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Abstract

The channel model is the most computationally demanding element in link-level
simulations for multiple-input and multiple-output (MIMO)-based fifth-generation
new radio (5G-NR) communication systems. Accurately modeling the wireless
channel is crucial for developing and assessing wireless networks beyond 5G-NR.
The use of realistic geometry-based channel models, such as the three-dimensional
spatial channel model (3D-SCM), requires more computational resources for simula-
tion. Channel emulation is employed to validate the functionality and performance
of channel models during the network planning phase. General-purpose central
processing unit (CPU)-based emulation platforms have limitations in accurately
replicating propagation environments because they are either too simplified or have
impractical execution time. Hardware accelerators based on specialized computing
platforms such as FPGAs and GPUs can be employed to alleviate the load of complex
computations and enhance the quality of results.

This study aims to tackle this matter by investigating diverse methodologies
and optimization techniques for building an efficient hardware accelerator from a
high-level specification. The process of developing applications for specialized archi-
tectures is intricate and requires thorough knowledge of hardware design languages
and target architectures.

The first part of this study proposes an efficient re-configurable implementation
of the 3rd Generation Partnership Project (3GPP) 3D-SCM for 5G-NR on Xilinx
and Intel FPGA platforms using high-level synthesis (HLS)-based design flow. It
explores the effect of various HLS optimization techniques on the total latency and
hardware resource utilization on the target acceleration platforms. By using the
proposed methodologies, the accelerated designs on Xilinx Alveo U280 and Intel
Arria 10 FPGA achieved speedups of 65X and 95X, respectively, compared to the
baseline CPU implementation. This speedup enhances to 173X by optimizing the
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design to utilize specialized resources present on Xilinx FPGA, such as UltraRAM
(URAM) and High-Bandwidth Memory (HBM).

This study’s second part focuses on accelerating the 3GPP channel model using
GPU platforms. This study investigates different optimization techniques to exploit
the parallelism and memory hierarchy of the GPU, specifically focusing on CUDA-
based approaches. The experimental results demonstrate that the developed system
achieves a significant speedup of approximately 240X over CPU-based implemen-
tation. The GPU design exhibits a 33.3 % increase in single precision performance
compared to the design accelerated on a datacenter-class FPGA. However, it also
consumes 7.5 % more energy.
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Chapter 1

Introduction

The emergence of always-on systems, internet-of-things (IOT), self-driving vehicles,
and other digital systems, has led to the development of a novel networking infras-
tructure capable of accommodating the demands of these devices. The available
spectrum is becoming increasingly congested because of the massive increase in
the number of these devices. Consumers may experience poor service quality, unre-
liable connections, reduced speeds, or even complete outages in highly congested
regions or during peak usage hours. Long-term evolution (LTE) system which was
an incremental improvement to fourth-generation (4G) mobile network has already
reached its maturity. The LTE technology has undergone a subsequent improve-
ment to LTE-Advanced, which satisfies the established standards for 4G networks.
The fifth-generation (5G) standard is currently forthcoming and presents numerous
modifications in comparison to its predecessor, 4G. A great deal of focus has been
devoted to the physical features of radio communication, including frequency and
cell positioning, hence the substitute designation of the standard as fifth-generation
new radio (5G-NR) [1]. Mobile broadband is the main motivating factor behind the
development of 5G cellular communication network since the enhancement of user
data rates has long been a top goal in the research and development of mobile com-
munications systems. Broadband human-oriented communications, time-sensitive
applications with ultra-low latency, and massive connectivity for the IOT are just
some of the use cases that 5G-NR hopes to address [2].

Before and during the physical deployment phase, new cellular technology must
first be tested in a simulation environment. The term "simulation" refers to the
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practice of creating a computerized model of a physical or hypothetical system to
test its functionality. Mathematical channel models are created to obtain a greater
understanding of the factors that impact the transmission of wireless signals through
a communication medium [3]. These models also facilitate the extraction and
development of channel state information (CSI) from channel impulse response
(CIR) such as fading, Doppler, delay, and azimuth [4].

The simulation of channel models has emerged as a vital tool in the mobile
network planning process. Accurately modeling the channel is a crucial aspect in the
design and evaluation of wireless networks beyond 5G-NR. In order to achieve a pre-
cise depiction of propagation conditions, a multitude of radio frequency parameters
must be meticulously calibrated. It is necessary to recalculate parameters even after
deployment in the event of any changes to the network configuration or propagation
conditions, such as alterations to the number or positioning of antennas.

1.1 Wireless Network Planning and Channel Simula-
tion

The process of network planning involves the conceptualization and design of wire-
less networks prior to their actual physical implementation. The process comprises
multiple phases, including network dimensioning, pre-planning, detailed planning,
verification, and optimization. The primary objective of the network planning process
is to attain the utmost network efficiency while minimizing expenses.

Optimal performance at minimal cost is a difficulty faced by the majority of
network operators due to the rising demand for high data-rate network traffic and the
growing cost of operating communication networks. For best network performance,
planners today often use computer-aided network tools to simplify the tedious
task of network planning. Locating the most suitable spots for setting up network
nodes is a crucial part of every network design process. This analysis can be
performed depending on the network coverage requirement and the network capacity
requirement by means of a channel information map. Network planning evaluations
can be broken down into three tiers: regional, cluster, and link level [5].

Regional level This includes a high-level assessment to estimate investment cost
and population coverage in a given region.
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Cluster level This stage consists of immediate-fidelity simulations and estimates
bit-rate targets, frequency channels, etc.

Link level This stage of network planning is used to optimize radio frequency
parameters such as shadowing, path-losses antenna design, etc.

1.1.1 Wireless channel simulation

When it comes to channel planning, the wireless channel model is the most crucial
component. It should be able to model a wide range of frequency bands, a substantial
number of design parameters, and a variety of different alternatives for deployment.
It is extremely vital to model and simulate the impact that a physical channel has on
a transmitted signal due to environment. Because of the significant differences in
the propagation medium across location, time, and frequency, it is of even greater
significance for wireless communication systems.

Link-level simulation, analysis, and measurements are crucial in creating novel
wireless communication systems. Each of these methods has its own set of benefits,
thus it is important to use all three of them. Measurements serve as the foundation for
channel modeling and give the definitive performance standard for any transceiver
architecture. As a result, measurements are required in order to conduct analysis and
simulations. However, carrying out measures is not only very expensive but also very
time intensive, and it is difficult to adjust them to certain communication scenarios.
Analytical models have the capacity to show correlations between the important
parameters of a system, which is one of the many benefits of these studies. However,
to make analytical models tractable, it is often necessary to apply several restrictive
assumptions and simplifications. This reduces the value of analytical conclusions
when applied to more realistic settings.

Channel simulators are the tools to evaluate the efficiency and performance
of a communication system in a controlled environment. The outcomes of the
simulations are employed as input by planning tools, which are adopted by all
network operators, to ascertain the network infrastructure, including network nodes,
and its configuration. The creation of a theoretical model enables the evaluation
of the operational efficiency of real devices. The vast majority of today’s network
service providers construct these models through the use of computer simulations, as
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well as carrying out laboratory and real-world assessments on commercial gadgets
to verify the attainment of anticipated outcomes.

Channel simulators are an extremely efficient way for carrying out performance
evaluations on the various components of a wireless communication system. The
evaluation of compliance with communication standards is crucial in the testing of
novel communication algorithms. This enables the determination of how effective
they are in meeting the essential communication standard requirements. One of the
assessments involves the assessment of system performance in the presence of a
communication channel. These simulations are considered to be a more dependable
and authentic means of conducting experiments due to their ability to replicate
real-life scenarios. However, they are often characterized by their complex nature,
high costs, and time-consuming processes, which may render them impractical for
deploying a large number of nodes. It is feasible to represent the wireless channel
as an finite impulse response (FIR) filter that possesses random coefficients that
vary over time. Increasing the number of coefficients can lead to a more effective
approach in addressing real-world scenarios [6]. However, this may result in an
increase in computational complexity.

Historically, network planners prioritized the implementation of simplified chan-
nel models designed for execution on general-purpose central processing unit (CPU)
platforms, resulting in significantly longer execution times. An alternative method
that has been previously employed to enhance the quality of results and energy
efficiency involves the use of emulation platforms based on hardware. Application-
specific integrated circuits (ASICs) have been predominantly utilized due to their
ability to facilitate high throughput and low power consumption. Nevertheless, this
category of circuits lacks flexibility and requires describing the functionality of the
application at the Register-Transfer-Level (RTL) through a Hardware Description
Language (HDL) like VHDL or Verilog, which can be a challenging undertaking.

Network planning tools must have a high degree of flexibility, as they must be able
to adjust their parameters to accommodate various propagation scenario simulations.
Hardware acceleration is a technology that shows potential in addressing these
requirements [7]. This technology facilitates the rapid creation of a channel model
emulator from a high-level description, typically in C/C++/CUDA, and implementing
it on a reconfigurable hardware device. The software-controlled emulator can be
conveniently configured to simulate various propagation scenarios.
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Field programmable gate arrays (FPGAs) are one of the candidate technology
which is frequently used as hardware acceleration platform and provide a compelling
trade-off between power consumption and performance. FPGAs present a compelling
trade-off between power consumption and performance, and facilitate the creation
of customized computing architecture by means of a configuration file (also called
bitstream). These accelerators can be adopted to new applications by using a different
configuration file designed with the required specifications. FPGA-based emulators
provides, in theory, a suitable compromise between adaptability and processing
power. However, the platform’s programmability becomes restricted because FPGAs
require an HDL description as part of the conventional design flow.

Another candidate technology for hardware acceleration is graphics processing
unit (GPU). With the advancement of technology, the GPU has undergone significant
improvements, rendering it a powerful, programmable, and extensively parallel unit
[8]. Consequently, it has emerged as a crucial constituent in High performance
computing (HPC) systems and is currently the most prominent form of hardware
accelerator. Due to their significant computational throughput and parallelism,
GPUs have been deemed appropriate for general-purpose computing. Researchers
have been using GPUs for a wide variety of scientific applications [9]. Efficient
management of GPU resources can be achieved through high-level programming
languages (such as Compute Unified Device Architecture (CUDA) from NVIDIA)
based on the underlying computing architectures, resulting in improved performance.

The proposed solution aims to tackle the aforementioned problem by introducing
a design methodology that utilizes hardware acceleration platforms such as FPGAs
and GPUs that are designed to compute the time-varying coefficients of fading
channel simulators. By utilizing these acceleration platforms and the suggested
approaches, individuals without specialized knowledge in specialized computing
architectures can enhance the pace of their simulation advancements in comparison
to traditional software. The results of the implementation demonstrate that the
suggested methodology facilitates the efficient creation of communication channels,
while concurrently decreasing the processing duration. In light of the dispersed nature
of the channel, the hardware emulation technologies have higher advantages in terms
of performance and power consumption over the CPU-based implementation.

This doctoral thesis seeks to enhance the programmability of heterogeneous
FPGA and GPU-based emulation platforms by replacing HDL-based flow with
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higher-level ones. Use of high-level synthesis (HLS)high-level language (HLL)
methodologies and associated tools to produce specialized architectures enables
rapid prototyping [10].

1.2 Thesis Outline

The present doctoral dissertation is structured into two primary sections. The first
part is the background, presented in chapter 2 and chapter 3. This section presents
an extensive review of the 5G-NR cellular technology, channel modelling concepts
and methodologies, standard channel models, hardware acceleration platforms, HLS
flow and optimizations, and other relevant concepts. The subsequent section, encom-
passing chapter 4 to chapter 6, relates to the various contributions to research. The
work covers extensive details relating to our proposal of a reconfigurable channel
model on FPGA and GPU acceleration platforms compiled from HLL specifications.

Chapter 2: provides the background information on 5G-NR, key benefits associated
with the new cellular technology, and a short survey of channel modeling methodolo-
gies.
Chapter 3: provides background on three-dimensional (3D) channel modelling and
discusses various steps and procedures in generation of 3Rd Generation Partnership
Project (3GPP) channel model.
Chapter 4: discusses design flow for FPGA acceleration platforms. It presents a
detailed discussion of HLS tools and the associated benefits for modeling hardware
designs using a high-level specification. It introduces the two HLS tools from Xilinx
and Intel for FPGA-based acceleration. It also discusses a variety of optimizations
and strategies that can improve the quality of result for HLS-based designs.
Chapter 5: is dedicated to the design space exploration of Chapter 5 discusses the
implementation and design space exploration of the 3GPP 3D channel model on
Xilinx and Intel FPGA platforms using HLS tools. HLS-based optimizations and
their respective on the implementation are presented. This chapter also analyzes the
effort required to accelerate applications on FPGA platforms from different vendors.
Chapter 6: presents the optimization techniques and methodologies for accelerating
3GPP channel model on GPU using NVIDIA CUDA tools. It provides a brief analy-
sis of the achieved performance for GPU compared to that on the FPGA platforms.
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Chapter 7: Concludes the thesis and suggests potential future directions



Chapter 2

Fifth-generation Mobile Network and
Channel Modeling

The 5G mobile communication network also known as 5G-NR offers significant
features, including but not limited to low latency, high data rates, and the ability to
accommodate a high density of devices and base stations. The anticipated impact
of this new cellular network technology is significant and poised to benefit various
sectors, such as corporate networks, public networks, and infrastructure. Despite the
challenging economic conditions and geopolitical instabilities, service providers are
persistently implementing 5G technology. Ericsson’s mobility report [11] projects
that there will be a total of 5 billion 5G subscriptions worldwide, representing 54 %
of all mobile subscriptions, by the end of 2028.

The adoption rate of 5G subscriptions has surpassed that of 4G, which was
launched in 2009. It is anticipated that the new mobile communication technology
will attain 1 billion subscriptions earlier than 4G by two years, owing to the timely
availability of devices from multiple vendors, and a more rapid decline in prices
compared to previous generations of the technologies. Figure 2.1 presents a quantita-
tive analysis of the adoption rates of 5G and 4G subscriptions during the initial years
of their respective deployments. Some of the key benefits associated with the new
cellular technology are listed as follows.

• The implementation of 5G mobile communication technology is expected to
serve as a crucial factor in facilitating the efforts of government entities and
policymakers to convert their urban areas into smart cities. This will enable res-
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Fig. 2.1 5G and 4G subscription uptake in the first years of deployment [11]

idents and communities to effectively leverage the socioeconomic advantages
that are associated with a sophisticated, data-driven digital economy.

• The advent of 5G presents a promising prospect for wireless service providers
to expand their offerings beyond mere connectivity services and, instead, create
comprehensive solutions and services that cater to the needs of both consumers
and various industries across diverse sectors.

• The new wireless communication technology is anticipated to significantly
enhance data rates and decrease latency to less than 1 ms, rendering it appro-
priate for time-sensitive mission-critical services [12]. The high bandwidth
available on 5G networks enables the provision of a variety of high-speed
broadband services, thereby presenting a viable alternative to last-mile access
technologies such as Fiber to the Home (FTTH) or copper connections.

• The new cellular network technology is expected to enhance the overall user
experience by providing novel applications and services through faster data
transfer rates, as well as substantially improved performance and dependability.

• It adds support for the implementation of virtual networks, also known as
network slicing, which is made possible by the 5G technology. This feature
enables the creation of subnets that offer connectivity tailored to meet specific
requirements. The subnetworks can assign specific characteristics to a segment
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of the network, rendering it programmable and enabling the prioritization of
connections. This prioritization may involve a higher priority of emergency
services over other users, through the application of varying latencies or the
elevation of their connection status, thereby safeguarding them from potential
disruptions caused by mobile network overloads.

The ITU roadmap for 5G communications systems groups the use case scenarios
into three major categories [13];

Enhanced Mobile Broadband (eMBB) The primary application of 5G is consid-
ered to be the advancement of long-term evolution (LTE) mobile broadband services,
with the aim of delivering improved connectivity, increased throughput, and greater
capacity [14]. This particular use case is closely associated with the steady rise in mo-
bile data traffic, which is primarily driven by the growing number of data-intensive
devices and multimedia applications. Therefore, eMBB encompasses various appli-
cations aimed at enhancing the quality of communication from a human perspective,
such as optimizing hotspots to accommodate a larger number of users and expanding
coverage for scenarios involving greater mobility.
Ultra-reliable low latency communications (URLLCs) is a communication ser-
vice designed to effectively transmit packets with strict demands, particularly with
regard to availability, latency, and reliability [15]. It promises to facilitate the pro-
vision of nascent applications and services. Exemplary services comprise wireless
control and automation within industrial factory settings, inter-vehicular communi-
cations to enhance safety and efficacy, and the tactile internet. The effective support
of verticals is crucial for the success of 5G, as it has the potential to introduce new
business opportunities to the telecommunications industry as a whole.
Massive Machine–Type Communications (mMTCs) The purpose of this usage
scenario is to facilitate the collection of an enormous number of small data pack-
ets from numerous devices in a concurrent manner [16]. The mMTC technology
facilitates the deployment of applications that rely on IOT sensors. This enables the
utilization of data to optimize energy consumption, enhance work productivity, and
enhance the quality of life. This particular use case involves a range of applications
including but not limited to IoT, asset tracking, energy monitoring, smart agriculture,
smart cities, smart home, and remote monitoring.

Some of the key features promised by the new cellular communication technol-
ogy are peak data rate, low latency, greater network energy efficiency, improved
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spectrum efficiency, increased area traffic capacity, support for higher mobility,
higher connection density, improved reliability, and more security and privacy.

2.1 Key Enabling Technologies for 5G

Future 5G networks will need revolutionary breakthrough technology to suit this
wide variety of needs. As an added bonus, 5G technology is anticipated to be more
welcoming to older technologies than its predecessors, with Wi-Fi, UMTS, and LTE
all likely to play significant roles in the 5G ecosystem. A major paradigm shift in the
planning of wireless communication systems is needed for this to happen.

2.1.1 Massive-MIMO systems

Massive-multiple-input and multiple-output (MIMO) also known as large-scale
antenna systems is a wireless communication technique that employs many transmit
and receive antennas to multiplex messages for various devices. The objective is to
direct the emitted energy in the desired directions while reducing both inter and intra-
cellular interference [17]. In contrast to traditional MIMO systems, massive-MIMO
systems typically feature a large number of transmitting and receiving antennas, such
as 32 or 64. The utilization of large antenna arrays provides a substantial degree
of freedom and versatility in antenna usage, including multi-user beamforming and
interference coordination [18].

In the beginning, MIMO technology was conceptualized in two modes, namely
single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO). In a given
time slot, a conventional SU-MIMO base station (BS) transmits data to a single user-
terminal using multiple antennas on both ends. However, BS can transmit data to
multiple users simultaneously and the user-terminal is not necessarily required to be
equipped with multiple antennas. This allows for better efficiency of the network and
reduced equipment cost for user terminals. However, the scalability of MU-MIMO
is limited in its initial design, which aimed to target nearly equal numbers of base
station antennas and user mobile stations. This is due to the necessity of CSI being
available at both ends. Massive MIMO employs channel information that is obtained
through direct measurement, as opposed to being assumed. This allows the network
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Legacy Antenna Massive MIMO 

Fig. 2.2 Comparison of legacy antenna and massive-MIMO coverage[19]

to be scalable, as it can effectively utilize any number of BS antennas without any
increase in array tolerances. The concept of massive-MIMO is depicted in fig. 2.2.

The idea behind massive-MIMO is to provide the BS with a very high number
of antennas so that it may simultaneously serve a relatively smaller number of user
terminals. This is accomplished through time division duplexing and calculating only
the up-link CSI which is achieved through spatial multiplexing. Massive-MIMO
technology supports beamforming, which refers to the capability of directing radio
signals in specific directions. It is recommended that massive MIMO systems be
constructed using low-power components, typically in the milliwatt range, and at
a low cost. This is due to the fact that the necessary transmit power per antenna
diminishes as the number of antennas increases. The implementation of beamforming
techniques can effectively mitigate the negative impact of fading phenomena, leading
to a reduction in latency [20].

Massive-MIMO technology has the potential to significantly enhance capacity
by a factor of 10 or more, while concurrently improving radiated energy efficiency
by approximately 100 times. The augmentation in capacity is attributed to the
implementation of intensive spatial multiplexing techniques in the massive MIMO
system. The underlying principle that enables a significant enhancement in energy
efficiency is the ability to concentrate energy into highly localized regions in space
through the utilization of a multitude of antennas [21].
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2.1.2 Network slicing

The implementation of network slicing is considered a highly innovative aspect of
the 5G-NR cellular network. The notion of network slicing involves partitioning the
network into distinct logical networks that are isolated from one another, which is
a crucial aspect of the implementation of the 5G communication technology. The
implementation of network slicing enables network providers to establish a tailored
virtual network that caters to specific use cases [22]. The customization of each slice
to suit specific use cases is facilitated by the virtualized nature of the network, which
is less reliant on hardware than previous iterations of cellular technology.

The 3GPP has established a standardized network element, referred to as Dedi-
cated Core (DECOR), which involves the Core Network (CN). The deployment of
multiple CNs over a single physical network infrastructure enables mobile network
carriers (MNCs) to provide varying levels of flexibility and resource sharing to
diverse service consumers. The concept of network slicing surpasses the capabilities
of DECOR by granting the MNC complete autonomy in regulating various commu-
nication services, each of which has distinct performance prerequisites. Figure 2.3
depicts the concepts of network slicing for various use cases in 5G-NR.

Network Slicing

mMTC

eMBB

URLLC

5G RAN Edge compute Virtualized
Core

Front, Mid
and Back haul

Fig. 2.3 Network slicing in 5G-NR

The feasibility of this objective can be achieved by tools such as network func-
tions virtualization (NFV) and software defined network (SDN). Through the vir-
tualization of network functions, the former enables the MNCs to offer a modular
logical architecture and a flexible placement of network functions within its infras-
tructure. The utilization of the latter enables the MNCs to streamline the forwarding
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functions and implement a more sophisticated segregation of control and user plane
functionalities.

2.1.3 Network functions virtualization

Deploying a new network service to large operator networks sometimes involves
deploying more hardware. Special-purpose equipment is costly, space-consuming,
and energy-intensive. Managing, upgrading, and deploying a big network using
hardware-based network devices from numerous suppliers is difficult. Thus, adding
hardware considerably raises network capital and operational costs [23]. Network
operators want to offer new services to increase revenue, yet hardware-based network
infrastructures are too expensive and complicated. Software on general-purpose
computers can replace special-purpose hardware. The software provides advantages
over dedicated hardware. It’s flexible and affordable.

To address cost and complexity, the software might integrate network functional-
ities. The virtualized network function framework (VNF) supports software-based
network functions on cheap commodity servers, such as virtual network functions
[24]. The concept of “virtualization” has been employed across multiple fields of
computer science for many years now. These include the virtualization of servers,
disks, and applications. In essence, virtualization serves to create a level of abstrac-
tion between a user and a computing resource, thereby concealing the underlying
physical attributes of said resource. Virtualization is commonly employed to attain
goals such as streamlined resource utilization and simplified management.

The objective of NFV is to revolutionize the network architecture of network
operators by means of conventional IT virtualization technology to merge various
network equipment categories onto high-volume servers, switches, and storage that
comply with industry standards. The vast majority of telecommunication operators
are interested in the segregation of network functions from specialized devices and
their conversion into software that can be installed on readily available, standard
hardware. These components can be placed in data centers, network nodes, and
end-user terminals. The process includes the deployment of software-based network
functions that are compatible with a variety of server hardware commonly used in
the industry. These functions can be relocated or established at different network
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locations as needed, without requiring the installation of additional equipment. Some
key benefits associated with NFV are;

• The implementation of NFV can lead to a reduction in costs, a decrease in the time
required for product updates or releases, and an enhancement in the scalability and
resource allocation for applications and services.

