is apparent (and was again shown here) when dealing with the interpretation of
transport phenomena which are greatly influenced by the geometric structure char-
acterizing the system, as is the case for porous media in general and clearly for the
random and heterogeneous structure of lithium-ion battery electrodes.

Starting from an innovative multi-scale convolutional network architecture,
proven to accurately reproduce results of detailed steady-state physics-based simu-
lations, we have developed an improvement in order to obtain a data-driven model
able to also explore variations in time (and space) of properties of interest.

Two connected takeaways result from the work shown here. First, as mentioned,
the results confirm the great flexibility of convolutional neural networks as algorithms
for the treatment of physics-based simulation data, and that they are able (with
appropriate modifications) to also be effectively used to treat time-varying sequences
of three-dimensional data. This was not granted, as this kind of application lies
somewhat outside of the applications for which convolutional neural networks are
now solidly a standard, namely image analysis. Secondly, the process we presented
shows how this extension is not trivial, as a “classic” sequential approach to the
neural network training would fail by means of error accumulation in time. Thus, an
autoregressive approach was needed, meaning that both a suitable architecture had
to be developed and appropriate loss functions were formulated in order to properly
teach the network how to interpret the data coming from physics-based simulations,
and how to learn to make comparably good predictions, even when moving beyond
the cases on which it was trained.
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In conclusion, we consider this to be a successful proof of concept for fast,
reliable, and full-order surrogation of accurate numerical simulations. Fast surrogate
models are essential to deal with the wide parameter space intrinsic in contemporary
battery design and optimization: the results of the work shown here aim to show how
such surrogates can not only predict single key metrics but are also able to disclose
the full dynamics of battery systems as they evolve in time.



Chapter 8

Conclusions

As it emerges from the former chapters, the main objective of the work presented
in this dissertation is to show the performance of neural networks as data-driven
models. The chosen research field for this methodology is the numerical study of
flow, transport, and reaction in porous media, through the investigation of a series
of applications: clean-bed filtration and the discharge dynamics of energy storage
systems.

This choice was made, beyond the clear scientific and practical interest of in-
vestigating these various problems, also and perhaps even more strongly as they
constitute the perfect test case for the wide range of data-driven models employed
in this work. The accurate study of porous media stands upon a deep understand-
ing of the impact of the microscale geometric structure on transport phenomena,
which is scarcely obtainable by averaged integral descriptions, to be used in classical
simplified input-output models. As such, the study of these models of increasing
complexity (both in structure description and in the type of phenomena investigated)
is well suited to avail itself of possibilities afforded by the recent advances in deep
learning algorithms, now able to very effectively interpret images, three-dimensional
structures, and even time-evolving sequences of data, and connect them to the desired
outputs, even to the point of surrogating (i.e.: reproducing) data in the form of the
results of full-order numerical simulations. By way of conclusion, the main results
obtained throughout this work are here summarized, together with their significance
and impact on research and practical applications, more directly on chemical and pro-
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cess engineering, and by extension on the related fields of environmental engineering
and subsurface transport studies.

In Chapter 4 we described a successful open-source workflow for the realization
of a dataset starting from a campaign of CFD simulations aimed at the training of
neural networks for the prediction of fluid dynamics quantities. Fully connected
neural networks have been employed to predict the permeability and the filtration
rate for the investigated cases. The average error on the test set for the permeability
is lower than 6% and for the filtration rate is lower than 3.5% for both geometrical
models. The networks provide more accurate predictions of the permeability and
the filtration rate compared to traditional analytical expressions, with average errors
lower than 40% in the range of operating conditions explored in this work. The
data-driven models, once trained, can instantaneously give a satisfactorily accurate
output, while a CFD simulation requires a certain amount of computational time. In
our case each CFD simulation requires from one to four hours to be solved and the
training takes four minutes. The increase in the predictive velocity can be exploited
in multiscale modeling, in-line control and optimization problems.

