
Doctoral Dissertation

Doctoral Program in Electrical Engineering (35thcycle)

Improving Quality of Results (QoR)
for High-Level Synthesis (HLS)

based FPGA designs

By

M. Usman Jamal

Supervisor(s):
Prof. Luciano Lavagno, Supervisor

Doctoral Examination Committee:
Prof. Roberto Passerone, Referee, Universita degli Studi di Trento
Prof. Mohammad Mozumdar, Referee, California State University at Long Beach
Prof. Mario R. Casu, Politecnico di Torino
Prof. Mihai T. Lazarescu, Politecnico di Torino
Dr. Osama B. Tariq, Newcastle University

Politecnico di Torino

2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

M. Usman Jamal
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my loving parents

Acknowledgements

I extend my heartfelt and sincere, gratitude and appreciation to my advisor, Prof.
Luciano Lavagno , for his exceptional guidance, unwavering support, and significant
contributions throughout the completion of this thesis. His mentor-ship and expertise
have been instrumental in achieving this milestone. I consider myself fortunate to
have had the privilege of working under his guidance.

I would specially like to thank, Giovanni Brignone, with whom I had the pleasure
to work with. I would also like to express my gratitude to my friends, Weixi, Filippo,
Teodoro, and other colleagues for their support and camaraderie.

Lastly, I sincerely acknowledge the love and encouragement of my family during
this challenging process.

Abstract

High-level synthesis (HLS) is an Electronic design automation (EDA methodology
that work towards designing complex digital systems using high level programming
languages like C, C++ or SystemC and automatically transforms them into a hardware
description language (HDL) in a relatively short time. This not only increases
designer productivity but also helps in exploring different designs faster and trade
offs between cost and performance. One of the open issues of HLS is the memory
bandwidth bottleneck which limits the performance which is extremely important for
the memory bound algorithms. Thus, designs implemented on Field-programmable
gate array (FPGA) via HLS suffer from this bandwidth bottleneck and off chip
memory latency. Current HLS tools are incapable of automatically exploiting the
memory hierarchy on FPGAs and the only way to exploit the memory hierarchy is
in a scratchpad fashion, but this requires considerable design effort and therefore,
time-consuming. Secondly, the existing HLS tools currently exhibit a deficiency in
providing dependable estimates of final Quality of results (QoR), thereby impeding
designers ability to make well-informed decisions regarding the trade-offs between
cost and performance.

This thesis explores and examines both these issues and addresses them by
developing solutions in order to overcome aforesaid matters in question.

The first part of this thesis addresses the issue of off-chip memory latency and
bandwidth bottlenecks in FPGA designs implemented via HLS. We propose an
automated FPGA memory management approach using a fully-configurable source-
level cache in Xilinx Vitis HLS. The primary objective of our cache implementation
is to minimise the amount of design effort required while enabling the designer to
focus on algorithmic optimizations, specifically for memory access patterns that are
data-dependent or irregular in nature. Experimental results shows that our cache

vii

implementation improve the performance of different benchmarks by up to 60 times
compared to the out-of-the-box HLS solution.

The second part pertains to the enhancement of QoR estimation in HLS. For
this purpose, by taking advantage of the widespread use of Machine learning (ML),
we propose Graph neural network (GNN)-based model that learn and predict post-
implementation QoR using pre-schedule control data flow graphs (CDFGs) and HLS
optimization directives. Experimental results show that our model can estimate the
timing and resource usage of a previously unseen design (i.e, a completely new
CDFG) within milliseconds with high accuracy, reducing prediction errors by up to
74 % compared to the estimate generated by the HLS tool.

Contents

List of Figures xiii

List of Tables xviii

1 Introduction 2

1.1 High-level synthesis . 2

1.2 Problem Statement . 4

1.3 Contribution . 5

1.4 Thesis Structure . 6

2 Array-Specific Dataflow Caches for HLS of Memory-Intensive Algo-
rithms on FPGAs 9

2.1 Related Work . 10

2.2 Dataflow Cache . 12

2.2.1 Dataflow cache implementation 16

2.3 Multi-Level Cache . 18

2.4 Multi-Port Cache . 20

2.5 Experiments . 22

2.5.1 Reference designs . 24

2.5.2 Matrix Multiplication . 26

2.5.3 2D Convolution . 37

x Contents

2.5.4 Bitonic Sorting . 42

3 GNN-based Prediction Model for HLS QoR 48

3.1 Background . 50

3.1.1 Low Level Virtual Machine 50

3.1.2 Design as Graph . 51

3.1.3 Embedding Layer . 52

3.2 Graph Neural Network . 52

3.2.1 Graph Neural Network Models Variants 54

3.2.2 Graph Convolutional Network 54

3.2.3 Dynamic Graph Attention Network 55

3.2.4 Graph Isomorphism Network 55

3.2.5 Deep Adaptive Graph Neural Network 56

3.3 Transductive and Inductive Learning 56

3.4 Related work . 57

3.5 DataSet Generation . 59

3.5.1 Data Collection . 59

3.5.2 Graph Generation . 62

3.6 Features . 64

3.7 Model . 65

3.8 Experimental Results . 69

3.8.1 Setup . 69

3.8.2 Model Evaluation and Model Selection 71

3.8.3 Generalization and Comparison 75

4 Conclusions and Future Work 79

4.1 Array-Specific Dataflow caches . 79

Contents xi

4.2 GNN based QoR Prediction . 81

References 83

List of Figures

1.1 Vitis HLS workflow [56] . 3

2.1 Our cache embedded in a hardware (HW) setup. 10

2.2 Configurable address bit mapping. 14

2.3 Baseline Dataflow cache architecture, and its extensions. 15

2.4 Multiple-reader dynamic RAM (DRAM)-mapped array, associated
with our cache. 21

2.5 Block design with three dynamic RAM (DRAM) arrays. 23

2.6 MatMult: sequence of addresses of B accessed during the first 8
iterations, where B ∈ R4×8 has a 4-set direct-mapped cache. 27

2.7 MatMult: content of level 1 (L1) caches of A during the first iter-
ations, where A ∈ R4×8 is associated with a four-port single-line
cache with eight words. PTn identifies the n-th port. The green
boxes represent elements that read during execution, red boxes are
elements loaded in cache but never accessed. The numbers inside the
boxes are the addresses of the elements of the A matrix. ITi highlight
the elements accessed in parallel at the i-th iteration. 29

2.8 MatMult: tested dataflow architectures. 31

xiv List of Figures

2.9 MatMult: performance gain (tex relative to Baseline) with respect to
area cost (average of lookup tables (LUTs), flip-flops (FFs), block
RAMs (BRAMs), and digital signal processing units (DSPs) usage
relative to Baseline). StdMatMult Single-level is labelled level 2
(L2):WORDS, Horizontal is level 1 (L1):WORDS, and Tiled is level 1
(L1)tld:WORDS (WORDS are the number of words per line of B and
C caches). BlkMatMult Single-level is labelled level 2 (L2)blk:BLK,
and Multi-level is level 1 (L1)blk:BLK (BLK are the block sizes).
The numbers over the markers are the unrolling factors. 32

2.10 MatMult: power, performance, and area (PPA) of some significant
test cases. tex and E are relative to the Baseline. The resource usages
are relative to the total resources provided by the target FPGA. . . . 32

2.11 BlkMatMult: regression estimating the resource usage with respect
to the execution time of the test cases with our caches. The dashed
vertical line highlights the execution time of the Manual test case.
The dots are the real data, the lines are the regression predictions. . . 33

2.12 MatMult: power, performance, and area (PPA) of some test cases
related to the RTLcache case. tex and E are relative to the Baseline
(Blk). 34

2.13 MatMult: execution time with respect to level 2 (L2) cache request-
response distance. 37

2.14 Conv2D: performance gain with respect to area cost. Single-level
Cache is labelled as level 2 (L2):WORDS, and Multi-level as level 1
(L1):WORDS. The WORDS suffix stands for the number of words
per line of the A cache. 40

2.15 Conv2D: power, performance, and area (PPA) of some significant
test cases. 40

2.16 Conv2D: regression of resource usage with respect to the execution
time of the test cases with our caches. 41

2.17 BitSort: performance gain with respect to area cost. Single-level
Cache is labelled as level 2 (L2):WORDS, and Multi-level as level 1
(L1):WORDS. The WORDS suffix stands for the number of words
per line of the a cache. 44

List of Figures xv

2.18 BitSort: power, performance, and area (PPA) of some significant test
cases. 44

2.19 BitSort: execution time with respect to level 2 (L2) cache request-
response distance. 45

3.1 Overall framework flow and the relationship between the general
HLS-based hardware design work flow (left-hand side) and our pro-
posed framework (right-hand side) for estimating quality of results
(QoR) of an HLS-based design. 49

3.2 A general graph neural network model [29] 54

3.3 An High-level synthesis (HLS) design example with its graph rep-
resentation (a) shows the HLS code for an implementation of dot
product with two sample synthesis directives provided as an in-
put to the HLS tool (b) shows its graph representation based on
an intermediate-representation (IR) which is extracted after the
HLS front-end compilation (c) shows the local and global features
used by the model. Local features are extracted directly from the
intermediate-representation (IR) graph. Global features are user-
defined synthesis directives. 63

3.4 General structure of the framework to evaluate different graph neural
network (GNN) models. Features are passed to the trainable em-
bedding layer to create their dense vector representations. This
vector representation with the corresponding HLS intermediate-
representation (IR) based graph is fed as an input to GNN model.
A pooling operation is applied across all the nodes to create a sin-
gle graph-level feature vector which is fed to four separate multi-
layer perceptrons (MLPs) for each prediction objective (lookup table
(LUT), flip-flop (FF), digital signal processing unit (DSP) and critical
path (C.P.)). 66

3.5 Training phase of the proposed framework. 67

3.6 Inference phase of the proposed framework. 68

xvi List of Figures

3.7 Performance comparison of different GNN-based predictive models
for lookup table (LUT), flip-flop (FF), digital signal processing unit
(DSP) and critical path (C.P.) with HLS Baseline on the test set (the
lower the better). Only Local Features are considered. 71

3.8 Quality of results (QoR) prediction improvements of different GNN-
based predictive models for lookup table (LUT), flip-flop (FF), digi-
tal signal processing unit (DSP) and critical path (C.P.) with respect
to HLS Baseline on the test set. Only Local features are used. 72

3.9 Performance comparison of different GNN-based predictive models
for lookup table (LUT), flip-flop (FF), digital signal processing unit
(DSP) and critical path (C.P.) with HLS Baseline on the test set (the
lower the better). In addition to Local features, Global features are
also considered to evaluate their impact on performance. 73

3.10 Quality of results (QoR) prediction improvements of different GNN-
based predictive models for lookup table (LUT), flip-flop (FF), digi-
tal signal processing unit (DSP) and critical path (C.P.) with respect
to HLS Baseline on the test set. In addition to Local features, Global
features are also used to evaluate their impact on performance. . . . 73

3.11 Performance comparison of best performing GNN-based predictive
models for lookup table (LUT), flip-flop (FF), digital signal pro-
cessing unit (DSP) and critical path (C.P.) with HLS Baseline (the
lower the better). A 5-fold cross-validation with the holdout set is
performed. Both Local and Global features are considered. 74

3.12 Quality of results (QoR) prediction improvements of best performing
GNN-based predictive models for lookup table (LUT), flip-flop (FF),
digital signal processing unit (DSP) and critical path (C.P.) with
respect to HLS Baseline. A 5-fold cross-validation with the holdout
set is performed. Both Local and Global features are used. 75

3.13 Quality of results (QoR) prediction improvements of the selected
GNN-based predictive model for lookup table (LUT), flip-flop (FF),
digital signal processing unit (DSP) and critical path (C.P.) with
respect to HLS Baseline. A 5-fold cross-validation over the whole
dataset is performed. 76

List of Figures xvii

3.14 Quality of results (QoR) prediction improvements of our best per-
forming GNN-based model for lookup table (LUT), flip-flop (FF),
digital signal processing unit (DSP) and critical path (C.P.) with
respect to HLS Baseline and the state-of-the-art on Unseen Kernels. 77

4.1 Speedup of the tested benchmarks. 80

List of Tables

2.1 StdMatMult: tested cache configurations. 30

2.2 BlkMatMult: tested cache configurations. 30

2.3 MatMult: maximum achievable clock frequency of some test cases.
The relative maximum clock frequency is normalized over the max-
imum clock frequency of the advanced extensible interface (AXI)
adapter (330 MHz). 36

2.4 MatMult: Performance achieved for some test cases. 36

2.5 Conv2D: tested cache configurations. 39

2.6 Conv2D: maximum achievable clock frequency of some test cases. . 41

2.7 BitSort: tested cache configurations. 43

2.8 BitSort: maximum achievable clock frequency of some test cases.
The relative maximum clock frequency is normalized over the max-
imum clock frequency of the advanced extensible interface (AXI)
adapter. 46

2.9 BitSort: Performance achieved for some test cases. 46

3.1 Comparison of ML-based Approaches for high-level synthesis (HLS)
Prediction Tasks . 59

3.2 HLS-based Designs used in DATASET 59

3.3 Synthesis Pragma configurations 61

3.4 Overall Summary of designs in our DATASET 61

3.5 Local Features: Nodes and Edges 65

List of Tables xix

3.6 Inference time for the proposed model vs HLS time per design point 69

Acronyms

API application programming interface

AXI advanced extensible interface

BRAM block RAM

C.P. critical path

CC clock cycle

CPU central processing unit

DAGNN deep adaptive graph neural network

DDR4 double data rate 4

DRAM dynamic RAM

DSE design space exploration

DSP digital signal processing unit

EDA electronic design automation

FF flip-flop

FIFO first-in first-out

FPGA field-programmable gate array

GAT dynamic graph attention network

GCN graph convolutional network

List of Tables xxi

GIN graph isomorphism network

GNN graph neural network

HBM high-bandwidth memory

HLS high-level synthesis

HW hardware

II initiation interval

IR intermediate-representation

ISA Instruction Set Architecture

L1 level 1

L2 level 2

LCS load, compute, store

LLVM low level virtual machine

LSU load-store unit

LUT lookup table

MAC multiply-acccumulate

ML machine learning

MLP multi-layer perceptron

OS operating system

PPA power, performance, and area

QoR quality of results

RAW read after write

RMSE root mean square error

RO read-only

xxii List of Tables

RTL register-transfer level

RW read-write

SSA static single assignment

SW software

WO write-only

Chapter 1

Introduction

1.1 High-level synthesis

With the rapid expansion of hardware development and the increase in design
complexity, there is a growing need for more efficient and effective design techniques.
Traditionally, hardware design has been an expensive and a time-consuming process
requiring a high level of expertise and specialized knowledge. In recent years,
HLS has emerged as an important method for hardware design, allowing high-
level programming languages such as C/C++ to be automatically transformed into
hardware designs [10]. The introduction of HLS has allowed designers to create
hardware using high-level programming languages, allowing both faster design
and faster simulation than register-transfer level (RTL). By using HLS, designers
can benefit from the abstraction and modularity of high-level languages, enabling
them to produce more sophisticated, powerful, and portable hardware designs in
less time. In addition, designers can use HLS directives (also called pragmas) to
optimize hardware implementations by tradeoffs between cost and performance. This
flow allows designers to quickly and effectively experiment with different design
configurations before working on the final implementation.

The primary purpose of HLS to streamline the hardware design process, enabling
designers to allocate more attention to algorithmic-level design while abstracting
the intricacies of low-level implementation. By raising the level of abstraction,
HLS aims to enhance productivity, reduce design cycles, and enable efficient design
exploration and optimization.

1.1 High-level synthesis 3

High-level synthesis tools utilise sophisticated algorithmic techniques to analyse
and optimize high-level descriptions and help in mapping complex digital designs
onto Field-programmable gate array (FPGA) or ASIC (Application-Specific Inte-
grated Circuit) architectures in a relatively short time. These tools perform various
optimizations, including scheduling, resource allocation, loop pipelining and loop
unrolling etc, to generate efficient RTL designs.

Furthermore, HLS provide opportunities for hardware/software co-design. With
HLS, designers can seamlessly integrate hardware accelerators or custom processing
units with software components, enabling the design of heterogeneous systems
that leverage the strengths of both hardware and software. This approach helps in
attaining the goal of best design point while considering various limitations such as
cost, performance, power-consumption and time-to-market [48].

Fig. 1.1 Vitis HLS workflow [56]

4 Introduction

Fig. 1.1 shows the Vitis HLS development flow which has been used in this
research work.

1.2 Problem Statement

HLS can greatly decrease the amount of design effort, allowing the use of conve-
nience software (SW)-like tools and development processes but it still suffers from
some issues.

An HLS open issue is the off-chip memory latency and bandwidth bottleneck,
which limits performance and is especially critical for memory-bound algorithms.
The FPGA memory system is composed of two main kinds of resources: fast small
on-chip memories (registers and block RAMs (BRAMs)), and slow large off-chip
memories (dynamic RAMs (DRAMs)) interfaced through double data rate 4 (DDR4)
or high-bandwidth memory (HBM) protocols (the latter characterized by even larger
latency [51]). Current HLS tools, in particular those from the leading producer
Xilinx, allow the designer to exploit this memory hierarchy only manually, in a
scratchpad-like way, which often requires significant design and verification effort.
This makes harder to achieve the deployment of accelerated applications using
FPGAs for a large number of applications. Our work aims directly at filling this
gap, thus making HLS design more software-like for use cases in which the ultimate
performance need not be achieved, but design time and effort are paramount.

Another issue is the prediction of post-implementation Quality of results. Current
commercial HLS tools do not provide reliable estimates of the final QoR [9]. As
a result, designers are unable to make cost/performance trade-offs and guarantee
that the design will meet the requirements because the estimation results in terms
of timing and resource usage often significantly differ from the actual QoR after
implementation. Graphs are a widely used model in EDA tools [40]. In recent years,
EDA tools have recently begun to use machine learning approaches, especially for
analysis tasks [35]. Recent research has shown that graph-based machine learning
techniques can be successfully applied to various phases of the EDA flow, including
logic synthesis [20, 50], placement and routing [37, 38, 19, 31], power estimation
[33], verification [62], and testing [41]. By using the Graph neural network, in this
work, we aim to predict the post-implementation QoR of an HLS design, starting
from both the user C/C++ code and the user-defined optimization directives.