• Organizations have the flexibility to avoid being constrained by proprietary, inflex-
ible devices that require on-site visits and substantial resources to implement and
customize.

• Virtualization with data center infrastructure allows more to be done with less,
making it more efficient. With an improved data center footprint, electricity, and
cooling power consumption can be reduced. This is possible because a single server
is able to run many virtual network functions, and fewer servers are needed to
complete the same task. Software updates can replace truck rolls when network
demand changes. Physical network and data center updates are infrequent [25].

• A network that has undergone NFV possesses the capability to promptly and ef-
fortlessly adapt to variations in resource requisites in response to fluctuations in
incoming traffic to the data center.

2.1.4 Vehicle-to-everything communication

The adoption of advanced traffic information systems, autonomous vehicles, and
dependable safety services has facilitated the progress of technology in the do-
main of vehicles with enhanced features such as low latency, high data rate, and
reliability. This technology offers an extensive transmission range and minimal end-
to-end latency, making it ideal for cellular networks and includes various vehicular
communication scenarios such as vehicle-to-infrastructure, vehicle-to-vehicle, and
vehicle-to-pedestrian communication [26].
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Network

Vehicle

Vehicle Pedestrain

Infrastuctutre

Vehicle-to-
Network(V2N)

Vehicle-to-
Pedestrain(V2P)

Vehicle-to-
Infrastructure(V2I)

Vehicle-to-
Vehicle(V2V)

Fig. 2.4 Vehicle-to-everything communication [27]

2.1.5 Device–to–Device communications

Device–to–device communication (D2D) is a pioneering technology in the 5G
cellular network that facilitates the establishment of a direct link between devices.
D2D communication refers to the transmission of data between two devices in a point-
to-point radio technology, without the involvement of a base station. This type of
communication is commonly observed in cellular networks that operate on either the
in-band or out-band spectrum. This technology is particularly useful during periods
of network congestion or at cell boundaries, as it creates an ad hoc mesh network
where intermediate devices can serve as relays for other devices. It provides a
diverse range of services, that includes safety, traffic offloading, expansion of cellular
coverage, reduced battery consumption, dependable communication, and proximity
services based on location [28]. Additional advantages of D2D data transmission
include its ability to effectively alleviate network congestion and enhance frequency
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and space utilization, thereby enabling direct communication between nearby devices
without necessitating the use of network infrastructure.

eNodeB

Uplink
Downlink

D2D

Fig. 2.5 D2D communication [29]

2.2 Wireless Channel Modeling Methodologies

In recent years, several MIMO channel models have been documented, with many of
them being derived from empirical measurements. One possible approach to distin-
guish between the various models is by examining the specific type of channel under
consideration, such as narrowband (characterized by flat fading) versus wideband
(frequency selectivity) models, as well as time-varying versus time-invariant models,
among others [30]. The spatial structure of flat fading MIMO channels provides
a complete characterization. Channels with frequency-selectivity involve further
modeling of the characteristics of the multipath channel. In the case of time-varying
channels, it is necessary to incorporate a model that accounts for the evolution of
the channel over time based on specific Doppler characteristics. In addition, it is
imperative that the models are straightforward to facilitate their implementation and
ensure efficient computational performance [31]. Balancing simplicity and accuracy
in wireless channel modeling can be a challenging task.
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Channel models reported in the literature can broadly be grouped into the follow-
ing categories [30];

1. Analytical models
(a) Propagation models
(b) Correlation-based models

2. Physical models
(a) Deterministic channel models
(b) Stochastic channel models
(c) Geometry-based stochastic models

Wave propagation models

1. Deterministic models
1. Store measurements
2. Ray-tracing based 

2. Non-geometrical stochastic model
1. Zwick channel
2. Saleh-Valenzuela channels

3. Geometry-based stochastic 
1. One-ring
2. Two-ring
3. Elliptical

Analytical channel matrix models
1. Propagation-centric

1. Maximum entropy model
2. Finite-scatterer

2. Correlation-based
1. Weichselberger channel model
2. Kronecker channel model
3. Virtual channel representation

Standard models

1. WINNER
2. COST
3. IEEE 802.11
4. 3GPP SCM

Fig. 2.6 MIMO channel modelling methodologies [32]

2.2.1 Analytical channel models

Analytical models typically represent the impulse response of the radio channel
between transmitters and receivers on an individual level but do not offer sufficient
insight into wave propagation. Analytical modeling focus on spatial channel coeffi-
cient correlation rather than the physical features of the scatterers in the environment
[33]. Propagation-based and correlation-based models are the two sub-categories
of analytical models. Maximum entropy model [34] and finite scatterer model [35]
are examples of propagation-based models. Kronecker model [36–38] and Weichsel-
berger channel model [39] are examples of correlation-based channel models that
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characterize the channel statistically from the correlation between MIMO matrix
elements.

2.2.2 Physical channel models

In wireless communication channels, a signal propagates from the transmitter to
the receiver along specific geometric pathways and is susceptible to a range of
physical phenomena, such as reflection, and scattering [40]. Scattering refers to the
phenomenon in which a radio frequency (RF) wave interacts with an object and
subsequently disperses into a number of waves. The electromagnetic properties
of the environment are employed in wave propagation-based physical models to
characterize the channel between the transmitter and receiver. These models consider
the radio-wave parameters such as the direction of arrival and departure and delay of
MPCs to compute the impulse response of the channel.

Deterministic channel models

These models replicate the channel’s transfer characteristics and radio coverage for
a specific environment using a well-defined system setup. Deterministic models
are valuable tools for channel modeling, as they enable visualization of the propa-
gation mechanism [41]. Nevertheless, they exclusively provide a representation of
the specific environment under consideration, and it is often necessary to conduct
multiple iterations utilizing various environments [42]. Ray-tracing [43] and stored
measurement-data-based models [44] are some examples of deterministic models.

Geometry-based stochastic channel model

In this type of model, scatterers are observed to be stochastically distributed at both
ends of the link [45]. GSCMs are constructed by randomly deploying (diffuse or
discrete) scatterers while assigning them (scattering) attributes according to specific
statistical distributions [46]. The scatterers’ signal contributions are determined
through simplified ray tracing and then summed at the receiver. The approach
not only provides delay and Doppler spectra, but also enables modeling MIMO
properties of the channel. GSCM models are flexible in changing antenna influence
and environment and are faster when simulating single or double scattering compared
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to deterministic ray tracing [47]. The structure of the scattering region provides
insights into the tested scenario. For an accurate simulation of the given propagation
scenario, it is essential to account for the total number of scatterers in the scattering
region and to organize them into clusters. One-ring model [48] and elliptical-ring
model [49] are examples of GSCM.

Non-geometrical stochastic model

This category of models solely relies on statistical methods to establish communi-
cation paths between the transmitter and receiver, without taking into account the
physical geometry of the surrounding environment. Zwick model [50] and Saleh-
Valenzuela model [51] are examples of non-geometrical stochastic models. In Zwick
model, each MPC is treated individually, while the Saleh-Valenzuela model uses
clusters of MPCs.
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Table 2.1 Physical vs. Analytical channel models

Parameter Physical Model Analytical Model

Approach Emulates wave propaga-
tion and electromagnetic
effects

Mathematical simplification
using statistics

Accuracy Very high, closely matches
real-world channel

Approximate, depends on for-
mulation accuracy

Complexity Extremely high, computes
detailed physics

Lower complexity, abstrac-
tions used

Flexibility Scenario specific parame-
ters

Can adapt model formulation
for scenarios

Simulation speed Very slow due to intensive
computations

Much faster due to simplified
model

Calibration Requires extensive mea-
surements for validation

Validate by fitting model
statistics to real-world

Bandwidth Wideband, captures fre-
quency selective fading

Can be wideband or narrow-
band

Time-variation Can model dynamic chan-
nels and mobility

Typically static but some sup-
port time-variation

Antennas Accurate modeling of an-
tenna patterns

Abstracted using antenna cor-
relations

Implementation Require HPC systems,
GPU clusters

Can be implemented on stan-
dard computers

Use Cases Final validation, field trials System-level simulation, para-
metric analysis

The deterministic models rely on a digital map and leverage electromagnetic wave
propagation theory to predict various channel parameters. Nevertheless, the precision
of digital maps significantly impacts the effectiveness of such models, although
the application of electromagnetic wave propagation theory requires significant
processing resources. Parametric channel models for NGSM are obtained by the
application of statistical information processing techniques. Despite the fact that the
generated models include simplistic structures, they are unable to adequately capture
the fundamental characteristics of true propagation environments. In conclusion,
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the imitation of stochastically distributed scatterers for multipath fading in GSCM
is achieved by utilizing available geometry information. In recent decades, GSCM
have gained significant popularity as a modeling approach due to their ability to
balance computational complexity with model correctness. Consequently, they have
been extensively utilized in the development of 3GPP channel models.

2.2.3 Standard channel models

While developing new radio-communication systems, standardized channel models
play a very crucial role in assessing key performance parameters such as bit rate,
multiple-access, and signal processing. The establishment of standardized channel
models helps a more easy understanding of natural laws and can be helpful in unify-
ing the results of extensive field measurements from scientific research, academia,
and industry [52]. Several channel models have been developed by different stan-
dardization bodies groups, such as 3GPP [2], WINNER II[53], COST 2100 [54],
METIS [55], ITU-R [56], MiWEBA [57] and NYUSIM [58]. These channel models
share many similarities and can be grouped into two main categories:

• 3GPP/ITU-based channel models for frequencies below 6 GHz, with modifica-
tions to accommodate up to 100 GHz

• NYUSIM [59] based channel models for frequencies ranging from 0.5 GHz
to 100 GHz that provide new features and enhancements, such as spatial
consistency, mobility, and spherical wave propagation.

COST

The European Cooperation in Science and Technology (COST) has formulated
various models, encompassing the directional characteristics of wireless channels,
that apply to simulations of MIMO and smart antennas [60]. COST 2100 [54] is
a GSCM for frequency bands below 6 GHz was based on the pre-existing COST
259 [61] and COST 273 channel models [62]. Cluster power, delays, and angles
in the COST 2100 model are drawn from fixed geometry locations. This model
suffers from a limited frequency range and lack of support for scenarios requiring
dual mobility, such as device-to-device and vehicular-to-vehicular communication.
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METIS

These channel models employ a hybrid approach, combining a map-based model and
a stochastic model, to achieve adaptable and scalable channel modeling for mobile
and wireless communications [55]. The map-based model was developed through
the use of a ray tracing methodology, a simplified 3D geometric representation of
a propagation environment, and the addition of random shadowing objects. These
models support various propagation scenarios such as diffused scattering, blocking,
specular reflection, and diffraction.

IEEE 802.11ay

IEEE 802.11ay is an improved standard for wireless networks that achieves high
throughput and power efficiency, building upon the IEEE 802.11ad standard [63].
The wireless transceiver in this design utilizes directional antenna beams to function
in the 60 GHz mmWave band [64].
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2.2.4 3GPP 3D channel model for 5G-NR

The 3GPP has developed a standardized map-based hybrid channel model that
combines the ray-tracing method and GSCM. This model for 5G-NR[2] supports
channel bandwidth up to 2 GHz and frequencies ranging from 0.5 GHz to 100 GHz.
It provides accurate simulation at the cost of higher complexity than alternatives, and
can also model additional components, such as oxygen absorption, blockage, large
antenna arrays, and spatial consistency. The parameters of the channel are split into
two distinct categories, namely deterministic parameters that are acquired through
the ray-tracing method, and random parameters obtained through measurement data.
This concept has the ability to achieve a balance between complexity and accuracy
[66]. In the next chapter, we discuss in detail the 3GPP channel model based on
release 15 of TR 38.901 [67].

The 3GPP 3D model combines the key desirable attributes of wideband, time-
varying, spatial, and optimized for cellular systems, making it a robust choice for
5G-NR system simulation. Some key benefits of 3GPP channel model are;

Standardization: 3GPP is highly standardized and is the basis for many global 5G
deployments. This makes it easier for vendors and operators to adopt it.
Comprehensive Scenarios: 3GPP covers a wide range of scenarios from urban to
rural and indoor environments, making it versatile.
Moderate Complexity: While detailed enough to be accurate, 3GPP channel model
for 5G is not as computationally intensive as some other models, making it more
practical for real-world applications.
Frequency Range: It covers both sub-6 GHz and mmWave frequencies, making it
adaptable to various types of 5G deployments.
MIMO Support: 3GPP fully MIMO technologies, which are crucial for 5G’s high
data rates.
Industry Adoption: Being one of the most widely adopted models, 3GPP has a
large ecosystem, which makes it easier for operators to find compatible equipment
and solutions.

n summary, the 3GPP 3D channel model is often considered superior due to its
balance between complexity and practicality, its wide range of covered scenarios,
and its high level of industry adoption and standardization.



Chapter 3

3GPP Channel Model for 5G-NR

A system-level simulation with many detailed scenarios, many configuration param-
eters, and sophisticated evaluation metrics requires both significant on-chip data
storage and high computational power. Interference calculation becomes even more
sophisticated with the inclusion of more complex scenarios. Thus, the requirements
for system-level simulators must evolve in different directions, such as propagation
channel modeling, interference modeling, and clustering. The propagation effect of a
wireless channel can be modeled by combining a large-scale propagation model with
a small-scale fading model of the channel. The former predicts the characteristics of
the wireless channel model that change slowly, such as shadowing and path losses.
The latter models the effect due to the Doppler shift or multipath effects on a wireless
channel.

The 3GPP was established by the European Telecommunication Standards Insti-
tute (ETSI) and various standard development organizations worldwide with the aim
of creating novel cellular network technology. The Technical Specification Group
for Radio Access Network (TSG RAN) within the 3GPP has undertaken a study item
entitled Study on Channel Model for Frequency Spectrum Above 6 GHz. This study
item pertains to the modeling of channels for frequencies ranging up to 100 GHz.
The model involves a range of scenarios, including Urban-Microcell (UMi) street
canyon, Urban-Macrocell (UMa), Rural-Macrocell (RMa), and Indoor-Office (InH)
environments. The model offers several notable features, including the ability to
accommodate a substantial bandwidth of up to 10% of the center frequency, with
a maximum limit of 2 GHz. Additionally, the model maintains spatial consistency,
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incorporates large antenna arrays, and accounts for blockage and oxygen attenuation
phenomena. Furthermore, identical to the METIS approach, a hybrid model was
suggested as a more accurate alternative. This model incorporates deterministic
environmental factors into the stochastic model.

Analytical studies for 5G often integrate Rayleigh fading with simplified propa-
gation loss models [68]. These models lack the ability to capture the spatial aspect
of the channel and cannot be integrated with accurate beamforming models, despite
being computationally efficient. The 3GPP channel model has the ability to model
interactions with beamforming due to its stochastic properties.

3.1 3D Channel Modeling

Transmission techniques using multi-antenna configurations and MIMO channels
are crucial for enhancing the reliability and spectral efficiency of a radio link. For
assessing standardized technologies operating with a BS equipped with horizontally
arranged antennas, 3GPP has used two-dimensional spatial channel model (2D-SCM)
on the horizontal cross-section of wireless channels [69]. The models exhibit a poor
representation of the characteristics of an actual channel due to their confinement to a
two-dimensional plane. Additionally, the transmission methods for MIMO systems,
such as spatial multiplexing, beamforming, and precoding, are restricted solely to the
azimuth dimension. To assess communication techniques like vertical sectorization,
it is necessary to employ a 3D channel model. A customized narrow elevation beam
is designed for individual vertical sectors or specific user equipment (UE) elevations
to effectively adjust both the transmission elevation and azimuth for the UE [69].

The model used in this thesis is a 3D channel model [53] and takes into account
the elevation angles and the azimuth angle to model small-scale fading effects and
correlation among the antenna elements. Figure 3.1a and fig. 3.1b show the different
angles used in two-dimensional (2D) and 3D spatial channel model (SCM).

In 3GPP GSCM,a cluster refers to a group of Multipath components (MPCs)
that arrive at the receiver within a close time interval and from similar directions.
These clusters represent reflections, diffractions, and scatterings of the radio signal
from large objects or structures in the environment, such as buildings, hills, or
other significant obstacles. The concept of clusters is crucial in understanding and
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modeling the behavior of radio signals in real-world environments. By grouping
MPCs into clusters, the 3GPP 3D channel model can more accurately represent the
complex interactions between radio waves and the environment, leading to more
realistic simulations and better system designs.
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Fig. 3.2 Cluster scattering in 3GPP channel model [59]

Figure 3.2 depicts a stochastic channel model based on geometry for a communi-
cation link pairing a transmitter and a receiver. The model incorporates scattering
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regions, also known as clusters, which are depicted as large circles consisting of
multiple scattering objects. The total number of clusters and rays is subject to vari-
ation depending on different scenarios and propagation conditions. Several usage
scenarios are defined in the 3GPP specification for elevation beamforming, the urban
micro street canyon and open area, 3D urban macro (3D-UMa) with outdoor next
generation NodeBs (gNBs), Backhaul, device-to-device (D2D), vehicle-to-vehicle
(V2V), and outdoor to indoor (O2I) are examples of some common usage scenarios.
For each of these propagation scenarios, different parameters are defined to calculate
path losses and microscopic and macroscopic fading. Large-scale parameters (LSPs)
are generated for each UE according to the propagation conditions at its location
and geographical position. Delay spread, shadow fading„ azimuth angle of arrival
(AOA), azimuth angle of departure (AOD), zenith angle of arrival (ZOA), and zenith
angle of departure (ZOD) are considered as LSPs, while cluster powers, delays,
ZOA, ZOD, and elevation direction are considered as small-scale parameters (SSPs),
which change frequently.

3.2 Procedure for Channel Generation

The 3GPP channel model is a hybrid model in which the deterministic part is
represented by a path-loss model whereas the stochastic part is modeled by means of
LSPs and SSPs. Figure 3.3 shows the steps required for channel generation.

• LSPs generation requires target scenarios selection such as RMa, UMa, UMi, and
InH, as well as the network layout such as antenna configuration and velocity
parameters. It defines the parameters that fluctuate less frequently over larger
distances and mobility such as shadow fading (SF), Ricean K-factor, delay spread
(DS), angular spread of arrival and departure in elevation and azimuth (AS), etc.

• SSPs are the parameter that fluctuates over smaller distances and requires remodeling
more frequently. It characterizes the propagation of multipath components in terms
of power, delay, and angles of arrival and departure in 3D space.

3.2.1 Large-scale fading

This model defines the large-scale link level parameters such as angular spread (AS),
delay spread (DS), Ricean K-factor KR (for line-of-sight (LOS)), shadow fading (SF)
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Fig. 3.3 Channel coefficient generation in 3GPP 3D channel model

(σSF ), and azimuth and zenith angular spread of arrival and departure (ASA, ZSA,
ASD, ZSD) and corresponds to step 4 in 3GPP channel generation procedure fig. 3.3.
LSPs in 3GPP specifications are considered as log-normal random variables and
provides the mean and variances in [2, Table 7.5-6].

In this step of channel generation, the propagation environment is evaluated
for each link between BS and mobile station (MS) through LOS probability. The
propagation path-loss model determines the signal strength perceived by the MS
in various scenarios, where the higher path-loss corresponds to a weak reception.
Path-loss modeling is required to determine the optimal gNB height that would
increase the reception strength for the maximum number of MS. As the height of
gNB increases, the probability of a direct line-of-sight connection to an MS also
increases. However, this comes at the cost of a longer signal path, resulting in greater
path loss. Figure 3.4 shows two different scenarios where MS is in LOS in outdoor
fig. 3.4a while fig. 3.4b shows BS and MS scenario for indoor environment.

For outdoor MS, the parameter d3D is a straight distance from BS to MS as
shown in fig. 3.4a whereas d2D denotes its x-y plane projection. d3D is calculated
from horizontal distance d2D, BS antenna height hBS and MS height hMS as
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d3D =

√
(d2D)

2 +(hBS −hMS)
2 (3.1)

In case of indoor MS, the parameter d3D is obtained by means of indoor distance
from the building to the MS d3D−in and outdoor distance from BS to the building
d3D−out as shown in Figure 3.4b. In this way, the total 3D distance for indoor MS is
gives as

d3D = d3D−out +d3D−in =

√
(d2D−out +d2D−in)

2 +(hBS −hMS)
2 (3.2)

Probability of LOS, PLOS depends on d2D−out for outdoor-to-indoor link and d2D

for outdoor-to-outdoor link between BS and MS. [2, Table 7.4.2-1] lists expression
for calculation of (PLOS)in various propagation environments. In case of RMa, it is
calculated as

PLOS =

{
1 ,d2D-out ≤ 10m

exp
(
−d2D-out−10

1000

)
,10m < d2D−out

(3.3)

Pathloss evaluation is mainly dependent on the distance from BS to MS. Expres-
sion for evaluation of path-loss for various propagation conditions is depicted in [2,
Table 7.4.1-1].

The path-loss PLLOS for RMa when an LOS is present is computed as follows.
LOS

PLRMa−LOS =

{
PL1 10m ≤ d2D ≤ dBP

PL2 dBP ≤ d2D ≤ 10km
(3.4)
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where

PL1 = 20log10(
40πd3D fc

3
)+min(0.03h1.72,10)log10(d3D)

−min(0.044h1.72,14.77)+0.002log10(h)d3D

(3.5)

and
PL2 = PL1(dBP)+40log10(

d3D

dBP
) (3.6)

where h is the average building height in the surrounding, breakpoint distance
is dBP = 4×hBS ×hMS × fc

c , fc is the center frequency in Hz, c = 3.0×108 m/sec
is the propagation velocity in free space, and hBS and hMS are the effective antenna
heights at the BS and the MS, respectively.

There are two main types of correlation between LSPs: intra-MS correlation
(correlation between parameters in the same link) and inter-MS correlation (corre-
lation between LSPs on separate links, which can be either intra-cell or inter-cell).
For a high number of links,the correlation matrix size increases significantly due to
the inclusion of both intra and inter-MS correlations. To reduce the computational
complexity, inter-MS correlations are derived first, followed by intra-MS. 3GPP
advises using sub-clause 3.3.1 of [53] for generation of LSPs with the square root
matrix produced through the utilization of the Cholesky decomposition.

s̃ =
√

CM×M(0)ζ (3.7)

where CM×M(0) represents the correlation matrix, ζ is the identity normal random
vector and s̃ is the normal random variable for the correlation vector.

The LSPs relating to separate BS-MS links exhibit no correlation, whereas the
LSPs corresponding to links originating from co-located sectors and terminating at
an MS demonstrate identical characteristics. Furthermore, the LSPs pertaining to the
connections of MS on different floors are uncorrelated.