In Chapter 5 both fully connected and convolutional neural networks were tested
in our workflow. The main difference between these two approaches is the input to
the model, in the first case hand selected features are the input to the FCNN, in the
second case the entire image is fed to the networks, which is able to autonomously
detect the features in the image for the prediction of its target output. While the two
models exhibit similar (and satisfactory) accuracy, it is notable that a comparable
number of CFD simulations between the two cases were sufficient to reach such
accuracy, notwithstanding the clearly higher complexity of the convolutional model
with respect to the classical fully connected network. Even more so, in the light of the
much higher flexibility of use of the model based on CNN, which (at the cost of higher
computational cost for its training) will prove to be much more useful by means
of opening to this kind of analysis even systems featuring complicated geometries
- as are frequently found in chemical engineering both in purification/filtration
apparatuses, and in packed bed catalytic reactors. Beside its usefulness in dealing
with complicated structures, these convolutional models have already proven in this
work to be able to treat complicated phenomena, by providing a way to robustly
construct accurate models even in cases for which it may not be immediate (or
feasible) to choose integral input features with which to build a predictive analytical
model - case in point the problem of colloidal filtration, as explored in this work. The
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long term application of this methodology will be the use of neural networks for the
prediction of other microscale properties that lack analytical models that correlate
them to microscale properties.

In Chapter 6 a multi-scale convolutional neural network was trained to reproduce
the full concentration profile of different samples, which is commonly obtained
via CFD simulations. This approach differs from other recently proposed machine
learning workflows by being able to predict the entire concentration field of a large
image, instead of just a scalar quantity. Our approach yields a robust and flexible
model that can be integrated in multiscale modelling workflows. We studied the
effect of different input features that inform the machine learning model about the
operating conditions, and that distill additional information about the geometry of the
medium, for example, global and local paths available for flow. We showed that the
Euclidean distance, the time of flight, the pressure drop, and the diffusion coefficient
are sufficient to obtain very accurate pixel-wise predictions for a wide range of
sphere pack arrangements under varying operative conditions (a wide range of Péclet
and Reynolds numbers). This workflow is applicable to a wide range of systems that
involve transport and reactions in porous media. The input features that we proposed
in this work uniquely describe the domain, hence these can be employed in new
geometries and different physical phenomena. The dimension of the domain or the
computation of the input features do not represent a problem for this approach, in fact,
it is possible to train our model on three-dimensional datasets to create a model able
to provide predictions with a similar prediction time. We showed how these models
can be of use in aiding scale-bridging procedures for multi-scale simulations, or for
the prediction of process-scale performance of reaction phenomena determined by
complex micro-scale structures. In conclusion, we demonstrated a methodology that
can successfully provide predictions in a split-second of otherwise computationally
intensive CFD simulations.

Finally, in Chapter 7 we have shown an improvement of the MSNet architecture,
and its use in treating a new time-dependent problem, namely the simulation of
charge/discharge processes in lithium-ion batteries. There are two main identifiable
takeaways resulting from the work presented in this chapter. First, this confirms the
great flexibility of convolutional neural networks as machine learning algorithms for
the treatment of physics-based simulation data: they are able to be adapted to interpret
and reliably reproduce full 3D simulation data, evolving in time, even when dealing
with quite complicated systems, with multiple domains and boundaries regulated by
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non-trivial governing equations. This of course when the starting neural network,
which was further modified for this application, has the multi-scale structure and thus
scale-probing capabilities that had to be developed to interpret the diverse results sets
coming from accurate (steady-state) pore-scale simulations. The second thing of note
is actually connected to this last point. As it was needed when originally developing
the multi-scale architecture, or later adapting it to reactive transport problems, also in
this case when dealing with a new problem (charge/discharge processes vs. reactive
transport) which may be set down in a different modelling perspective (steady-state
vs. transient transport), some fundamental modifications were needed to obtain
a robust model capable of generalization to a reasonably large set of cases and
conditions. Concluding, we consider this to be a successful proof of concept for
fast, reliable, and full-order surrogation of accurate numerical simulations, tackling
multi-domain species transport and reaction, with a time-dependent evolution. The
choice for this last specific case-study, the case of the modelling of operation of
energy storage systems, was motivated both by the similarity of electrode structures
to the porous systems extensively explored in this dissertation, and by the ever
increasing importance (and need for accurate modelling) of this kind of applications.

Lastly, the work shown in the last chapter, more in the sense of the type of
network architecture presented than in the strictest sense of technical performance,
is best seen at the top of an evolving continuum starting from the simple network
models employed in the first chapter. Indeed, together with the results coming
from the preceding chapters, it completes a path on a continuum of increasing
complexity of the surrogate model. There are two, more immediate, meanings of
this statement. Scientifically, the models are more complex as they move from a
low-order surrogation, capable of predicting scalar metrics from a collection of
integral features, to high-order surrogation when the capability to interpret 3D sets
is learned, to full-order space and time model surrogation - where the networks
are able to reproduce how multiple local fields vary in time when regulated by
complex transport and reaction equations. This is made possible since technically,
the capabilities of the networks are augmented by an equivalent increase of the
complexity of the architecture of the network, afforded by (but by all means not
exclusively) a huge increase in the parameters of the neural networks used, namely
its size.