1.3 Contribution 5

1.3 Contribution

In this thesis, the focus of the research is to improve Quality of results (QoR) for
High-level synthesis (HLS) based Field-programmable gate array (FPGA) designs by
overcoming the issues discussed in Section 1.2. One part of the research deals with
the automation of FPGA memory system while the other part proposes a graph neural
network-based framework to predict the post-implementation quality of results for a
given HLS-based design.

The first part (Chapter 2) of the thesis proposes array-specific dataflow caches to
automate FPGA memory management to overcome the off-chip memory latency and
memory-bandwidth bottleneck, thus allowing the designer to focus on algorithmic
optimizations. For this, a cache module is developed which works as an interface
with the off-chip memory (DRAM), accessible through an advanced extensible
interface (AXI) bus and sores its data to on-chip blocks RAMs (BRAM) and registers.
We first developed a single port cache module in the form of a C++ class which
is configurable through templates in terms of number of sets, ways, words per
line and replacement policy. During the second phase, the emphasis was put on
performance optimization. For this purpose, a multi-level cache is proposed which
increases the memory hierarchy of the cache by adding a level 1 (L1) on the top
of dataflow cache (level 2 cache). This architecture helps in further reducing the
memory access latency and provides a basis for building a cache architecture with
multiple concurrent accesses. Dataflow and Multi level caches provide a maximum
throughput of one access per iteration. This is not efficient for cases where the array
is accessed multiple times in a single iteration. Therefore, a multi-port cache is
developed that enables multiple concurrent read accesses to the same array. This
is implemented as an extension of the multi-level cache. The number of ports can
be configured through a template parameter. This also allows to overcome Vitis
HLS limitation of a single reader per AXI interface. To adhere to the HLS high-
productivity philosophy, we paid a special attention to the HLS user-friendliness in
terms of (a) configurability (the cache characteristics can be set through parameters),
(b) ease of use (the cache can be inserted into existing designs with just a few lines of
boilerplate code), (c) observability (cache information critical for parameter tuning,
e.g., hit ratio, can be profiled during SW simulation).

The second part (Chapter 3) proposes a graph neural network (GNN) based
framework is developed to predict the post-implementation QoR from the pre-

6 Introduction

schedule control data flow graph (CDFG) representation of an HLS design targeting
FPGA implementation, also considering the user HLS optimization directives. For
this purpose, a dataset is built from a variety of designs covering a wide range of
different applications from the well known HLS benchmark suites. To create multiple
hardware implementations for each design, different HLS synthesis directive and
various clock periods are used. Each design point is synthesized and implemented
with Vitis HLS and Vivado respectively. A method is proposed that exploits a graph
based representation of an HLS design that includes both program semantics and
synthesis directive information but not scheduling and binding information. This
graph is extracted from the low level virtual machine (LLVM) model generated by
the open source front end of Vitis HLS. QoR prediction problem is formulated as
a multi-objective regression task to estimate post-implementation resource usage
and timing without invoking the back end of the HLS tool. A multi-objective GNN
based learning model is trained to learn the underlying heuristics and optimizations
techniques to predict the desired objectives, namely lookup table (LUT), flip-flop
(FF), digital signal processing unit (DSP) and critical path timing (C.P.).

1.4 Thesis Structure

The main objective of this research is to improve Quality of results (QoR) for High-
level synthesis (HLS) based Field-programmable gate array (FPGA) designs by
studying the two important problems in HLS which are related to memory bandwidth
bottleneck and estimation of final QoR. In this regard, the thesis is divided into two
major parts and structured in different chapters as follows:

• Chapter 1 presents a thesis statement and offers an overview of the underlying
motivation that motivates the research.

• Chapter 2 proposes an automated FPGA memory management flow using a
user-friendly cache in order to improve the performance of memory-bounded
algorithms.

• Chapter 3 proposes a GNN-based predictive model to predict the post-implementation
QoR.

1.4 Thesis Structure 7

• Chapter 4 summarizes the thesis work and offers insights into potential avenues
for future research.

Chapter 2

Array-Specific Dataflow Caches for
HLS of Memory-Intensive Algorithms
on FPGAs

Part of the work described in this chapter has been previously published in [5].

According to the best design practice from Xilinx [56], efficient HLS kernels
should comply with the load, compute, store (LCS) paradigm to mitigate the off-chip
memory bottleneck, i.e., access external DRAM only by load and store dataflow
tasks, which are then responsible for buffering on the on-chip memory the data
consumed and produced by the compute task(s). The main drawback of the LCS
approach is the significant design effort needed for converting a generic algorithm
into LCS form, which often requires full rewriting and redesigning of the source
code.

A cache is in general helpful to implement well-performing designs in a short
time. Moreover, techniques such as manual buffering or polyhedral transformations
[11, 45] cannot be applied to programs with irregular or input-dependent memory
access patterns, and are only partially implemented in commercial design tools such
as Vitis HLS. Therefore, a cache could be the only solution for quickly optimizing
the performance of such designs using commercial tool flows.

The aim of the work in this chapter is to automate efficient off-chip memory
accesses through an easy to use and fully customizable cache system for HLS, which
works as an interface with the off-chip DRAM, accessible through an AXI bus, and

10
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Compute

Logic

&
memory

AXI
masterAXI bus

DRAM
controller

CPU

DRAM

Programmable LogicProcessing System

HLS kernel

Cache

System-on-Chip

Fig. 2.1 Our cache embedded in a hardware (HW) setup.

stores its data to on-chip BRAMs and registers. Figure 2.1 shows the resulting system
when our cache is used to accelerate an HLS kernel. Our cache is placed within the
HLS kernel. The computation logic of the kernel accesses the cache, rather than the
AXI bus directly.

From a high-level point of view, the cache has the objective of isolating the
off-chip memory accesses into a dataflow task, in accordance with the LCS pattern.

From a low-level point of view, the cache has the dual purpose of (a) reducing
the number of DRAM accesses, i.e., the data stored in the cache is reused as long as
it hits, and only the misses need to access the DRAM, and (b) optimizing DRAM
accesses, i.e., the DRAM is accessed in lines (aligned groups of consecutive words),
which allows taking advantage of AXI bursts and interface widening, even with hard
to analyze or totally irregular access patterns.

2.1 Related Work

The need for automated memory management for FPGAs is attested by the multiple
works on this topic.

Matthews et al. [44], Choi et al. [7] designed FPGA-based caches. These works
differ from ours as they are aimed to accelerate specific soft-processors implementa-
tions instead of generic HLS designs.

Jo et al. [27] developed an OpenCL framework whose memory subsystem inserts
direct-mapped, single-level, and single-port caches in between the kernel accessing
the memory, and the external memory. They implemented at RTL both the kernels

2.1 Related Work 11

(which consist of a predefined set of intellectual property blocks) and the cache. Our
work therefore differs both in terms of cache architecture complexity (our caches
provide set associativity, two levels, and multiple ports), and in terms of technology
(our cache is compatible with any HLS design).

Several works focused on optimizing the memory accesses through RTL cache
modules inserted between the kernel accessing the off-chip memory and the off-chip
memory interface. These modules can be either inserted manually or through a
dedicated framework, such as the one proposed by Adler et al. [3] which virtualizes
the FPGA memory hierarchy and includes some caching capabilities. Winterstein
et al. [52] improved this framework specifically for HLS by allocating the unused
BRAMs to maximize the cache sizes. However, an RTL cache module fails to
provide significant speedup when coupled with an HLS kernel. For example, the
Vitis HLS scheduler, unaware of the external cache module, inserts a minimum
latency between a memory request operation and its corresponding response based
on the architecture of the memory adapter, thus preventing the exploitation of the
cache acceleration. Our cache is instead implemented at the source level, and it is
specifically designed to avoid scheduling based on the worst case (cache miss). This
allows the HLS tool to optimize the circuit accordingly.

We ran some experiments adding an RTL cache module (specifically the Xilinx
System Cache [60]) to the interface of an HLS kernel. The results show that the RTL
cache did not provide any advantage. It simply introduced an overhead, as discussed
in Section 3.8.

Cong et al. [11], Pouchet et al. [45] designed a workflow for improving data
locality of HLS programs through compiler-level loop transformations, taking ad-
vantage of the polyhedral representation. Moreover, they exploited this locality by
automatically inserting on-chip buffers. These techniques are limited to programs
with affine loop bounds and memory accesses, while a cache can be used with any
program, including those with irregular or data-dependent memory accesses. A
cache could benefit from their improved locality by achieving higher hit ratios with
simpler cache configurations.

The Intel HLS [25] tool provides load-store units (LSUs) that can cache DRAM
data in BRAM in case of read-only (RO) memories. Our experiments described in
Section 3.8 suggest that the tool fails to determine the optimal cache configuration
and the user has limited control to improve it.

12
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

The work by Ma et al. [39] is closest to ours. They proposed an open-source
array-specific HLS cache module as a set of C++ classes, compatible with Vivado
HLS 2016.2. Different from our work, the cache logic is inlined in the application.
While this helps keeping the hit latency low in simple cases, it violates the LCS
pattern. Moreover, their architecture increases the pipelining complexity. To mitigate
this problem, they mapped the whole cache data to registers. However, in the
experiments discussed in Section 3.8, we verified that the pipelines embedding their
cache require higher initiation intervals (IIs), or are not pipelineable at all. Moreover,
mapping all the data to registers limits strongly the cache size scalability due to HW
resources constraints. Instead, our architecture completely hides the cache logic and
the memory interface from the main computations performed by the kernel. This
allows the HLS to synthesize pipelines with low II while mapping cache data to
cheaper BRAMs. Finally, their cache automatically handles only one access port
thus providing only one read or write per clock cycle (CC). The only way to perform
multiple accesses per CC is to guarantee that other accesses, beyond the first one in a
given CC, will always be hits, and make it explicit through the retrieve and modify

functions. This is both difficult and error-prone to analyze manually in complex
cases.

2.2 Dataflow Cache

The Dataflow cache architecture (Fig. 2.3a) is isolated into a dedicated dataflow
process. An HLS kernel that is configured to use the cache for one of its top-level
DRAM-mapped arrays is split into two dataflow tasks: (i) the compute task, which
includes all the application logic except for the external memory interface, which is
replaced with the simpler cache interface, and (ii) the cache task (or, in general, one
cache task per array that uses the cache), which buffers data and interfaces with the
external DRAM. Thus, the kernel automatically complies with the LCS architecture
without any manual code change.

This architecture is characterized by information flow from the compute task to
the cache (the address to be accessed and the data to be written), and from the cache
to the compute task (the read data).

Algorithm 1 describes the Dataflow cache functionality. The cache task waits for
a request and executes the standard cache operations: it checks if the request is a hit

2.2 Dataflow Cache 13

Algorithm 1 Dataflow cache functionality.
Require: Compute needs to access an array associated with Cache at address addr in read mode (op = R) or write mode

(op =W , data = element to be written).
Ensure: The operation requested by Compute is fulfilled by Cache.

procedure COMPUTE
. . .
Send op to Cache
Send addr to Cache
if op =W then

Send data to Cache
else

Wait for Cache response
Receive data from Cache

end if
. . .

end procedure

procedure CACHE
Wait for Compute request
Receive op from Compute
Receive addr from Compute
if op =W then

Receive data from Compute
end if
line : addr ∈ line
if line⇒MISS then

if lineold⇒ DIRTY then
DRAM(lineold)← BRAM(lineold)

end if
BRAM(line)← DRAM(line)

end if
if op =W then

BRAM(addr)← data
else

data← BRAM(addr)
Send data to Compute

end if
end procedure

14
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs
TAG

MSB

SET OFF
LSB

(a) Standard mapping.

SET
MSB

TAG OFF
LSB

(b) Swapped mapping.

Fig. 2.2 Configurable address bit mapping.

LISTING 2.1 Source code modifications for accelerating the compute function with our
cache.
+#include "cache.h"
+
+typedef cache <DATA_TYPE , RD_ENABLED , WR_ENABLED ,
+ MAIN_SIZE , N_SETS , N_WAYS , N_WORDS_PER_LINE , LRU ,
+ SWAP_TAG_SET , LATENCY > cache_type;

template <typename T>
void compute(T &a) {

for (auto i = 0; i < (N - 1); i++) {
#pragma HLS pipeline

a[i] = a[i + 1];
}

}

extern "C" void top(DATA_TYPE *a) {
#pragma HLS interface m_axi port=a bundle=gmem0

+#pragma HLS dataflow
+ cache_type a_cache(a);
- compute(a);
+ cache_wrapper(compute <cache_type >, a_cache);
}

or a miss, it updates the cache data structures (valid bits, dirty bits, tag bits, . . .), and
it performs the DRAM read or write operation. For reads, it also sends back the data.
The compute task sends the read or write request to the cache. For reads, it waits for
the response containing the read data.

The Dataflow cache uses the set associative mapping and the write-back consis-
tency policy. It is configurable in terms of (a) word size, (b) number of words per line,
sets, and ways, (c) replacement policy, least recently used or first-in first-out (FIFO),
(d) address bit mapping, standard (Fig. 2.2a) or swapped (Fig. 2.2b, convenient in
use cases like the one discussed in Section 2.5.2, i.e., a matrix accessed by columns).
It can implement a fully associative policy if the number of sets is one, or a direct
mapped policy if the number of ways is one.

Listing 2.1 highlights the modifications needed for accelerating the compute func-
tion with our cache. Users simply need to (1) set the cache parameters through the
cache class template arguments, and (2) instantiate the cache and call the compute

function through the cache_wrapper function in a dataflow region.

2.2 Dataflow Cache 15

(a) Dataflow cache. (b) Multi-level cache. (c) Multi-port cache.

Fig. 2.3 Baseline Dataflow cache architecture, and its extensions.

It is worth noting that the compute function is unchanged, since we overloaded
the operator[], like Ma et al. [39], to allow using a cache object as if it were a
traditional array.

In the presence of feedback between different tasks, the HLS-generated HW
circuit would deadlock. Moreover, we have to carefully specify cycle by cycle the
scheduling of the operations to avoid losing performance or causing unexpected
deadlocks.

To avoid the deadlock, the write request and read response must be scheduled
into separate pipeline stages by:

1. Explicitly declaring a dependency between write request and read response
using the write_dep and read_dep FIFO access functions provided by Vitis
HLS to define a partial ordering between accesses to different streams.

2. Setting the dependency distance to 1 CC by delaying it with the reg function,
also provided by Vitis HLS.

While this solution guarantees the functionality of the generated HW, it fails
to achieve high throughput. In fact, assuming that both the Core and the Memory
Interface are pipelined with an II of 1 CC (i.e., the most performance-critical case)
and the Memory Interface pipeline depth is D > 1, the HLS scheduler schedules
the read response in the CC following the write request because it is unaware of

16
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

the latency between write request and read response. This reduces the overall
performance.

However, if we set the dependency distance between write request and read
response to D CCs, the scheduler inserts D− 1 pipeline stages between them. In
each CC, the Core writes one request and receives one response. Our solution allows
optimally exploiting the pipeline with an II of 1 CC, without incurring stalls.

2.2.1 Dataflow cache implementation

The Dataflow cache is implemented as a C++ class, compatible with Vitis HLS. All
the configurable parameters are set using class template arguments.

The cache task provides high throughput in steady-state (it serves a hitting request
in one CC), since it is optimally pipelined with II = 1CC.

AXI interface

The Memory interface task accesses the AXI bus at every request from the Core
task. To save resources, it is not pipelined. Pipelining would rarely help, because
a well-configured cache should never get multiple sequential misses, especially
considering that there is one dedicated cache per source code array.

All DRAM accesses handle whole cache lines, which are sequential and aligned
to the line size. To enable the HLS tool to infer that accesses are aligned, we explicitly
zeroed the least significant bits of the address. This enables automated port widening
and burst inference. If the line size is at most the maximum AXI interface width, it is
accessed in a single request, else (more commonly) it is accessed in a burst request.

By default, Vitis HLS assumes AXI latency 64 CCs. This is useful to send
pipelined requests on the AXI interface. However, our Memory interface is not
pipelined. Thus, we set the AXI latency to zero, which makes the Memory interface
stall after issuing an AXI request and resume right after the response, saving resources
without losing performance.

2.2 Dataflow Cache 17

Cache interface

To interface with the cache, we exposed the user-callable application programming
interfaces (APIs) for managing requests and responses between the compute task
and the cache.

• The get function accepts as input the address to read from cache and returns
the read data. Internally it sends a read request (writing the address to the
request FIFO), waits for the request-response latency (discussed later) in case
of a hit or for longer in case of a miss, reads the data from the response FIFO,
and returns the received data.

• The set function accepts as input the address and the data to write to the
cache. Internally, it sends a write request (writing the address and the data to
the request FIFO).

We overloaded the operator[] to automatically call the get and set functions,
e.g., in Listing 2.1, a[i] = a[i + 1] is automatically compiled to a.set(a.get(i

+ 1), i).

As discussed in Section 2.2, the request-response distance should match the
cache latency. The request-response distance value has an importance in terms of
achieving a steady state without stalling. If the correct distance value is not set, it
prevents exploiting the cache pipelining. In Section 2.5.2, the impact of this value
on the execution time is studied. However, cache latency varies at runtime, as hits
and misses (which have different latencies) are interleaved, depending on the access
pattern and the cache configuration. Moreover, we need to distinguish between the
different memory access types.

• For RO caches, the optimal distance value is typically around the average
memory access latency lat

lat = latcache ·hit ratio+ latDRAM ·missratio. (2.1)

latcache varies from 3 CCs to 5 CCs based on cache configuration and timing
constraints, latDRAM depends on the target FPGA board, and hit ratio and
missratio depend on the application and cache configuration.