3.2.2 Small-scaling fading

Cluster power, delays, ray parameters, cross-polarization, and angles of arrival
and departure are considered as SSPs. We consider a downlink communication
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Table 3.1 Notations in 3GPP channel generation

Frx,u,θ Field pattern of receiving antenna element u in the
direction of spherical basis vector θ̂

Frx,u,ϕ Field pattern of receiving antenna element u in the
direction of spherical basis vector ϕ̂

Ftx,s,θ Field pattern of transmitting antenna element s in the
direction of spherical basis vector θ̂

Ftx,s,ϕ Field pattern of transmitting antenna element s in the
direction of spherical basis vector ϕ̂

θn,m,ZOD Zenith angle of departure (ZOD) for ray m in cluster n
θn,m,ZOA Zenith angle of arrival (ZOA) for ray m in cluster n
φn,m,AOD Azimuth angle of departure (AOD) for ray m in cluster

n
φn,m,AOA Azimuth angle of arrival (AOA) for ray m in cluster n
θn,ZOD Zenith angle of departure (ZOD) for cluster n
θn,ZOA Zenith angle of arrival (ZOA) for cluster n
φn,AOD Azimuth angle of departure (AOD) for cluster n
φn,AOA Azimuth angle of arrival (AOA) for cluster n
θLOS,ZOD Line-of-sight (LOS) zenith angle of departure (ZOD)
θLOS,ZOA Line-of-sight (LOS) zenith angle of arrival (ZOA)
φLOS,AOD Line-of-sight (LOS) azimuth angle of departure

(AOD)
φLOS,AOA Line-of-sight (LOS) azimuth angle of arrival (AOA)
κn,m Cross polarization power ratio for path m and cluster n
ΦXY

n,m Random initial phase
r̂rx,n,m Spherical unit vector of rx element
r̂rx,n,m Spherical unit vector of tx element
d̄rx,u Location vector of rx antenna element u
d̄tx,s Location vector of tx antenna element s
λ0 Wavelength of carrier frequency
v̄ Velocity vector of user equipment (UE)
Pn nth path power

in the following in which the departure angles are defined on BS (also termed
as gNB) side whereas arrival angles are at MS (or UE) side. The coefficients of
the fast fading channel provide a model for the dynamic fluctuations of wireless
channels, which result from the interaction between multipath and the movement
of the user equipment. Table 3.1 lists notations used for the realization of small-
scale fading using the step-by-step method shown in fig. 3.3. The calculation of
channel coefficients for a link connecting a transmitter and a receiver is based on
the combined channel impulse responses of the various multiple-path components.
Each of these components is distinguished by a path delay and path power, alongside
stochastic phases that are introduced during propagation. Additionally, the multiple
path components incident path angles, namely AOD and AOA and ZOD and ZOA,
are also taken into account. Figure 3.5 shows zenith arrival and departure angles for
different scenarios
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Cluster delay

The first step in SSP for the fast fading model is the generation of cluster delays. The
following steps are performed in order to calculate the propagation delays τ ′n for
each cluster with delay scaling rτ and delay spread DS, using an exponential delay
distribution

τ
′
n =−rτ ×DS× ln(Xn) (3.8)

Xn denotes uniform distribution, n is index of cluster n = 1, · · · ,N. It is required
to sort and normalize the delay vector obtained from (3.8) to ascending order as
follows,

τn = sort
(
τ
′
n −min

(
τ
′
n
))

(3.9)

Further scaling of delays is necessary to counteract the impact of LOS using a
constant value denoted as Cτ as given by

Cτ = 0.7705−0.0433KR +0.0002KR
2 +0.000017KR

3 (3.10)

where KR denotes the Ricean K-factor as generated in step 4 fig. 3.3. The scaled
delay can be calculated as

τ
LOS
n = τn/Cτ (3.11)
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Cluster Powers

The calculation of cluster powers is based on the assumption of a power delay profile
that follows a single slope exponential function. The allocation of power is based
upon the delay distribution as specified in [2, Table 7.5-6]

P′
n = exp

(
τn

rτ −1
rτDS

)
10

−Zn
10 (3.12)

Where Zn ∼ N
(
0, ζ 2) and ζ being shadowing factor for each cluster as pro-

vided in [2, Table 7.5-6] The cluster powers are then normalized by dividing the
previous power P′

n with the total power as given by

Pn =
P′

n

∑
N
n=1 P′n

(3.13)

If LOS component is also present, an additional component P1,LOS =
KR

KR+1 must be
added to the total power.

After obtaining the cluster powers Pn, we proceed to distribute the power among
the individual rays. This is achieved by dividing Pn equally among the total number
of rays, resulting in Pn,m = Pn

Mray
where n = 1, · · · ,Ncl represents the cluster index and

m = 1, · · · ,Mray represents the ray index.

Azimuth and Zenith angles of arrival and departure

Power angular spectrum (PAS) is a metric that characterizes the power distribution
in various directions and ascertains the spatial correlation properties of the channel.
A wrapped Gaussian distribution is utilized to model the composite in azimuth
for all clusters. The generation of arrival and departure angles in azimuth follows
a similar procedure [2]. The generation of AOAs involves the application of the
inverse Gaussian distribution, utilizing the cluster average power Pn and the root-
mean-square azimuth spread of arrival (ASA).

ϕ
′
n,AOA =

2(ASA
1.4 )

√
− ln

(
Pn

max(Pn)

)
Cϕ

(3.14)
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The scaling factor denoted as Cϕ is defined in relation to the overall number of
clusters, and its corresponding values can be found in [2, Table 7.5-2].

The angles can be assigned a positive or negative sign by multiplying them with
a random variable Xn that follows a uniform distribution. Additionally, to introduce
further random variation, a component Yn is added as

ϕn,AOA = Xnϕ
′
n,AOA +Yn +ϕLOS,AOA (3.15)

To generate the final cluster angles by adding αm as offset angle,

ϕn,m,AOA = ϕn,AOA + cASAαm (3.16)

where CASA denotes the root-mean-square azimuth spread of arrival for each cluster.
The generation of departure angles AOD follows the same procedure as for AOA
in (3.14) and (3.16) by replacing azimuth spread of arrival with azimuth spread of
departure and CASA with CASD from [2, Table 7.5-6].

The Laplacian distribution is utilized to model the composite PAS at the zenith of
all clusters. The generation of ZOA involves the application of the inverse Laplacian
distribution, taking into account the cluster average power Pn and the root-mean-
square zenith spread of arrival (ZSA).

θ
′
n,ZOA =−

ZSAln
(

Pn
max(Pn)

)
Cθ

(3.17)

where Cθ denotes cluster-wide scaling factor and is given in [2, Table 7.5-4]. Fol-
lowing a similar procedure used for generation of AOA, by introducing a random
variable Yn,

θn,ZOA = Xnθ
′
n,ZOA +Yn +θ ZOA (3.18)

where θ ZOA = θLOS,ZOA, Xn is uniform random distribution, and Yn ∼N
(

0,
(ZSA

7

)2
)

as random variation. The final ZOA angles are

θn,m,ZOA = θn,ZOA + cZSAαm (3.19)
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where αm is the offset angles, CZSA is the root-mean-square zenith spread for each
cluster. To calculate departure angles in the zenith direction, a similar procedure is
followed while replacing ZSA in (3.17) with ZSD and CZSA in (3.19) with CZSD.

After calculating azimuth and zenith angles of arrival and departure for each ray,
a random coupling among them as given below is performed for each cluster n

• AOA ϕn,m,AOA with AOD ϕn,m,AOD

• ZOA θn,m,ZOA with ZOD θn,m,ZOD

• AOD ϕn,m,AOD with ZOD θn,m,ZOD

Cross-polarization power ratios

The next stage in SSPs computation is the generation of cross-polarization power
ratios for each ray m in each cluster n.

κn,m = 10
Xn,m

10 (3.20)

where Xn,m is a Gaussian-distributed random variable and is calculated using values
from [2, Table 7.5-6]

Channel coefficient generation

Prior to generating the channel coefficient, it is necessary to randomly select the
initial phases, denoted as

{
Φ

ϕϕ
n,m,Φ

θϕ
n,m,Φ

ϕθ
n,m,Φ

θθ
n,m

}
, from a uniform distribution

within the interval (−π,π).
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Considering N cluster scatterers with M resolvable paths each, the CIR for ray m
in n = N −2 weakest clusters, UE antenna element u, and BS antenna element s is

HNLOS
s,n,m (t) =√

Pn

M

[
Frx,u,θ (θn,m,ZOA,φn,m,AOA)

Frx,u,φ (θn,m,ZOA,φn,m,AOA)

]T

×

[
e jΦθθ

n,m
√

κn,m−1e jΦθφ
n,m√

κn,m−1e jΦφθ
n,m e jΦφφ

n,m

]

×

[
Ftx,s,θ (θn,m,ZOD,φn,m,AOD)

Ftx,s,φ (θn,m,ZOD,φn,m,AOD)

]
× e

j2π
r̂T
rx,n,m.d̄rx,u

λ0 × e
j2π

r̂T
tx,n,m.d̄tx,s

λ0

× e
j2π

r̂T
rx,n,m.v̄

λ0
t

(3.21)
where r̂rx,n,m is the spherical unit vector with elevation arrival angle θn,m,ZOA and
azimuth arrival angle ϕn,m,AOA. The field patterns of the receiving antenna element
u, denoted as Frx,u,θ and Frx,u,φ , are determined based on equation (3.15) and are
measured in the direction of the spherical basis vectors, θ and φ , respectively.
Similarly, the field patterns of the transmitting antenna element s, denoted as, Ftx,s,θ

are measured in the direction of the spherical basis vectors, θ and φ , respectively.

For cluster n and ray m within cluster n, the spherical unit vector is given by

r̂rx,n,m =

sinθn,m,ZOA cosφn,m,AOA

sinθn,m,ZOA sinφn,m,AOA

cosθn,m,ZOA

 (3.22)

Similarly, r̂tx,n,m is the spherical unit vector with elevation departure angle θn,m,ZOD

and azimuth departure angle φn,m,AOD. For cluster n and ray m within cluster n it is

r̂tx,n,m =

sinθn,m,ZOD cosφn,m,AOD

sinθn,m,ZOD sinφn,m,AOD

cosθn,m,ZOD

 (3.23)

The Doppler frequency component vn,m depends on the UE speed v is applied to
the coefficients of each channel, for each antenna element.

vn,m =
r̂T

rx,n,m.v̄
λ0

,where v̄ = v.[sinθv cosϕv sinθv sinϕv cosθv]
T (3.24)



3.2 Procedure for Channel Generation 39

The two strongest clusters, namely n = 1,2, exhibit a spread of rays in delay that
is distributed across three sub-clusters as follows

• sub-cluster 1 R1 ={1,2,3,4,5,6,7,8,19,20}
• sub-cluster 2 R2 = {9,10,11,12,17,18}
• sub-cluster 3 R3 ={13,14,15,16}

Each of these sub-clusters is characterized by a constant delay offset as given by

τn,1 = τn, τn,2 = τn +1.28CDS, τn,3 = τn +2.56CDS (3.25)

where CDS denotes delay spread of cluster.

Considering the delays and ray mappings listed in [2, Table 7.5-5], the CIR
HNLOS

u,s (τ, t) for non-line-of-sight (NLOS) can be computed as

HNLOS
u,s(τ,t) =

2

∑
n=1

3

∑
i=1

∑
m∈Ri

HNLOS
s,n,m (t)δ (τ − τn,i)

+
N

∑
n=3

M

∑
m=1

HNLOS
s,n,m (t)δ (τ − τn)

(3.26)

where δ (.) denotes the Dirac’s delta function.

Similarly, if there are LOS cluster links, the channel coefficients are computed as
follows

HLOS
u,s,1(t) =

[
Frx,u,θ

(
θLOS,ZOA,ϕLOS,AOA

)
Frx,u,ϕ

(
θLOS,ZOA,ϕLOS,AOA

)]T [
1 0
0 −1

][
Ftx,s,θ

(
θLOS,ZOD,ϕLOS,AOD

)
Ftx,s,ϕ

(
θLOS,ZOD,ϕLOS,AOD

)]

× e
− j2π

d3D
λ0 × e

j2π
r̂T
rx,LOS.d̄rx,u

λ0 × e
j2π

r̂T
tx,LOS.d̄tx,s

λ0 × e
j2π

r̂T
rx,LOS.v̄

λ0
t

(3.27)

The LOS channel coefficients scaled based on the desired Ricean K-factor KR

are computed as

HLOS
u,s (τ, t) =

√
1

KR +1
HLOS

u,s (τ, t)+

√
KR

KR +1
HLOS

u,s,1(t)δ (t − τ1) (3.28)
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3.2.3 Channel models for link-level evaluations

The channel can be either represented as a tapped delay line (TDL) or a cluster
delay line (CDL). For simplified evaluation, the TDL model is defined as an impulse
response, in which a radio channel is characterized by several delay taps while
the CDL model is characterized by the arrival and departure directions in the 3D
space which allows better beamforming representation. The TDL model defines
the correlation between the antenna elements through a static correlation matrix,
whereas the CDL model depends on the geometry of the antenna elements and
how the channel propagates. The CDL models cover the entire frequency range
spanning 0.5 GHz to 100 GHz, and exhibit a maximum bandwidth of 2 GHz. CDL
models may be implemented through the execution of coefficient generation in Step
10 and Step 11 as outlined in [2, Subclause 7.5]. [2, Table 7.5-6] provides the
mean and standard deviation of K-factor values, which may serve as a reference for
determining appropriate values. To convert the K-factor of a model to Kdesired , one
must determine the cluster powers for the Laplacian clusters using

Pn,scaled = Pn,model +Kmodel −Kdesired (3.29)

where Pn,model denotes the model path power and Pn,scaled is the scaled path
power in cluster n. Kmodel K-factor can be defined as

Kmodel = PLOS
1,model −10log10

N

∑
n=1

10Pn,model/10 (3.30)

Upon rescaling the powers, it is necessary to re-normalize the delay spread by
determining the root-mean-square delay spread after the K-factor adjustment. The
delays should be divided by that particular value in order to obtain unit delay spread
(DS = 1).

Following the detailed explanation of the channel model and its application
in network planning, the next emphasis will be on the implemented acceleration
techniques that enhance the speedy evaluation of said model on hardware platforms.
In the subsequent chapter, we will explore the concept of acceleration flows and the
corresponding optimizations for hardware platforms, commencing from a high-level
specification.



Chapter 4

FPGA Based Acceleration and HLS

FPGAs are a class of programmable semiconductor devices that rely on configurable
logic blocks (CLBs) arranged in a matrix configuration and linked via programmable
interconnections. These devices possess the capability to be programmed and config-
ured post-manufacturing to meet specific functional requirements. ASICs constitute
another category of semiconductor devices with a fixed micro-architecture. In con-
trast to FPGAs, ASICs are engineered to perform a predetermined set of functions
and are highly optimized for a particular application, however, their functional-
ity is restricted to that specific task for which they are designed in the first place.
Conversely, there exist general-purpose processors that are capable of executing
nearly all types of applications, albeit with suboptimal performance due to lack of
optimization.

FPGAs are deemed to be more flexible than ASICs due to their ability to be
reconfigured based on the desired functionality. However, this flexibility comes at
the expense of power and area. In general, specialized architectures exhibit higher
efficiency compared to their general-purpose counterparts. However, this advantage
is offset by the need for more intricate programming and reduced flexibility, which
incurs additional costs.

While one-time programmable FPGAs are present in the market, the majority of
FPGAs currently employed are based on static RAM (SRAM) technology. These
devices consist of a significant quantity of SRAM cells that collectively constitute
look-up tabless (LUTs), as well as a large number of registers and programmable
routes for interconnections. The ability to update the contents of LUTs and configure



42 FPGA Based Acceleration and HLS

Soft Processor

Hard Processor
U
R
A
M

U
R
A
M

U
R
A
M

U
R
A
M

D
S
P

D
S
P

D
S
P

D
S
P

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

Kernel Logic

Soft
IP

HBM Controller DDR Controller Ethernet Block

IO Blocks

Mapped
Soft IP

User
Kernel
Logic

DSP
Block

BRAM
Module

Memory
Controllers

UltraRAM 
Module

Soft IP
Processor

(MicroBlaze)

Logic
Block

Fig. 4.1 Modern FPGAs with hard logic components [70]

routing accordingly allows designers to easily apply a specific design to a variety
of applications. In order to establish connectivity between discrete CLBs and
both internal and external systems, a reconfigurable interconnection mechanism is
required. A programmable interconnect matrix is employed to establish connections
between the CLBs and IO blocks. In addition to LUTs as soft-logic, there exist
certain hard-logic components. The aforementioned constituents large memory units
such as block RAM (BRAM), digital signal processor (DSP), and a number of
memory controllers. Figure 4.1 shows a typical modern FPGA architecture with
hard-logic components.

Hard-logic components are employed to execute certain specialized logic func-
tions that would occupy a significant amount of space and be much slower if imple-
mented using LUTs.

4.1 Design Flow

The FPGA design process encompasses several stages, which include design entry,
design synthesis, implementation, and device programming.
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Design Entry There exist multiple methodologies for the process of design entry.
The process can be initiated either by using a schematic, employing an HDL, or a
combination of both. When dealing with a system that exhibits a high degree of
complexity, it is advisable to commence the design process using HDL as opposed
to working with lower-level schematics.
Design Synthesis The process of integrating various design elements into a cohesive
and functional whole is commonly referred to as design synthesis. During the design
synthesis phase, the code is transformed into a physical circuit through by means of
low-level implementation techniques, including gates, flip-flops, and adders. The
process of converting the input design involves the creation of a netlist that outlines
the components used, and their respective interconnections. The initial step in the
design synthesis procedure involves conducting a syntax check on the HDL-based
design that has been submitted as input. After the design phase, the logic is refined
through the application of various optimization techniques, including but not limited
to redundant logic elimination, logic reduction, and size reduction, with the additional
goal of enhancing its implementation speed. Upon conducting potential optimization,
the design is subsequently mapped onto the relevant technology, extracting timing
and area information.
Implementation This particular stage is responsible for establishing the arrange-
ment and structure of the final design that will be implemented as a circuit. The
process comprises three distinct stages, namely translation, mapping, placement, and
routing. The aforementioned tool consolidates the various design constraints along-
side the design netlists. The tool proceeds to perform resource mapping on the FPGA
based on the design’s specified requirements. Following the process of mapping,
the subsequent stage involves the establishment of pathways for the transmission of
signals (referred to as routing) and the interconnection of IO interfaces.
Device Programming The result of the implementation phase is a bitstream file
that comprises the final design’s footprint on the device. Subsequently, the aforemen-
tioned file is transferred to the FPGA platform for the execution of the design on the
physical FPGA device.
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4.2 High-level synthesis

The acquisition of skills in HDL development can be challenging due to the inherent
nature of hardware descriptions. The cognitive approach involved in developing a
circuit configuration cannot be readily equated to the process of developing software.
The marketing challenge in the accelerator domain is particularly significant for
FPGA vendors. The process of programming multi-threaded CPUs and GPUs
is relatively uncomplicated and exhibits significant similarities between the two.
In order to fully utilize the acceleration capabilities of FPGA, it is necessary for
developers to acquire proficiency in entirely novel programming languages that
possess unique features. As a result of this requirement, leading FPGA producers
have created HLS toolchains for software developers without strictly requiring
extensive hardware expertise.

The characterization of the circuit is based on its intended functionality rather
than its inherent behavior. Subsequently, the compiler tries to infer a functional
circuit that aligns with the intended functionality based on the provided description.
The development of general-purpose programming languages is a complex and
ongoing challenge that has engaged multiple generations of scientists and engineers.
The issue remains unresolved to this day.

HLS is a complex subject for compiler engineers due to its intricate requirements,
which include the appropriate allocation of tasks across available resources, the
establishment of register boundaries to facilitate the formation of pipelines, and the
management of recursion and loops. The HLS methodology has been designed to
facilitate a seamless transition for designers from high-level specification to HDL
implementation while minimizing errors and reducing the required effort to obtain
a functional and optimized design. During the initial stages of HLS, its use was
limited due to the unavailability of sophisticated tools [71]. In recent times, the
latest iteration of HLS tools has garnered considerable attention due to their notable
innovations and the improved efficiency of the generated designs.

Several HLS tools have been introduced for rapid prototyping and hardware
development for large FPGAs. These tools take as input programs written in C,
C++, Open Computing Language (OpenCL) [72–78], and other high-level languages
[79–83] alongside some design constraints and pragmas, and translate them into
lower-level descriptions such as RTL or HDL with equivalent functionality. This
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translation from high-level description into HDL is done by HLS tools. The translated
design is then transformed into a gate-level description by the synthesis toolchain,
and mapped onto the hardware resources of the target device. This circuit description
is then mapped to the actual locations on the target device to reduce the length of the
critical paths through place and route tools. The final stage is encoding the circuit
description into a binary format (bitstream), which is then used to configure the
FPGA on-chip resources and define the initial on-chip SRAM contents.

4.2.1 HLS flow for FPGAs

HLS facilitates the automatic generation of RTL descriptions from high-level spec-
ifications, which is essentially an algorithmic representation written in HLLs like
C/C++, Matlab, and even Domain-Specific Languages (DSL). Prior to being parsed
by the HLS tool, it is common to subject this specification to a test-bench, which
is typically composed in the same programming language. A typical HLS tool
generates the control and data flow graph (CDFG), which serves as an intermediary
depiction of the application. The intermediate representation’s operations are sched-
uled and mapped into hardware resources, taking into account design constraints and
the target technology. Optimizing the design is a crucial aspect of high-level synthe-
sis, and numerous techniques are employed to accomplish this task. Subsequently,
the RTL description is produced and subsequently subjected to verification through
the test-bench. Figure 4.2 depicts a typical HLS based development flow starting
from a high-level specification.

HLS-based design process is typically split into two distinct phases. In the first
phase, the system is modeled in an HLL as a reference system and tested under a
number of constraints. This phase can be performed by software developers with
limited hardware design knowledge. The HLS tool initially processes high-level
specifications by parsing and transforming them into CDFGs, which serve as an
intermediary representation, where operations and their dependencies are represented
by nodes alongside control information. These graphs are subsequently supplied
to the scheduling and binding procedures, which uses a variety of algorithms. The
appropriate algorithms for scheduling and binding are automatically chosen based
on the objective of optimizing either performance or area. Hardware designers
typically require extensive expertise and experience to effectively optimize a system’s
performance while balancing resource utilization.
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The next phase is about the creation of practical hardware architecture and
requires a more sophisticated and advanced knowledge of hardware design. HLS
performs automated conversion of high-level specifications that adhere to specific
hardware-related rules into RTL descriptions. In order to produce high-quality
RTL descriptions, it is essential that designers adhere to the prescribed guidelines.
Nevertheless, it should be noted that the HLS instructions are reliant on the specific
tool being used.

4.2.2 OpenCL in hardware acceleration

OpenCL is a parallel programming language for multicore and heterogeneous com-
puting platforms [84]. OpenCL is developed as an open standard by the Khronos
group, thus it has an edge over a similar framework, the CUDA, fully controlled by
NVIDIA and only available for its devices. OpenCL is designed so that an application
can be adapted across different computing platforms. Although OpenCL provides
functional portability, platform-specific optimizations are necessary to exploit most
of the target platform computational power. This allows software programmers to
exploit the architectural features of the underlying platforms, such as the distinction
between the local on-chip memory, the global memory, and registers, just like they
can do for GPUs [85]. An OpenCL application is comprised of one or more device
or kernel functions, and host code. Device code is part of the code which is highly
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data parallel and computationally intensive and will be executed on the accelerator.
Host code is the part that sets up the environment and controls data movement to
and from the accelerator device and is executed on a general-purpose CPU.