A third, and more significant, aspect would be that employing more complex
data-driven models did not result just in a more accurate description of the system,
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or lower errors when compared to an analytical or experimental ground truth. That
would be the case in the classic choosing process employed by the model user who,
informed by the principle of economy, looks along a line of different available models
looking for the simplest, but still appropriate, tool for their use case. As it were, what
we called earlier a “continuum” of complexity is nothing of the sort, and indeed
there is a marked difference between specifically the earliest input-output models
(classical neural networks) predicting scalar quantities starting from a few chosen
parameters, and those (based on convolutional networks) able to first understand and
eventually surrogate whole fields starting from three-dimensional geometries. This
is conveyed first by the different capacity for expressivity in the results which are
the output of these models: these can be simple numerical performance metrics, or
they can give local details about the quantities of interest, even with the passing of
time, if that is what is needed. But a probably even more important aspect, is the
flexibility given to the practitioner in the choice of input parameters. Case in point,
reframing this in statistical terms related to the study of uncertainty, which is even
more central in the study of porous media, the most impactful break in descriptive
capability comes perhaps from exactly this flexibility of the inputs when building
these models.

This dissertation hopes to show that it is possible to perform this work and,
beyond the shown examples of applications in the field of energy storage and trans-
port and reaction problems in porous media in general, a methodological approach
based on coupling accurate physics-based simulations with specially engineered data-
driven models based on neural networks can find applications and can be employed
to great success in the general area of accurate investigation of transport phenomena
in chemical and process engineering.
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Appendix A

Creation of sphere packings by
discrete element method

The sphere packings, employed as geometries in the CFD simulations, were created
by a discrete element method (DEM) code in order to physically reproduce a realistic
particle packing. Two kind of simulations have been conceived to this end: sedimen-
tation A.1 and periodic compression simulations A.2. In this work the open-source
Yade code was employed [137], the basic theory of the DEM simulations and the
numerical details are presented in this section in relation to this tool.

A.1 Sedimentation simulations

In the sedimentation simulations the initial configuration for the objects to be packed
is a cloud of spheres in a box which will then be subjected to gravity deposition:
as a result a realistic packing of spheres is obtained, Fig. A.1. Each particle in the
computational box interacts with the neighboring particles, these interactions are
modeled by a non-cohesive elastic-frictional contact model [138]. In this modelling
approach the particles are allowed to overlap at the contact point depending on the
Young’s module of the materials. In particular, the contact force between two spheres
is made by two contributions: the normal force and the shear force.
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The normal force arises from a difference of linear velocity along the interaction
axis, and reads as follows:

FN = KNuN , (A.1)

where uN is the normal displacement and KN is the normal interaction stiffness, that
is defined as:

KN = 2
EiriE jr j

Eiri +E jr j
, (A.2)

where E is the Young’s modules of i and j particles materials and r is the radius
of particle i and j. If uN ≥ 0 the normal force is null, so the interactions between
spheres that are not in contact are not considered in the model.

The shear force arises from the perpendicular component of the linear velocities
difference and from the perpendicular component of rotational velocities summation.
It is defined in the same way with the corresponding shear stiffness and displacement:

FT = KT uT , (A.3)

where KT is a function of KN according to the Poisson’s law. A check is performed on
the shear force in order to follow the Coulomb friction law, that imposes a maximum
limit equal to FN tan(φ), where φ is the friction angle between the two particles.

Given the forces, the DEM code integrates the motion equation for each particle.
Starting from the position of a certain sphere, xP(t), the code calculates the position
after the time step ∆t, xP(t +∆t), integrating the Newton’s second law for translation
and rotation:

mP
∂ 2x
∂ t2 =

nC

∑
i=0

(FN
i,P +FT

i,P)+mPg, (A.4)

IP
∂ω

∂ t
=

nC

∑
i=0

(FT
i,P ×dp(n)), (A.5)

where mP is the mass of the particle, g is the gravitational acceleration, nC is the
number of contact points, FN

i,P and FT
i,P are the normal and shear component of the

contact force between the couple of particles, IP is the moment of inertia, ω is the
angular velocity, dP is the distance between the contact point and the center of the
particle, and n is the contact plane normal.