18
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

• Read-write (RW) caches are affected by data dependencies with distances
corresponding to the request-response distance. The latter should therefore
balance cache performance and computation task performance (task II depends
on the dependency distance). Experimental results (Section 2.5.4) show that a
2 CCs distance typically gives the best overall performance.

• For write-only (WO) caches, the request-response distance has no meaning
because there is no response.

A template parameter is available to the users willing to fine-tune the distance of
the caches in their designs.

2.3 Multi-Level Cache

The Multi-level cache extends the memory hierarchy of the cache by adding a level
1 (L1) cache on top of the Dataflow cache, i.e., the level 2 (L2) cache, as shown in
Fig. 2.3b. This architecture is aimed at reducing the latency between a read access
request and the corresponding response.

We are not interested in further accelerating the writes. Write latency has a
negligible impact on performance, considering that they never stall the compute task
(there is no response from the cache to the main computation), provided that the
request FIFO is deep enough to accommodate all the pending writes. Moreover,
write accesses are usually less frequent than reads.

Finally, the Multi-level cache is the starting point for enabling multiple concurrent
accesses in the Multi-port cache described in Section 2.4.

Similarly to the cache by Ma et al. [39], the L1 cache is inlined in the compute
logic. This reduces the latency of the memory accesses by avoiding the inter-task
communication. Even if the L1 cache is inlined, the compute task pipeline II is
preserved, unlike the cache by Ma et al. [39]. This is because (i) in case of miss the L1
cache interacts with the L2 cache instead of with the external DRAM. Furthermore,
(ii) the L1 cache complies with the write-through policy (the L1 cache aims at
accelerating only the reads), introducing fewer dependencies compared with the
write-back policy.

2.3 Multi-Level Cache 19

To implement the Multi-level cache architecture, we extended the Dataflow cache
source code. In the Dataflow cache, the response flows from the L2 to the compute
task and contains a single word. In the Multi-level cache architecture, the response
flows from the L2 to the L1 cache, and holds a whole cache line.

The Dataflow cache APIs were updated to support the L1 cache by adding the
get_line function. Moreover, we upgraded the implementation of the get and set

functions, while keeping their signature unchanged.

• The get_line function receives as input the address to read from cache and
returns the line to which the address belongs. In particular, if the address hits
the L1 cache, the line is read from the L1 cache. Otherwise, the request is
issued to the L2 cache, as with the get function of the Dataflow cache.

• The get function calls the get_line function and returns the requested word
only.

• The set function marks the L1 cache line as dirty, if it hits, according to the
write-through policy. Additionally it forwards the write request to the L2 cache
as with the Dataflow cache.

The L1 cache supports the set-associative mapping policy. The number of sets
and ways of the L1 cache are configurable through template parameters. Note that
when the L1 cache parameters are set to zero, the resulting architecture is equivalent
to the Dataflow cache.

Similarly to the L2 cache, the L1 cache memory is bound to BRAMs and the
helper data is bound to registers. Both the L1 and the L2 caches use the same memory
technologies, therefore the L1 cache could have comparable or even bigger size than
the L2 cache. In experiment sections, Section 2.5.2 and Section 2.5.3, there are cases
where L1 cache is larger than L2 cache. In these cases, L2 cache works as a memory
arbiter. The results show the advantage in terms of performance.

According to our experimental results (Section 2.5.2), when an L1 cache is
included on top of the L2 cache a convenient default value for the L2 request-
response distance is 3 CCs for RO accesses, and 2 CCs for RW accesses.

Note that the default RW distance is lower than the RO one because higher
distance values would make the read after write (RAW) dependencies distance longer
and reduce the overall performance, as discussed in Section 2.2.1.

20
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

2.4 Multi-Port Cache

The Dataflow and Multi-level cache architectures provide a maximum throughput
of one access per CC. This is efficient for pipelined algorithms, which access each
cached array at most a single time per iteration. To efficiently implement algorithms
which access the same array multiple times per iteration (either due to the user code
or after a loop unrolling), we designed the Multi-port cache that enables multiple
concurrent read accesses to the same array.

With the Multi-port cache architecture, a shared L2 cache exposes an arbitrary
number of ports, each with a private L1 cache, as shown in Fig. 2.3c. The private
L1 caches enable scheduling multiple memory accesses at the same time, without
increasing the II of the compute task.

Hence, unlike Ma et al. [39], the L1 cache does not use directly the single DRAM
interface, but goes through the shared L2 cache. Thus, we do not require users to
manually mark explicitly some accesses as “always hit” (through the retrieve and
modify functions), which would require extensive manual analysis and code changes
and may lead to incorrect behavior.

To keep the cache logic simple and to avoid negatively affecting the compute
task II, we did not implement any coherency mechanism. To guarantee the correct
functionality, the Multi-port cache only supports read accesses. The extension to
concurrent write or RW accesses is left to future work.

The Multi-port cache is implemented as an extension of the Multi-level cache.
The number of ports P can be configured through a template parameter. When it is
set to one, the architecture is equivalent to the Multi-level cache.

The Core task of the L2 cache was updated to cycle over each port, i.e., it
sequentially serves the requests from the first to the last port, before restarting from
the first one. Any port that did not send any request is skipped. This code pattern
(hidden from the user behind the cache operator[]) can be optimized by the HLS
tool to statically schedule P array accesses with II = 1CC in most cases.

For each port, we allocate a private L1 cache, and the related pair of request and
response FIFOs (to communicate with the shared L2 cache).

2.4 Multi-Port Cache 21

(a) Dataflow graph.

void compute0 (c a c h e _ t y p e &c , . . .) {
. . .
c . g e t (addr , 0) ;
. . .

}

void compute1 (c a c h e _ t y p e &c , . . .) {
. . .
c . g e t (addr , 1) ;
. . .

}

void t o p (d a t a _ t y p e * a r r , . . .) {
#pragma HLS i n t e r f a c e m_axi p o r t = a r r
#pragma HLS d a t a f l o w

c a c h e _ t y p e c ;
c . run (a r r) ;
compute0 (c , . . .) ;
compute1 (c , . . .) ;

}

(b) Source code.

Fig. 2.4 Multiple-reader DRAM-mapped array, associated with our cache.

The access port can be selected either automatically or manually, when the user-
friendly automatic port selection does not lead to the desired II for the algorithm
pipeline.

• With the automatic selection, each call to get_line (which is in turn called
by get) is automatically associated to a specific port by means of a member
variable holding the port index, which is updated after each access. This is
implemented directly in the get function, that keeps track of the last accessed
port and uses this information to bind a specific request to a specific port.

• The manual port selection allows one to explicitly inform the tool that each
access uses different address and data streams, and that the dependencies
are false. It is implemented by adding the port parameter (which identifies
the number of the port to be accessed) to the get function (in this case the
operator[] cannot be used).

In addition to the performance advantage, our Multi-port cache allows overcom-
ing the Vitis HLS limitation of a single reader per AXI interface. Indeed, each L2
cache (associated with a single AXI interface) can expose multiple ports in the form
of pairs of request/response FIFOs. These ports can connect the L2 cache to one or
more compute dataflow tasks. Since the L2 cache ignores the ports with no pending
requests, the compute tasks can seamlessly issue requests to the L2 cache at different
rates. Figure 2.4 shows the dataflow graph of a kernel with a DRAM-mapped array
that is read from two compute dataflow tasks, through a single L2 cache. Addition-

22
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

ally, each compute task has its own private L1 cache. In Vitis HLS, if designers need
to access the same DRAM array from different dataflow tasks, they must instantiate
multiple AXI bundles, associated to the same underlying buffer in DRAM. Note
that, due to the loose synchronization between dataflow tasks in Vitis HLS, both a
dual-ported cache and a pair of bundles can be used meaningfully only for read-only
arrays. Otherwise enforcing cache coherency or preserving data dependencies in a
shared array between two processes would be very difficult.

2.5 Experiments

To evaluate the impact of the proposed cache architecture in terms of power, perfor-
mance, and area (PPA), we used the cache in some memory-intensive benchmarks
with very different access patterns. We selected two “classical”, frequently used
algorithms (matrix multiplication and convolution), since they are widely known and
provide good and easy to understand examples. In practice, our caches should be
used either (i) for seldom used algorithms, for which a manual optimization effort
would not be justified, or (ii) for those that do not exhibit regular access patterns,
such as bitonic sorting, which is our third benchmark.

We synthesized the benchmarks as Vitis HLS kernels and deployed them on a
physical FPGA board to measure the resulting PPA. The experimental workflow
consists of: (1) SW simulation, (2) HLS synthesis, (3) logic synthesis, place and
route, and bitstream generation, and (4) execution and measurements.

Steps (1) and (2) were performed in Vitis HLS 2021.2 (using Vitis flow defaults),
and step (3) in Vivado 2021.2 [57] (using Vivado defaults for synthesis and im-
plementation). All steps targeted the Avnet Ultra96v1 [4] board, hosting a Xilinx
Zynq UltraScale+ FPGA. Figure 2.5 shows the block design for implementing an
HLS kernel with three DRAM-mapped arrays (such as the matrix multiplication and
convolution test cases). Given an algorithm (which determines the number of inputs
and outputs, and by consequence of the AXI interfaces), the HLS kernel exposes the
same interface, even when it is optimized with our cache, since the cache is fully
implemented with HLS inside the kernel itself.

The board runs the PYNQ Linux 2.7.0 [59] operating system (OS), whose PYNQ
library is exploited in step (4).

2.5 Experiments 23

Fig. 2.5 Block design with three DRAM arrays.

We collected the data from different sources:

• SW simulation reports

– Hit ratio: ratio between the number of requests that hit data in cache and
the number of all requests for a specific cache memory.

• Post place and route reports

– Area: number of LUTs, FFs, BRAMs and DSPs required to implement
the whole design.

– Maximum clock frequency: the maximum frequency at which timing was
met by the implementation flow, achieved by gradually increasing the
clock frequency constraint. The frequency higher bound is 333 MHz,
that is the maximum supported frequency for the AXI adapter (330 MHz
in practice, due to the clock generation logic limited precision).

• Runtime measurements

– Performance (tex): execution time, measured between the assertions of
the start and the end signals of the kernel.

– Power (P): average power, measured by the sensor on the system power
rail during kernel execution. Note that the selected board does not
allow measuring the power of the FPGA only, therefore P is the power
consumed by the whole board, including the CPU.

The measured quantities are not fully deterministic. The timer measuring
tex may not be stopped at the exact time when the kernel asserts its end

24
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

signal, since it checks this condition through polling and the CPU might be
busy running other tasks of the OS. Also, power consumption is affected by
different factors, such as the CPU load or the temperature. Thus, each runtime
measurement was taken five times and is collected as the average and the
standard deviation of these measurements. The energy consumption (E) is
computed as the average energy, E := Ptex.

To limit the design space, in all the cache configurations we used a default L2
cache request-response latency. For single-level RO configurations, we computed the
default distance value as 7 CCs, according to (2.1), where the latcache was set to the
worst-case, i.e., 5 CCs, latDRAM was set to 40 CCs according to the measurements
by Marjanovic [43] of the read latency of the high-performance coherent ports of
the target board, and hit ratio was assumed to be 95 % (these values were only used
to set the cache parameters, while the runtime results reflect the real latencies and
hit ratios). The experiments show that these approximations achieve good pipeline
performance. A significant performance degradation is observed only if one assumes
very low (1 CC), or very high (more than latDRAM) distance values. We used a
default distance of 3 CCs for multi-level, and 2 CCs for RW cache configurations.
WO cache configurations are unaffected by the distance parameter.

In order to compare directly the cycle count performance of the various designs,
we constrained the clock frequency to 100 MHz in all experiments, except for those
that are related to the timing impact of the cache (Sections 2.5.2 to 2.5.4).

We manually chose the cache parameters, such as the line size, number of lines,
and so on, based on the array access patterns. However, there are multiple methods
to automate the selection of these parameters, as attested by a large amount of past
work, for example those analyzed by Upadhyay and Sudarshan [49]. Integration of
those approaches with our cache is left to future work.

2.5.1 Reference designs

We compared the collected results with:

1. Baseline: the kernel generated by default by the HLS tool, whose computa-
tional core directly accesses the external DRAM through the AXI interface.

2.5 Experiments 25

2. RTLCache: the Baseline HLS kernel, with the Xilinx System Cache RTL
module inserted in between the HLS kernel and the AXI DRAM interface
(when the cache module configurability allows a setup with non-zero hit
ratios).

3. Manual: the kernel manually optimized for buffering the data using the on-chip
memories (when the memory access patterns allow it).

Ma et al. cache reference

Ma et al. [39] reported results collected from unreliable sources. They collected
the area figures from post-HLS-synthesis reports, which are estimations known to
be affected by significant errors. Moreover, they estimated performance and power
data using RTL simulation, which is based on simplified models (especially for the
AXI model, the DRAM controller, and the DRAM itself), which are crucial in this
context. Additionally, due to the long execution time of the RTL simulations, their
input sizes were limited to small values.

Nevertheless, since their code is open source, we tried to generate results compa-
rable to ours by applying our implementation flow to their cache. We first adapted
their cache, (designed for Vivado HLS) to Vitis HLS. The changes involved only their
APIs, not the HW. However, using Vitis HLS for the kernels embedding their cache
generates very poorly performing HW, e.g., the matrix multiplication innermost
loop achieved II = 141CC instead of 1 CC in their tests using Vivado HLS, and the
bitonic sorting loop was not pipelined at all in Vitis HLS. Therefore, we stopped the
implementation flow at the HLS synthesis step, since their cache would perform
even worse than the Baseline that achieves better pipelining, and we avoided any
further comparison.

Intel cache reference

To evaluate the caching capabilities of the Intel LSUs [24], we used the Intel Dev-
Cloud environment, which provides the Intel HLS tool and enables remote access
to an Intel programmable acceleration card hosting an Arria 10 GX FPGA. The
tool automatically allocates an LSU for each off-chip array, and each RO LSU can
include a cache. The cache characteristics (number of words per line, number of sets,

26
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Algorithm 2 Standard Matrix Multiplication
Require: A ∈ RN×M ,B ∈ RM×P,C ∈ RN×P

Ensure: C = A×B
procedure STDMATMULT(A,B,C)

LOOP_I: for (i← 0; i < N; i← i+1) do
for (j← 0; j < P; j← j+1) do

acc← 0
LOOP_K: for (k← 0;k < M;k← k+1) do

acc← acc+A[i][k] ·B[k][j]
end for
C[i][j]← acc

end for
end for

end procedure

number of ways, . . .) are determined automatically and are not reported to the user,
who can optionally control only the total cache size.

We analyzed the PPA impact of the LSUs by running some experiments using
a standard matrix multiplication (Algorithm 2). The tested configurations include
(a) the automatic test case, in which we did not set the cache sizes, (b) the low-
er-bound test case, in which we set all the cache sizes to 0, and (c) the upper-bound
test case, in which we set the caches to fit the whole matrices. Compared with the
lower-bound test case, the automatic case is 8 % faster and the upper-bound is 80 %
faster. The automatic cache parameters selection is therefore suboptimal. Most
probably because one matrix is accessed by columns, hence with limited locality.
Moreover, the performance advantages are quite limited even in the upper-bound
case, when the matrices are entirely stored to cache. This is because the Intel Arria
10 has a low off-chip memory latency, from 3 CCs to 23 CCs [23].

We did not have access to an Intel FPGA with a higher off-chip memory latency,
which would make the cache impact more significant. Thus, the low-latency of
off-chip memory coupled with the limited control over the LSU cache parameters
prevented us from performing a more thorough comparison with our cache.

2.5.2 Matrix Multiplication

The Matrix Multiplication (MatMult) standard implementation (StdMatMult) is
shown in Algorithm 2. It accesses each matrix according to a specific pattern:

• A is accessed by rows, and each row is accessed P times, for a total of N×
M×P memory accesses. Its cache should fit a matrix row at a time.

2.5 Experiments 27

(a) Standard address bit map. (b) Swapped address bit map.

Fig. 2.6 MatMult: sequence of addresses of B accessed during the first 8 iterations, where
B ∈ R4×8 has a 4-set direct-mapped cache.

• B is accessed by columns, and each column is accessed P times, for a total
of N ×M×P memory accesses. Since the matrix is stored in row-major
order, the spatial locality is very poor. To get a non-zero hit ratio, we need
either an expensive M-way fully associative cache, or a more efficient M-set
direct-mapped cache exploiting the swapped address bit mapping (Fig. 2.2b).

With an M-set direct-mapped cache, the standard address bit mapping (Fig. 2.6a)
results in subsequent accesses to the same set with new tags leading to con-
tinuous cache line overwriting and misses. Our custom address bit mapping
(Fig. 2.6b) enables instead subsequent reads to access distinct sets with the
same tag and yields a high hit ratio.

• C is accessed sequentially, once. A single-line n-word cache provides n−1
hits every n accesses, making write burst inference easier.

The StdMatMult algorithm requires the B cache to have M lines. While this is
feasible with relatively small matrices, it cannot scale up with matrix sizes.

To make the cache configuration independent of M, and ensure scalability, we also
implemented a blocked matrix multiplication (BlkMatMult) algorithm (Algorithm 3).
It is a commonly used efficient implementation of MatMult, which accesses all
matrices by blocks, instead of columns, to improve the spatial locality of accesses to
the B matrix:

• A is accessed by sub-rows, within a block. Each sub-row, of BLK elements, is
accessed BLK times. Therefore, the A cache should fit a block row at a time.

28
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Algorithm 3 Block Matrix Multiplication
Require: A ∈ RN×M ,B ∈ RM×P,C ∈ RN×P,BLK ∈ N
Ensure: C = A×B

procedure BLKMATMULT(A,B,C)
for (j j← 0; j j < P; j j← j j+BLK) do

for (kk← 0;kk < M;kk← kk+BLK) do
LOOP_I: for (i← 0; i < N; i← i+1) do

for (j← j j; j < j j+BLK; j← j+1) do
acc← 0
LOOP_K: for (k← kk;k < kk+BLK;k← k+1) do

acc← acc+A[i][k] ·B[k][j]
end for
C[i][j]←C[i][j]+acc

end for
end for

end for
end for

end procedure

• B is accessed by sub-columns, within blocks. Each block is accessed N times,
therefore its cache should fit one block at a time.