OpenCL devices include one or more compute units (CUs) and each may contain
one or more processing elements (PEs), depending on the platform and the designer
implementation choices. OpenCL splits the computations in parallel threads called
work-items (WIs) which are then combined together in work-groups (WGs). This
approach adds support for data-parallel computations and thus some “doall” loop
iterations without inter-iteration dependencies (in particular those over WGs), can
be mapped to kernel instances that execute in parallel. Not all applications, though,
expose high “doall” parallelism at the top of the kernel level. Moreover, FPGA
architectures permit finer-grained control over the implementation parallelism, e.g.,
between tasks within a kernel or iterations of an inner loop. For this reason, OpenCL
also offers an execution model, more suitable for CPUs and FPGAs than for GPUs,
that executes repeatedly a single instance of the kernel and is called single work-item
kernel. In this approach, the available parallelism must be defined at a finer grain,
using FPGA specific pragmas. A similar approach can also be used to synthesize C
or C++ code into a concurrent FPGA implementation, as discussed below. Figure 4.3
shows the main elements of an OpenCL design. It relies on a single instruction
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Fig. 4.3 OpenCL based hardware acceleration flow.

multiple data (SIMD) paradigm similar to GPUs to better exploit the hardware
platforms. It enables the developers to generate efficient code that fits the architecture
of the target device by providing an abstract but non-uniform memory hierarchy.



48 FPGA Based Acceleration and HLS

OpenCL based applications are composed of two major parts; a host code which
performs the initialization, memory allocation, and data-transfer related tasks and
executes on CPU, and kernel code which performs the computationally intensive
tasks and executes on the acceleration platform.

OpenCL divides memory into different spaces namely global, local, private, and
constant memory. Global and constant memories are shared among all the CUs in a
device and with the host CPU, reside in external dynamic RAM (DRAM), and hence
have the highest latency. Local memory is shared among WIs in a WG, has lower
latency than global memory, and is often mapped to on-chip SRAM. Each WI finally
has its private memory space, which is mapped to the register file and has the lowest
latency.

4.2.3 Key advantages of HLS

HLS tools facilitate the automatic generation of the RTL implementation of a design
from its high-level specification. This helps in the elimination of errors at various
design stages and reduced time to market. Some key advantages of using HLS-based
implementation flow are discussed in the following section

Reduced effort in design and verification

The key advantage of HLS-based flow is rapid prototyping, which reduces the
designer’s effort. HLS significantly alleviates design burdens. Designers do not
require extensive knowledge of hardware design to implement specific details. For
example, when using HDL, it is essential to explicitly specify the clock cycle level
information in the design. Nevertheless, this information is not typically included
in HLL specifications. Typically, within the majority of HLS tools, users are able
to select the desired clock frequency, whereby the corresponding clock statements
will subsequently be inserted into the resultant component in an automated manner.
Therefore, the designer concentrates solely on behavior design. Additionally, the
code written in HLL is comparatively easier to write. It has been observed that HLS-
based design results in a reduction of code lines by more than 20% in comparison
to those implemented using RTL language for a design containing 1 million gates.
Figure 4.4 shows that the adoption of HLS based flow can reduce the design time by
a factor of 2 to 5 compared to conventional RTL based flow.
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Even though codes in HLL are typically shorter, the designer can control the
micro-architecture of the implemented systems by means of directives with guide the
synthesis tool. All the details such as resource allocation, scheduling, operation, and
memory binding are set by the designer but implemented in RTL efficiently by the
HLS tool. Verification, which usually takes a lot of time, is also done automatically.
So, HLS is a useful tool for reducing the amount of work that goes into planning and
verification.

Faster design space exploration

The concept of design space exploration refers to the evaluation of hardware microar-
chitecture design trade-offs while adhering to a specific set of constraints related to
FPGA clock frequency, throughput, latency, and area. During the design process,
the hardware microarchitecture is typically determined by the RTL engineer. Upon
completion of the RTL, an engineer would typically refrain from implementing
microarchitecture modifications, such as the addition of pipeline stages, due to the
challenging nature of RTL redesign. In contrast, HLS tools streamline the process
of design space exploration, which facilitates the ongoing improvement of the mi-
croarchitecture of hardware during the design phase. These tools are designed to
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insert pipeline registers in an automated manner, taking into account the clock period
constraint specified for the HLS target. Figure 4.5 shows various stages of design
space exploration for HLS and RTL designs.
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Fig. 4.5 RTL vs HLS design space exploration [87]

HLS runs typically complete in a matter of minutes and enable the designer to get
a quick feedback on performance and resource estimate and this avoid long FPGA
synthesis runs. The utilization of HLS constraints empowers designers to conduct
extensive design space exploration, thereby facilitating the achievement of optimal
trade-offs between performance and area for their FPGA designs.

Efficient reuse of designs

HLS tools enable efficient and easy reuse of designs. The majority of RTL designs
are optimized to satisfy particular constraints and technology targets, utilizing ded-
icated processes and state machines, among other techniques. Due to these hard
specifications, even minor modifications in the design can result in unexpected be-
havior and bugs. HLS is considerably more straightforward, where using a high
degree of abstraction results in an architecture that is both generic and versatile.
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4.3 HLS Tools and Optimizations

Initially, the majority of the HLS tools were aimed at ASIC designs for research
objectives only. In the early 1990s, most of the available HLS tools yielded poor
quality of results. Since the year 2000, a number OF computer-aided design (CAD)
vendors have provided top-notch HLS tools, such as Vitis HLS [72], AutoESL
AutoPilot [75], Mentor Catapult C Synthesis [78], Intel FPGA SDK for OpenCL [88],
Intel HLS [73], Bluespec [82], Forte Cynthesizer [89], and NEC CyberWorkBench
[90]. This chapter offers a brief overview of two commercial HLS tools, namely
Vitis HLS [72] and Intel HLS [73]. The majority of our proposed research relies on
these tools, and as such, we also present some of the optimization techniques that
are available within them.

4.3.1 Vitis HLS

Vitis HLS is a part of Vitis Unified Software Platform [91] development environment,
which enables the designers to build accelerated architectures for heterogeneous
computing systems. The Vitis platform offers a collection of tools, libraries, and
APIs that serve to abstract the complex concepts of hardware programming, thereby
facilitating the development of power-efficient, high-performance applications. The
platform supports multiple programming languages such as C/C++, OpenCL, and
Python, and offers an HLL model, thereby streamlining the process of software
development. The Vitis Unified Software Platform employs Vivado as an underlying
tool, which is used for generating the hardware design for the FPGA. The Vitis
platform offers a suite of software tools and libraries that facilitate the development,
testing, and optimization of applications on the FPGA design generated in Vivado by
developers. The Vivado and Vitis Unified Software Platforms collaborate to offer a
comprehensive solution for designing accelerated applications on Xilinx devices.

4.3.2 Intel FPGA SDK for OpenCL

Intel offers a platform for the generation of bitstreams using OpenCL based kernel
function [88]. Intel AOC is a source-to-source compiler that takes as input OpenCL
based kernels and generated Verilog HDL implementation through the Intel standard
toolchain. The Intel FPGA SDK for OpenCL offers the essential application pro-
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gramming interfaces and run-time environment to facilitate the programming and
utilization of PCIe-attached or System-on-Chip (SoC) FPGAs in a manner akin to
that of a GPU or other accelerators. Figure 4.7 depicts the tool flow used for acceler-
ating applications on Intel FPGAs using OpenCL SDK. The procedure for creating
OpenCL applications for a heterogeneous computing platform that combines a CPU
and FPGA involves utilizing C/C++ to program the CPU and OpenCL to program
the FPGA. Both of the aforementioned languages are classified as HLL, as they
abstract away the complexities of the underlying hardware. Board support package
(BSP) is supplied by board manufacturers and includes the essential IP Cores for
facilitating communication between the FPGA, external DDR memory, as well as the
necessary PCIe and DMA drivers for enabling communication between the host and
the FPGA. This approach alleviates the programmer from manually configuring the
IP Cores and generating the drivers, which is common in conventional HDL-based
FPGA designs.

The process of synthesizing a C++/OpenCL function into an RTL design through
Intel FPGA SDK for OpenCL results in the creation of an IP file. The IP files
produced can be integrated into Intel’s FPGA design software, namely Platform
Designer or Quartus Prime [92]. The bitstream generation process is composed of
two major steps. Initially, the OpenCL kernel is compiled HDL code through the
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{
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utilization of the Intel AOCL compiler. The hardware details of the target FPGA
are integrated into the resultant HDL code from BSP as shown in fig. 4.7. The
following step involves the creation of an FPGA bitstream, which is derived from
the compiled HDL code. During this stage, the Quartus toolchain defines all the
key implementation details, including the selection of the suitable FPGA frequency.
The outcome of this process is the generation of an OpenCL executable including
the FPGA bitstream. In contrast, the host code undergoes compilation utilizing a
suitable C/C++ compiler.

The process for designing an OpenCL kernel for FPGA begins with the com-
pilation of the kernel code for emulation purposes in order to verify its functional
corrections. Subsequently, an intermediate compilation may be performed. This
step involves the conversion of OpenCL code to Verilog, followed by the generation
of a performance report that includes details such as the distance between two iter-
ations of loops. In the process of kernel optimization, it is advisable to prioritize
the optimization of the reported bottleneck. Finally, after achieving the expected
performance, a bitstream is generated for the target FPGA. It should be noted that
the final stage of the process is a time-consuming one, requiring several hours to
complete. The flowchart in fig. 4.8 shows the process of compilation starting from
OpenCL source code.
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4.4 Implementation and Optimization for FPGAs

The usage of a high-level implementation-independent model written in OpenCL,
C, or C++ brings dual benefits to the FPGAs. On one side, it enables the designers
to generate an application-specific hardware architecture instead of using the fixed
datapath of a CPU or GPU. On the other side, it brings high-level programming
capabilities to hardware design. In order to use the FPGA device efficiently for
accelerating an application, the computation bottlenecks have to be identified and
then offloaded on the accelerator device, specifying them as kernels. Calculating
Hu,s,n,m(τ, t) with (3.26) for different combinations of the input parameter (u,s,n,m)

requires extensive computations. This will increase the simulation time significantly
and will limit the number of input parameter combinations that can be explored,
while still using a reasonable amount of execution time. However, (3.26) offers a
very high level of parallelism that can be exploited to significantly speed up the
computation using a GPU or FPGA.
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4.4.1 Loop based optimizations

Since the channel model considers multiple antennas and scatterers, and hence
multiple paths, the implementation is organized as a set of nested loops, often
without inter-iteration dependencies (also known as “doall” loops). To exploit the
available parallelism, however, the designer has to provide explicit optimization
directives and often restructure the original CPU-oriented code, because the out-of-
the-box optimization of the HLS tools is insufficient, as discussed below. In the
following, we briefly discuss the main loop-based optimization techniques.

Loop pipelining

When a loop is sequentially executed, the next input data are accepted after the
previous computation has been fully completed. Some of the resources however can
be used much more efficiently by organizing the computation in stages. Pipelining is
a form of computation parallelism that splits a sequential operation chain into several
stages and introduces storage elements (SRAM or flip-flops) to store the intermediate
results. Pipelines are characterized by two primary attributes, namely latency and
initiation interval (II). Latency is the total number of clock cycles elapsed for input
data to reach the exit point. II or gap is the number of clock cycles that must elapse
before the loop can accept new input data. For a pipeline with II II and latency L
that executes N iterations, the total execution time T when operating at frequency f
can be described as in [93]

T =
L+ II · (N −1)

f
. (4.1)

If a design includes two or more chained pipelines, also known as task-level pipelin-
ing, the overall II is determined by the slowest one. To achieve maximum perfor-
mance for a large number of iterations N, it is typically desirable to reduce the II and
implement deep pipelines with many stages, hence reducing the overall execution
time. Figure 4.9 shows execution of code in listing 4.1 in sequential and pipelined
manner.

1 void func(m,n,0){
2 for(i=0;i<=2;i++){
3 Read_op;
4 Compute_op;
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5 Write_op;
6 }
7 }

Listing 4.1 Loop pipelning example

Loop pipelining can be specified in OpenCL kernels with
__attribute__((xcl_pipeline_loop(N))), for C/C++ kernels in Xilinx Vitis
[91] with #pragma HLS pipeline II=<N>, or for Intel FPGA SDK for OpenCL
[88] with #pragma II = <N>. Pipelining may slightly increase the resource usage
due to insertion of extra control logic and intermediate storage elements, but it
generally increases the overall design throughput by decoupling it from iteration
latency.

Loop unrolling

If there are no data dependencies among the iterations of the loop, the loop execution
performance can be improved by executing multiple iterations in parallel. For such a
“doall” loop with trip count N, a theoretical speedup of N times, with an increase of
resources also by a factor of N, can be achieved by dispatching all the iterations in
parallel. If an increase by N of the overall resources is not acceptable, often unrolling
is applied partially by creating X copies of the unrolled loop body, where X < N. A
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loop can be fully or partially unrolled depending upon the performance requirements
and resource or data availability. Loops can be unrolled by using the #pragma HLS
unroll factor=N in Vitis HLS or #pragma unroll N in Intel HLS, where N is
the required number of iterations to be executed in parallel. Figure 4.10 shows
the execution of code in listing 4.2 in rolled, partially unrolled, and fully unrolled
fashion. Note that unrolling increases the data access parallelism of the loop as well,
hence it requires memory architecture restructuring, as discussed below, to achieve
the best performance.

1 void foo (...){ ...
2 for(i=0;i<=3;i++){
3 a[i]=b[i] * c[i];
4 }
5 }

Listing 4.2 Loop unrolling example
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Loop tiling

FPGAs have limited on-chip storage resources, which are results required by a given
algorithm. In that case, if each iteration of a given loop uses different input, interme-
diate, and output data, it is possible to split the loop into two nested loops, where
the innermost requires a manageable amount of on-chip storage, and transferring
only the required data on-chip at each iteration of the outer tiled loop [94]. For a
better understanding of the tiling based optimization, listing 4.3 shows an example
of nested loops with a large trip count and hence a larger memory footprint.

1 void foo (...){ ...
2 for(i=0;i<M;i++){
3 for(j=0;j<N;j++){
4 a[j] = work(i,j);
5 ....
6 }
7 }
8 }

Listing 4.3 Nested loops example

Loop tiling is applied as shown in listing 4.4, resulting in a smaller memory foot-
print. This optimization can be used to add support for larger designs on platforms
with limited memory resources.

1 void foo (...){ ...
2 TILE_SIZE =T
3 for(j1=0;j1<M;j+=T){
4 for(i=0;i<N;i++){
5 // smaller memory footprint loop
6 for (j2=0; j2<min(M-j1 ,T); j2++){
7 ....
8 }
9 }

10 }
11 }

Listing 4.4 Tiled loops example
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Loop flattening/coalescing

Nested loops can be coalesced into a single loop to improve performance by reducing
the overhead of nested loop control. However, in both HLS tools that we consider
this can only be done automatically for loops where there is no logic specified
between the loop statements, only the innermost has a body and all loop bounds are
constant except for the outermost loop bound, which can be variable. listing 4.5
shows the coalesced structure of nested loops in listing 4.3. In Vitis HLS the
#pragma HLS loop_flatten must be specified inside each coalesced loop, while
on the Intel platform, the loops can be coalesced using #pragma loop_coalesce
<loop_nesting_level> on the outermost loop.

1 void foo (...){ ...
2 for(k=0;k<N*M;k++){
3 i= k / M;
4 j= k % M;
5 a[i][j] = work(i, j);
6 }
7 }

Listing 4.5 Coalesced loops

4.4.2 Memory oriented optimizations

Off-chip DRAM is required to store most input and output data for the channel model
and to communicate with the host. However, DRAM accesses are much slower than
the on-chip SRAM accesses (SRAM is also called BRAM on FPGAs). Hence, to
compute the CIR with sufficient performance, the input parameters are read from
external DRAM to on-chip memory and then accessed repeatedly on-chip by the
unrolled pipelined loop bodies. The computation results are written back using the
same strategy.

To support the loop optimizations discussed above, the memory hierarchy and
off-chip memory interfaces must be optimized. These optimizations include array
partitioning, reshaping, banking, and resource allocation:

Data reuse Exploitable parallelism on FPGAs in most cases is limited by the num-
ber of off-chip memory ports. If there are multiple accesses to the same data, data
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reuse can be exploited by storing them in on-chip buffers, which have low latency
and thus reduce total access time [95].
Memory access separation If the innermost loop accesses slow external DRAM
frequently, it will have low performance due to off-chip latency and bandwidth limita-
tions, as mentioned above. By separating these memory transfers from computations,
they can be both optimized separately to achieve maximum throughput.
Buffering If memory is accessed deep inside the code, it may use the bandwidth
inefficiently and degrade the timing and energy performance. To reduce these penal-
ties, access to global memory can be made ahead of the actual kernel computation
usage. These accesses read memory in bursts into deep buffers using wider DRAM
interfaces than the actual model data type (double-precision floating-point) to fully
exploit the parallelism offered by the on-chip DRAM controllers. Performance can
also be improved by clocking such memories at higher frequencies (pumping) than
the PE.
Memory banking/striping Modern memory interfaces provide access through mul-
tiple banks with dedicated access channels, e.g., High-Bandwidth Memory (HBM)
lanes or Double Data Rate (DDR) channels. Hence, the access bandwidth of an
array can be increased by striping it across the different memory interfaces (banks)
available on the board. The same considerations apply to on-chip BRAM banks to
increase the on-chip memory bandwidth to match the requirements of the data com-
putations. In HLS, this kind of on-chip memory striping must be performed explicitly
by inserting modules to manage data from multiple interfaces. To split data across N
banks, on the Intel platform is used the __attribute__((numbanks(N)) directive
on the local memories. In the Xilinx Vitis platform, a memory can be either par-
titioned completely (into registers) or in a cyclic or block manner using #pragma HLS
array_partition variable=<name> type=<type> factor=<int> dim=<int>.
For off-chip DRAM, on the other hand, a single array must be broken by the designer
explicitly into multiple sub-arrays mapped to different HBM or DDR channels,
because currently there is no support for HLS automated or aided off-chip memory
striping.
Regular memory accesses. Irregular and unaligned access to memory subsystems,
in particular to DRAM, leads to severe performance penalties. Hence, memory
accesses must be kept carefully aligned, so that they can be combined (memory
coalesced) by packing the transactions into a single request and making efficient use
of the DDR and HBM bandwidths.
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In the next chapter, we demonstrate employing a combination of these optimiza-
tions to the 3GPP 3D channel model for 5G-NR. The experiment is performed for
Xilinx and Intel FPGA platforms, which results in a reduction in execution latency
and improved quality of results with respect to the initial CPU-oriented version of
the channel model.



Chapter 5

FPGA Acceleration of 3GPP 3D
Channel Model

Accurate 5G channel model simulations require very high computational effort and
incur long execution times on general-purpose processors. Hardware acceleration
of such functions is the way to speed up the execution, reducing the simulation
time. Hardware accelerators based on FPGAs improve the runtime performance and
system energy efficiency of computationally intensive accurate channel simulators
with respect to both CPUs and GPUs [96]. FPGAs can achieve better fine-grained
parallelism by customizing the computing engines and memory hierarchy. Civerchia
et al. [97] studied the optimization of OpenCL designs implementing OFDM
module in the 5G stack on FPGA platforms. Alimohammad et al. [98] proposed an
implementation on FPGA of infinite impulse response (IIR) models for Rayleigh
fading channels. Xiao et al. [99] studied the use of FPGAs in 5G combined with the
neural network optimizations.

Several GSCM emulators have been reported in the literature [100, 101], each
with one or more application-specific target scenarios. Hofer et al. [100] proposed
a parameterized GSCM emulator for FPGAs. It splits the channel into several
stationary regions with fixed Doppler frequencies, hence it is not suitable for fast time-
varying models like those used in vehicular mobility scenarios. Another emulator for
3D GSCM for fixed-to-mobile channels is presented in [101]. The channel emulator
presented in [102] consider a linearly changing Doppler frequency in the stationary
regions, but it has non-continuous output fading and hence suffers from accuracy
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loss. A ray-tracing-based channel emulator is proposed in [103] with support for
dual mobility. The proposed technique relies on pre-computed ray coefficients, hence
it introduces errors in the ray amplitudes. Authors in [104] proposed a technique
to accelerate the 3GPP channel model by reducing its computational complexity.
It considers a single sub-path, which lowers the accuracy, limiting its applicability
to real propagation environments. As discussed, most techniques proposed in the
literature have some limitations in terms of either accuracy or potential areas of
application.

This work started from the application requirements of the Innovation Department
of TIM, a major Italian telecommunication provider. Their goal is to exploit the
accuracy and generality of the 3GPP GSCM [2] to study the evolution of the radio
standard and to maximize the planning quality of mobile networks by means of fast
simulation tools, leveraging advanced methods and optimizations for acceleration on
FPGA platforms. The key contribution of this work are;

• The work originated from the application needs of TIM’s Innovation Department, a
leading Italian telecommunication provider.
Goal: Utilize the accuracy and generality of the 3GPP GSCM to study radio standard
evolution and enhance mobile network planning quality.
Approach: Use fast simulation tools and advanced methods optimized for FPGA
platforms.

• The channel model, initially designed for general-purpose CPUs, was adapted for:
– Xilinx FPGA acceleration platforms.
– Intel FPGA acceleration platforms.

• A combination of FPGA optimization techniques were applied.
• The author examined the effort needed to utilize various synthesis tools for these

platforms.
– Performance optimization relative to a channel model for general-purpose

CPUs.
– Analyze energy per computation reduction compared to CPU platform imple-

mentations.
• The proposed techniques enable the development of fast, efficient, and accurate

communication channel model on FPGA platforms.
• The thesis delves into:

– Using high-performance FPGAs to speed up the channel model in radio link
simulators through diverse multi-objective optimizations.
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– Enhance the code structure and memory architecture of the 5G-NR channel
model on FPGA platforms.

– Maximize parallelism and align memory access with computational capabilities
using HLS design environment capabilities.

– Performance analysis of different HLS tools following similar optimization
flows.

– Integration of the accelerated channel model into a MATLAB-based simulation
system using a socket-based client/server architecture.

– To facilitate shared use by multiple research groups through remote access to
accelerated channel simulator.

Part of the work described in this chapter has been already published in Nasir Ali
Shah, Mihai T Lazarescu, Roberto Quasso, Salvatore Scarpina, and Luciano Lavagno.
FPGA Acceleration of 3GPP Channel Model Emulator for 5G New Radio. IEEE
Access, 10:119386–119401, 2022.[105].

5.1 Channel Coefficients Calculation using FPGA

To generate the channel response, the equation for CIR calculation is split into two
parts; antenna field pattern and cluster information denoted by C, and user mobility
and antenna location information denoted by V for LOS and NLOS scenarios sepa-
rately. For NLOS scenario, the cluster information form (3.21) can be calculated as
follows.