The numerical damping, which is applied on the forces acting on the particles in
order to dissipate kinetic energy every time step, introduced in the Yade formulation
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Fig. A.1 Creation of packing of spheres by gravity deposition: from a cloud of sphere (first
time-frame) to the final packing (last time-frame).

is set equal to 0.4, as suggested by the developers. The time step of integration is
set equal to half of the critical timestep in order to guarantee stable solution. The
critical timestep is calculated as

∆tcr = mini

(
Ri

√
ρi

Ei

)
, (A.6)

where ρ is the density of the particle. This formulation is based on the propagation
of the elastic waves in the solid at the speed of sound, in fact, it must be lower than
the minimum distance of the integration points, the radius in this case. Finally the
criterion on the unbalanced forces was set equal to 1 ·10−3 Pa.

The creation of sphere packings by gravity deposition is advised when one is
interested in the simulation of the real process of packing, such as the filling of a
reactor by a catalyst [23]. In this way the porosity of the packing will be influenced
by the wall effect (as in, the solid walls acting as a constraint to the position of the
outermost spheres), but a realistic behaviour of the flow and transport can be studied
based on a realistic geometry.
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Fig. A.2 Periodic packing created via Yade, the lighter and the darker packings are the same,
in fact, on the edge they enter in contact in continuity because of periodicity.

A.2 Periodic compression simulations

By periodic compression simulations the packing results completely periodic in all
the directions, as displayed in Fig. A.2. The initial position of the spheres in the
computational box is set in a cloud as in the case of the sedimentation simulations.

The cell is subjected to a deformation over time, an iso-compression, so a
velocity gradient ∇v is imposed on the bounding box in an homogeneous way. The
transformation matrix F is updated as follow:

F(t +∆t) = (I+v∆t)F(t), (A.7)

where I is the identity matrix.

The compression ramp is set by a periodic boundary condition, in this work
the default values suggested by the Yade developers have been used, so a range of
stresses between −100 ·109 and −1 ·108 Pa. The Newton equations of motion, Eq.
A.4 - A.5, are integrated imposing the stress at each timestep. The criterion set on
the unbalanced forces is equal to 1 ·10−2 Pa.

This kind of packings should be employed when one is interested in studying a
bulk porous medium, as in this way no wall effect is embedded in the geometry.
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Porous media characterization with
Python

Porous media can be deeply heterogeneous and random systems, so their geometrical
characterization is essential to extract macroscale quantities useful for labelling
different samples (i.e. foams employed for filtration and as support for catalysts
[139], rocks [62], or dried products [140]). The solid phase as well as the pore
space should be subject to a careful statistical analysis in order to have a complete
understanding of the system. The tools usually employed for the characterization
of the porous structure can also be exploited to extract the descriptive features for
convolutional neural networks.

The tools used in the work to this end are detailed in the following two sections:
in B.1 the problem of the geometries voxelization is addressed, in B.2 the main
characterization techniques are summarized.

B.1 Voxelization

Most of the tools employed for the characterization of porous media come from
the image processing field, so the input is supposed to be a bi-dimensional or
three-dimensional array of grey-scale values. Even very specific tools for porous
media work with images as starting objects, since the wider pool of data comes
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Fig. B.1 Spherical particle represented analytically (A), in .stl format (B), and as a result
of the voxelization (C).

from segmentation of images from imaging techniques (i.e. electron microscopy,
tomographies).

In this work the geometries are produced in silico by means of a discrete element
method (as described in Appendix A). The resulting geometry is a packing of spheres
described by the coordinates of their centers and their radii. In order to obtain a
matrix representation of the geometries the steps to follow are:

1. extraction of the bounding surface between solid and pore phase. The most
common format is the standard triangle language (.stl), the number of ele-
ments of the surface affect the size of the file and the accuracy of the object
reproduction.

2. voxelization of the domain. The Python library trimesh was used. The
surface must be watertight in order to fill the voxels inside it, instead the pitch
(i.e. the size of the voxel) determines the resolution of the object.

B.2 Characterization tools

The euclidean distance transform of a porous media image gives an interesting insight
in the local pore dimensions, and as such is a common step for other characterizing
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features, like the pore size distribution, or the pore network extraction [141]. More-
over, it is a very fast algorithm which is cheap to apply even in three-dimensional
images, for this reason it is widely used as input feature for convolutional neural
network models.