• C has the same access pattern as A, but its cache requires up to BLK ways
to provide non-zero hit ratio when the partial unrolling (discussed later) is
applied to the innermost loop.

In all implementations, the algorithm innermost loop (LOOP_K) was pipelined with
II = 1. The implementation was further optimized through loop unrolling by a factor
UF.

For StdMatMult, we considered two kinds of unrolling:

• Horizontal: unrolls the innermost loop (LOOP_K). To keep II = 1 for LOOP_K,
each iteration of the unrolled loop is assigned to one of the UF A and B cache
ports.

Figure 2.7a highlights a fundamental limitation of this unrolling approach
when combined with multi-port caches. The data is replicated in each cache,
but only one every UF elements is actually used, thus leading to significant
resource and performance waste.

• Tiled: divides the LOOP_I iteration count by UF and adds a fully unrolled inner
loop [15]. All iterations of that new loop use the same element of B and a
different one of A. Therefore, the B cache is single-port, while the A cache has
UF ports. With this approach, each A port contains different data (Fig. 2.7b).

2.5 Experiments 29

(a) Horizontal unrolling. (b) Tiled unrolling.

Fig. 2.7 MatMult: content of L1 caches of A during the first iterations, where A ∈ R4×8

is associated with a four-port single-line cache with eight words. PTn identifies the n-th
port. The green boxes represent elements that read during execution, red boxes are elements
loaded in cache but never accessed. The numbers inside the boxes are the addresses of the
elements of the A matrix. ITi highlight the elements accessed in parallel at the i-th iteration.

The hit ratio is preserved as the unrolling factor scales up and no resources are
wasted. All the elements loaded into the cache are actually used, allowing the
algorithm to run at full speed for as many iterations as the words per cache
line, significantly improving the performance with the same resource usage as
Horizontal.

In BlkMatMult we exploited the Tiled unrolling only, for similar reasons to Tiled
StdMatMult. To maximize the performance, we doubled UF until we used all the
resources of our (small) FPGA.

All the MatMult tests use the same matrix sizes, N = P = 1024, M = 128, and
data type of 32-bit integers.

Table 2.1 shows the cache configurations tested with StdMatMult, while Table 2.2
summarizes the BlkMatMult ones. We tested block sizes of 16, 32, and 64.

As a reference, we implemented the Baseline test case. The unrolling, applied to
the Baseline test case, would be detrimental, since the II of LOOP_K would dramati-
cally increase due to structural dependencies on the AXI interface (which exposes
one port only), resulting in performance degradation. Therefore, our cache enabled
us to conveniently unroll the algorithm loop, without any change to the algorithm
itself.

The Manual test case optimizes the design according to the LCS pattern. All the
off-chip memory accesses use the maximum AXI interface bitwidth of the board
(128 bits, or four 32-bit elements per transaction). The B load task reads the B matrix

30
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Table 2.1 StdMatMult: tested cache configurations.

L2 L2 L1 L1Implementation Array Words sets ways sets ways

A M/2 2 1 0 0

32 M 1 0 0B 64 M 1 0 0

32 1 1 0 0

Single-level
(L2)

C 64 1 1 0 0

A M/2 1 1 2 1

32 1 1 M/UF 1B 64 1 1 M/UF 1

32 1 1 0 0

Horizontal
(L1)

C 64 1 1 0 0

A M/2 1 1 2 1

32 1 1 M 1B 64 1 1 M 1

32 1 UF 0 0

Tiled
(L1tld)

C 64 1 UF 0 0

Table 2.2 BlkMatMult: tested cache configurations.

L2 L2 L1 L1Implementation Array Words sets ways sets ways

A BLK 1 1 0 0
B BLK 1 BLK 0 0

Single-level
(L2blk)

C BLK 1 BLK 0 0

A BLK 1 1 1 1
B BLK 1 1 1 BLK

Multi-level
(L1blk)

C BLK 1 BLK 0 0

2.5 Experiments 31

(a) Our cache. (b) LCS.

Fig. 2.8 MatMult: tested dataflow architectures.

once, four columns at a time. The A load task reads the A matrix multiple times, in
bursts. The compute task computes 16 multiply-acccumulate (MAC) operations per
CC. The store task stores four elements of C at a time.

Figure 2.8 compares the dataflow architecture generated with our caches with the
LCS one. The similarity between the two architectures is very strong: the only major
difference is the absence of the request FIFO from the compute to the load tasks, in
case of the LCS architecture. This is because the input data address computation
must be factored out of the compute task and moved into the load and store tasks
to implement the LCS paradigm. This refactoring is the major design cost that our
cache alleviates.

For the RTLcache, due to the limited configuration options of the Xilinx System
Cache (it provides only two or four ways, and it does not support our custom address
bit mapping), the best performing configuration in that case is the BlkMatMult
algorithm, with block size equal to four.

The cache configurations selected for the test cases reach high hit ratios, above
96 % for StdMatMult and 99 % for BlkMatMult. Figure 2.9 shows the performance
gain, i.e., tex,Baseline/tex, with respect to the area cost, i.e., (LUT/LUTBaseline +

FF/FFBaseline +BRAM/BRAMBaseline +DSP/DSPBaseline)/4, of the test cases em-
bedding our caches. Most of the points are in the “green” area, where tex speedup is
larger than the resource overhead.

Figure 2.10 shows the detailed data for some significant test cases, including
(a) the reference test cases, i.e., Baseline and Manual, (b) the least resource-demand-

32
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

0 10 20 30 40 50 60
Area cost

0

10

20

30

40

50

60
Pe

rf
or

m
an

ce
ga

in

1
1

2
42

4

2

1

2

4

8
16

1

2

4

8

16

1

2

Baseline
L2:32
L2:64
L2blk:16
L2blk:32
L1:32
L1:64
L1tld:32
L1tld:64
L1blk:16
L1blk:32
L1blk:64

Fig. 2.9 MatMult: performance gain (tex relative to Baseline) with respect to area cost
(average of LUTs, FFs, BRAMs, and DSPs usage relative to Baseline). StdMatMult Single-
level is labelled L2:WORDS, Horizontal is L1:WORDS, and Tiled is L1tld:WORDS (WORDS
are the number of words per line of B and C caches). BlkMatMult Single-level is labelled
L2blk:BLK, and Multi-level is L1blk:BLK (BLK are the block sizes). The numbers over the
markers are the unrolling factors.

tex

E

LUT

FF

BRAM

DSP

0.2
0.4

0.6
0.8

L1blk:32 L1blk:32Baseline Manual L2:32 (8 ports) (16 ports)

tex (s) 31.98 0.13 3.72 0.64 0.52
P (W) 4.35 4.83 4.56 4.67 4.68
E (J) 139.3 0.62 16.96 2.99 2.41

LUT 3104 21259 30534 42954 58515
FF 4292 56905 50866 66810 81863

BRAM 1.5 8 22.5 52 211.5
DSP 3 48 3 24 48

Perf. gain 1.0 246.0 8.6 50.0 62.7
Area cost 1.0 10.4 9.4 18.0 48.7

Fig. 2.10 MatMult: PPA of some significant test cases. tex and E are relative to the Baseline.
The resource usages are relative to the total resources provided by the target FPGA.

2.5 Experiments 33

0 1 2 3 4
Execution time (s)

0

100

200

300

400

500

R
es

ou
rc

e
us

ag
e

(%
)

LUTs
FFs
BRAMs
DSPs

Fig. 2.11 BlkMatMult: regression estimating the resource usage with respect to the execution
time of the test cases with our caches. The dashed vertical line highlights the execution time
of the Manual test case. The dots are the real data, the lines are the regression predictions.

ing cache configuration with the StdMatMult algorithm, i.e., L2:32, (c) the most
convenient cache configuration in terms of performance gain and area cost ratio,
i.e., L1blk:32 (8 ports), and (d) the fastest cache configuration, i.e., L1blk:32 (16
ports). Compared with the test cases with caches, the Manual design provides better
overall QoR. The Manual solution is a tailored solution not only to optimize memory
accesses but also to attain higher parallelism. This requires extensive rewriting of
the algorithmic code which is time-consuming. In the case of cache, the algorithm
is not modified but only the loops are unrolled. The cache can be combined with
other optimizations to achieve manual-like performance. In case of irregular memory
accesses, caches are the solution as demonstrated in Section 2.5.4. However, the aim
of our work is not to achieve better PPA than manual optimizations, but rather to get
significantly better QoR (with respect to the Baseline), while greatly reducing the
design effort.

Note that increasing the number of ports of the caches, and hence their resources,
uniformly increases performance. Figure 2.11 shows the results of using regression
to predict the resource usage to achieve a given execution time with our cache.
According to this model, to achieve performance on par with the Manual reference

34
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

tex

E

LUT

FF

BRAM

DSP

0.2
0.4

0.6
0.8

1.0

Baseline (Blk)
Baseline (Std)
RTLcache
L2blk:4

Fig. 2.12 MatMult: PPA of some test cases related to the RTLcache case. tex and E are
relative to the Baseline (Blk).

design, our caches would require 4 times the available BRAMs, while the other kinds
of resources would be sufficient.

Matrix Multiplication RTLcache test case

The Xilinx System Cache supports only two or four ways. Therefore, the theoretically
most performant setup is with BlkMatMult with block size four (which is still too
small to provide large performance gains). The caches associated with A and C
should be single-line, while the cache associated with B should provide four ways,
each of four words. However, the Xilinx System Cache minimum size is 32 kB, with
at least two ways and 64 B per line, therefore the caches of the RTLcache test case
are dramatically oversized. On the contrary, the test case with our cache (L2blk:4),
thanks to its fine-grained configurability, was set up to allocate only the resources
that are actually needed. Figure 2.12 summarizes the results of these tests. For
reference, besides the usual Baseline (Std) test case, that implements an unoptimized
version of StdMatMult algorithm, we also included the Baseline (Blk) test case,
which implements the unoptimized BlkMatMult algorithm with block size four. We

2.5 Experiments 35

included it to quantify the impact of the Xilinx System Cache on the very same
kernel, directly connected to the AXI interface.

Both the Baseline (Blk) and the RTLcache designs are significantly slower than
the Baseline (Std). For the Baseline (Blk), this is because the BlkMatMult is not
meant for running without a cache. For the RTLcache, this is because the RTL cache
module is inserted a posteriori (after HLS), thus the kernel is synthesized assuming
that all the memory references access the off-chip memory. Therefore, it is scheduled
to wait for the expected latency of the AXI master controller that is used to access
DRAM, which has a minimum latency, hardcoded into the HLS scheduler, of at least
7 CCs. Thus for cache hits it waits for much longer than needed, while for misses
it waits for shorter than needed (the cache introduces an additional latency when
missing), and then it stalls until the memory request is fulfilled. On the other hand,
our dataflow protocol hides from the computation process schedule the fact that it is
accessing DRAM, thus allowing it to achieve the best throughput in case of cache
hits.

The result is that the RTL cache is not only unable to provide any advantage, but
it also slightly worsens the performance and the energy consumption. Moreover, it
also introduces a large area overhead, due to the oversized caches.

The L2blk:4 test case is significantly faster than the Baseline (Blk), proving the
effectiveness of our HLS cache implementation with respect to the System Cache.
However, it is not much faster than the Baseline (Std), since the small block size
limits the performance advantage.

Matrix Multiplication timing analysis

To evaluate the impact of our cache on the critical path, we measured the maximum
clock frequency of some test cases. Table 2.3 reports the results of the experiments.
The Baseline design is very simple: it consists of a loop that computes a MAC
operation per iteration using a DSP (which is one of the fastest resources on the
FPGA). Therefore, it is able to achieve the maximum clock frequency of 330 MHz.
With the StdMatMult, all the instantiated caches are direct-mapped (including the B
one, thanks to our custom address bit mapping). The resulting design can still run at
330 MHz, even in the Multi-level configuration. The BlkMatMult test cases require
32-way fully-associative caches. The high number of ways makes these caches inher-

36
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Table 2.3 MatMult: maximum achievable clock frequency of some test cases. The relative
maximum clock frequency is normalized over the maximum clock frequency of the AXI
adapter (330 MHz).

Test case Maximum clock
frequency (MHz)

Relative maximum
clock frequency (%)

Baseline 330 100
Manual 330 100
L2:32 330 100
L1:32 330 100

L2blk:32 260 79
L1blk:32 (1 p) 250 76
L1blk:32 (16 p) 150 45

Table 2.4 MatMult: Performance achieved for some test cases.

Test case Maximum clock
frequency (MHz) tex (s)

L2:32 330 1.95
L1:32 330 1.94

L2blk:32 260 1.13
L1blk:32 (1 p) 250 1.05

L1blk:32 (16 p) 150 0.36

ently more complex than the direct-mapped ones, therefore they introduce a critical
path which limits the maximum clock frequency. The Single-level configuration
can run at a clock frequency up to 260 MHz. For the Multi-level configurations, the
single-port test case can reach a clock frequency of 250 MHz. The extreme case
with 16 ports can only reach a maximum clock frequency of 150 MHz. This is not
only due to the more complex cache architecture, but also because of the algorithm
unrolling, and the high resource utilization.

The performance i.e. execution time, achieved for different cache test cases at
maximum clock frequencies achieved is shown in Table 2.4. On the other hand, due
to memory bandwidth limitation, the performance remains the same even at higher
clock frequencies for both Baseline and Manual.

Matrix Multiplication request-response distance

To check the efficiency of the approximations for the default L2 cache request-
response distance of RO cache configurations, we characterized the tex with respect
to the distance in some test cases. For the Single-level configurations, Fig. 2.13a
shows that in all test cases a distance of 1 CC results in a very high tex since it prevents

2.5 Experiments 37

1 3 5 7 9 11 13 15 17 19
Distance (CC)

0

2

4

6

8

10

E
xe

cu
tio

n
tim

e
(s

)
L2:32
L2:64

L2blk:16
L2blk:32

(a) Single-level MatMult.

1 3 5 7 9 11 13 15 17 19
Distance (CC)

0

2

4

6

8

10

E
xe

cu
tio

n
tim

e
(s

)

L1:32 (1 p)
L1:64 (1 p)
L1:64 (2 p)
L1blk:16 (1 p)
L1blk:16 (2 p)
L1blk:32 (2 p)

(b) Multi-level MatMult.

Fig. 2.13 MatMult: execution time with respect to L2 cache request-response distance.

exploiting the cache pipelining, as discussed in Section 2.2. The tex significantly
decreases with the distance up to 5 CCs to 7 CCs. For higher distances, the tex of
the StdMatMult test cases is approximately constant, while the one for BlkMatMult
increases again. These results suggest that our choice of a default distance of 7 CCs
is effective.

For the Multi-level configurations, Fig. 2.13b shows that the tex of StdMatMult is
roughly constant with the distance, apart from the distance of 1 CC which is slightly
slower. The BlkMatMult tex is instead directly proportional (by a small factor) to
the distance. Any distance value between 1 3CCs should be a balanced choice. Our
default value of 3 CCs is therefore well suited.

2.5.3 2D Convolution

Algorithm 4 implements the 2D Convolution (Conv2D). Each matrix is characterized
by a specific memory access pattern.

• A is accessed according to a window pattern with size P×Q and stride one.

38
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Algorithm 4 2D convolution
Require: A ∈ RN×M ,ker ∈ RP×Q

Ensure: B ∈ RN×M : B = A∗ ker
procedure CONV(ker,A,B)

for (i← 0; i < N; i← i+1) do
for (j← 0; j < M; j← j+1) do

tmp← 0
LOOP_M: for (m← 0;m < P;m← m+1) do

LOOP_N: for (n← 0;n < Q;n← n+1) do
ii← i+m−Q/2
j j← j+n−P/2
if (ii≥ 0 & ii < N & j j ≥ 0 & j j < M) then

tmp← tmp+A[ii][j j] · ker[m][n]
end if

end for
end for
B[i][j]← tmp

end for
end for

end procedure

A cache associated with A requires P ways to achieve a high hit ratio, since
all the lines belonging to a window can be stored in the cache, effectively
implementing a line buffer without source code changes.

Cache lines sizes of n×Q enable prefetching n windows.

To keep in cache windows which are not aligned to the cache line size, the
cache should have two sets.

• ker is accessed N×M times, by rows. Since its size is typically small, its
cache can be configured to fit the whole ker in the L1 cache.

• B is sequentially accessed once per element. B has a low impact on perfor-
mance, since it is accessed only once every P×Q accesses to A and ker. A
single-line cache helps HLS to efficiently infer bursts.

All test cases use the same 8-bit integer data type and matrix sizes: N = 1080,
M = 1920, P = Q = 15. In all implementations, the innermost loop (LOOP_N) was
pipelined with II = 1CC.

In the tests including our cache, each matrix was associated with a cache con-
figured according to the previous considerations. Table 2.5 summarizes the tested
cache configurations, where n is 1, 2, 4, 8, and 16. Since our cache only supports
power-of-2 words, ways, and sets, all the parameters were rounded to the next power
of 2.

2.5 Experiments 39

Table 2.5 Conv2D: tested cache configurations.

L2 L2 L1 L1Implementation Array Words sets ways sets ways

A n ·Q 2 P 0 0

ker Q 1 1 P 1Single-level
(L2)

B 32 1 1 0 0

A n ·Q 1 1 2 P

ker Q 1 1 P 1Multi-level
(L1)

B 32 1 1 0 0

With the multi-level test cases, we further improved the performance exploiting
the multi-port feature to enable partial loop unrolling while keeping the II of LOOP_K
at one (by setting the number of ports of A and ker as the unrolling factor). We
unrolled LOOP_M, instead of the innermost LOOP_N, for reasons similar to those
explained in Section 2.5.2, and shown in Fig. 2.7. We tested unrolling factors of 3, 5,
8, and 15 (complete unroll).