CNLOS
u,s =√

Pn

M︸ ︷︷ ︸
Power

[
Frx,u,θ (θn,m,ZOA,φn,m,AOA)

Frx,u,φ (θn,m,ZOA,φn,m,AOA)

]T

︸ ︷︷ ︸
RX Antenna Pattern(FRx)

×

[
e jΦθθ

n,m
√

κn,m−1e jΦθφ
n,m√

κn,m−1e jΦφθ
n,m e jΦφφ

n,m

]
︸ ︷︷ ︸

XPR

×

[
Ftx,s,θ (θn,m,ZOD,φn,m,AOD)

Ftx,s,φ (θn,m,ZOD,φn,m,AOD)

]
︸ ︷︷ ︸

TX Antenna Pattern(FTx)

(5.1)
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For location and mobility information in NLOS scenarios, VNLOS
n,m can be termed

as

VNLOS
n,m = e

j2π
r̂T
rx,n,m.d̄rx,u

λ0 × e
j2π

r̂T
tx,n,m.d̄tx,s

λ0 (5.2)

The array response of the transmitting antenna is e j2π r̂T
tx,n,m.d̄tx,s and for the re-

ceiving antenna is denoted by e j2π.d̄rx,u , where r̂tx,n,m and r̂rx,n,m represents the wave
vectors while d̄rx,u and d̄tx,s represents the respective location vector. When consid-
ering user mobility, it is important to note that every ray experiences a phase shift,
denoted as v̄, as a result of the Doppler effect.

Similarly, the same procedure can be performed for LOS scenario as in (3.27).
The cluster information vector CLOS

u,s can be defined as

CLOS
u,s =

[
Frx,u,θ

(
θLOS,ZOA,ϕLOS,AOA

)
Frx,u,ϕ

(
θLOS,ZOA,ϕLOS,AOA

)]T

︸ ︷︷ ︸
RX Antenna Pattern(FRx)

×

[
1 0
0 −1

]
︸ ︷︷ ︸

XPR

×

[
Ftx,s,θ

(
θLOS,ZOD,ϕLOS,AOD

)
Ftx,s,ϕ

(
θLOS,ZOD,ϕLOS,AOD

)]︸ ︷︷ ︸
TX Antenna Pattern(FTx)

(5.3)

Location and mobility information vector VNLOS
n,m in LOS scenarios, can be termed

as

VLOS = e
− j2π

d3D
λ0 × e

j2π
r̂T
rx,LOS.d̄rx,u

λ0 × e
j2π

r̂T
tx,LOS.d̄tx,s

λ0 (5.4)

The pseudocode for channel coefficient calculation is described in algorithm 1

The overall channel response can be expressed as the sum of the LOS channel
coefficient and the NLOS coefficients as

Hu,s(t) = Hu,s,1(t)+
N

∑
n=1

M

∑
m=1

Hu,s,n,m(t) (5.5)

In wireless communication, the signal x(t) that is transmitted experiences a time
delay of x(t − τ) upon arrival at the receiver. The signal that is received is composed
of numerous reflections, which lead to the creation of nearly identical replicas of the
signal that was initially transmitted. The wireless channel impact can be computed
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Algorithm 1 Implementation of the channel impulse response generation in 3GPP
channel model
Inputs: Fu,s, r̂n,m, κn,m, v̄, t
Output: Hu,s(t)

1: for u = 0 to U do
2: for s = 0 to S do
3: calculate for CNLOS

u,s as in (5.1)
4: if LOS then
5: calculate for CLOS

u,s as in (5.3)
6: end if
7: end for
8: end for
9: for n = 0 to N do

10: for m = 0 to M do
11: calculate for VNLOS

n,m as in (5.2)
12: if LOS then
13: calculate for VLOS as in (5.4)
14: end if
15: end for
16: end for
17: for u = 0 to U do
18: for s = 0 to S do
19: for n = 0 to N do
20: for m = 0 to M do
21: Hu,s(t) = CNLOS

u,s ×VNLOS
n,m × e j2π v̄ × t

22: end for
23: if LOS then
24: Hu,s(t) = Hu,s(t)+CLOS

u,s ×VLOS × e j2π v̄ × t
25: end if
26: end for
27: end for
28: end for
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by the convolution of the channel response Hu,s with the input signal x(t) as

y(t) = ∑x(t − τ)Hu,s(t,τ) = (x⊛H)(t) (5.6)

where ⊛ denotes convolution operation. The complexity of this operation is
heightened due to the fact that during performance evaluation, the input signal x(t)
is typically comprised of lengthy vectors. A large size ring buffer is required to store
delayed inputs x(t − τ). Algorithm 2 shows the pseudocode for the application of
channel response to the input signal

Algorithm 2 Application of the channel coefficients

Inputs: x(t), Hu,s(t), Hu,s(t − τ) , Ns
Output: y(t)

1: for u = 0 to U do
2: for s = 0 to S do
3: for n = 0 to N do
4: ∆H(t) =

Hu,s(t)−Hu,s(t − τ)

Ns
5: end for
6: for i = 0 to Ns do
7: Ri = x(i∗S+u) {load in cyclic buffer}
8: for n = 0 to N do
9: if fistSubFrame then

10: tapV = Hu,s(t) {current FIR tap}
11: else
12: tapV = Hu,s(t)+∆H(t)
13: end if
14: Acc(t) = Acc(t − τ)+Ri ∗ tapV {convolution as in (5.6)}
15: end for
16: y(t) = y(t − τ)+Acc(t)
17: end for
18: end for
19: end for

5.1.1 FPGA Implementation

When targeting FPGAs using HLS tools, the baseline implementation is often a
version of the code that has been developed for CPUs using C/C++. In our case,
the channel model was developed in C++ and executed in the MEX co-simulation
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environment, with the remaining of the 5G stack being executed inside MATLAB.
The design is then ported to the Xilinx Vitis development and Intel FPGA SDK for
OpenCL environments.

The design environments and tools used for this study are listed below.

Baseline CPU Platform Uses an Intel Xeon E5-2660 v4 @2.00GHz running MAT-
LAB R2021a [106]. The setup consists of a co-simulation environment where the
channel model is implemented in C++ and executed in MEX [107], while the rest of
the application is being executed in MATLAB.
FPGA Platform 1 Uses the Xilinx Alveo U280 data center accelerator card from
Xilinx UltraScale+ family [108] and consists of three chiplets, also called super
logic regions (SLRs), in a single package. This platform contains 30 MB of on-
chip UltraRAM (URAM), 4.5 MB of on-chip BRAM, 8 GB of HBM and 32 GB of
DDR memory. For fairness of comparison with the other single chiplet platforms,
all reported results use only one SLR out of three. Xilinx Vitis Unified Software
Platform version 2020.1 is used for the development of the host and kernel code.
This platform is referred to as US+ hereafter.
FPGA Platform 2 Uses the Intel PAC Arria 10GX 1150 [109]. This platform
contains 8.2 MB on-chip embedded memory and 8 GB of DDR memory. Intel FPGA
SDK for OpenCL version 19.4 is used alongside Intel Quartus Prime Pro 19.2 for
the development of the host and kernel code [109, 92]. This platform is referred to
as Arria hereafter.

The FPGA Platform 1 is based on 16 nm technology node, whereas the FPGA
Platform 2 is implemented in 20 nm. Table 5.1 lists the main resources available
on these platforms. The final accelerated channel emulator is deployed on these
platforms to be used inside the 5G simulation stack.

5.1.2 Roofline model

The Roofline model is a visual performance model used to provide insight into
the performance bottlenecks of an application [110]. It is particularly useful for
understanding the balance between computation and data movement. When applied
to FPGAs, the Roofline model can help in optimizing FPGA designs by identifying
performance ceilings and guiding optimization efforts.
To evaluate the performance of the two FPGA platforms, the FPGA Empirical
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Table 5.1 FPGA acceleration platforms specification

US+ Arria

Resource type Total Per SLR Total

FF 2607000 869120 1708800
LUTs/ALM 1303680 434560 427200
DSP 9024 3008 1518
MLAB (KB) — — 1587
BRAM (blocks) 4032 1344 2713
BRAM (KB) 18144 6048 6783
UltraRAM (blocks) 960 320 —
UltraRAM (KB) 34560 11520 —

Roofline(FER) benchmarking approach [111] is employed. This approach is derived
from the Empirical Roofline Toolkit (ERT) but tailored specifically for FPGA devices
[112]. The benchmarking is conducted using HLS tools for FPGA-based accelerators.
The purpose of this evaluation is to determine the hardware characteristics of the
platforms, enabling the analysis of their architectures using the Roofline method-
ology. The implementation is based on the Roofline Model and utilizes directive
annotated HLS kernels with configurable operational intensity and hardware resource
utilization.
Computing architectures are typically defined by a machine balance, denoted as
Mb =

C
B , which represents the ratio of peak compute performance (C) to peak mem-

ory bandwidth (B). C refers to the maximum theoretical FLOP/s (floating-point
(FP) operations per second), while B represents the maximum theoretical memory
bandwidth Byte/s (bytes per second). One of the challenges encountered in the
Roofline Model is the fact that FPGA peak performance strongly relies on the spe-
cific operations being allocated to the FPGA’s available hardware resources. The
number of implementable compute cores and the maximum clock frequency are
impacted, which in turn affects the theoretical peak performance.
In the context of FPGA platforms, the available resources are commonly divided
into two distinct logical components. These components are referred to as the static
region, responsible for the implementation of hardware related to bitstream loading
and PCIe communication, and the dynamic region, responsible for the implementa-
tion of user designs. This results in a decrease in the total amount of resources that
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are accessible for the purpose of implementing the user’s design. An FP operation
on FPGA can be implemented using different type of resources, such as LUTs or
DSPs. The peak achievable compute performance can be limited by either of these
resources. To ensure a successful place and route, the resource usage should be
limited by a factor µ < 1. For an FPGA with total number of available resources Rt ,
of which Rc are the available for user to implement a FP core with clock frequency
fc, the peak compute performance C of the target FPGA is

C = fc ×min
(

Rr
t

Rr
c
×µRr

)
(5.7)

where r is the resource type available on the target FPGA platform.
Similarly, FPGA platforms offer various types of memories such as DDR, HBM and
BRAM. The peak bandwidth B for each of such resource with a bit-width Wr can be
computed as [111]:

Br = fmax ×W r ×Rr
t ×µRr (5.8)

Where fmax is the maximum frequency achieved for the target resource.

5.1.3 ALVEO U280

To improve the timing of the user kernel and ensure place and route, the design was
limited to use only one of the three SLRs. SLR0 has a comparable compute and
memory resources to that available on the other target FPGA platform, Intel Arria
1150GX. U280_gen3x16_xdma_202211 platform is used for tests, which leaves
360×103 LUTs, 490 BRAMs, 320 URAMs and 2733 DSPs in the dynamic region
for user. From the benchmarking of various kernel types on this platform, it is
observed that for FP multiplication, 8 DSPs and 167 LUTs for double-precision
and 3 DSPs and 104 LUTs for single-precision (SP). Similarly, for FP addition, it
utilizes 3 DSPs and 684 LUTs for double-precision and 2 DSPs and 241 LUTs for
single-precision. To compute the peak FP performance at fc = 300MHz for a single



5.1 Channel Coefficients Calculation using FPGA 71

SLR, we can use (5.7) as:

C = 300 MHz×min
(

360.103

164+684
×0.7,

2733
3+8

×0.8
)

= 59×109 FMA/s

= 119 GFLOP/s

(5.9)

For single-precision floating-point, by using the values achieved through benchmark-
ing to compute C as;

C = 300 MHz×min
(

360.103

104+241
×0.7,

2733
2+3

×0.8
)

= 262 GFLOP/s
(5.10)

In order to measure the peak memory bandwidth while targeting only one SLR, we
consider 12 out of total of 32 HBM pseudo-channels. The theoretical maximum
bandwidth can be computed using (5.8) as:

BHBM = 2×0.9GHz×64 bit×12

= 172.8 GB/s
(5.11)

Finally, by means of the values calculated above, computing machine balance
Mb =

262 GFLOP/s
172.8 GB/s = 0.69 making it suitable for memory-bound applications with

low arithmetic intensity.
The Alveo U280 has two DDR modules of 16GB each making a total of 32GB
clocked at 1.2 GHz. Each of these modules has 4 independent 32-bit memory
controllers. By using these values, the peak DDR bandwidth can be calculated as;

BDDR = 2× fmax ×WDDR ×CHDDR

= 2×1.2GHz×64bit ×4

= 614.4Gbit/s

= 76.8GB/s

(5.12)

where fmax is the frequency of DDR modules, WDDR is the bit-width, and CHDDR is
the number of channels multiplied by 2 since the banks are Double Data Rate. This
results in the machine balance Mb =

262GFLOP/s
76.8GB/s = 3.41
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5.1.4 Intel Arria10 1150GX

This acceleration platform offers various types or resources as reported in Table 5.1.
When using the OpenCL based platform for Arria10, the number of resources
available for user logic are reduced to 2927×103 LUTs, and 2316 BRAMs. From
the benchmarking of various kernels on this platform, it is observed that a double-
precision FP multiplication requires 4 DSPs and 2238 LUTs while an addition
operation is implemented using 1999 LUTs. Thus, by using (5.7), the peak compute
performance is

C = 240MHz×min
(

2927×103

1999+2238
∗0.7,

1518
4

∗0.8
)

= 72.86×109FMA/s

= 145 GFLOP/s

(5.13)

To generate a roofline model for this platform for single-precision, values are col-
lected through platform benchmarking. Thus, compute performance can be calcu-
lated as;

C = 240MHz× 1518
1+1

∗0.8

= 145.73×109FMA/s

= 291 GFLOP/s

(5.14)

The second quantity in calculation of machine balance Mb is the peak bandwidth
B. Arria10 1150GX FPGA has 2 DDR channels running at 1.2 GHz. Thus, the
maximum bandwidth is:

BDDR = 2×1.2GHz×64bit×2

= 307.2 Gbit/s

= 38.4 GB/s

(5.15)

For on-chip M20K memory resource, the peak bandwidth is reported as BM20K =

448GFLOP/s. By using the values of peak compute and memory performance, we
can build the roofline models. The X-axis represents arithmetic intensity (AI) in
(FLOP/byte) while the Y-axis shows compute performance (GFLOP/s). The slope
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Fig. 5.1 Roofline model for Alveo U280 and Arria 10 FPGAs

lines show memory throughput for various types of resources, where the solid lines
represent off-chip memory and dashed lines are used for on-chip bandwidth.

5.1.5 Optimizations for efficient FPGA implementation

The accelerated function (kernel) can be either defined in OpenCL or in C/C++.
These kernel modeling styles differ mainly in the way of defining the kernel input
parameters and optimization pragmas. OpenCL defines the interfaces to the external
DRAM automatically, based on the __global memory attribute, whereas in case of
C/C++ these are configured via pragmas. Another difference is how optimizations,
such as memory partitioning, loop pipelining, and unrolling are specified, and the
location where these pragmas should be placed. Finally, OpenCL could in principle
allow explicit modeling of data parallelism via WGs and WIs. However, in this
project, this opportunity is not exploited because the goal was to exercise finer
control over the loop pipelining and unrolling, which is possible only with a single-
WI modeling style.

The channel model is implemented as two kernels, where the first part computes
the channel coefficients according to Algorithm 1 while the latter applies the coef-



74 FPGA Acceleration of 3GPP 3D Channel Model

DDR/HBM FPGA LOGIC

Doppler Shift

Rx Location
Matrix

Tx Location
Matrix

X

RX Radiation
Pattern

TX Radiation
Pattern

Cross-
Polarization

Power

X

Speed Component
Computation

Cluster Info
Computation

O
n-

ch
ip

C
ac

he
O

n-
ch

ip
C

ac
he

X +

FPGA 

PC

PCIe

Fig. 5.2 Channel coefficient computation

ficients to each channel sample period. Figure 5.2 To reduce the global memory
traffic, the input data is buffed into on-chip local cache ahead of computations. Coef-
ficient recalculation is performed for each time slot. Figure 5.3 applies the channel
coefficients to each input stream through a set of FIRs.

Figure 5.4 describes the overall socket-based acceleration architecture used
for validation and evaluation in this research. The use of sockets to connect the
MATLAB client to the acceleration servers enable to serve multiple remote clients,
avoiding having a physical card mounted into the actual physical machine running
the instances of MATLAB.

The baseline implementation of the channel model is co-simulated with MAT-
LAB using MEX and used for validation. To accelerate the channel functions using
an FPGA which supports complex simulations with higher numbers of antenna
elements and more UE speeds, the design is split into two major parts: host and
kernel code. The host code performs tasks related to control and data movement
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Fig. 5.3 Coefficient application to channel samples

Fig. 5.4 Emulation system setup
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such as allocating space on the device memory, receiving data via the socket from a
client, launching the kernel and copying results back to the client via another socket.
The design is ported to the respective development environments for target FPGA. A
new validation step is used to check that the splitting between client code, server host
code and server kernel code was performed correctly. This out-of-the-box (OOB)
implementation is very inefficient since all the data resides in global DRAM and
hence limits the scope of automatic or manual optimizations.

The optimizations adopted in this work are described more in detail in Chapter 4
and can be grouped in the following categories:

Generic HLS optimization These optimizations are generic for any HLS flow and
can be adopted on any of the target platforms. These optimizations are further divided
into two categories here, highlighting their impact on performance and resource
utilization, respectively.

1. On-chip buffers: Access to global memory, i.e., off-chip DRAM, is costly
in terms of both time and energy. To overcome the memory bottleneck, the
data used by the kernel must be copied into low latency on-chip SRAM buffers
at the beginning of the kernel execution, and back to DRAM at the end. This
brings dual benefits, firstly by issuing wider DRAM access requests than the
single words used in the model computation, thus utilizing its full bandwidth,
and secondly by reducing the number of such requests by exploiting data reuse.
Loop-based optimizations are then applied to make efficient use of on-chip
resources. These optimizations include pipelining, unrolling, tiling, and loop
coalescing.

2. Multi-port: Parallel access to on-chip buffers by unrolled loop bodies is still
limited by the number of available ports. To prevent stalling of the computa-
tions, these buffers should be partitioned to allow multiple accesses through
an adequate number of ports. For example, the FIR coefficients are the result
of intermediate computations. These partial results are kept in SRAM buffers
with low latency, thus enabling to compute coefficients for all clusters in SIMD
fashion, hence reducing the total latency.

Application-specific optimizations (ASO) These types of optimizations are spe-
cific to the channel model application and may require modifications of the original
CPU oriented algorithm to achieve the best performance. For example, off-chip mem-
ory accesses are not aligned initially and hence result in poor bandwidth utilization
because of memory stalls. Another optimization is exploiting the algorithm structure
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to reduce the number of arithmetic operations. In our case, the iterative computation
of an arithmetic sequence is replaced with its closed form, which required only
multiplication by a constant, and thus reduced both floating point operations and
on-chip memory accesses. This also removed false inter-iteration dependencies and
enabled unrolling to parallelize computations.

1. Regular access pattern: To improve performance using the optimization
mechanisms provided by HLS tools such as loop pipelining, unrolling and loop-
flattening, it is essential to enable the tools to understand the access pattern
of the underlying design. Random or irregular memory access can result in
poor bandwidth utilization, limiting the achievable speedup. In Algorithm 1,
line 11 performs memory access to random memory locations depending on
the position of cluster scatterers, which is determined at runtime. This is a
bottleneck to the achievable parallelism. To solve this, memory accesses are
separated into different banks for each cluster.

2. Closed-form computation: To reduce the number of arithmetic operations,
and hence the memory accesses, the algorithm structure can be exploited. In
our case, the iterative computation of an arithmetic sequence was replaced with
its closed form, which requires only multiplication by a constant, thus reducing
both the floating point operations and the on-chip memory accesses.

3. False dependence removal: Memory dependencies occur when a single
memory location is both read and written, or written multiple times, within a
section of code (typically a loop body). While the true dependencies must be
preserved to hold the correctness of computations, false dependencies are the
result of conservative estimations performed by an HLS tool when it cannot
exactly analyze access sequences. These dependencies can never occur during
actual execution of the code and can be resolved after a careful manual analysis
of the access patterns in the code. False dependence removal pragmas for HLS
tools are used to identify such dependencies and improve the effectiveness of
loop transformations.

Platform-specific optimizations (PSO) Some FPGA platforms may offer some
extra resources, such as off-chip HBM and on-chip URAM on the Xilinx Alveo
U280, which can be used to further increase the maximum achievable performance.
HBM can be used by specifying a separate interface for each global memory array,
and can help to reduce memory contention and bank conflicts. URAM is a special
kind of memory that is wider and deeper than the BRAM and can be used to store
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Table 5.2 Summary of channel model emulator parameters

Number of polarization POL = 2
Number of elements on H-Planes (Number of Columns) N = 4
Number of elements on V-Planes (Number of Rows) M = 4
Cluster delay line type CDL B
Model for correlation Low
Model for delay spread Very short
Link type Downlink
Number of subcarrier in Frequency dimension 2048
Carrier frequency 3600 MHz
Sampling frequency 122.88 Hz
Number of TX antennas NTX = 32
Number of RX antennas NRX = 2
Oversampling factor 4
Number of clusters 23
Number of rays 20
User speed 120 kmh−1

Number of symbols per link 122880
Transmission time interval 0.25 ms

large data structures. Since in OpenCL currently, it is not possible to control these
features, the author port the kernel to C++, which allows for more control over these
optimizations, while losing some portability between different FPGA vendors that
is afforded by OpenCL. This version of the kernel achieves a much more balanced
resource utilization and hence would allow the creation of multiple instances of the
kernel on the target FPGA, to simulate multiple channel models concurrently and
independently.

5.2 Results and Analysis

The performance analysis of the accelerators before and after optimizations for the
two target platforms is performed in this study. The reference parameter values from
the 3GPP specification [2] are used for this phase. Table 5.2 lists some of these pa-
rameters and the chosen propagation condition for the channel emulator. To measure
the efficiency of the accelerated designs, performance metrics based on resource
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utilization, latency, and energy consumption are used. The OOB implementation
of the channel model on the FPGA platforms is purely a synthesizable version of
the original code targeted for CPU execution. Although it is functionally correct, it
is very inefficient in terms of computation and memory access. Data reside in the
global DRAM and even though the data access is mostly sequential, none of the HLS
tools was able to optimize the performance of the memory accesses and exploit the
abundant opportunities for data reuse. To reduce frequent accesses to global memory,
the data are copied to on-chip buffers before starting the computation core of the
kernel and copied back to the global memory at the end of the execution. To achieve
computation parallelism, the data should be accessible in parallel. This is limited by
the number of access ports available on the requested memory. Memory partitioning
allows multiple accesses in parallel at the cost of increased resource utilization. The
final implementation combines all these optimizations with algorithm modifications
to improve the regularity of the memory accesses and thus simplify the addressing
logic.