The euclidean distance transform computes the minimum distance between each
point in the pore phase (rp) and the closest point of solid phase (rs):

ed =

√
∑

k=x,y,z

(
rp

k − rs
k

)2 (B.1)

In this work the function available in the Python library scipy.ndimage [142] was
employed to compute the euclidean distance transform of three-dimensional porous
media structures.

Besides this general-purpose libraries for multidimensional image processing,
the library PoreSpy [122] can be a powerful tool since it was developed for specific
porous media applications. In fact, it implements a function to evaluate the pore
size distribution, a property of interest in this work. The pore size distribution is the
probability density function of the dimensions of the voids in a porous medium. The
approach implemented in PoreSpy consists in finding which voxel can accommodate
a sphere of a given radius. Given the number of sizes and the bins in the size
distribution, the algorithm detects the largest pore applying the Euclidean distance
transform to the image. After that the algorithm looks for all the smaller spheres
between 0 and the largest one by using the Fast Fourier Transform convolution. The
result is a map of the spheres placed in the pore phase, from which the pore size
distribution histogram can be easily computed, together with the mean dimension of
the pores.

Here follows an example of a script where the steps of section B.1 are imple-
mented and the features of section B.2 are computed, the output images are shown
in Figure B.2.

1 import trimesh
2 import numpy
3 import matplotlib.pyplot as plt
4 import porespy
5 from scipy.ndimage import morphology
6

7 pitch = 0.003
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8 mesh = trimesh.load_mesh(’packing.stl’)
9 volume = mesh.voxelized(pitch=pitch).fill(method=’holes’)

10 matrix = volume.matrix.astype(numpy.float64)
11 porespy.io.to_vtk(matrix ,’matrix ’,voxel_size =0.01) #for

Paraview visualization
12 im = numpy.logical_not(matrix)
13 ed = morphology.distance_transform_edt(im)
14 thk = porespy.filters.local_thickness(im , sizes= 100,mode=’dt’)
15 psd = porespy.metrics.pore_size_distribution(im=thk ,bins =20)
16 plt.figure ()
17 plt.xlabel(’Pore Radius [voxels]’)
18 plt.ylabel(’Normalized Volume Fraction ’)
19 fig = plt.bar(x=psd.bin_centers , height=psd.pdf , width=psd.

bin_widths)
20 plt.figure ()
21 ed[im==0] = numpy.nan
22 plt.imshow(ed[:,int(ed.shape [1]/2.) ,:])
23 plt.colorbar ()
24 plt.figure ()
25 thk[im==0] = numpy.nan
26 plt.imshow(thk[:,int(ed.shape [1]/2.) ,:])
27 plt.colorbar ()
28 plt.show()

Fig. B.2 Output images of the Python code: the euclidean distance transform (A), the local
thickness feature (B), and the pore size distribution histogram (C).



Appendix C

Numerical details of the CFD
simulations on OpenFOAM

In this appendix the numerical setup of the CFD simulations is detailed in order to
facilitate the reproducibility of the dataset employed in this work.

The OpenFOAM v6 and OpenFOAM v8 have been employed throughout the
thesis work. The momentum and continuity equations have been solved using the
simpleFoam solver, while the advection-diffusion equation has been solved using
the scalarTransportFoam solver.

Concerning the coupled solution of the Navier-Stokes and continuity equations,
the standard OpenFoam second order schemes proposed for simpleFoam were em-
ployed:

• Gradient scheme: Gauss linear - Gaussian second order integration linear
interpolation;

• Divergence scheme: bounded Gauss linearUpwind grad(U) - bounded
Gaussian second order integration linear upwind interpolation;

• Laplacian scheme: Gauss linear corrected - Gaussian second order inte-
gration linear interpolation;

The convergence criteria on the residuals are set: 10−6 for the pressure, 10−5 for the
velocity.
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For the solution of the advection-diffusion equation by scalarTransportFoam,
the default schemes have been changed into limited second order schemes to force
the normalized concentration to range between 0 and 1.

• Gradient scheme: faceLimited Gauss linear 1 - limited Gaussian second
order integration linear interpolation;

• Divergence scheme: Gauss limitedLinear 1 - limited Gaussian second
order integration linear interpolation;

• Laplacian scheme: Gauss linear limited corrected 1 - limited Gaus-
sian second order integration linear interpolation;

The equation is solved in steady state conditions. The convergence criteria on the
concentration residual is 10−6.
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