The Manual reference design was implemented by Xilinx Inc. [58], according
to the LCS pattern. It is not possible to implement a meaningful RTLcache test
case, since the Xilinx System Cache can only provide up to 4 ways, but the A cache
requires at least 15 ways to achieve a sufficiently high hit ratio.

All tested cache configurations had hit ratios higher than 99 %. Figure 2.14 shows
the trade-offs between performance and area, in different test cases. Figure 2.15
shows the details of some relevant test cases, including (a) the reference designs,
i.e., Baseline and Manual, (b) the least resource-demanding cache configuration, i.e.,
L2:16, (c) a cache configuration balanced between performance and resources, i.e.,
L1:64 (5 ports), and (d) the fastest cache configuration, i.e., L1:64, (15 ports).

Our caches introduce multiple trade-offs in the PPA space, which perform better
than the Baseline case, in exchange for higher resource usage. The Manual design
is significantly faster than all the tested cache configurations, since it is able to
process a whole window per CC (255 MAC operations per CC), while our cache
configurations process at most one window column per CC (15 MAC operations).

Figure 2.16 again shows the results of using regression to predict the resource
usage to achieve a given execution time with our cache. According to the regression
prediction, to achieve performance on par with the Manual reference design, our

40
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

0 10 20 30 40
Area cost

0

10

20

30

40

Pe
rf

or
m

an
ce

ga
in

1

3
5
8

15

1

3

5

8

15

1

3

5

8

15

1

3

5

8

1

3

5

8

Baseline
L2:16
L2:32
L2:64
L2:128
L2:256

L1:16
L1:32
L1:64
L1:128
L1:256

Fig. 2.14 Conv2D: performance gain with respect to area cost. Single-level Cache is labelled
as L2:WORDS, and Multi-level as L1:WORDS. The WORDS suffix stands for the number of
words per line of the A cache.

tex

E

LUT

FF

BRAM

DSP

0.2
0.4

0.6
0.8

L1:64 L1:64Baseline Manual L2:16 (5 ports) (15 ports)

tex (s) 32.69 0.03 8.69 1.60 0.71
P (W) 4.59 4.54 4.55 4.64 4.82
E (J) 150.0 0.1 39.5 7.4 3.4

LUT 3766 6082 21602 30880 59828
FF 4962 12670 30068 46458 79717

BRAM 3 13 8 8 8
DSP 1 225 1 5 15

Perf. gain 1.0 1089.7 3.8 20.4 46.0
Area cost 1.0 65.9 3.9 6.3 12.4

Fig. 2.15 Conv2D: PPA of some significant test cases.

2.5 Experiments 41

0 2 4 6 8
Execution time (s)

0

50

100

150

R
es

ou
rc

e
us

ag
e

(%
)

LUTs
FFs
BRAMs
DSPs

Fig. 2.16 Conv2D: regression of resource usage with respect to the execution time of the test
cases with our caches.

Table 2.6 Conv2D: maximum achievable clock frequency of some test cases.

Test case Maximum clock
frequency (MHz)

Relative maximum
clock frequency (%)

Baseline 330 100
Manual 330 100
L2:16 330 100

L1:16 (1 p) 330 100
L1:64 (15 p) 200 61

caches would require roughly 50 % more LUTs than those available on the target
FPGA, while the other kinds of resources should suffice.

Note that the objective of our cache is not to compete with manually optimized
designs, but rather to introduce new trade-offs between PPA and design effort. Our
caches provided suboptimal results in terms of PPA, but required very low design
effort, while being much more efficient than the designs automatically generated
by the HLS tool, both in terms of execution time, reduced by up to 46 times, and
in terms of energy consumption, reduced by up to 44 times, at the cost of an area
overhead up to 12 times.

2D Convolution timing analysis

Table 2.6 reports the maximum clock frequency achieved by some test cases. Simi-

42
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Algorithm 5 Bitonic sorting
Require: a ∈ RN : N = 2n

Ensure: a[i]≤ a[j],∀i≥ j
procedure SORT(a)

for (b← 1;b < n;b← b+1) do
for (s← b−1;s≥ 0;s← s−1) do

LOOP_I: for (i← 0; i < N/2; i← i+1) do
dir← (i/2b−1)&1
dir← dir∧1
step← 2s

pos← 2i− (i&(s−1))
a0← a[pos]
a1← a[pos+ step]
if (a0 > a1 ̸= dir) then

tmp← a0
a0← a1
a1← tmp

end if
a[pos]← a0
a[pos+ step]← a1

end for
end for

end for
end procedure

larly to the MatMult case, the Baseline design is very simple: it consists of a loop
that computes a MAC operation per iteration using a DSP. Therefore, it can run
at the higher-bound clock frequency of 330 MHz. Even the single-port test cases
(L2:16 and L1:16 (1 p)), despite being characterized by a large amount of cache
ways (16), do not introduce any critical path limiting the frequency below the 100 %.
Only with the multi-port test case (L1:64 (15 p)), which also involves an application
loop unrolling by a factor of 15, we face a frequency degradation of 39 %.

2.5.4 Bitonic Sorting

Bitonic sorting (BitSort) is a sorting algorithm, whose implementation is shown in
Algorithm 5. From the memory access point of view, at each inner loop (LOOP_I)
iteration: (1) a[pos] is read, (2) a[pos+ step] is read, (3) a[pos] is written, and
(4) a[pos+ step] is written. Therefore, the cache associated with the a array should
be set-associative with at least two sets, so that the interleaved accesses to pos and
pos+ step do not overwrite the related cache lines.

In the designs under test, the inner loop was pipelined, but due to the data
dependencies on the a array the pipeline performance is limited. The pipeline
of the Baseline test case (accessing a directly from DRAM) requires a very high
II = 142CCs because it must guarantee the dependency on the slow AXI interface.

2.5 Experiments 43

Table 2.7 BitSort: tested cache configurations.

L2 L2 L1 L1Implementation Words sets ways sets ways

16 1 2 0 0
32 1 2 0 0

Single-level
(L2)

64 1 2 0 0

16 1 2 1 1
32 1 2 1 1

Multi-level
(L1)

64 1 2 1 1

Our cache allows shortening the dependency distance and building a more performant
pipeline, with an II = 6CCs. All the tests use the same data type (32-bit integers)
and sizes (N = 220). Table 2.7 shows the tested cache configurations.

We were unable to implement a Manual design for an optimized reference, since
the irregular access pattern, makes the on-chip data buffering challenging, especially
considering that the array is accessed both in read and in write mode, introducing
data dependencies. We believe that caching is the most convenient solution for
optimizing this algorithm.

The RTLcache test case inserts the Xilinx System cache between the HLS kernel
and the AXI interface. We set the total cache size to 32 kB (the minimum possible),
with 2 ways, 64 words per line, and, by consequence, 128 sets.

The selected cache configurations achieve high L2 hit ratios, above 96 %. The
L1 hit ratios are instead very low, from 8 % to 24 %, since our L1 caches use the
write-through consistency policy.

Figure 2.17 plots the performance gain with respect to the area overhead of each
test case with our cache. All the test cases provide significantly more performance
gains than area cost. The L1 caches introduce a very limited performance advantage,
because of their low hit ratio.

Figure 2.18 reports the full information on (a) the reference designs (Baseline
and RTLcache), (b) the least resource-demanding cache configuration, i.e., L2:16,
(c) the best cache configuration in terms of performance gain and area cost ratio, i.e.,
L2:32, and (d) the fastest cache configuration, i.e., L1:64.

The RTLcache is worse than the Baseline in all dimensions in the PPA space.
This is because the cache module is inserted after HLS, therefore HLS optimizes
the circuit as if all memory accesses were off-chip. In particular, the loop pipeline

44
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

0 2 4 6 8 10 12 14
Area cost

0

2

4

6

8

10

12

14
Pe

rf
or

m
an

ce
ga

in

Baseline
L2:16
L2:32
L2:64
L1:16
L1:32
L1:64

Fig. 2.17 BitSort: performance gain with respect to area cost. Single-level Cache is labelled
as L2:WORDS, and Multi-level as L1:WORDS. The WORDS suffix stands for the number of
words per line of the a cache.

tex

E

LUT

FF

BRAM

DSP

0.2
0.4

0.6
0.8

Baseline RTLcache L2:16 L2:32 L1:64

tex (s) 156.6 156.9 18.6 13.8 11.5
P (W) 4.52 4.54 4.39 4.45 4.64
E (J) 707.8 712.3 81.7 61.5 53.3

LUT 2896 4077 11089 19667 38206
FF 3270 4270 13454 22751 51758

BRAM 1 12 4 4 4
DSP 0 0 0 0 0

Perf. gain 1.0 1.0 8.4 11.3 13.6
Area cost 1.0 3.7 3.0 4.4 8.3

Fig. 2.18 BitSort: PPA of some significant test cases.

2.5 Experiments 45

0 2 4 6 8 10 12 14 16
Distance (CC)

0

5

10

15

20

25

30

E
xe

cu
tio

n
tim

e
(s

)
L2:32
L1:32

Fig. 2.19 BitSort: execution time with respect to L2 cache request-response distance.

is still characterized by a very high II. This is another example showing that it is
counterproductive to insert an RTL cache module a posteriori, after HLS. It is only
introducing overhead, not only in terms of area, but also in terms of tex and power.

On the other hand, our cache improves the performance and the energy con-
sumption by one order of magnitude compared to the Baseline. The RTLcache,
despite having 128 sets instead of 1, consumes significantly less LUTs and FFs
than our cache. It could be useful to combine the advantages of the source-level
implementation with the resource efficiency of the RTL description to achieve the
best performance at the lowest area cost. This could be achieved by exploiting the
Vitis HLS capabilities to embed RTL code within HLS source code.

Bitonic Sorting request-response distance

To evaluate the performance of the default L2 request-response distance for RW
cache configurations (2 CCs), we characterized the tex with respect to distance in a
couple of test cases. As Fig. 2.19 shows, we chose the optimal value that balances
the L2 cache pipeline exploitation (higher distance values better exploit it) and
the algorithm loop II (the distance corresponds to the RAW dependency distance,

46
Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on

FPGAs

Table 2.8 BitSort: maximum achievable clock frequency of some test cases. The relative
maximum clock frequency is normalized over the maximum clock frequency of the AXI
adapter.

Test case Maximum clock
frequency (MHz)

Relative maximum
clock frequency (%)

Baseline 330 100
L2:16 330 100
L1:32 300 91
L1:64 230 70

Table 2.9 BitSort: Performance achieved for some test cases.

Test case Maximum clock
frequency (MHz) tex (s)

Baseline 330 63.4
L2:16 330 10.19
L1:32 300 8.45
L1:64 230 7.62

and, by consequence, to the II). The data points of the multi-level configuration
approximately overlap the single-level ones, because the L1 hit ratio is low. In a test
case with high L1 hit ratio, the optimal distance value would probably be in 1 CC,
since it would not need to exploit the L2 cache, and it could minimize the loop II.

Bitonic Sorting timing analysis

The maximum achieved clock frequencies for some test cases are shown in Table 2.8.
Unlike the previous experiments, we encounter a slight maximum frequency degra-
dation even with single-port cache configurations. This is due to the additional
logic required for supporting both read and write operation within a single cache,
differently from the read-only and write-only caches of MatMult and Conv2D. The
performance i.e. execution time, achieved for these clock frequencies is shown in
Table 2.9.

Chapter 3

GNN-based Prediction Model for
HLS QoR

Part of the work described in this chapter has been previously published in [26].

Current commercial HLS tools do not provide reliable estimates of the final
QoR [9]. As a result, designers are unable to make cost/performance trade-offs and
guarantee that the design will meet the requirements because the estimation results
in terms of timing and resource usage often significantly differ from the actual QoR
after implementation.

In this chapter, we propose a a GNN-based framework to predict the quality of
results of an HLS design based on its HLS intermediate-representation (IR). We
formulate the QoR prediction problem as a multi-objective regression task to estimate
post-implementation resource usage and timing without invoking the back-end of
the HLS tool.

Fig. 3.1 shows our overall framework flow, and also shows the relationship be-
tween the general HLS-based hardware design workflow and our proposed predictive
framework for estimating the QoR of an HLS-based design. Our proposed predictive
framework is shown on the right side of the flowchart, showing both training and
inference flows. In both phases, the IR-based graph is used as input data. During the
training process, in addition to the input data, the corresponding ground truth (i.e.,
the actual number of resources and clock period) is also required, which is extracted
from the post-implementation report. On the other hand, the inference process uses
the trained model to predict the QoR of a new HLS design based on its IR.

49

High-Level Synthesis Tool

Inputs

User defined
HLS directives

Target
Frequency

Implementation

Logic Synthesis

Technology
Mapping

Place and Route

Implementation
Report

(Ground Truth)

Training Inference

GNN-based
Predictive Model Trained Model

Features
(Nodes/Edges)

Labels

HLS C/C++

IR Graph

Predicted
Obj.

HLS Intermediate
Representation (IR)

Scheduling,
Allocation, Binding,

RTL

Fig. 3.1 Overall framework flow and the relationship between the general HLS-based hard-
ware design work flow (left-hand side) and our proposed framework (right-hand side) for
estimating quality of results (QoR) of an HLS-based design.

50 GNN-based Prediction Model for HLS QoR

3.1 Background

3.1.1 Low Level Virtual Machine

Low level virtual machine (LLVM)is a collection of compiler and tool-chain technolo-
gies that facilitate the creation of front-end and back-end components for program-
ming languages across different Instruction Set Architecture (ISA) [2]. The primary
component of the system is a language-independent Intermediate-representation (IR),
which functions as a portable high-level assembly language and can be enhanced
to generate a novel IR. The novel IR can subsequently undergo translation and
integration into platform-specific assembly language code that is contingent upon
the characteristics of the machine.

LLVM is capable of providing the intermediate layers of a compiler system by
accepting an IR code from a compiler and producing an optimized IR. The instruc-
tions are presented in the Static single assignment form (SSA), which encompasses
a language-independent instruction set system. This helps in the examination of the
inter-relationships among different variables as each variable (also referred to as a
register) is allocated only once and subsequently rendered immutable.

LLVM Intermediate Representation

The LLVM infrastructure relies on a language-independent intermediate-representation
which is as an essential component. The LLVM IR is a low-level code representation
and is specifically intended for utilisation within the LLVM compiler framework.
The framework designed to be independent of any particular programming language,
allowing it to effectively represent code written in different programming languages.
The main benefit of the LLVM acIR is its ability to be extracted as a graph, which
can be represented in a number of structures, including a Data Flow Graph (DFG) or
Control Data Flow Graph (CDFG). A Control Data Flow Graph (CDFG) represents
both data and control dependencies and a Data Flow Graph (DFG) only shows the
data dependencies that exist between different instructions in the program. The
utilisation of graphs in performance optimization and analysis of the program proved
to be highly beneficial as they offer invaluable insights into program behaviour.

3.1 Background 51

LLVM IR is commonly encoded in .bc or .ll formats. The .bc is a binary format
that shows greater efficiency in terms of storage and processing capabilities when
handling substantial volumes of code. Instaed, The .ll is a human-readable format
where the program is represented in assembly like instructions which are easier to be
understandable from the programmer point of view. To converting LLVM bit code
(.bc files) into LLVM human-readable bitcode (.ll files), LLVM Disassembler is used
which is one of the integral component of the LLVM compiler infrastructure.

3.1.2 Design as Graph

Most major compiler tools use graphs for optimization and transformation, and the
first step in their compilation process is always to transform the input program into a
IR graph.

Modern HLS tools are designed and based on state-of-the-art compilers such
as LLVM [32] and GCC [18]. The input is a high-level code that represents the
functionality of the design and can be written in programming languages such as
C/C++. The input to the front end of the HLS tool undergoes several IR transfor-
mations, and the final output IR is geared towards hardware circuit generation, for
example by using bit-width-accurate operations such as 7-bit additions. The HLS IR
consists of basic blocks, where each block contains assembler-like instructions with
no incoming or outgoing branches except at the beginning and end of the block. The
HLS IR can be represented as different types of graphs such as control flow, data
flow, and call-flow for specific information extraction.

In the control flow graph, the nodes correspond to the LLVM instructions of
the program, and the edges represent how the instructions are sequenced, including
conditional branches. The data flow graph contains the same nodes, while the edges
represent values flowing between instructions, from results to input operands, using
the SSA form. Finally, the call graph represents the calling relationship between
sub-functions, starting from the top function being synthesized. We considered a
combination of these three graphs for our experiments.

52 GNN-based Prediction Model for HLS QoR

3.1.3 Embedding Layer

Embedding is a technique used for encoding categorical data in Machine Learning.
Category representation in embedding is in the form of dense vectors of continuous
values, as opposed to one-hot encoding, which uses high-dimensional, sparse vectors
to represent categories. The idea behind embedding is to convert categorical data into
a continuous space and learn a mapping lookup table where similarity is captured
by representing similar categories by similar vectors in that space. In PyTorch, one
can use embedding layer [46] to implement it. Embedding layers are not limited
to representing just text or categorical variables; they can also be used to represent
numerical values. Embedding is superior to one-hot encoding in several ways. First,
it leads to low-dimensional dense vectors, which are more computationally efficient
to handle. Second, embedding captures the underlying structure and relationships
between categories, which can improve the ability of the model to generalize to
previously unseen categories.

3.2 Graph Neural Network

Graphs are a type of data structure that helps represent complex information explicitly
by establishing relationships between objects. Recently, there has been a significant
surge of interest in using deep neural networks, also graph neural networks [55], to
analyze graph-structured data. Graph neural network are a type of Neural Networks
(NNs) that are designed to handle and process data that is structured in the form of
a graph. Associating feature vectors (also known as node embeddings) with graph
nodes gives GNNs the ability to capture both structural and contextual information.