5.2.1 Latency

Since the primary task of this research is the acceleration of the channel model, the
main focus is the reduction of the overall latency of the kernel execution. Table 6.3
lists the latency of the kernel on the baseline CPU and on the various acceleration
platforms, using a single SLR for the US+. For comparative analysis, this study
reports the speedups achieved after the application of each optimization. In the
baseline implementation, the CPU cache provides very good DRAM access band-
width without any programming effort, but the maximum achievable performance
is limited by the number of available computational resources. Hence, the OOB
implementation on the two FPGA platforms have lower performance than on the
CPU, mainly because of time-consuming memory access requests, since all the
data reside in off-chip DRAM. This cost is significantly reduced by copying the
data into on-chip buffers before the channel model computation starts. Parallel
access to these buffers is still limited by the availability of access ports and hence
prevents many HLS optimizations, such as pipelining and unrolling. To overcome
this, partitioning on-chip memory, which effectively means using several banks,
is used to increase the number of access ports on these buffers and thus enable
the HLS tools to schedule more access requests in parallel. Memory bandwidth
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Table 5.3 Kernel latency and speed up achieved compared to OOB and CPU implementation,
with ASO, PSO, HBM, and URAM

Platform Optimization Latency Speedup Speedup Frequency
(s) OOB (X) CPU (X) (MHz)

CPU Baseline 5.010 32.00 1.00 2000

US+

OOB 160.400 1.00 0.03 285
On-chip buffers 4.110 39.00 1.02 145
Multi-port 23.860 7.00 0.21 145
ASO 0.080 2083.00 65.00 210
PSO(HBM) 0.033 4860.00 151.00 250
PSO(HBM+URAM) 0.027 5531.00 173.00 275

OOB 655.000 1.00 0.01 185
On-chip buffers 28.000 23.00 0.18 119
Multi-port 6.390 103.00 0.78 111Arria
ASO 0.053 12359.00 95.00 192

utilization, however, is still poor due to the unaligned access patterns, which require
a significant amount of multiplexing. ASO are applied to overcome the limiting
factors of application, yielding overall 95X and 65X speedups on the US+ and Arria
platforms respectively compared to the baseline CPU implementation. The regular
access pattern enables burst access of on-chip data and hence reduces the overall
number of memory access transactions. Closed form computation replaces two read
and one write access with integer multiplications and reduces the memory access by
15 %. The last optimization of ASO is highlighting the false memory dependence to
the HLS compiler by separating the access targets, which helps achieve II of 1 in the
critical loops and hence reduce the overall latency to half.

At this stage, the maximum achievable performance is limited by the number
of available FPGA on-chip resources. In addition, the Xilinx US+ platform offers
high capacity URAMs and HBM with a number of interfaces that are exploited next,
through PSO. To increase the number of global memory access ports, separate HBM
interfaces are used to reduce bus and memory controller contention on interfaces and
improve bandwidth utilization. The complex input and output data structures of the
channel model were split into real and imaginary parts and were assigned each to a
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separate HBM channel. A total of 12 HBM channels was used to avoid the interface
stalling and to fully pipeline the loops in the implementation. This leads to a speedup
of 151X. Performance is further improved by using URAM resources for some data
structures, to better balance the resource utilization of the design and yield an overall
173X speedup compared to the baseline CPU based implementation.

Fig. 5.5 Average execution latency (log scale)

Figure 5.5 shows the latency of the design after various optimizations. As this
study follows a step-by-step procedure, the new optimizations are added on top of
the ones applied in earlier steps.

To compare the achieved performance with the peak performance of the target
platform, we analyzed the channel model performance through benchmarking of the
hardware execution. For the channel parameters in Table 5.2, the total number of
floating-point operations is 2.53 GFLOP and the total data transfer is 1.26 GB. We
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can compute the Arithmetic Intensity(AI) as;

AI (FLOP/byte) =
Total FLOPS (GFLOP)

Total Data (GB)

AI(US+) =

2.53 (GFLOP)
0.027 (s)

1.26 (GB)
= 2.01

Performance (US+) =
FLOPs

Execution time

=
2.53

0.027
= 93.8 GFLOP/s

Performance (Arria) =
2.53

0.053
= 46.9 GFLOP/s

(5.16)

Roofline model can be used to analyze the achieved performance and determine how
efficiently the underlying resources are being utilized.

Fig. 5.6 Roofline performance on the target platforms

Figure 5.7 reports execution time for various antenna configurations in downlink
and uplink communication scenarios
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Fig. 5.7 Latency for Uplink and Downlink MIMO configuration

5.2.2 Resource utilization

Optimization pragmas affect the resources used by the accelerated function. Since in
the OOB implementation, all data reside in off-chip DRAM, resource utilization is
very low for the US+ platform. The HLS tool for the Arria platform on the other hand
tries to optimize automatically the memory accesses, but fails due to the unaligned
access patterns and inter-iteration dependencies. Table 5.4 lists the resource usage
for the various designs. The total available on-chip resources are listed in Table 5.1.
To make the implemented designs comparable on FPGA, the available resources on
US+ platform were limited to be allocated on SLR0 only, which has comparable
resources to that on Arria platform.
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The next step in the optimization flow, making the on-chip buffers multi-port
creates an architecture that is best suited for both HLS tools. This also increases the
resource utilization, but it does not yet achieve the best implementation performance
due to the unaligned memory accesses and inter-iteration dependencies, which are
tackled only by ASO. Resource usage for Intel is reported in Figure 5.8.

Fig. 5.8 Resource utilization on Arria platform

HBM and URAM resources on US+ platform are then used by platform-specific
optimization, to balance the resource utilization and increase even further the achiev-
able performance. Figure 5.9
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Fig. 5.9 Single SLR resource utilization on US+

shows the percentage utilization of resources on US+. Since all designs tile the
on-chip buffering of the DRAM arrays to support large problem sizes, resource usage
is not affected by increases in the number of total channel coefficients, which affects
only the total latency.

5.2.3 Power and energy

Improving energy efficiency is one of the key advantages of offloading an application
function to specialized hardware. General-purpose processors focus on flexibility
and hence are not optimized for maximum efficiency for each application. Offloading
functions to FPGA hardware accelerators can enhance energy efficiency not only
by reducing the execution time but also by using only the required hardware to
execute the task. Table 5.5 reports the energy consumption of the design at various
optimization levels. The CPU implementation has the highest energy consumption
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Table 5.5 Power and energy utilization of baseline and accelerated designs

Platform Optimization Power (W) Energy

Dynamic Static Total (J)

CPU 105.00 526.05

OOB 10.76 3.44 14.20 2277.68
On-chip buffers 16.35 3.59 19.94 81.95
Multi-port 21.20 3.73 24.93 594.83
ASO 36.54 4.20 40.74 3.14

US+

PSO(HBM) 24.62 3.82 28.44 0.94
PSO(URAM) 23.47 3.78 27.25 0.79

OOB 7.31 5.33 24.28 15903.40
On-chip buffers 4.13 4.19 19.91 557.20
Multi-port 4.14 4.16 19.94 127.42Arria

ASO 18.30 11.17 41.11 2.18

due its higher thermal design profile (TDP). The energy consumption is highest
for OOB designs because of their higher latency and power-expensive accesses
to memory, since all the data reside in DRAM. The optimizations applied help
reducing the total latency and making efficient use of the available resources, which
also reduce energy consumption. Figure 5.10 shows the energy consumption of
implemented design at different optimization stages.
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Fig. 5.10 Energy utilization on target platforms (log scale)

For US+ platforms, the energy is reported in fig. 5.11 for a combination of trans-
mitting and receiving antenna elements in both uplink and downlink communication
scenarios.
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Fig. 5.11 Energy utilization on for various MIMO downlink and uplink configuration on US+
platform

FPGA platforms consume much less power than CPUs with respect to their
computational capabilities. Moreover, optimizations for resources also save power
and those for latency also reduce energy consumption.

5.3 Conclusion

The simulation of the 3GPP three-dimensional spatial channel model (3D-SCM)
channel model can be significantly accelerated using FPGA platforms from different
vendors (reported for Xilinx and Intel in this study) by applying a range of optimiza-
tion techniques. The achievable speedup is limited by the memory, as the bandwidth
limit is reached before the computing resource limit. A nominally portable OpenCL
implementation allows designing for FPGAs using HLS tools. However, straight-
forward porting of the original C++ code targeted for a CPU to OpenCL does not
reach good out-of-the-box results. A comprehensive set of memory and loop-based
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optimization techniques are needed to tackle this challenge and can improve the
performance by many orders of magnitude. While the initial implementation was
much slower than CPU execution, with optimizations its execution is two orders of
magnitude faster.

Using the accelerated channel model, a higher number of parameters can be
simulated compared to the model running in MATLAB environment or C++ code on
a CPU in a comparable amount of time. Hence, the accelerated model supports the
simulation of a wider speed range for UE, and more antenna elements can be consid-
ered. To the best of our knowledge, this work is the first implementation of 3GPP
3D-SCM on both Xilinx and Intel FPGA platforms, with a detailed comparison of
the achievable results on both. An impressive 95X and 65X speedup was achieved on
the US+ and Arria platforms compared to the baseline CPU implementation through
a combination of generic optimizations alongside application-specific optimizations.
The performance on the Xilinx US+ platform improved even further, to 173X, by
exploiting the on-chip URAMs and HBM. Since the data types were kept the same as
those in the baseline CPU implementation, i.e. double precision floating point, there
was no change in accuracy for the FPGA implementations. This was particularly
challenging because the FPGAs considered in this study, despite being both aimed at
data center applications lack optimized support for double-precision floating-point
adders or multipliers.



Chapter 6

GPU Acceleration of 3GPP 3D
Channel Model

The radio link simulation must closely take into account propagation in real-world
environments in order to predict and optimize network coverage and minimize
post-deployment on-field measurements. Channel simulators are a highly effective
means of conducting performance evaluations on the various components of a wire-
less communication system. The assessment of compatibility with communication
standards is crucial in the testing of novel communication algorithms. These as-
sessments involve the analysis of the system’s performance in the presence of a
wireless communication channel. Simulation of massive MIMO channel models
is becoming increasingly important for testing and validation of 5G-NR wireless
networks and beyond. However, simulation performance tends to be limited when
modeling a large number of antenna elements combined with a complex and realistic
representation of propagation conditions. Existing channel model simulators are
either too simple to accurately replicate the propagation environment or too com-
putationally expensive to produce meaningful results in a a reasonable amount of
time. In addition, most existing simulators are designed for CPU platforms, which
have limited parallelism and throughput. Therefore, there is a need for efficient and
accurate channel model simulators that can run on parallel platforms such as GPUs,
which offer high performance and scalability.
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6.1 Related Work

Several hardware-based channel accelerators have been reported in the literature.
The authors in [113] introduced a simulation platform that employs GPUs for signal-
processing tasks. The platform was subsequently assessed in terms of its runtime
performance. The platform incorporates CPU-based simulation logic and GPU-
based processing to handle computationally demanding tasks, which aligns with
heterogeneous computing methodologies. However, the authors solely take into
account events in a single node.

A GPU based wireless channel emulator is proposed in [114]. The authors
present a hybrid approach to speed up the channel calculation. However, the authors
consider only one delay model (CDL-A) and also only LOS clusters. This limits
the applicability of the proposed method since it cannot model the wireless channel
accurately for network planning tools.

In FPGA implementation of a 3GPP 3D channel model, a variety of HLS-based
optimizations are discussed that are required to achieve acceleration [105]. Recently,
[104] proposed an analytical methodology to reduce the complexity of the 3GPP
channel model for 5G-NR by reducing the number of sub-paths, thus reducing the
computational cost, but it analyzes only a subset of wireless channel propagation
characteristics, limiting its application. A GPU-based multipath fading accelerator
has been proposed [115], as well as another wireless channel emulator [116]. It lacks
complex-valued channel coefficient emulation, which reduces accuracy.

This chapter discusses a GPU-based hardware acceleration for 5G-NR channel
model, and show that the proposed GPU accelerator can significantly improve the
simulation speed and accuracy over a CPU-based C++ model, and also has higher
single precision performance than an FPGA-based accelerator proposed in chapter 5.
The main contributions of the chapter are:

• Proposing a GPU-based hardware acceleration for the 3GPP 3D channel model,
which is a highly parameterized and realistic channel model for 5G-NR networks;

• Application of various CUDA-based optimization techniques to efficiently utilize
GPU resources and increase the overall performance of the channel model simulator;

• Evaluation of the performance and accuracy of the GPU accelerator using benchmark
parameters and comparison with both a CPU-based C++ model and a previous design
on an FPGA based on the same 16 nm technology node as the GPU;
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• Showing that the GPU accelerator can achieve an overall speedup of about 240×
compared to the CPU model and 33.3 % higher single precision performance than a
comparable FPGA design, while maintaining high accuracy and flexibility.

Part of the work described in this chapter has been already published as Nasir Ali
Shah, Mihai T Lazarescu, Roberto Quasso, and Luciano Lavagno. Cuda-optimized
gpu acceleration of 3gpp 3d channel model simulations for 5g network planning.
Electronics, 12(15):3214, 2023. [117].

6.2 GPU Based Hardware Acceleration

GPUs are a type of SIMD architecture where the same instruction is executed re-
peatedly on different data in parallel. While CPUs excel in sequential execution
performance by executing single operations as a thread as quickly as possible,GPUs
are specifically designed to run thousands of threads in parallel for higher throughput
and use multi-threading to hide memory latency. Efficient management of GPU
resources can be achieved through high-level programming languages based on
the underlying computing architectures, resulting in improved performance. Pop-
ular parallel computing architectures in the industry include the Open Computing
Language (OpenCL) [80], Open Multi-Processing (OpenMP), and CUDA [118],
a parallel programming language for managing computations on NVIDIA GPUs.
Several code optimization techniques, both generic to GPU code and specific to
CUDA, are required to efficiently utilize the on-chip resources and increase the
overall performance. CUDA-based acceleration code consists of two components:
the host code, which runs on the general-purpose CPU and is responsible for memory
and device management and a collection of functions called the kernel code, which
runs on the GPU accelerator device.Threads in CUDA are the unit of computation
and are modeled as functions in the kernel code. They are totally concurrent unless
synchronized by the hardware or by the designer.

In order to efficiently map threads to the architecture of the GPU, they are
arranged in 3D clusters called blocks. These clusters are then combined into a
3D grid. The CUDA programming model groups a set of 32 threads into a single
entity known as a warp. Concurrent threads (1) within a warp are automatically
synchronized in lockstep by the hardware, while (2) threads within a block can be
synchronized via barriers by the designer, e.g., to enable all threads to complete data
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transfers before starting a computation on those data, and (3) thread blocks cannot
be synchronized with each other at all.

When a designer has to port an application that was originally written for a CPU
to a GPU, the code must be completely restructured, to explicitly expose parallel
computations and optimize memory accesses, as the implicit optimizations provided
by compilers are usually insufficient. GPU architecture for acceleration and CUDA
programming model prospective of GPU are shown in Figure 6.1.

CPUMain
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GPU Memory

Initialize GPU

Parallel
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Block
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Thread
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Fig. 6.1 GPU architecture and CUDA programming model

The main characteristics of the GPU programming languages, and of CUDA in
particular, are discussed below:

1. allocating arrays to explicit levels in the memory hierarchy.
2. explicitly modeling concurrency via threads.

6.2.1 Global memory

Global memory is the off-chip DRAM available on the GPU board, and it is typically
separate from the CPU memory. It is used as a communication buffer for large
amounts of data between the CPU and the GPU. It has high latency and relatively
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low bandwidth, just like on a CPU, compared with lower levels of the hierarchy. The
host code is in charge of transferring data between the host memory space and the
global memory. Arrays (less frequently scalars) allocated in global memory must be
tagged as __device__ in CUDA.

6.2.2 Shared memory

Shared memory is an on-chip memory, with low latency and very high bandwidth
(like an L1 cache), local to each streaming multiprocessor, and accessible only by
threads in the same block. Developers must explicitly specify shared memory data,
using the __shared__ storage attribute to allocate arrays in shared memory, and
move data between global and shared memory using kernel code. In our work,
threads compute the channel response for each transmitter-receiver antenna port in
a cluster and require repeated reading of the input data. Since the CUDA global
memory is not fast enough to provide data to all processing elements, a two-step
loading mechanism is used. First, the input data is loaded into the on-chip shared
memory in a coalesced fashion, and then the data is accessed for CIR computation.

6.2.3 Thread synchronization

Explicit designer-driven thread group synchronization via barriers is the most com-
monly used synchronization mechanism between otherwise independent threads. It
allows, for example, kernel code to transfer data between (1) large and slow off-chip
memory and (2) smaller and faster on-chip memory, ensuring that:

• all threads involved in a concurrent set of memory transfers, where each thread
copies one or a few words of a large off-chip memory buffer to an on-chip memory
one, are finished when computations using the transferred data begin,

• all threads performing parallel computations are finished when the results begin to
be transferred back from on-chip memory to off-chip memory.

Implicit automatic thread synchronization occurs in programs with divergent
control flows, i.e. where conditional branches in the code may have different out-
comes for different threads in a warp. Programmers must carefully consider using
conditionals (if-then-else and switch statements) in kernel code, because it may cause
significant performance losses on a GPU architecture. If a thread has two nested
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if-then-elses, and the conditions are independent, then typically only 25% of each
GPU processor can be exploited, since all four combinations of the condition values
must be executed in sequence, rather than in parallel.

As mentioned above, the CUDA programming model employs three types of
thread parallelism:

• parallelism between thread blocks, where synchronization is impossible,
• parallelism within a thread block, where synchronization can be requested by the

designer, and
• parallelism within thread warp, where synchronization is automatically ensured by

the GPU hardware.

From a hardware perspective, there are three corresponding execution hierarchies:
cooperative thread array (CTA) (also known as streaming multiprocessor (SM)),
warp, and SIMD lanes. At kernel startup, each thread block is assigned to CTA and
each thread is assigned to an SIMD lane. If the block-level explicit synchronization
barriers are used, then the CTA hardware will wait for all threads in a block to
reach the barrier before any thread is allowed to continue beyond it. Using the warp-
level synchronization feature of the CUDA cooperative thread array, threads are
synchronized only at the warp level, and other warps can continue to execute. This
is especially important in our case because elements in a cluster can be mapped to
threads in a warp, and partitioned block into tiles of size equal to warp size. Because
each cluster is modeled independently, threads can be synchronized at the warp level,
avoiding frequent block-level synchronizations.

6.2.4 Register-based parallel reduction

This programming technique allows a thread to read a register directly from another
thread within the same warp and allows them to exchange or broadcast data among
each other very efficiently. The idea of parallel reduction is illustrated in Figure 6.2
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Fig. 6.2 Parallel reduction using registers

where the __shfl_down() CUDA instruction calculates the source and the
destination of each reduction step, so that in N steps 2N data elements are reduced
via an associative operation (e.g. addition) within a warp, without the need for
expensive explicit synchronization barriers (i.e. the maximum value of N for which
this can be done with warps of size 32 is 5). The final stage of reduction, beyond
the 5 iterations supported by a warp, is performed less efficiently in shared or global
memory for all warps belonging to the same block via explicit barrier synchronization.
These two kinds of reduction are both exploited in our model to optimize the final
accumulation of the results computed by each warp to generate the total CIR.

6.3 Channel Emulator Acceleration on GPU

The geometry-based stochastic channel model consists of two parts: (1) a large-
scale fading model that includes path-loss, LOS probability, and additional losses,
combined with (2) a small-scale fading model characterized by the CIR (also called
“channel coefficients” in the following). In the context of multipath propagation, the
received signal is composed of various attenuated replicas of the original transmitted
signal. To calculate the channel coefficients, a step-by-step procedure is employed
as recommended by 3GPP specifications [2, Fig. 7.5-1].
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Cluster-delay line (CDL) serves as a modeling tool in scenarios where the
received signal comprises several delayed clusters. Each cluster is composed of
multipath components that share a common delay, albeit exhibiting slight variations
in angles of departure and arrival. 3GPP has defined various CDL profiles for link-
level simulations. For NLOS, three CDL profiles, namely CDL-A, CDL-B, and
CDL-C, are defined, while CDL-D and CDL-E are constructed for LOS clusters.

The channel model output computation is a set of FIR filters, one per path.
Consequently, the sampled signal at the receiver can be expressed as the sum over
paths of a convolution between the taps of this FIR filter and the channel model input
signal. This study uses a two-kernel acceleration:

1. a less computation-intensive kernel computes the FIR coefficients, i.e. the
CIR, according to (5.5). Its pseudo-code is shown in Listing 6.1.

2. a more computation-intensive FIR kernel that applies the coefficients to each
input symbol, as in (5.6). Its pseudo-code is shown in Listing 6.2.

In addition to the two kernels, our accelerator also includes a host code that is written
in C++ and executed on the host CPU. It is responsible for interacting with the
simulation clients via sockets, performing preliminary model configurations and data
transfers with the GPU. The architecture of the proposed accelerated channel model
is shown in Figure 6.3.

TX RX

GPU

Channel
Generation

Channel
Application

CPU
Propagation
environment 
Configuration

Socket
receiver

Socket
transmitter

Host
code

Fig. 6.3 3GPP 3D channel model on GPU

It uses CUDA cooperative groups to eliminate the need for block-level synchro-
nization since each cluster is computed independently. For efficient use of GPU
resources, the long chain of computations is split into parts as shown in listing 6.1
where the speed-factor part V and cluster information part C are computed in shared
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1 __global__ void
2 calcCIR(Hu,s, FRx,FT x,RxLocation , TxLocation)
3 {
4 // CUDA grid with X, Y, Z blocks
5 i=Idx.x; tx=Idx.y; rx=Idx.z; l=threadIdx.x;
6 cta = this_thread_block (); // create tiled blocks
7 thread_tile <32> tile32 = tiled_partition <32>(cta);
8 // Considering downlink
9 // for uplink , arrival , and departure parameters will be

swapped
10 dopplerSpeedn,m = dopplerSpeed + r̂T

rx,n,m × speed ×λ−1

11 tile32.sync();
12 VNLOS

n,m = 2×π ×dopplerSpeedn,m ×RxLocation×T xLocation // compute first
part of CIR as in Eq. 5.2 and

13 tile32.sync();
14 CNLOS

u,s = sqrt(Pu/NRAY )×FRx ×FT x ×XPR // Cluster info as in Eq. 5.1
15 __syncthreads (); // block sync
16 Hu,s,n,m = VNLOS

n,m ×CNLOS
u,s

17 tile32.sync();
18 for each RAY:
19 Hu,s,n,m(t) = warpReduceSum(Hu,s,n,m(t)) //
20 if(LOS){
21 // load LOS parameters in shared mem
22 dopplerSpeedLOS

n,m += r̂LOS
rx,n,m × speed ×λ−1 // using LOS parameters

23 VLOS = 2×π ×dopplerSpeedLOS
n,m ×RxLocation×T xLocation // as in Eq.

5.4
24 CLOS

u,s = sqrt(PLOS
u /NRAY )×FLOS

Rx ×FLOS
T x // compute for LOS as in

Eq. 5.3
25 HLOS

u,s,l = VLOS ×CLOS
u,s

26 HLOS
u,s,1 = warpReduceSum(HLOS

u,s,l ) / reduction in reg
27 tile32.sync();
28 Hu,s = atomicAdd(HNLOS

u,s,n,m +HLOS
u,s,1) // Combine LOS and NLOS response

29 }
30 __syncthreads ();
31 }

Listing 6.1 CUDA calcCIR kernel
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1 __global__ void
2 applyFIR(y(t),x(t), Hu,s(t),Hu,s(t − τ),cirBuf ,pos)
3 {
4 // CUDA grid with X, Y, Z blocks
5 i=Idx.x; tx=Idx.y; rx=Idx.z; l=threadIdx.x;
6 cta = this_thread_block (); // create tiled blocks
7 thread_tile <32> tile32 = tiled_partition <32>(cta);
8 ∆H(t) = Hu,s(t)−Hu,s(t − τ); // use shared mem
9 regCirBuf l = cirBuf tx,rx,l // load circular buffer

10 __syncthreads (); // block sync
11 xl = x(t)i,tx; // load received symbol in shared mem
12 index = posl; // read cluster position from const mem
13 tapV = tapV +∆H(t)+Hu,s(t) // warp -wide tap vector
14 tile32.sync(); // warp -wise soft sync
15 tap = regCirBuf index × xl // interpolation lines
16 tile32.sync();
17 accl = warpReduceSuml(tap); // reduction in regs
18 tile32.sync();
19 y(t)rx = y(t)rx +accl; // accumulate over Rx
20 }

Listing 6.2 CUDA applyFIR kernel

memory. This allows threads to remain active since there is no penalty for context
switching. The register-based warp-wise parallel reduction of FIR taps help improve
latency and resource utilization.

6.4 Results and Discussion

The baseline CPU performance was determined using an Intel Core i7-6900K
@3.2 GHz CPU. The baseline channel model is implemented in C++ and runs
as a MEX C++ function within a MATLAB R2021a environment. The performance
of the channel model is evaluated using the benchmark values in table 5.2. To
evaluate the performance for link-level simulations, we consider two CDL profiles,
i.e., CDL-B for NLOS clusters and CDL-D for LOS clusters. Figure 6.4 illustrates
various MIMO antenna element configurations for single-polarized antennas in Fig-
ure 6.4a and Figure 6.4b and dual-polarized arrays in Figure 6.5c and Figure 6.5d
on transmitter and receiver end for CDL-B profile. Similarly, the same is reported
for CDL-D in Figure 6.5 where fig. 6.5a and Figure 6.5b shows antenna patterns for
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(a) Single-polarized antenna panels on Tx end (b) Single-polarized antenna panel on Rx end

(c) Dual-polarized antenna panels on Tx end (d) Dual-polarized antennas on Rx end

Fig. 6.4 MIMO antenna configuration in CDL-B profile for NLOS clusters

single-polarized arrays and Figure 6.5c and Figure 6.5d illustrates dual-polarized
antennas on transmitting and receiving end.

The accelerator discussed in this chapter was developed using the CUDA devel-
opment tools [118], targeting the NVIDIA GeForce GTX 1070 GPU [119] which
features 1920 CUDA cores, 120 texture mapping units (TMUs), 1.5 MB of shared
memory, 4 MB of local memory, 8 GB of GDDR5 memory, and 15 SMs.

Performance of the GPU accelerator is compared with an FPGA implementation
[105], which was developed using the Vitis Unified Software Platform [91] for the
AMD Alveo U280 [108]. The FPGA used in [105] is based on the same 16 nm
technology node as the GPU and contains 9024 DSP blocks, 41 MB of on-chip
static RAM, 1303680 look-up tables, and 8 GB of high bandwidth memory (HBM2).
Thus, its computational power is comparable to that of the GPU used in this work,
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(a) Single-polarized antenna panels on Tx end (b) Single-polarized antenna panel on Rx end

(c) Dual-polarized antenna panels on Tx end (d) Dual-polarized antennas on Rx end

Fig. 6.5 MIMO antenna configuration in CDL-D profile for LOS clusters
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Table 6.1 Kernel latency for a combination of MIMO elements in CDL-B NLOS

Link
type Kernel

Execution latency
Downlink( Rx ×Tx) , Uplink( Tx ×Rx)

2×2 4×4 4×8 8×8 8×16 16×16 2×32 4×32

Downlink calcCIR(µs) 5.43 8.22 8.29 10.94 12.93 20.16 9.25 12.67
applyFIR(ms) 1.72 5.95 11.23 22.04 43.12 85.42 22.12 43.06

Uplink calcCIR(µs) 5.43 8.00 8.35 11.10 12.58 19.46 8.86 11.23
applyFIR(ms) 1.72 5.93 11.78 22.13 43.88 85.32 24.93 45.50

Table 6.2 Kernel latency for a combination of MIMO elements in CDL-D LOS

Link
type Kernel

Execution latency
Downlink( Rx ×Tx) , Uplink( Tx ×Rx)

2×2 4×4 4×8 8×8 8×16 16×16 2×32 4×32

Downlink calcCIR(µs) 6.56 11.71 8.64 10.72 11.52 25.09 8.90 9.47
applyFIR(ms) 1.09 2.95 5.56 11.01 21.52 42.14 10.90 21.21

Uplink calcCIR(µs) 8.03 11.58 8.74 10.94 16.54 16.06 7.74 10.85
applyFIR(ms) 1.37 2.4 4.58 9.62 21.70 33.16 12.46 22.68

since (1) a DSP unit can be used to implement a SP multiply and add, and (2) in
FPGA implementation only 1/3 of the total resources are used so that the kernel can
fit on one chiplet to avoid routing problems.

The primary goal of this work is to reduce the overall execution time of the
channel model under resource constraints. We report the achieved performance
for the kernels in Listing 6.1 and Listing 6.2 on GPU platforms. To analyze the
performance for both LOS and NLOS scenarios, we consider CDL-B and CDL-D
profiles and uplink and downlink connection types. Table 6.1 reports the execution
latency for various combination of Rx and Tx antenna elements considering NLOS
clusters in CDL-B profile for the parameters listed in Table 5.2.

Figure 6.6 illustrates a comparison of link-level simulation latency on CPU
and GPU platforms in the two CDL profiles. The values on the horizontal-axis
represent the number of receiving and transmitting antenna elements, where the
vertical-axis denotes the total execution time in logarithmic scale. It can be inferred
from Figure 6.6 that the GPU implementation greatly reduces the simulation time
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Table 6.3 Accelerated kernel latency and energy consumption

Platform Latency Speedup Power Energy
(s) (times) (W) (J)

CPU 5.01 N/A 105 526.0

FPGA 0.03 172 31.1 0.96

GPU 0.08 60 52.0 4.37
GPU (SP) 0.02 240 40.5 0.85

and enables the network planners to simulation more complex propagation scenarios
with higher Doppler shift and even more antenna elements.

Table 6.3 reports the achieved performance and energy consumption for FPGA
and GPU acceleration platforms for CDL-B delay profile. Overall, the optimizations
result in a speedup of 60× compared to the baseline CPU implementation. The
achievable performance is memory-bound due to the limited on-chip shared memory
of the GPU, hence the need to repeatedly read large amounts of data from the DRAM
rather than storing it on-chip as was done on the FPGA. To analyze the achievable
performance without the on-chip memory limit, the precision was reduces to single
which resulted in a speedup of 240×.

For power analysis, CPU results are calculated based on its thermal design power
(TDP) because we have no way to measure its power consumption in real time.
Energy consumption is very high due to high execution latency on CPU platform.
The energy consumption of the FPGA is lower than that of the GPU because the
data is copied only once into on-chip buffers (our FPGA has more on-chip memory
than our GPU). The GPU and FPGA power consumption is measured using the
respective runtime support. In both cases, they are lower than their respective TDPs
because only one-third of the on-chip compute resources were utilized due to memory
bandwidth constraints, as shown in Table 6.4. On FPGA platform, only one of the
three chiplets (also called SLRs) in the package was used to achieve a good clock
period.

6.4.1 Coding Style: CUDA vs. HLS

Although both FPGA and GPU provide parallel computation, writing source code
to efficiently program them is very different. In the case of GPU, it is necessary
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(a) Latency for CDL-B profile

(b) Latency for CDL-D profile

Fig. 6.6 Execution time on CPU and GPU platforms
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Table 6.4 Resource utilization of accelerated designs

Platform Memory(%) SM(%) DSP(%)

FPGA 13.14 N/A 17.24

GPU 40.89 63.61 N/A
GPU(SP) 32.28 42.09 N/A

to explicitly exploit the multithreaded nature of the platform by exploiting the 3-
dimensional parallel loop structure of the thread blocks, as shown in Listing 6.1 and
Listing 6.2 (note the absence of any explicit loop construct). On the other hand,
the accelerated code for the FPGA is actually more similar to the CPU version,
with only the addition of (1) loops to transfer data from DRAM to on-chip memory,
and (2) loop pipelining, loop unrolling, and array partitioning directives to expose
parallelism in the computation and memory architecture in a form appropriate for
HLS.

6.5 Conclusion

This work demonstrates an efficient implementation of a 3GPP 3D channel simula-
tion model on GPU platforms. The implementation employs CUDA optimization
techniques to efficiently utilize the parallelism and memory hierarchy of the GPU.
The proposed GPU accelerator can significantly reduce simulation time for 5G-NR
network planning and optimization by approximately 240× compared to a CPU-based
C++ model, while maintaining high accuracy. The level of gains in performance
is limited by the total amount of on-chip memory, thereby constraining concur-
rency. The GPU design exhibits better single-precision performance compared to
the previously proposed FPGA design, albeit with increased power consumption.
It is interesting to note that although FPGAs typically have lower floating-point
performance than GPUs, in this case, the FPGA has higher performance due to
the larger amount of on-chip memory used to store the data and reduce DRAM
accesses, thus offsetting the lower computational performance compared to a GPU
for this very memory-intensive channel model. This study showcases the practicality
and advantages of employing GPU-based hardware acceleration in 5G-NR channel
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model simulations. It also offers a valuable resource for network designers and
researchers. Potential future work involves expanding the channel model to accom-
modate additional propagation scenarios and antenna configurations. Additionally,
integrating the channel model with other components of the 5G simulation stack,
such as physical layer and link layer models, could be explored.



Chapter 7

Conclusion and Future work

The acceleration of the 3GPP 3D-SCM channel model simulation can be significantly
improved through the utilization of FPGA platforms provided by various vendors
(specifically, Xilinx and Intel). The attainable boost in speed is constrained by the
memory system, as the maximum data transfer rate is reached prior to reaching the
limit of computational resources. A portable implementation of the OpenCL enables
the development of designs for FPGAs using HLS tools. Nevertheless, the straight-
forward translation of the initial C++ code designed for a CPU targets to the OpenCL
does not yield satisfactory results without further modifications. In order to address
this challenge, it is crucial to employ a broad range of optimization techniques
that focus on memory management and loop structures. These techniques have the
potential to significantly enhance performance by several orders of magnitude.

The HLS tools for Xilinx FPGAs provide a user friendly graphical interface for
rapid development and debugging, while there is no such Integrated Development
Environment for the Intel FPGAs. However, both tool sets provide detailed design
reports that enable micro-architectural optimizations. OOB implementation of code
not specifically written for FPGAs is obviously suboptimal, due to the lack of an
efficient on-chip memory architecture that is comparable to the cache in a CPU.

Intel FPGA SDK for OpenCL tries to automatically create an optimized memory
architecture, but since the algorithm memory access pattern, albeit regular, was
hard to analyze, the tool worsens the performance and increases the resource usage.
This highlights the need for experienced hardware designers, familiar with HLS
tools, who can partially rewrite the top application and manually optimize memory
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access. The C++ based kernels for Xilinx FPGAs offer more control over the
optimizations, such as the parameters of the DRAM interfaces or the choice of
some specific computational resources, than in the nominally more portable OpenCL
flow. Although HLS still has some shortcomings compared to hand-crafted RTL
implementations, it enables rapid design space exploration and thus ultimately can
achieve respectable quality of results with a reasonable design optimization time.

It is noteworthy that, despite the general tendency for FPGAs to exhibit lower
floating-point performance compared to GPUs, the current scenario demonstrates a
higher performance of the FPGA due to the larger amount of on-chip memory used
to store the data and reduce DRAM accesses. Consequently, the lower computational
performance of the FPGA is counterbalanced by its capacity to handle the memory-
intensive channel model at hand, surpassing that of a GPU.

A potential future extension to this research can be an accelerator that can simu-
late multiple runs of channel models simultaneously and independently, modeling
multiple user equipments, on a single accelerator. Additionally, integrating the
channel model with other elements of the 5G simulation stack, such as physical
layer and link layer models, could be explored. This would allow to stream the data
among all these blocks directly on the accelerator, lowering the DRAM accesses and
improving the overall simulation performance.
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Appendix A

3GPP Channel Parameters



 

Scenarios UMi - Street Canyon UMa 
LOS NLOS O2I LOS NLOS O2I 

Delay spread (DS) 
lgDS=log10(DS/1s) 

μlgDS -0.24 log10(1+ fc) - 7.14 -0.24 log10(1+ fc) - 6.83 -6.62 -6.955 - 0.0963 
log10(fc) -6.28 - 0.204 log10(fc) -6.62 

σlgDS 0.38 0.16 log10(1+ fc) + 0.28 0.32 0.66 0.39 0.32 
AOD spread (ASD) 

lgASD=log10(ASD/1°) 
μ
σlgASD 0.41 0.11 log10(1+ fc) + 0.33 0.42 0.28 0.28 0.42 

AOA spread (ASA) 
lgASA=log10(ASA/1°) 

μlgASA -0.08 log10(1+ fc) + 1.73 -0.08 log10(1+ fc) + 1.81 1.76 1.81 2.08 - 0.27 log10(fc) 1.76 
σlgASA 0.014 log10(1+ fc) + 0.28 0.05 log10(1+ fc) + 0.3 0.16 0.20 0.11 0.16 

ZOA spread (ZSA) 
lgZSA=log10(ZSA/1°) 

μlgZSA -0.1 log10(1+ fc) + 0.73 -0.04 log10(1+ fc) + 0.92 1.01 0.95 -0.3236 log10(fc) + 1.512 1.01 
σlgZSA -0.04 log10(1+ fc) + 0.34 -0.07 log10(1+ fc) + 0.41 0.43 0.16 0.16 0.43 

Shadow fading (SF) [dB] σSF See Table 7.4.1-1 See Table 7.4.1-1 7 See Table 7.4.1-1 See Table 7.4.1-1 7 

K-factor (K) [dB] μK 9 N/A N/A 9 N/A N/A 
σK 5 N/A N/A 3.5 N/A N/A 

Cross-Correlations  

ASD vs DS 0.5  0  0.4 0.4 0.4 0.4 
ASA vs DS 0.8  0.4  0.4 0.8 0.6 0.4 
ASA vs SF -0.4  -0.4  0 -0.5 0 0 
ASD vs SF -0.5  0  0.2 -0.5 -0.6 0.2 
DS vs SF -0.4  -0.7  -0.5 -0.4 -0.4 -0.5 

ASD vs ASA 0.4  0  0 0 0.4 0 
ASD vs Κ -0.2  N/A N/A 0 N/A N/A 
ASA vs Κ -0.3  N/A N/A -0.2 N/A N/A 
DS vs Κ -0.7  N/A N/A -0.4 N/A N/A 
SF vs Κ 0.5  N/A N/A 0 N/A N/A 

Cross-Correlations 1) 

ZSD vs SF 0  0  0 0 0 0 
ZSA vs SF 0  0  0 -0.8 -0.4 0 
ZSD vs K 0  N/A N/A 0 N/A N/A 
ZSA vs K 0  N/A N/A 0 N/A N/A 

ZSD vs DS 0  -0.5  -0.6 -0.2 -0.5 -0.6 
ZSA vs DS 0.2  0  -0.2 0 0 -0.2 

ZSD vs ASD 0.5  0.5  -0.2 0.5 0.5 -0.2 
ZSA vs ASD 0.3  0.5  0 0 -0.1 0 
ZSD vs ASA 0  0  0 -0.3 0 0 
ZSA vs ASA 0  0.2  0.5 0.4 0 0.5 
ZSD vs ZSA 0  0  0.5 0 0 0.5 

Delay scaling parameter rτ 3 2.1 2.2 2.5 2.3 2.2 

XPR [dB] μXPR 9 8.0 9 8 7 9 
σXPR 3 3 5 4 3 5 

Number of clusters N  12 19 12 12 20 12 

Number of rays per cluster M  20 20 20 20 20 20 

Cluster DS ( DSc ) in [ns] 5 11 11 max(0.25, 6.5622 
-3.4084 log10(fc)) 

max(0.25, 6.5622 
-3.4084 log10(fc)) 11 

Cluster ASD ( ASDc ) in [deg] 3 10 5 5 2 5 

lgASD -0.05 log10(1+ fc) + 1.21 -0.23 log10(1+ fc) + 1.53 1.25 1.06 + 0.1114 log10(fc) 1.5 - 0.1144 log10(fc) 1.25 

Table 7.5-6 Channel model parameters for UMi-Street Canyon and UMa



 

Cluster ASA ( ASAc ) in [deg] 17 22 8 11 15 8 

Cluster ZSA ( ZSAc ) in [deg] 7 7 3 7 7 3 

Per cluster shadowing std ζ [dB] 3 3 4 3 3 4 

Correlation distance in 
the horizontal plane [m] 

DS 7 10 10 30 40 10 
ASD 8 10 11 18 50 11 
ASA 8 9 17 15 50 17 
SF 10 13 7 37 50 7 
Κ 15 N/A N/A 12 N/A N/A 

ZSA 12 10 25 15 50 25 
ZSD 12 10 25 15 50 25 

fc is carrier frequency in GHz; d2D is BS-UT distance in km. 
NOTE 1: DS = rms delay spread, ASD = rms azimuth spread of departure angles, ASA = rms azimuth spread of arrival angles, ZSD = rms zenith spread of departure angles, 

ZSA = rms zenith spread of arrival angles, SF = shadow fading, and K = Ricean K-factor. 
NOTE 2: The sign of the shadow fading is defined so that positive SF means more received power at UT than predicted by the path loss model. 
NOTE 3: All large scale parameters are assumed to have no correlation between different floors. 
NOTE 4: The following notation for mean (μlgX=mean{log10(X) }) and standard deviation (σlgX=std{log10(X) }) is used for logarithmized parameters X.  
NOTE 5: For all considered scenarios the AOD/AOA distributions are modelled by a wrapped Gaussian distribution, the ZOD/ZOA distributions are modelled by a Laplacian 

distribution and the delay distribution is modelled by an exponential distribution. 
NOTE 6: For UMa and frequencies below 6 GHz, use fc = 6 when determining the values of the frequency-dependent LSP values  
NOTE 7: For UMi and frequencies below 2 GHz, use fc = 2 when determining the values of the frequency-dependent LSP values  

 



 

Scenarios RMa  Indoor-Office 
LOS NLOS O2I LOS NLOS 

Delay spread (DS) 
lgDS=log10(DS/1s) 

μlgDS -7.49 -7.43 -7.47 -0.01 log10(1+fc) - 7.692 -0.28 log10(1+fc) - 7.173 
σlgDS 0.55 0.48  0.24 0.18 0.10 log10(1+fc) + 0.055 

AOD spread (ASD) 
lgASD=log10(ASD/1°) 

μlgASD 0.90 0.95 0.67 1.60 1.62 
σlgASD 0.38 0.45 0.18 0.18 0.25 

AOA spread (ASA) 
lgASA=log10(ASA/1°) 

μlgASA 1.52 1.52 1.66 -0.19 log10(1+fc) + 1.781 -0.11 log10(1+fc) + 1.863 
σlgASA 0.24 0.13 0.21 0.12 log10(1+fc) + 0.119 0.12 log10(1+fc) + 0.059 

ZOA spread (ZSA) 
lgZSA=log10(ZSA/1°) 

μlgZSA 0.47 0.58 0.93 -0.26 log10(1+fc) + 1.44 -0.15 log10(1+fc) + 1.387 
σlgZSA 0.40 0.37 0.22 -0.04 log10(1+fc) + 0.264 -0.09 log10(1+fc) + 0.746 

Shadow fading (SF) [dB] σSF See Table 7.4.1-1 8 See Table 7.4.1-1 

K-factor (K) [dB] μK 7 N/A N/A 7 N/A 
σK 4 N/A N/A 4 N/A 

Cross-Correlations  

ASD vs DS 0 -0.4 0 0.6 0.4 
ASA vs DS 0 0 0 0.8 0 
ASA vs SF 0 0 0 –0.5 –0.4 
ASD vs SF 0 0.6 0 –0.4 0 
DS vs SF -0.5 -0.5 0 –0.8 –0.5 

ASD vs ASA 0 0 -0.7 0.4 0 
ASD vs Κ 0 N/A N/A 0 N/A 
ASA vs Κ 0 N/A N/A 0 N/A 
DS vs Κ 0 N/A N/A -0.5 N/A 
SF vs Κ 0 N/A N/A 0.5 N/A 

Cross-Correlations 1) 

ZSD vs SF 0.01 -0.04 0 0.2 0 
ZSA vs SF -0.17 -0.25 0 0.3 0 
ZSD vs K 0 N/A N/A 0 N/A 
ZSA vs K -0.02 N/A N/A 0.1 N/A 

ZSD vs DS -0.05 -0.10 0 0.1 -0.27 
ZSA vs DS 0.27 -0.40 0 0.2 -0.06 

ZSD vs ASD 0.73 0.42 0.66 0.5 0.35 
ZSA vs ASD -0.14 -0.27 0.47 0 0.23 
ZSD vs ASA -0.20 -0.18 -0.55 0 -0.08 
ZSA vs ASA 0.24 0.26 -0.22 0.5 0.43 
ZSD vs ZSA -0.07 -0.27 0 0 0.42 

Delay scaling parameter rτ 3.8 1.7 1.7 3.6 3 

XPR [dB] μXPR 12 7 7 11 10 
σXPR 4 3 3 4 4 

Number of clusters N  11 10 10 15 19 

Number of rays per cluster M  20 20 20 20 20 

Cluster DS ( DSc ) in [ns] N/A N/A N/A N/A N/A 

Cluster ASD ( ASDc ) in [deg] 2 2 2 5 5 



 

Cluster ASA ( ASAc ) in [deg] 3 3 3 8 11 

Cluster ZSA ( ZSAc ) in [deg] 3 3 3 9 9 

Per cluster shadowing std ζ [dB] 3 3 3 6 3 

Correlation distance in the 
horizontal plane [m] 

DS 50 36 36 8 5 
ASD 25 30 30 7 3 
ASA 35 40 40 5 3 
SF 37 120 120 10 6 
Κ 40 N/A N/A 4 N/A 

ZSA 15 50 50 4 4 
ZSD 15 50 50 4 4 

fc is carrier frequency in GHz; d2D is BS-UT distance in km. 
NOTE 1: DS = rms delay spread, ASD = rms azimuth spread of departure angles, ASA = rms azimuth spread of arrival angles, ZSD = rms zenith spread of departure angles, ZSA = 

rms zenith spread of arrival angles, SF = shadow fading, and K = Ricean K-factor. 
NOTE 2: The sign of the shadow fading is defined so that positive SF means more received power at UT than predicted by the path loss model. 
NOTE 3: The following notation for mean (μlgX=mean{log10(X) }) and standard deviation (σlgX=std{log10(X) }) is used for logarithmized parameters X.  
NOTE 4: Void.  
NOTE 5: For all considered scenarios the AOD/AOA distributions are modelled by a wrapped Gaussian distribution, the ZOD/ZOA distributions are modelled by a Laplacian 

distribution and the delay distribution is modelled by an exponential distribution. 
NOTE 6: For InH and frequencies below 6 GHz, use fc = 6 when determining the values of the frequency-dependent LSP values  



Appendix B

FPGA HLS code



1   #include "constants.h"
2   #include <math.h>
3   #include <stdio.h>
4   #define BUFFER_SIZE (const_nSymbDataPerLink * const_NSPS)
5   const unsigned int dim_rx = const_nRxAntennas;
6   const unsigned int dim_OutBuffer = BUFFER_SIZE;
7   const unsigned int n_cluster = const_numCluster;
8   const unsigned int dim_circular_buffer_position = size_circular_buffer_position;
9   