Graphs are a form of data structure that facilitates us to represent complex
information by establishing connections between objects. An edge-weighted graph
can be represented as G (V,E,A), where V and E are the set of vertices and edges,
respectively, and A ∈ Rn×n is an adjacency matrix where Ai j is the weight of the
directed edge from vertex i to vertex j, or 0 if no such edge exists. An undirected
graph can be represented by a symmetric adjacency matrix, and an unweighted graph
can be represented by a matrix where all entries are either 0 or 1. Additionally, a
graph can be associated with a matrix of node features X ∈ Rn×d , where the feature
vector (with d elements) of the i-th node is the i-th row.

3.2 Graph Neural Network 53

Architecture

A GNN is a model that learns a trainable nonlinear mapping function F such that
H = F(A,X), where H ∈Rn×k is the output feature matrix. A GNN model iteratively
computes a sequence of feature matrices from the input node feature matrix through
a series of cascading layers. All layers have exactly the same graph structure, but
their feature vectors can have different sizes. An aggregate (AGG) and an update
(UPDATE) functions are applied to each node in each layer. The AGG function
receives the feature vector information from the neighboring nodes of the ith node
in the tth layer and sends the aggregated information to the UPDATE function to
update the ith node features in the (t +1)th layer based on the aggregated value and
possibly the ith node feature value in the tth layer. Note that this may change the size
of the feature vector, while the graph remains the same across all layers. In addition,
some classes of GNNs, such as dynamic graph attention network (GAT), also use
edge features in the aggregation process. A READOUT function, such as mean or
max pooling, is applied after the last layer to summarize the features from all nodes
and produce a single graph-level feature vector, which is typically used as input to
the multi-layer perceptron (MLP) that produces the final GNN output(s).

For example, a convolutional neural network where all layers have exactly the
same “image” size (along the x and y directions) can be seen as a special case of
GNN, where (1) each node in the graph (except the “boundary” nodes, which have
smaller neighborhoods) has a set of neighbors (i.e., nodes connected to it by edges)
of the same size and shape as the convolution filter, (2) the number of channels in
each layer is the number of elements in the node feature vector, (3) the AGG function
computes a convolution (and pooling) operation over the neighbors feature vectors,
(4) the UPDATE function is a ReLU, and (5) the READOUT function concatenates
the features of the last layer.

The message passing based architecture [17] of a generic GNN model can be
summarized as follows

mt+1
i = AGG

(
ht

u | u ∈N (i)∪{i}
)

(3.1)

ht+1
i = UPDATE

(
mt+1

i
)

(3.2)

hG = READOUT
(
hT

i , i ∈V
)

(3.3)

54 GNN-based Prediction Model for HLS QoR

where the feature vector for node i at layer (also called iteration) t is denoted by ht
i,

N(i) represents the neighborhood of node i, i.e. the set of nodes with an edge to i,
where mt+1

i represents the aggregated message from neighbors, V is the node set of
the graph G , T is the number of layers, i.e. message-passing iterations, of the GNN,
and hG is the final graph-level feature vector sent to the output MLP.

3.2.1 Graph Neural Network Models Variants

In general, different GNN models differ from each other based on different aggregate
and update functions [63]. Any permutation-invariant operation can serve as an
AGG function, and any differentiable function can be used as an UPDATE function.
Fig. 3.2 shows a general information flow of GNN model. In our experimentation,
we have used 4 different GNNs, namely: graph convolutional network [30], dynamic
graph attention network [6], graph isomorphism network [61], and deep adaptive
graph neural network [34]. In this work, we refer to these models as GCN, GAT,
GIN and DAGNN respectively.

Fig. 3.2 A general graph neural network model [29]

3.2.2 Graph Convolutional Network

Graph convolutional network (GCN)[30] is a specialized adaptation of the Convolu-
tional Neural Network (CNN), tailored for processing graph data.. Essentially, GCN

3.2 Graph Neural Network 55

extends the idea of convolution, which is commonly applied to images for different
tasks like image classification and object detection. To achieve this, GCN uses a
localized graph convolution operation where each node aggregates information from
its neighbors by taking a weighted sum of their feature vectors. It involves message
passing between neighboring nodes in a graph.

In GCN, an aggregation function is a simple mean or sum aggregation. A GCN
architecture can be composed of multiple layers, each of which conducts a graph
convolution operation followed by a non-linear activation function. It is a relatively
simple model and computationally efficient compared to more complex GNN models.
On the other hand, it has limited expressiveness which can limit its ability to capture
complex relationships in the underlying data.

3.2.3 Dynamic Graph Attention Network

Dynamic graph attention network (GAT) [6] aims to overcome the limitations of
GCN, which assigns equal weights to each neighboring node’s. GAT employs an
attention mechanism to learn the importance of node neighbors, which enables it to
assign different weights to nodes in the neighborhood according to their contributions,
making it more expressive than GCN.

GAT introduces a dynamic attention mechanism that only considers the trans-
formed embedding of the target node to compute attention coefficients. It also
involves message passing like GCN. Due to the attention mechanism, it is computa-
tionally more expensive.

To improve the expressive power of the model, GAT typically employs multiple
attention heads in parallel, allowing the model to capture different aspects of the
graph structure simultaneously.

3.2.4 Graph Isomorphism Network

Graph isomorphism network (GIN)[61] is a powerful GNN variant with significant
expressive capacity. It is designed to capture graph isomorphism making it suitable
for tasks where distinguishing between similar graphs with different structures is
important. Graph isomorphism is a problem of determining whether two graphs are
structurally identical.

56 GNN-based Prediction Model for HLS QoR

The universal approximation theorem, which allows for arbitrary precision ap-
proximations of any permutation-invariant function when given sufficient depth, is
the foundation for the expressive capability of GIN. In order to provide GIN the
capacity to distinguish between various graphs, it uses MLPs as its aggregation
functions.

3.2.5 Deep Adaptive Graph Neural Network

Deep adaptive graph neural network (DAGNN)[34] addresses the over-smoothing
problems brought on by the deeper GNN model by introducing an adaptive adjust-
ment mechanism.

Although neighborhood aggregation is performed via graph convolutions, one
layer of these neighborhood aggregation methods only takes into account immediate
neighbors, which results in limited receptive fields. To obtain larger receptive fields,
the depth of the graph convolution layer needs to be increased. However, performance
suffers as one goes deeper. The cause of this performance degradation is the over-
smoothing problem, in which individual nodes’ embedding after aggregation and
update tends to be identical, resulting in the degradation of performance.

To address this issue, DAGNN implements an adaptive adjustment mechanism,
which adaptively adjusts the balance between local and global neighborhood infor-
mation from each node. This mechanism is realized by introducing an adaptive
weighting matrix that modulates the contribution of different graph layers to the final
node embeddings. By learning this weighting matrix, DAGNN is able to adaptively
incorporate information from large receptive fields, mitigating the over-smoothing
problem and thus preserving the discriminative power of node embeddings. In
addition, DAGNN decouples the representation transformation and propagation in
the current graph convolution operation to boost the performance of deeper GNNs
that can be used to achieve a larger receptive field.

3.3 Transductive and Inductive Learning

GNNs can be divided into two groups based on the learning method: transductive
and inductive. Transductive-based GNNs need to see the whole graph structure to

3.4 Related work 57

learn each node feature vector during training. If there is a change in the structure
of the graph, a model has to be retrained. Therefore, they are not able to generalize
to unseen graphs. On the other hand, the inductive-based GNN learns a trainable
function that aggregates the feature vectors from a node neighborhood to generate
feature vectors for the nodes in the graph. Because this trainable function is shared
across the graph, like the filter of a CNN layer, the learned model can be applied to
unseen graphs without re-training, making it generalizable. In this work, we have
performed the training via inductive learning for the GNN models.

3.4 Related work

ML techniques have been successfully applied to address various challenges during
the chip design flow [22]. These techniques have also been used to resolve the
difference between QoR estimates in HLS and post-implementation results. Some of
this work is shown in Table 3.1.

Dai et al. [13] and Makrani et al. [42] propose non-graph-based ML models
to estimate a design post-implementation resource usage and timing by extracting
global features from HLS synthesis reports, thus requiring the most time-consuming
HLS steps, namely scheduling and binding. Dai et al. [13] use a linear model (Lasso),
an artificial neural network (ANN), and XGBoost to recalibrate the results generated
from HLS reports. Makrani et al. [42] use Linear Regression, ANN, Support Vector
Machine (SVM), Random Forest (RF), and an ensemble of the four models. However,
their methods require the HLS reports as input, and their ability to correctly estimate
unseen designs is questionable.

On the other hand, our solution input is the HLS LLVM IR after the front-end
execution, so we generate the QoR estimates earlier, before the back-end execution.
Therefore, the HLS back-end itself could benefit from our estimates (e.g., HLS
scheduling could use our critical time path predictions when balancing pipeline
stages).

Another problem with previous work is the limited generalization capabilities
since the inputs (features) to the model can only be extracted after scheduling and
binding. This means that for each new and unseen design, one must run time-

58 GNN-based Prediction Model for HLS QoR

consuming phases of HLS, which can take hours for larger designs, to collect the
features needed to estimate QoR.

Wu et al. [53] and Ustun et al. [50] use graph-based ML models to perform HLS
prediction tasks. Wu et al. [53] proposes an end-to-end reinforcement learning-based
framework for design space exploration. A GNN-based performance predictor (GPP)
is integrated into the framework to predict post-implementation resource utilization
and timing based on the data flow graph (DFG) representation. They use a separate
GNN-based model for each objective. Ustun et al. [50] builds a customized GNN-
based model to automatically learn operation mapping patterns to improve operation
delay prediction for HLS-based designs. Their approach improves the estimation
accuracy by 72 % with respect to Vitis HLS. Both works only consider data flow
graphs (DFGs). These works show the effectiveness of using graph neural networks
even though they do not include pragmas in their input representation and focus on
predicting only DSP clustering and clock period.

De et al. [14] compare both graph-based and non-graph-based machine learning
models to improve delay prediction accuracy for ASIC HLS and propose a hybrid
model that considers both local (structural) and global (domain knowledge) features.
The global features are extracted from HLS reports, so one has to run HLS during
the inference phase, which can take a long time for large designs.

Wu et al. [54] propose a graph-based ML approach to estimate resource usage and
timing based on the results of different HLS stages. The input graphs are constructed
from the IR operator information (*.adb file) and the features are extracted from
both *.adb files and other HLS intermediate results. They formulate the prediction
problem as a single-objective task; that is, a separate GNN-based model for each
type of resource and for timing. Furthermore, the format of the *.adb files is not
documented and can be changed at any time. Also, [54] does not consider the HLS
synthesis directives, whereas we do.

Table 3.1 summarizes the relevant state-of-the-art ML-based approaches for HLS
prediction tasks and compares them with our contributions.

3.5 DataSet Generation 59

Table 3.1 Comparison of ML-based Approaches for high-level synthesis (HLS) Prediction
Tasks

ML model Target
Work Graph Non-Graph FPGA ASIC Task Feature Source Tool

[13] ✓ ✓ Resource Usage and Timing HLS reports Vivado HLS

[42] ✓ ✓ Resource Usage and Timing HLS reports Vivado HLS

[53] ✓ ✓ DSE DFG Vivado HLS

[50] ✓ ✓ Operation Delay Operation Type and Bitwidths from HLS IR code Vivado HLS

[54] ✓ ✓ Resource Usage and Timing IR operator information (*.adb) and HLS report Vitis HLS

[14] ✓ ✓ ✓ Timing HLS reports Stratus HLS

This Work ✓ ✓ Resource Usage and Timing HLS LLVM IR Vitis HLS

3.5 DataSet Generation

The fundamental step in any ML problem is to obtain the data on which the ML
model can be trained, validated, and tested. This section describes how the dataset is
built by using different designs from various application domains and how a graph is
constructed and generated for an HLS design.

3.5.1 Data Collection

The dataset should include a variety of designs from different applications so that
the trained ML model is robust enough to generalize. For this purpose, we choose
30 designs from the well-known HLS benchmark suites, namely MachSuite [47],
Polyhedral [36], and Rosetta [64]. The application domains of these designs cover a
wide range of areas such as linear algebra, image and signal processing, computer
graphics, data mining, stencils, sorting, and ML. The detail of the designs with their
respective application domain is shown in Table 3.2.

Table 3.2 HLS-based Designs used in DATASET

Design Application Domain
2mm Linear algebra computations
3mm Linear algebra computations
3d-rendering Computer graphics
atax Linear algebra computations
bicg Numerical Linear Algebra
correlation Digital signal processing

Continued on next page

60 GNN-based Prediction Model for HLS QoR

Table 3.2 – Continued from previous page
Design Application Domain
covariance Digital signal processing
doitgen Linear algebra computation
fdtd_2d Finite-difference time-domain simulation
fft_strided Digital signal processing, Image processing, Recursive for-

mulation of the Fast Fourier Transform
gemm General matrix multiplication
gemm_blocked General matrix multiplication with better locality
gemm_ncubed General matrix multiplication for dense matrix multiplica-

tion
gemver Linear algebra computations
gesummv Linear algebra computations
jacobi_1d Linear system solver
jacobi_2d Linear system solver
lu Linear algebra computations
md Molecular dynamics simulations
merge Sorting
mvt Linear algebra computations
optical flow Image processing
seidel_2d Stencils
spam_filter Spam filtering using Naive Bayes classifier
spmv_crs Sparse matrix-vector multiplication, using variable-length

neighbor lists
spmv_ellpack Sparse matrix-vector multiplication, using fixed-size neigh-

bor lists
stencil2d A two-dimensional stencil computation, using a 9-point

square stencil
symm Linear algebra computations
trisolv Linear system solver
trmm Linear algebra computations

To create multiple hardware implementations for each design, we used different
HLS pragmas, i.e., synthesis directives (see Table 3.3) and various clock periods
(2.5 ns, 5 ns, 7.5 ns, and 10 ns). This allows our predictive model to learn designs

3.5 DataSet Generation 61

Table 3.3 Synthesis Pragma configurations

Pragma Configuration

Loop Pipelining Enabled/Disabled

Loop Unrolling Unrolling Factor

Loop Flattening Yes/No

Array Partitioning Block/Reshape/Cyclic/Complete

Function Inline Yes/No

Table 3.4 Overall Summary of designs in our DATASET

of LUTs # of DSPs # of FFs CP

(ns)

Minimum 8 0 24 1.5

Maximum 53239 360 31004 8.562

Average 2456 28 2619 3.72

with different area-delay tradeoffs. Thus, a dataset is built with a total of 2465 data
points. Each design point in our dataset is synthesized with Vitis HLS 2021.2 [56]
and implemented it with Vivado 2021.2 [57] (using Vivado defaults for synthesis and
implementation) targeting a Zynq UltraScale+ FPGA device.

The ground truth (actual resource usage and critical path timing) of each of these
design points are extracted from the implementation and timing reports generated
after the place and route phase for maximum prediction accuracy. Table 3.4 shows
the range of values of the target objectives in our dataset.

62 GNN-based Prediction Model for HLS QoR

3.5.2 Graph Generation

The input to the proposed GNN-based predictive model is an HLS IR graph rep-
resenting the functionality of the design, extracted after the front-end compilation
step. As mentioned in Section 3.1.2, we used a combination of control flow, data
flow, and call flow graphs for our experiments. A program semantic information
representation tool, ProGraML [12] is used to extract the graphs from a given IR and
combine them into a single graph. It merges information from control and data flow
graphs and also preserve the function hierarchy by incorporating the call flow.

The out-of-the-box configuration of ProGraML converts the LLVM statements
into nodes of the generated graph with some special features like the opcode. By
using the LLVM language reference manual [1], we have extended ProGraML
capabilities to retrieve more critical information from the LLVM statements, namely
operand bit width, and opcode category, and append it to the feature vector of each
corresponding node in the graph, as discussed below.

Bit-width describes the number of bits in the instruction operands, which is
highly relevant to the hardware resource prediction. For example, an instruction that
operates on 7-bit operands require fewer hardware resources than an instruction that
operates on 32-bit operands.

The Opcode category identifies the functionality of an LLVM instruction. In
general, the resource requirements and behavior of different LLVM instruction
categories vary, affecting the overall performance and resource utilization. For
example, the The arithmetic category contains statements that perform arithmetic
operations, such as adding or multiplying. In principle, this information could be
learned by a GNN from the opcode, but this would require more layers and more
training data. We decided to provide it directly because it is design-independent and
easy to derive automatically.

Algorithm 6 shows the steps to construct the graph for an HLS design.

Algorithm 6 Graph generation for HLS design
Require: HLS design

LLVM IR Bitcode← Vitis HLS Front-end (HLS design)
LLVM IR← LLVM Disassembler (LLVM IR Bitcode)
Graph Representation←Modified ProGraML (LLVM IR)

3.5 DataSet Generation 63

 IR Graph HLS C/C++
void dot_product(int vec_a[n], int vec_b[n], int *res){
 ...
#pragma HLS UNROLL factor=1
#pragma HLS PIPELINE II=1
 *res += vec_a[i] * vec_b[i];
 ...
}

 Local Features

1 block function opcodenode type ...

...

 Global Features

unrolled
factor

array
partition

function
inline ...

(a) HLS C/C++ source code

(b) IR Graph(c) Features

HLS front-end

Control-flow

Data-flow

Call-flow

Fig. 3.3 An High-level synthesis (HLS) design example with its graph representation (a)
shows the HLS code for an implementation of dot product with two sample synthesis
directives provided as an input to the HLS tool (b) shows its graph representation based on an
intermediate-representation (IR) which is extracted after the HLS front-end compilation (c)
shows the local and global features used by the model. Local features are extracted directly
from the IR graph. Global features are user-defined synthesis directives.