10   extern "C"
11   {
12   
13   // Channel Application kernel
14   void kernSingleLink5gWithTdl(
15   // singleLink5gChannelModelApplication method parameters
16   const double *X_input_symb_I,
17   const double *X_input_symb_Q,
18   const unsigned int firstSubFrame,
19   double *tdlChannelCoefOld_real,
20   double *tdlChannelCoefOld_imag,
21   const unsigned int circBuffIdx,
22   double *Y_out_symb_real,
23   double *Y_out_symb_imag,
24   unsigned int *circular_buffer_position,
25   unsigned int test,
26   // tdlcompute method parameters
27   const int los_info,
28   const double cdlTimeVector,
29   double *speedDesctiption,
30   double *speedDesctiption_LOS,
31   double *clusterDesctiptionReal,
32   double *clusterDesctiptionImag,
33   double *clusterDesctiption_LosReal,
34   double *clusterDesctiption_LosImag,
35   double *out_tdlChannelCoefReal,
36   double *out_tdlChannelCoefImag,
37   unsigned int applyChannel)
38   {

39   // kernSingleLink5g axi master interface
40   #pragma HLS INTERFACE m_axi port = X_input_symb_I offset = slave bundle = 

hbm0
41   #pragma HLS INTERFACE m_axi port = X_input_symb_Q offset = slave bundle = 

hbm1
42   #pragma HLS INTERFACE m_axi port = tdlChannelCoefOld_real offset = slave bundle = 

hbm2
43   #pragma HLS INTERFACE m_axi port = tdlChannelCoefOld_imag offset = slave bundle = 

hbm3
44   #pragma HLS INTERFACE m_axi port = Y_out_symb_real offset = slave bundle = 

hbm0
45   #pragma HLS INTERFACE m_axi port = Y_out_symb_imag offset = slave bundle = hbm1
46   #pragma HLS INTERFACE m_axi port = circular_buffer_position offset = slave bundle = hbm4 
47   // tdlcompute axi master interface
48   #pragma HLS INTERFACE m_axi port = speedDesctiption offset = slave bundle = 

hbm5
49   #pragma HLS INTERFACE m_axi port = speedDesctiption_LOS offset = slave bundle = 

hbm6
50   #pragma HLS INTERFACE m_axi port = clusterDesctiptionReal offset = slave bundle = 

hbm7
51   #pragma HLS INTERFACE m_axi port = clusterDesctiptionImag offset = slave bundle = 

hbm8
52   #pragma HLS INTERFACE m_axi port = clusterDesctiption_LosReal offset = slave bundle = 

hbm9
53   #pragma HLS INTERFACE m_axi port = clusterDesctiption_LosImag offset = slave bundle = 

hbm10 
54   #pragma HLS INTERFACE m_axi port = out_tdlChannelCoefReal offset = slave bundle = 

hbm4
55   #pragma HLS INTERFACE m_axi port = out_tdlChannelCoefImag offset = slave bundle = 

hbm5
56   
57   // kernSingleLink5g axilite slave interface
58   #pragma HLS INTERFACE s_axilite port = firstSubFrame
59   #pragma HLS INTERFACE s_axilite port = circBuffIdx
60   #pragma HLS INTERFACE s_axilite port = test
61   // tdlcompute axilite slave interface
62   #pragma HLS INTERFACE s_axilite port = los_info
63   #pragma HLS INTERFACE s_axilite port = cdlTimeVector
64   #pragma HLS INTERFACE s_axilite port = applyChannel
65   
66   // kernSingleLink5g local buffers
67   double mem_X_input_symb_I[const_nSymbDataPerLink * const_NSPS];
68   double mem_X_input_symb_Q[const_nSymbDataPerLink * const_NSPS];
69   double mem_tdlChannelCoefOld_real[size_tdlChannelCoefOld];
70   double mem_tdlChannelCoefOld_imag[size_tdlChannelCoefOld];
71   double mem_circular_bufferI[const_numCluster][size_circular_buffer];
72   double mem_circular_bufferQ[const_numCluster][size_circular_buffer];
73   double mem_Y_out_symb_real[BUFFER_SIZE];
74   double mem_Y_out_symb_imag[BUFFER_SIZE];
75   



76   double precomputed_tdlChannelCoefOld_real[const_numCluster];
77   double precomputed_tdlChannelCoefOld_imag[const_numCluster];
78   double precomputed_tdlChannelCoef_real[const_numCluster];
79   double precomputed_tdlChannelCoef_imag[const_numCluster];
80   
81   // tdlcompute local buffers
82   const int col_size = const_nTxAntennas * const_nRxAntennas * const_numCluster;
83   double buff_TimeVector = cdlTimeVector;
84   double buff_speedDesctiption_LOS[const_nRxAntennas];
85   double buff_speedDesctiption[NRAYS];
86   double buff_clusterDesctiption_LosReal[const_nRxAntennas * const_nTxAntennas];
87   double buff_clusterDesctiption_LosImag[const_nRxAntennas * const_nTxAntennas];
88   double buff_tdlChannelCoef_Real[col_size];
89   double buff_tdlChannelCoef_Imag[col_size];
90   double buff_clusterDesctiptionReal[NRAYS];
91   double buff_clusterDesctiptionImag[NRAYS];
92   
93   #pragma HLS ARRAY_PARTITION variable = buff_speedDesctiption_LOS complete
94   #pragma HLS ARRAY_PARTITION variable = buff_speedDesctiption complete
95   #pragma HLS ARRAY_PARTITION variable = buff_clusterDesctiption_LosReal complete
96   #pragma HLS ARRAY_PARTITION variable = buff_clusterDesctiption_LosImag complete
97   #pragma HLS ARRAY_PARTITION variable = buff_clusterDesctiptionReal complete
98   #pragma HLS ARRAY_PARTITION variable = buff_clusterDesctiptionImag complete
99   

100   #pragma HLS bind_storage variable = mem_X_input_symb_I type = RAM_2P impl = URAM
101   #pragma HLS bind_storage variable = mem_X_input_symb_Q type = RAM_2P impl = URAM
102   #pragma HLS bind_storage variable = mem_Y_out_symb_real type = RAM_2P impl = URAM
103   #pragma HLS bind_storage variable = mem_Y_out_symb_imag type = RAM_2P impl = URAM
104   #pragma HLS bind_storage variable = mem_circular_bufferI type = RAM_2P impl = BRAM
105   #pragma HLS bind_storage variable = mem_circular_bufferQ type = RAM_2P impl = BRAM
106   
107   #pragma HLS ARRAY_PARTITION variable = buff_tdlChannelCoef_Real cyclic factor = 4 dim = 1
108   #pragma HLS ARRAY_PARTITION variable = buff_tdlChannelCoef_Imag cyclic factor = 4 dim = 1
109   #pragma HLS ARRAY_PARTITION variable = mem_tdlChannelCoefOld_real cyclic factor = 4 dim 

= 1
110   #pragma HLS ARRAY_PARTITION variable = mem_tdlChannelCoefOld_imag cyclic factor = 4 dim 

= 1
111   #pragma HLS ARRAY_PARTITION variable = mem_circular_bufferI complete dim = 1
112   #pragma HLS ARRAY_PARTITION variable = mem_circular_bufferQ complete dim = 1
113   #pragma HLS ARRAY_PARTITION variable = mem_circular_bufferI cyclic factor = 2 dim = 2
114   #pragma HLS ARRAY_PARTITION variable = mem_circular_bufferQ cyclic factor = 2 dim = 2
115   #pragma HLS ARRAY_PARTITION variable = precomputed_tdlChannelCoef_real complete
116   #pragma HLS ARRAY_PARTITION variable = precomputed_tdlChannelCoef_imag complete
117   #pragma HLS ARRAY_PARTITION variable = precomputed_tdlChannelCoefOld_real complete
118   #pragma HLS ARRAY_PARTITION variable = precomputed_tdlChannelCoefOld_imag complete
119   
120   #pragma HLS ARRAY_PARTITION variable = mem_X_input_symb_I cyclic factor = 8
121   #pragma HLS ARRAY_PARTITION variable = mem_X_input_symb_Q cyclic factor = 8
122   #pragma HLS ARRAY_PARTITION variable = mem_Y_out_symb_real cyclic factor = 8
123   #pragma HLS ARRAY_PARTITION variable = mem_Y_out_symb_imag cyclic factor = 8
124   
125   unsigned int circBuf = 0;
126   
127   #if SPREADING_FACTOR == 1
128   unsigned int mem_position[size_position] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2};
129   #elif SPREADING_FACTOR == 10
130   unsigned int mem_position[size_position] = {0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5

, 6, 8, 9, 10, 14, 15, 18, 20, 21, 24};
131   #elif SPREADING_FACTOR == 100
132   unsigned int mem_position[size_position] = {0, 5, 11, 10, 14, 15, 18, 25, 18, 18,

28, 26, 54, 63, 76, 88, 99, 139, 149, 178, 202, 210, 235};
133   #elif SPREADING_FACTOR == 30
134   unsigned int mem_position[size_position] = {0, 2, 3, 3, 4, 4, 6, 7, 5, 5, 8, 8,

16, 19, 23, 26, 30, 42, 45, 53, 61, 63, 71};
135   #elif SPREADING_FACTOR == 300
136   unsigned int mem_position[size_position] = {0, 16, 32, 31, 42, 44, 55, 75, 54, 55

, 84, 78, 163, 188, 228, 263, 297, 417, 446, 534, 606, 631, 705};
137   #endif
138   #pragma HLS ARRAY_PARTITION variable = mem_position complete
139   
140   // FROM GLOBAL TO LOCAL MEMORY
141   if (applyChannel)
142   {

143   inTdl:
144   for (unsigned int i = 0; i < size_tdlChannelCoef; i++)
145   {

146   mem_tdlChannelCoefOld_real[i] = tdlChannelCoefOld_real[i];
147   mem_tdlChannelCoefOld_imag[i] = tdlChannelCoefOld_imag[i];
148   }

149   }

150   
151   loopBuffLos:
152   for (unsigned int idxBuff = 0; idxBuff < const_nRxAntennas * const_nTxAntennas;

++idxBuff)
153   {

154   buff_clusterDesctiption_LosReal[idxBuff] = clusterDesctiption_LosReal[idxBuff
];



155   buff_clusterDesctiption_LosImag[idxBuff] = clusterDesctiption_LosImag[idxBuff
];

156   }

157   
158   loopBuffSpeed:
159   for (unsigned int rxIdxBuff = 0; rxIdxBuff < const_nRxAntennas; ++rxIdxBuff)
160   {

161   buff_speedDesctiption_LOS[rxIdxBuff] = speedDesctiption_LOS[rxIdxBuff];
162   }

163   
164   // KERNEL START
165   
166   rxAnt:
167   for (unsigned int rxAntennaIndex = 0; rxAntennaIndex < const_nRxAntennas; ++

rxAntennaIndex)
168   {

169   #pragma HLS LOOP_TRIPCOUNT min = dim_rx max = dim_rx
170   txAnt:
171   for (unsigned int txAntennaIndex = 0; txAntennaIndex < const_nTxAntennas; ++

txAntennaIndex)
172   {

173   #pragma HLS DEPENDENCE false intra variable = mem_Y_out_symb_real
174   #pragma HLS DEPENDENCE false intra variable = mem_Y_out_symb_imag
175   
176   unsigned int jj_cb = const_singleCircularBufferDim * const_nTxAntennas *

rxAntennaIndex + const_singleCircularBufferDim * txAntennaIndex;
177   unsigned int j = circBuffIdx;
178   
179   if (applyChannel)
180   {

181   cpyX:
182   for (unsigned int idx = 0; idx < const_nsymb; ++idx)
183   {

184   #pragma HLS UNROLL factor = 8
185   mem_X_input_symb_I[idx] = X_input_symb_I[idx + txAntennaIndex *

const_nsymb];
186   mem_X_input_symb_Q[idx] = X_input_symb_Q[idx + txAntennaIndex *

const_nsymb];
187   }

188   }

189   double mem_deltaCh_real[size_deltaCh];
190   double mem_deltaCh_imag[size_deltaCh];
191   double mem_tapVectorI[size_tapVector];
192   double mem_tapVectorQ[size_tapVector];
193   #pragma HLS ARRAY_PARTITION variable = mem_tapVectorI complete
194   #pragma HLS ARRAY_PARTITION variable = mem_tapVectorQ complete
195   #pragma HLS ARRAY_PARTITION variable = mem_deltaCh_real cyclic factor = 23
196   #pragma HLS ARRAY_PARTITION variable = mem_deltaCh_imag cyclic factor = 23
197   
198   clusterIdx:
199   for (unsigned int cdlInd = 0; cdlInd < const_numCluster; cdlInd++)
200   {

201   //! Index in writing the channel matrix (CDL)
202   unsigned int chIdx = const_nRxAntennas * const_nTxAntennas * cdlInd +

const_nTxAntennas * rxAntennaIndex + txAntennaIndex;
203   
204   unsigned int idxWriteBuff = NRAYS * (const_nRxAntennas *

const_nTxAntennas * cdlInd + const_nTxAntennas * rxAntennaIndex +

txAntennaIndex);
205   unsigned int idxWrite2Buff = NRAYS * (const_nRxAntennas * cdlInd +

rxAntennaIndex);
206   
207   loopBuffRays:
208   for (unsigned int buffRayIdx = 0; buffRayIdx < NRAYS; buffRayIdx++)
209   {

210   buff_speedDesctiption[buffRayIdx] = speedDesctiption[
idxWrite2Buff + buffRayIdx];

211   buff_clusterDesctiptionReal[buffRayIdx] = clusterDesctiptionReal[
idxWriteBuff + buffRayIdx];

212   buff_clusterDesctiptionImag[buffRayIdx] = clusterDesctiptionImag[
idxWriteBuff + buffRayIdx];

213   }

214   
215   double tmp_tdlChannelCoef_Real = 0.0;
216   double tmp_tdlChannelCoef_Imag = 0.0;
217   double tmp_tdlChannelCoef_Real_part[NRAYS_DIVISION];
218   double tmp_tdlChannelCoef_Imag_part[NRAYS_DIVISION];
219   #pragma HLS ARRAY_PARTITION variable = tmp_tdlChannelCoef_Real_part complete
220   #pragma HLS ARRAY_PARTITION variable = tmp_tdlChannelCoef_Imag_part complete
221   
222   loopNRAYS:
223   for (unsigned int rayIdx = 0; rayIdx < NRAYS; rayIdx++)
224   {

225   #pragma HLS pipeline II = 6
226   double j2pivt = buff_speedDesctiption[rayIdx] * cdlTimeVector;
227   //! Phase value computation
228   double temp_expReal = (double)cos((float)j2pivt);
229   double temp_expImag = (double)sin((float)j2pivt);



230   
231   //! Power Computation
232   tmp_tdlChannelCoef_Real += (buff_clusterDesctiptionReal[rayIdx] *

temp_expReal) - (buff_clusterDesctiptionImag[rayIdx] *

temp_expImag);
233   tmp_tdlChannelCoef_Imag += (buff_clusterDesctiptionImag[rayIdx] *

temp_expReal) + (buff_clusterDesctiptionReal[rayIdx] *

temp_expImag);
234   }

235   // computation of LOS
236   if ((los_info == 1) && (cdlInd == 0))
237   {

238   double j2pivtLos = buff_speedDesctiption_LOS[rxAntennaIndex] *

cdlTimeVector;
239   double temp_expLosReal = (double)cos((float)j2pivtLos);
240   double temp_expLosImag = (double)sin((float)j2pivtLos);
241   unsigned int idxWrite = const_nTxAntennas * rxAntennaIndex +

txAntennaIndex;
242   //! Power Compuitation
243   tmp_tdlChannelCoef_Real += (buff_clusterDesctiption_LosReal[

idxWrite] * temp_expLosReal) - (buff_clusterDesctiption_LosImag[
idxWrite] * temp_expLosImag);

244   tmp_tdlChannelCoef_Imag += (buff_clusterDesctiption_LosImag[
idxWrite] * temp_expLosReal) + (buff_clusterDesctiption_LosReal[
idxWrite] * temp_expLosImag);

245   } // End if LOS
246   
247   buff_tdlChannelCoef_Real[chIdx] = tmp_tdlChannelCoef_Real;
248   buff_tdlChannelCoef_Imag[chIdx] = tmp_tdlChannelCoef_Imag;
249   
250   if (applyChannel)
251   {

252   double tmp1_real = buff_tdlChannelCoef_Real[chIdx];
253   double tmp1_imag = buff_tdlChannelCoef_Imag[chIdx];
254   double tmp0_real = mem_tdlChannelCoefOld_real[chIdx];
255   double tmp0_imag = mem_tdlChannelCoefOld_imag[chIdx];
256   
257   double N = const_nSymbDataPerLink * const_NSPS;
258   mem_deltaCh_real[cdlInd] = (tmp1_real - tmp0_real) / N;
259   mem_deltaCh_imag[cdlInd] = (tmp1_imag - tmp0_imag) / N;
260   
261   precomputed_tdlChannelCoefOld_real[cdlInd] = tmp0_real;
262   precomputed_tdlChannelCoefOld_imag[cdlInd] = tmp0_imag;
263   precomputed_tdlChannelCoef_real[cdlInd] = tmp1_real;
264   precomputed_tdlChannelCoef_imag[cdlInd] = tmp1_imag;
265   }

266   }

267   
268   if (applyChannel)
269   {

270   nSymb:
271   for (unsigned int i = 0; i < const_nSymbDataPerLink * const_NSPS; ++i

)

272   {

273   #pragma HLS PIPELINE II = 1
274   #pragma HLS unroll factor = 2
275   #pragma HLS dependence variable = mem_tapVectorI inter false
276   #pragma HLS dependence variable = mem_tapVectorQ inter false
277   #pragma HLS dependence variable = precomputed_tdlChannelCoef_real inter false
278   #pragma HLS dependence variable = precomputed_tdlChannelCoef_imag inter false
279   #pragma HLS dependence variable = precomputed_tdlChannelCoefOld_real inter false
280   #pragma HLS dependence variable = precomputed_tdlChannelCoefOld_imag inter false
281   #pragma HLS dependence variable = precomputed_tdlChannelCoef_real intra false
282   #pragma HLS dependence variable = precomputed_tdlChannelCoef_imag intra false
283   #pragma HLS dependence variable = precomputed_tdlChannelCoefOld_real intra false
284   #pragma HLS dependence variable = precomputed_tdlChannelCoefOld_imag intra false
285   
286   double accI = 0.0;
287   double accQ = 0.0;
288   double symbI = mem_X_input_symb_I[i];
289   double symbQ = mem_X_input_symb_Q[i];
290   
291   if (test)
292   {

293   double tdlI = buff_tdlChannelCoef_Real[const_nTxAntennas *

rxAntennaIndex + txAntennaIndex];
294   double tdlQ = buff_tdlChannelCoef_Imag[const_nTxAntennas *

rxAntennaIndex + txAntennaIndex];
295   accI = symbI * tdlI - symbQ * tdlQ;
296   accQ = symbI * tdlQ + symbQ * tdlI;
297   }

298   else

299   {

300   double opdI[const_numCluster];
301   double opdQ[const_numCluster];
302   double reg_accI[const_numCluster];
303   double reg_accQ[const_numCluster];
304   



305   nClust:
306   for (unsigned int l = 0; l < const_numCluster; l++)
307   {

308   #pragma HLS UNROLL factor = 23
309   mem_circular_bufferI[l][(jj_cb + j) & (

const_circularBufferDim - 1)] = symbI;
310   mem_circular_bufferQ[l][(jj_cb + j) & (

const_circularBufferDim - 1)] = symbQ;
311   
312   unsigned int chIdx = const_nTxAntennas *

const_nRxAntennas * l + const_nTxAntennas *

rxAntennaIndex + txAntennaIndex;
313   
314   double tapVI = firstSubFrame ?

precomputed_tdlChannelCoef_real[l] : (((i + 1) *

mem_deltaCh_real[l]) + precomputed_tdlChannelCoefOld_real
[l]);

315   double tapVQ = firstSubFrame ?

precomputed_tdlChannelCoef_imag[l] : (((i + 1) *

mem_deltaCh_imag[l]) + precomputed_tdlChannelCoefOld_imag
[l]);

316   
317   if (i == const_nSymbDataPerLink * const_NSPS - 1)
318   {

319   mem_tapVectorI[l] = tapVI;
320   mem_tapVectorQ[l] = tapVQ;
321   }

322   
323   unsigned int index;
324   if (j < mem_position[l])
325   {

326   index = (j + const_singleCircularBufferDim -

mem_position[l]);
327   }

328   else

329   {

330   index = (j - mem_position[l]);
331   }

332   opdI[l] = mem_circular_bufferI[l][(jj_cb + index) & (

const_circularBufferDim - 1)];
333   opdQ[l] = mem_circular_bufferQ[l][(jj_cb + index) & (

const_circularBufferDim - 1)];
334   if (j == index)
335   {

336   reg_accI[l] = symbI * tapVI - symbQ * tapVQ;
337   reg_accQ[l] = symbI * tapVQ + symbQ * tapVI;
338   }

339   else

340   {

341   reg_accI[l] = opdI[l] * tapVI - opdQ[l] * tapVQ;
342   reg_accQ[l] = opdI[l] * tapVQ + opdQ[l] * tapVI;
343   }

344   }

345   
346   for (unsigned int i = 0; i < const_numCluster; i++)
347   {

348   accI += reg_accI[i];
349   accQ += reg_accQ[i];
350   }

351   }

352   
353   mem_Y_out_symb_real[i] *= (txAntennaIndex != 0);
354   mem_Y_out_symb_imag[i] *= (txAntennaIndex != 0);
355   mem_Y_out_symb_real[i] += accI;
356   mem_Y_out_symb_imag[i] += accQ;
357   
358   j = (j + 1) & (const_singleCircularBufferDim - 1);
359   }

360   
361   circBuf = j;
362   
363   saveTdl:
364   for (int idx = 0; idx < const_numCluster; ++idx)
365   {

366   unsigned chIdx = const_nTxAntennas * const_nRxAntennas * idx +

const_nTxAntennas * rxAntennaIndex + txAntennaIndex;
367   mem_tdlChannelCoefOld_real[chIdx] = mem_tapVectorI[idx];
368   mem_tdlChannelCoefOld_imag[chIdx] = mem_tapVectorQ[idx];
369   }

370   }

371   }

372   
373   if (applyChannel)
374   {

375   outYoutSymb:
376   for (unsigned int i = BUFFER_SIZE * rxAntennaIndex; i < BUFFER_SIZE * (

rxAntennaIndex + 1); ++i)
377   {



378   #pragma HLS LOOP_TRIPCOUNT min = dim_OutBuffer max = dim_OutBuffer
379   #pragma HLS UNROLL factor = 8
380   Y_out_symb_real[i] = mem_Y_out_symb_real[i % BUFFER_SIZE];
381   Y_out_symb_imag[i] = mem_Y_out_symb_imag[i % BUFFER_SIZE];
382   }

383   }

384   }

385   
386   outTdl:
387   for (unsigned int i = 0; i < col_size; ++i)
388   {

389   out_tdlChannelCoefReal[i] = buff_tdlChannelCoef_Real[i];
390   out_tdlChannelCoefImag[i] = buff_tdlChannelCoef_Imag[i];
391   }

392   
393   if (applyChannel)
394   {

395   outTdlOld:
396   for (unsigned int i = 0; i < size_tdlChannelCoefOld; ++i)
397   {

398   tdlChannelCoefOld_real[i] = mem_tdlChannelCoefOld_real[i];
399   tdlChannelCoefOld_imag[i] = mem_tdlChannelCoefOld_imag[i];
400   }

401   
402   circular_buffer_position[0] = circBuf;
403   }

404   }

405   }
406   
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