64 GNN-based Prediction Model for HLS QoR

Fig. 3.3 shows a toy example of how the input graph to our model is generated.
For illustration purposes, only the most relevant nodes in the graph are shown. For
example, we have omitted zero extension and alloca nodes in the figure, while our
model considers them as well. Fig. 3.3 (a) shows the HLS code for implementing
the dot product of two input vectors, including two sample HLS pragmas inside
the loop. Fig. 3.3 (b) shows its graph representation, extracted after the HLS
frontend compilation. The graph has two types of nodes. The LLVM statements are
represented by the blue nodes, which are connected according to the control flow.
The variable values and constant values that represent the operands and results of the
statements in the data flow are represented by the nodes in red. Three different colors
are used to symbolize different types of edges: blue, red, and green for control, data,
and call, respectively. Fig. 3.3 (c) shows the local and global features that can be
extracted directly from the IR graph and user-defined optimization directives (see
Section 3.6 for details).

3.6 Features

Our proposed approach uses two different sets of features that are useful for predict-
ing post-implementation QoR. These feature sets are extracted from two different
sources, the HLS IR code and user-defined HLS synthesis directives. We call these
sets local and global features, respectively. Local features contain structural and
contextual information. Structural information describes the connectivity of nodes
in the graph and is encoded as an adjacency matrix. Contextual information refers
to node and edge properties, and this information is explicitly encoded as a feature
vector for each node and edge.

For each node, its type, category, opcode, block ID, function ID, and bitwidth
are taken into account. For example, type indicates whether the node is a statement,
a variable, or a constant. For an edge, we only considered its type, which basically
tells whether the edge belongs to control, data, or call flow. Details of local features
are listed in Table 3.5. Edge features are only considered by one of the models we
used, namely GAT.

Table 3.3 displays the list of global features. We feed the global feature vector
into our prediction model by concatenating it with the final graph-level feature
vector generated by READOUT. These features can be useful for integrating domain-

3.7 Model 65

Table 3.5 Local Features: Nodes and Edges

Feature Description Example Values

Type Node Type Instruction, Variable, Constant

Block LLVM Block ID 0, 1, 2 etc.

Function Function ID 0, 1, 2 etc.

Opcode Category Opcode type based on LLVM Unary, Binary, Terminator, etc.

Opcode Opcode of the node add, icmp, shl etc.

Node

Bitwidth Bitwidth of the operand 8, 16, 32, etc.

Edge Type Flow Type Control, Data, Call

specific knowledge into the model and improving its predictive capabilities. They
have a direct impact on the timing and resource requirements of a design. For this
reason, we explicitly provide this information to our model. These features are
exactly the same as the main user-defined HLS synthesis directives, so they are
well-known to the designer.

These global features could also be automatically extracted from the HLS IR
code via ssdm intrinsic functions (function calls that encode both user-written and
tool-generated synthesis directives) and encoded as local features for the nodes.
However, as we show in Section 3.8.2, the estimation accuracy is significantly
improved by using global features as well. We leave to future work the exploration
of different sets of local features and/or GNN architectures to overcome the need for
global features and handle more complex kernels, including, for example, multiple
pipelined loops.

3.7 Model

We formulate the QoR prediction problem as a multi-objective regression task to
estimate the post-implementation timing and resource usage for LUT, FF, and DSP
of a given design based on its HLS IR without scheduling and binding. We do not
address the BRAM estimation problem because the HLS estimates are already quite

66 GNN-based Prediction Model for HLS QoR

reliable in this case, although we could. We use multi-task learning, where a single
GNN model is trained and the generated graph feature vector is fed to a set of MLPs
to estimate the different objectives.

C.P.

DSPs

F.F.s

LUTsMLP

MLP

MLP

MLP

Graph-Level
RepresentationLayer 1 Layer 2

Embedding
Layer

HLS IR
Graph

+
Node/Edge
Features

ObjectivesInputs

PoolingEmbeddings

GNN Model

Fig. 3.4 General structure of the framework to evaluate different graph neural network (GNN)
models. Features are passed to the trainable embedding layer to create their dense vector
representations. This vector representation with the corresponding HLS IR based graph is
fed as an input to GNN model. A pooling operation is applied across all the nodes to create
a single graph-level feature vector which is fed to four separate MLPs for each prediction
objective (lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP) and critical
path (C.P.)).

The general structure of our model architecture is shown in Fig. 3.4. It takes the
graph representation of the design as input and creates the initial feature vector by
converting the features extracted from LLVM (Table 3.5) via a trainable embedding
layer [46]. This information is then passed to the GNN model, which iteratively
updates the feature vectors layer by layer. These updated feature vectors are used to
generate a graph-level representation vector via mean pooling, i.e. by computing an
average vector of all final feature vectors of all nodes, which is then concatenated
with the global feature vector and passed to a set of MLPs to predict multiple targets.
We evaluated different GNN models (Section 4.2), using the same flow for a fair
comparison (so the only difference is the type of GNN layers).

Fig. 3.5 shows the training flow of the proposed framework. Before training, we
preprocess the data and apply normalization so that each objective (timing, LUTs,
DSPs, and FFs) can contribute equally to the training loss. For example, in the case
of resource utilization, we normalize the resource utilization by dividing it by the
total number of resources available on the FPGAs, converting it to a percentage
utilization. Once the dataset and associated features are available, we perform the

3.7 Model 67

HLS C/C++ User defined
HLS directives

Target
Frequency

Inputs

Graph Builder
(Modified ProGraML)

HLS Front-End

Training
Loss

GNNLocal Features

Graph
Embeddings

||Global Features

Non-graph based
Regression Model

(MLPs)

Predictive Model

Fig. 3.5 Training phase of the proposed framework.

68 GNN-based Prediction Model for HLS QoR

HLS C/C++ User defined
HLS directives

Target
Frequency

Inputs

Graph Builder
(Modified ProGraML)

Trained Predictive
Model

HLS Front-End

Prediction
Objective

Fig. 3.6 Inference phase of the proposed framework.

training to obtain a predictive model. The ground truth labels are extracted from the
post-implementation reports.

We train the GNNs model via supervised learning to learn the behavior of
the underlying HLS heuristics and optimization techniques, such as scheduling,
sharing, register allocation, etc., in order to quickly and accurately predict the desired
objectives. During the training phase, an HLS design and its configurations are first
fed into the HLS tool front-end, where the HLS IR is generated. The graph generator
(see Section 3.5.2 for details) then converts the HLS IR into the graph used by the
GNN model as discussed above.

To select the best GNN model, we first randomly set aside a 20 % of the data
set, also called the hold-out or test set. This hold-out is not used during training and
validation, but only at the end to evaluate the final performance and report the results.
Then, we perform training by 5-fold cross-validation on the remaining 80 % dataset,
where the hyper-parameters of the considered models are optimized and tuned.

The inference flow of the proposed framework is shown in Fig. 3.6. The main
purpose of the inference phase is to achieve fast and accurate QoR prediction of the

3.8 Experimental Results 69

Table 3.6 Inference time for the proposed model vs HLS time per
design point

HLS HLS Graph

F.E. B.E. Generation
Inference Total

(s) (s) (s) (s) (s)

Model 1 11.65 — 0.24 0.0054 11.90

HLS 2 11.65 15.07 — — 26.72

1 Model Time = Front-End (F.E.) + Graph Generation + Inference
2 HLS = Front-End (F.E.) + Back-End (B.E.)

design compared to the HLS baseline without going through the implementation
process, which is time-consuming. In the inference phase, we apply the same pre-
processing workflow to unseen designs (test set data points) to generate a graph and
extract feature vectors. These are then fed into the already-trained model to perform
target prediction.

It is worth noting that our predictive model is able to complete the inference
to estimate resources and timing in milliseconds given a graph, as opposed to the
implementation phase, which typically takes minutes to hours. Table 3.6 shows the
inference time of the predictive model and the time HLS tool takes for a single data
point. Our model provides better estimates of resource usage and timing in less than
half of a time with respect to the HLS tool. If we exclude the common time needed
to execute the Front-End, our model is more than 60x faster than the Back-End.

3.8 Experimental Results

3.8.1 Setup

Our framework is deployed using PyTorch and all GNN models mentioned in
Section 4.2 are implemented and trained using PyTorch Geometric [16] library on a
Linux machine with an Nvidia GeForce RTX 3060 graphical processing unit. The
designs in the dataset (Section 3.5) are synthesized and implemented using Vitis HLS
2021.2 [56] and Vivado 2021.2 [57], respectively. The ground truth labels of the four

70 GNN-based Prediction Model for HLS QoR

objectives (LUT, FF, DSP, C.P.) are extracted from the post-implementation reports.
The dataset is randomly divided into 70 % for training, 10 % for validation, and 20 %
for testing.

For our experiments, each model has the structure shown in Fig. 3.4, with the
following characteristics:

1. A trainable embedding layer, that converts the features (see Table 3.5) from
the HLS IR into a feature vector of size 300 that is fed as an input to the GNN
layers.

2. Two GNN layers, i.e., the AGG and UPDATE functions are run twice, with
input feature vector size 300, internal feature vector size of 128 and output
feature vector size of 64.

3. A mean pooling layer, taking the mean of each one of the 64 output features
across all nodes, and generating a single graph-level vector of 64 features that
are fed to the MLPs.

4. Four separate MLPs, one for each prediction objective (LUT, FF, DSP, C.P.),
each with three layers with 32, 16 and 1 output features respectively.

We trained the GNN-based models in an inductive setting [21] with the Adam
optimizer [28] for 100 epochs, using a learning rate of 0.001 with a weight decay
of 0.0005, and an exponential linear unit [8] as the activation function. All of these
hyper-parameters, including the number of layers and feature vector sizes, are tuned
using the validation set during the training phase. Since the prediction problem
is formulated as a regression task, we use root mean square error (RMSE) as a
metric for evaluating the models. We perform 5-fold cross-validation to check the
effectiveness and robustness of the models and to select the best-performing model.
We also compare our models with the commercial HLS tool (Vitis HLS) used as a
baseline model and with a graph learning-based performance prediction model [54].
Algorithm 7 shows the process of extracting the baseline and ground truth values for
a given HLS design.

3.8 Experimental Results 71

Algorithm 7 Baseline and ground truth (G.T.) extractor
Require: An HLS design

RTL design, HLS report← Vitis HLS (HLS design)
Post-implementation report← Vivado (RTL design)
Baseline← HLS baseline Extractor(HLS report)
G.T.← G.T. Extractor(Post-implementation report)

LUT FF DSP C. P.
Prediction Objectives

0.00

0.05

0.10

0.15

0.20

0.25

RM
SE

Baseline
GCN
GAT
GIN
DAGNN

Fig. 3.7 Performance comparison of different GNN-based predictive models for lookup table
(LUT), flip-flop (FF), digital signal processing unit (DSP) and critical path (C.P.) with HLS
Baseline on the test set (the lower the better). Only Local Features are considered.

3.8.2 Model Evaluation and Model Selection

A GNN model transforms the local feature vectors into a single graph-level feature
vector, which is then passed to the non-graphic regression model (in this case using
a 3-layer MLPs). We first test the performance of the GNN models with only local
features (i.e., no manual information from the designer).

Fig. 3.7 shows the performance evaluation of GNN models with respect to
baseline regarding LUT, FF, DSP and C.P. in terms of RMSE, while Fig. 3.8 shows
the prediction improvements of the models over the baseline. For LUT utilization
prediction, GAT provides the best improvement, with more than 55 % over baseline.
In the case of FF, GCN, GAT, and DAGNN give prediction improvements of more
than 40 %. GAT is the best of all models at reducing prediction error relative to the
HLS baseline model for DSP utilization. For C.P. timing, all models improve the
prediction by more than 45 %. On average, GAT is the best model for improving

72 GNN-based Prediction Model for HLS QoR

LUT

FF

DSP

C. P.

0.4

0.6

0.8

1.0
Baseline
GCN
GAT
GIN
DAGNN

Fig. 3.8 Quality of results (QoR) prediction improvements of different GNN-based predictive
models for lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP) and
critical path (C.P.) with respect to HLS Baseline on the test set. Only Local features are used.

resource utilization prediction, and DAGNN is the best for timing. Note that in
practice, different models may be used for different objectives.

Fig. 3.9 shows the performance evaluation of the graph neural network (GNN)
model with respect to the HLS baseline for the target objectives by also using global
features. Global features are concatenated with the graph features generated by the
GNN models and fed into the non-graph regression model, MLP. Fig. 3.10 shows
the quality of results (QoR) improvements of the GNN-based predictive models over
the baseline. All models provide performance prediction improvements of more than
50 % for LUT utilization. For FF utilization, GAT and DAGNN are the best models
at reducing the prediction error over the baseline, improving the QoR prediction
by up to 52 %. In the case of DSP utilization, GAT provides the best prediction
improvement among all GNN models with respect to the HLS baseline. The GAT
model with both local and global features gives a relative improvement of almost
19 % over the GAT model with local features only.

For C.P. timing, GCN, GAT, and DAGNN based models improve the prediction
by more than 70 % with respect to the baseline, with DAGNN providing the best
improvement at 72 %.

These GNN models provide a relative performance improvement of up to 47 %
over the same models using only local features.

3.8 Experimental Results 73

LUT FF DSP C. P.
Prediction Objectives

0.00

0.05

0.10

0.15

0.20

0.25

RM
SE

Baseline
GCN
GAT
GIN
DAGNN

Fig. 3.9 Performance comparison of different GNN-based predictive models for lookup table
(LUT), flip-flop (FF), digital signal processing unit (DSP) and critical path (C.P.) with HLS
Baseline on the test set (the lower the better). In addition to Local features, Global features
are also considered to evaluate their impact on performance.

LUT

FF

DSP

C. P.

0.4

0.6

0.8

1.0
Baseline
GCN
GAT
GIN
DAGNN

Fig. 3.10 Quality of results (QoR) prediction improvements of different GNN-based predic-
tive models for lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP) and
critical path (C.P.) with respect to HLS Baseline on the test set. In addition to Local features,
Global features are also used to evaluate their impact on performance.

74 GNN-based Prediction Model for HLS QoR

LUT FF DSP C. P.
Prediction Objectives

0.00

0.05

0.10

0.15

0.20

0.25

RM
SE

Baseline
GCN
GAT
DAGNN

Fig. 3.11 Performance comparison of best performing GNN-based predictive models for
lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP) and critical path
(C.P.) with HLS Baseline (the lower the better). A 5-fold cross-validation with the holdout
set is performed. Both Local and Global features are considered.

It is worth noting that all of these GNN-based prediction models perform better
than the HLS baseline model for all target objectives. graph isomorphism network
(GIN) provides the least benefit in terms of prediction error reduction among all the
models tested, especially in the case of DSP usage prediction (see Fig. 3.10). Based
on this empirical evidence, we drop GIN for the model selection phase.

For model selection, we use 5-fold cross-validation with a holdout test set (see
Section 3.7 for details). Fig. 3.11 compares the performance of the GCN, GAT
and DAGNN models with respect to the HLS baseline. Fig. 3.12 shows the QoR
improvements of the selected model over the baseline for the target objectives.
For the LUT and FF utilization predictions, all selected graph-based models give
improvements of more than 50 %. The GAT based model gives the best result of
57 % for LUT, while the GCN based model gives the best result of 55 % for FF. In
the case of DSP prediction, GAT is the clear winner, reducing the prediction error
by more than 30 %. For C.P. timing, all graph-based models provide a prediction
improvement of more than 67 %, with the GAT-based prediction model being the
best (71 %). GAT outperforms other graph-based models in three out of four target
objectives and is not far behind in predicting FF usage (where the GCN-based model
performs best). Based on these results, we choose the GAT-based model, but we
could use different models for different objectives, as mentioned above.

3.8 Experimental Results 75

LUT

FF

DSP

C. P.

0.4

0.6

0.8

1.0
Baseline
GCN
GAT
DAGNN

Fig. 3.12 Quality of results (QoR) prediction improvements of best performing GNN-based
predictive models for lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP)
and critical path (C.P.) with respect to HLS Baseline. A 5-fold cross-validation with the
holdout set is performed. Both Local and Global features are used.

To evaluate the selected model over the entire dataset, we perform a generic 5-
fold cross-validation. Fig. 3.13 shows the quality of results prediction improvements
over the entire data. It is observed that the GAT based prediction model provides
significantly better prediction with respect to the HLS baseline model, giving up to
74 % performance prediction improvements.

3.8.3 Generalization and Comparison

To check the performance of our chosen model on unseen kernels and for a quanti-
tative comparison with the state-of-the-art, we choose four kernels (gemm_ncubed,
optical_flow, jacobi2d, and stencil2d), including all their design variants cre-
ated using different HLS synthesis directives and clock frequencies, and use them as
a test set for evaluation (in 5-fold cross-validation, the test set was chosen at random,
so training saw many variants of each design). gemm_ncubed is a dense matrix multi-
plication algorithm, optical_flow computes the motion of each pixel in a sequence
of image frames, jacobi2d is an iterative method that computes and updates each
grid point by averaging its neighbors, and stencil2d performs stencil computation
using a 9-point square stencil. Note that all of these kernels have different code
structures.

76 GNN-based Prediction Model for HLS QoR

LUT

FF

DSP

C. P.

0.4

0.6

0.8

1.0
Baseline
GAT

Fig. 3.13 Quality of results (QoR) prediction improvements of the selected GNN-based
predictive model for lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP)
and critical path (C.P.) with respect to HLS Baseline. A 5-fold cross-validation over the
whole dataset is performed.

We compare our model quantitatively with the graph-based machine learning
approach [54], which provides their tool in open source (as us). For comparison with
other ML-based approaches, Table 3.1 provides a qualitative analysis.

We take the best-performing regression model in [54] for resource usage and
timing prediction, train it to the best of our ability, and call it PNA-HLS. A separate
PNA-HLS model is trained for each objective. Fig. 3.14 shows that our GAT-based
prediction model reduces the prediction error for resource utilization and timing
prediction by 68 % and 34 %, respectively, compared to HLS. Our proposed model
also outperforms the state-of-the-art PNA-HLS model by 29 % and 22 % for resource
utilization and timing prediction, respectively.

3.8 Experimental Results 77

LUT

FF

DSP

C. P.

0.4

0.6

0.8

1.0 Baseline
GAT
PNA-HLS

Fig. 3.14 Quality of results (QoR) prediction improvements of our best performing GNN-
based model for lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP) and
critical path (C.P.) with respect to HLS Baseline and the state-of-the-art on Unseen Kernels.

Chapter 4

Conclusions and Future Work

4.1 Array-Specific Dataflow caches

The experimental results, summarized in Fig. 4.1 show that our approach of semi-
automatically generating an LCS-like architecture through dataflow caches is an
effective solution for significantly improving performance and energy consumption,
without requiring high design effort. Designers simply need to perform a DSE of
the cache configurations instead of extensively changing the algorithm for buffering
data on-chip. Additionally, for algorithms with irregular or data-dependent memory
access patterns, caching would be the only way to actually improve memory access
performance.

To achieve performance comparable with the manually optimized designs of
MatMult and Conv2D, our cache would require more resources than the ones provided
by the small FPGA used in the tests. For BitSort, caching was the only feasible
performance optimization we found, due to the irregular, but with good data locality,
memory access pattern. Adding an RTL cache module post-HLS fails to provide any
advantage, since the HLS-generated circuit is optimized for high-latency memory
accesses, and cannot achieve any acceleration from an external cache.

It is worth noting that we collected the results from an embedded device, which
provides a DDR4 memory.

Modern datacenter-level devices are equipped with HBMs. HBMs, compared
with DDR4 memories, are characterized by the availability of many more ports,

80 Conclusions and Future Work

MatMult Conv2D BitSort

100

101

102

103

Sp
ee

du
p

1 1 1

0.3

1

63 46

14

246

1089 Baseline
RTLcache
Our cache
Manual

Fig. 4.1 Speedup of the tested benchmarks.

thus dramatically increasing bandwidth, while paying a price in terms of access
latency (roughly 2 times larger, as benchmarked by Wang et al. [51]). Thanks to these
characteristics, a cache potentially provides even greater advantages than experienced
with our setup, since caches are precisely designed for mitigating the performance
penalties of high-latency memories. Moreover, irregular memory access patterns
require word-sized accesses, since the HLS tool is unable to optimize the accesses
through bursting and interface widening, underutilizing the HBM ports bitwidth. On
the other hand, caches always access the DRAM in lines, thus enabling the interface
optimizations, resulting in better exploitation of the large interface bitwidth of HBM.
We leave the evaluation of our caches on HBM-equipped HW, to quantitatively
support these considerations, as future work.

We plan to automate the DSE for optimal cache parameter selection, by extending
one of the state-of-the-art cache parameter optimization methods [49] to support
the configuration space of our cache architecture for some additional dimensions
with respect to standard caches, such as the request-response distance, the number of
ports, and the address bit mapping.

To further improve performance, we are considering to implement a prefetching
mechanism to anticipate the memory requests by loading data in advance, before
they are needed by the computation, thus fully emulating the LCS pattern.

4.2 GNN based QoR Prediction 81

4.2 GNN based QoR Prediction

Although HLS provides great flexibility for optimizing designs for area and perfor-
mance, HLS-estimated QoR often differ from actual post-implementation results. In
Chapter 3, we propose an HLS tool-agnostic GNN-based framework for estimating
quality of results of HLS designs, as long as the tool provides a publicly readable
LLVM-based IR. Of course, the GNN must be trained differently for each new tool,
but once trained, it can be reused for different results.

First, a method is developed to extract a graph-based representation of a design
directly from the HLS front-end output, encoding both program semantics and HLS
synthesis directive information. Then, a multi-objective GNN-based learning model
is proposed to predict resource usage and timing of HLS designs within milliseconds
without invoking the HLS back-end to perform scheduling and binding. To address
the issue of the limited ability of a pure GNN-based model to be aware of global
information such as design guidelines, this information is explicitly passed to the
learning model in addition to the local features automatically extracted from the
IR. The experimental results show that our proposed prediction model outperforms
both a commercial HLS tool and a state-of-the-art GNN-based tool [54] for realistic
benchmark applications from different domains. It also shows that our model is
capable of extending the learned knowledge and generalizing it to unseen design
cases.

In the future, we plan to extend our framework to larger designs and more
application domains. We also plan to add the support for additional performance
parameters like throughput and latency to support faster design space exploration.

References

[1] (2022a). LLVM Language Reference Manual. LLVM Project.

[2] (2022b). The LLVM Compiler Infrastructure Project. https://llvm.org/.

[3] Adler, M., Fleming, K. E., Parashar, A., Pellauer, M., and Emer, J. (2011).
Leap scratchpads: Automatic memory and cache management for reconfigurable
logic. In Proceedings of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’11, page 25–28, New York, NY, USA.
Association for Computing Machinery.

[4] Avnet Inc. (2018). Ultra96 Hardware User’s Guide.

[5] Brignone, G., Usman Jamal, M., Lazarescu, M. T., and Lavagno, L. (2022).
Array-specific dataflow caches for high-level synthesis of memory-intensive
algorithms on fpgas. IEEE Access, 10:118858–118877.

[6] Brody, S., Alon, U., and Yahav, E. (2022). How Attentive are Graph Attention
Networks? In Proc. 10th Int. Conf. Learn. Represent. (ICLR).

[7] Choi, J., Nam, K., Canis, A., Anderson, J., Brown, S., and Czajkowski, T. (2012).
Impact of cache architecture and interface on performance and area of fpga-
based processor/parallel-accelerator systems. In 2012 IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines, pages 17–24.

[8] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). In Proc. 4th Int.
Conf. Learn. Represent. (ICLR).

[9] Cong, J., Lau, J., Liu, G., Neuendorffer, S., Pan, P., Vissers, K., and Zhang, Z.
(2022). FPGA HLS Today: Successes, Challenges, and Opportunities. ACM
Trans. Reconfigurable Technol. Syst., 15(4):1–42.

[10] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., and Zhang, Z.
(2011). High-Level Synthesis for FPGAs: From Prototyping to Deployment.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 30(4):473–491.

[11] Cong, J., Zhang, P., and Zou, Y. (2012). Optimizing memory hierarchy allo-
cation with loop transformations for high-level synthesis. In Proceedings of the
49th Annual Design Automation Conference, DAC ’12, page 1233–1238, New
York, NY, USA. Association for Computing Machinery.

https://llvm.org/

84 References

[12] Cummins, C., Fisches, Z., Ben-Nun, T., Hoefler, T., O’Boyle, M., and Leather,
H. (2021). ProGraML: A Graph-based Program Representation for Data Flow
Analysis and Compiler Optimizations. In Proc. 38th Int. Conf. Mach. Learn.
(ICML), pages 2244–2253.

[13] Dai, S., Zhou, Y., Zhang, H., Ustun, E., Young, E. F., and Zhang, Z. (2018).
Fast and Accurate Estimation of Quality of Results in High-Level Synthesis with
Machine Learning. In Proc. IEEE 26th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), pages 129–132.

[14] De, S., Shafique, M., and Corporaal, H. (2023). Delay Prediction for ASIC
HLS: Comparing Graph-based and Non-Graph-based Learning Models. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 42(4):1133–1146.

[15] de Fine Licht, J., Besta, M., Meierhans, S., and Hoefler, T. (2021). Transfor-
mations of high-level synthesis codes for high-performance computing. IEEE
Transactions on Parallel and Distributed Systems, 32(5):1014–1029.

[16] Fey, M. and Lenssen, J. E. (2019). Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop Represent. Learn. Graphs Manifolds.

[17] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
Neural Message Passing for Quantum Chemistry. In Proc. 34th Int. Conf. Mach.
Learn. (PMLR), page 1263–1272.

[18] GNU (2022). GCC, the GNU Compiler Collection.

[19] Guo, Z., Liu, M., Gu, J., Zhang, S., Pan, D. Z., and Lin, Y. (2022). A Timing
Engine Inspired Graph Neural Network Model for Pre-Routing Slack Prediction.
In Proc. 59th ACM/IEEE Des. Automat. Conf. (DAC), pages 1207–1212.

[20] Haaswijk, W., Collins, E., Seguin, B., Soeken, M., Kaplan, F., Süsstrunk, S.,
and De Micheli, G. (2018). Deep Learning for Logic Optimization Algorithms.
In Proc. IEEE Int. Symp. Circuits Sys. (ISCAS), pages 1–4.

[21] Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive Representation
Learning on Large Graphs. In Proc. 31st Int. Conf. Neural Inf. Process. Syst.
(NeurIPS), page 1025–1035.

[22] Huang, G., Hu, J., He, Y., Liu, J., Ma, M., Shen, Z., Wu, J., Xu, Y., Zhang, H.,
Zhong, K., Ning, X., Ma, Y., Yang, H., Yu, B., Yang, H., and Wang, Y. (2021).
Machine Learning for Electronic Design Automation: A Survey. ACM Trans.
Des. Automat. Electron. Syst., 26(5):1–46.

[23] Intel® (2021a). Arria® 10 EMIF Latency.

[24] Intel® (2021b). Avalon® Memory-Mapped Host Interfaces and Load-Store
Units.

[25] Intel® (2021c). Intel® High Level Synthesis Compiler Pro Edition Reference
Manual.

References 85

[26] Jamal, M. U., Li, Z., Lazarescu, M. T., and Lavagno, L. (2023). A graph neural
network model for fast and accurate quality of result estimation for high-level
synthesis. IEEE Access, 11:85785–85798.

[27] Jo, G., Kim, H., Lee, J., and Lee, J. (2020). Soff: An opencl high-level synthesis
framework for fpgas. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 295–308.

[28] Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization.
In Proc. 3rd Int. Conf. Learn. Represent. (ICLR).

[29] Kipf, T. (2023). Graph convolutional networks.

[30] Kipf, T. N. and Welling, M. (2017). Semi-Supervised Classification with Graph
Convolutional Networks. In Proc. 5th Int. Conf. Learn. Represent. (ICLR).

[31] Kirby, R., Godil, S., Roy, R., and Catanzaro, B. (2019). CongestionNet:
Routing Congestion Prediction Using Deep Graph Neural Networks. In Proc.
IFIP/IEEE 27th Int. Conf. Very Large Scale Integr. (VLSI-SoC), pages 217–222.

[32] Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for lifelong
program analysis & transformation. In Proc. Int. Symp. Code Generation Optim.
(CGO), pages 75–86.

[33] Lin, Z., Yuan, Z., Zhao, J., Zhang, W., Wang, H., and Tian, Y. (2022). Pow-
erGear: Early-Stage Power Estimation in FPGA HLS via Heterogeneous Edge-
Centric GNNs. In Proc. Conf. Exhib. Des. Automat. Test Eur. (DATE), pages
1341–1346.

[34] Liu, M., Gao, H., and Ji, S. (2020). Towards Deeper Graph Neural Networks.
In Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery & Data Mining, pages
338–348.

[35] Lopera, D. S., Servadei, L., Kiprit, G. N., Hazra, S., Wille, R., and Ecker, W.
(2021). A Survey of Graph Neural Networks for Electronic Design Automation.
In ACM/IEEE 3rd Workshop Mach. Learn. CAD (MLCAD), pages 1–6.

[36] Louis-Noël Pouchet, Uday Bondugula, T. Y. (2022). PolyBench/C.

[37] Lu, Y.-C., Pentapati, S., and Lim, S. K. (2020). VLSI Placement Optimization
using Graph Neural Networks. In Proc. 34th Adv. Neural Inf. Process. Sys.
(NeurIPS) Workshop ML Sys., pages 6–12.

[38] Lu, Y.-C., Pentapati, S., and Lim, S. K. (2021). The Law of Attraction: Affinity-
Aware Placement Optimization Using Graph Neural Networks. In Proc. Int. Symp.
Physical Des. (ISPD), pages 7–14.

[39] Ma, L., Lavagno, L., Lazarescu, M., and Arif, A. (2017). Acceleration by inline
cache for memory-intensive algorithms on fpga via high-level synthesis. IEEE
Access, PP:1–1.

86 References

[40] Ma, Y., He, Z., Li, W., Zhang, L., and Yu, B. (2020). Understanding Graphs in
EDA: From Shallow to Deep Learning. In Proc. Int. Symp. Physical Des. (ISPD),
pages 119–126.

[41] Ma, Y., Ren, H., Khailany, B., Sikka, H., Luo, L., Natarajan, K., and Yu, B.
(2019). High performance Graph Convolutional Networks with Applications in
Testability Analysis. In Proc. 56th ACM/IEEE Des. Automat. Conf. (DAC), pages
1–6.

[42] Makrani, H. M., Farahmand, F., Sayadi, H., Bondi, S., Dinakarrao, S. M. P.,
Homayoun, H., and Rafatirad, S. (2019). Pyramid: Machine learning Framework
to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis
Design. In Proc. 29th Int. Conf. Field Program. Logic Appl. (FPL), pages 397–
403.

[43] Marjanovic, J. (2021). Exploring the ps-pl axi interfaces on zynq ultrascale+
mpsoc.

[44] Matthews, E., Doyle, N. C., and Shannon, L. (2015). Design space exploration
of l1 data caches for fpga-based multiprocessor systems. FPGA ’15, page 156–159,
New York, NY, USA. Association for Computing Machinery.

[45] Pouchet, L.-N., Zhang, P., Sadayappan, P., and Cong, J. (2013). Polyhedral-
based data reuse optimization for configurable computing. In Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’13, page 29–38, New York, NY, USA. Association for Computing Ma-
chinery.

[46] PyTorch (2022). Embedding - PyTorch 2.0 documentation.

[47] Reagen, B., Adolf, R., Shao, Y. S., Wei, G.-Y., and Brooks, D. (2014). Mach-
suite: Benchmarks for accelerator design and customized architectures. In Proc.
IEEE Int. Symp. Workload Characterization (IISWC), pages 110–119.

[48] Teich, J. (2012). Hardware/software codesign: The past, the present, and pre-
dicting the future. Proceedings of the IEEE, 100(Special Centennial Issue):1411–
1430.

[49] Upadhyay, B. R. and Sudarshan, T. S. B. (2016). Design space exploration
of cache memory — a survey. In 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT), pages 2294–2297.

[50] Ustun, E., Deng, C., Pal, D., Li, Z., and Zhang, Z. (2020). Accurate Opera-
tion Delay Prediction for FPGA HLS Using Graph Neural Networks. In Proc.
IEEE/ACM Int. Conf. Comput. Aided Des. (ICCAD), pages 1–9.

[51] Wang, Z., Huang, H., Zhang, J., and Alonso, G. (2020). Shuhai: Benchmarking
high bandwidth memory on fpgas. In 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages
111–119.

References 87

[52] Winterstein, F., Fleming, K., Yang, H.-J., Wickerson, J., and Constantinides,
G. (2015). Custom-sized caches in application-specific memory hierarchies. In
2015 International Conference on Field Programmable Technology (FPT), pages
144–151.

[53] Wu, N., Xie, Y., and Hao, C. (2021a). Ironman: GNN-Assisted Design Space
Exploration in High-Level Synthesis via Reinforcement Learning. In Proc. Great
Lakes Symp. VLSI (GVLSI), pages 39–44.

[54] Wu, N., Yang, H., Xie, Y., Li, P., and Hao, C. (2022). High-Level Synthesis
Performance Prediction Using GNNs: Benchmarking, Modeling, and Advancing.
In Proc. 59th ACM/IEEE Des. Automat. Conf. (DAC), pages 49–54.

[55] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021b). A
Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw.
Learn. Syst., 32(1):4–24.

[56] Xilinx (2021a). Vitis High-Level Synthesis User Guide.

[57] Xilinx (2021b). Vivado Design Suite User Guide.

[58] Xilinx Inc. (2021a). Design and analysis of hardware kernel module for 2-d
video convolution filter.

[59] Xilinx Inc. (2021b). PYNQ: Python productivity for Xilinx platforms.

[60] Xilinx Inc. (2021c). System Cache LogiCORE IP Product Guide (PG118)).

[61] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How Powerful are Graph
Neural Networks? In Proc. 7th Int. Conf. Learn. Represent. (ICLR).

[62] Zhang, Y., Ren, H., and Khailany, B. (2020). GRANNITE: Graph Neural
Network Inference for Transferable Power Estimation. In Proc. 57th ACM/IEEE
Des. Automat. Conf. (DAC), pages 1–6.

[63] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and
Sun, M. (2020). Graph neural networks: A review of methods and applications.
AI Open, 1:57–81.

[64] Zhou, Y., Gupta, U., Dai, S., Zhao, R., Srivastava, N., Jin, H., Featherston, J.,
Lai, Y.-H., Liu, G., Velasquez, G. A., Wang, W., and Zhang, Z. (2018). Rosetta:
A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable
FPGAs. In Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, page
269–278.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 High-level synthesis
	1.2 Problem Statement
	1.3 Contribution
	1.4 Thesis Structure

	2 Array-Specific Dataflow Caches for HLS of Memory-Intensive Algorithms on FPGAs
	2.1 Related Work
	2.2 Dataflow Cache
	2.2.1 Dataflow cache implementation

	2.3 Multi-Level Cache
	2.4 Multi-Port Cache
	2.5 Experiments
	2.5.1 Reference designs
	2.5.2 Matrix Multiplication
	2.5.3 2D Convolution
	2.5.4 Bitonic Sorting

	3 GNN-based Prediction Model for HLS QoR
	3.1 Background
	3.1.1 Low Level Virtual Machine
	3.1.2 Design as Graph
	3.1.3 Embedding Layer

	3.2 Graph Neural Network
	3.2.1 Graph Neural Network Models Variants
	3.2.2 Graph Convolutional Network
	3.2.3 Dynamic Graph Attention Network
	3.2.4 Graph Isomorphism Network
	3.2.5 Deep Adaptive Graph Neural Network

	3.3 Transductive and Inductive Learning
	3.4 Related work
	3.5 DataSet Generation
	3.5.1 Data Collection
	3.5.2 Graph Generation

	3.6 Features
	3.7 Model
	3.8 Experimental Results
	3.8.1 Setup
	3.8.2 Model Evaluation and Model Selection
	3.8.3 Generalization and Comparison

	4 Conclusions and Future Work
	4.1 Array-Specific Dataflow caches
	4.2 GNN based QoR Prediction

	References

