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Abstract

This thesis focuses on designing and evaluating low-energy systems for signal acqui-
sition and processing. The main theoretical foundation for the work is Compressed
Sensing (CS), i.e., a theory that guarantees correct signal recovery despite violating
the overarching constraints imposed by Shannon’s Sampling Theorem. When a
signal can be represented sparsely in a given vector basis, CS enables low-energy
encoding and significantly fewer measurements than traditional sampling. The
sparsity constraint is commonly satisfied in various fields, ranging from biological
signals, such as electrocardiograms and electroencephalograms, to radar pulses and
multi-tone RF communication systems. The thesis presents the detailed analysis of
two CS encoders with appropriate strategies to address hardware nonidealities, either
by ad-hoc circuit design or by appropriate decoding techniques.

The first encoder is a Charge-Redistribution (CR), Successive-Approximation-
Register (SAR) Analog-to-Digital converter (ADC). Its architecture redefines the
sampling operations of a typical CR SAR ADC by allowing a more granular decom-
position of the capacitive array. The independent control of its capacitive elements
enables the simultaneous storage of individual samples and the computation of the
encoder output through entirely passive means. Therefore, energy consumption
is significantly reduced compared to previously proposed architectures. Parasitic
capacitances, leakage currents, and matching are some of the issues being addressed,
together with effective mitigating strategies. Preliminary experimental evaluations
are carried out on a physical implementation designed in UMC’s 180 nm technology.

A second encoding platform is built on top of a Phase-Change Memory (PCM)
Analog Array through numerical models of its steady-state response, programming
variability, and conductance drift. Two techniques to drive the array, namely, voltage-
encoded inputs and constant-amplitude time-encoded pulses, result in significantly
different concerns from an applicative and design standpoint. Consequently, the
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resiliency of well-known CS reconstructors is tested against the observed device
variability, and a new, iterative decoding strategy is proposed.

The numerical models are also used as the core computational kernel within PCM-
based Neural Network Layers to verify the inherent redundancy and adaptability of
Deep Neural Networks (DNNs) as an effective workaround to device nonidealities.
Popular classification tasks (MNIST, Fashion-MNIST, CIFAR-10), and a spectral-
content estimation task, are all addressed through PCM-based DNNs.

The work highlights the importance of the simultaneous optimization of system,
circuit, and device-level parameters for the effectiveness of low-energy hardware
implementation, especially for the success of emerging technologies such as Phase-
Change Memories.
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Chapter 1

Introduction

Quo usque tandem...

Oratio I in Catilinam
CICERO

This thesis is the culmination of my Ph.D. experience. It builds on a series of pub-
lications where the ideas where originally outlined and analyzed. Two major themes
can be identified, linked by the goal of constructing low-energy data processing
schemes.

The first theme focuses on the design of an entirely-passive CMOS Compressed
Sensing (CS) encoder, based on a Charge-Redistribution Successive Approximation
Register A/D Converter. The architecture was initially described in [2] and its
description was later expanded in [3, 4]. During the design phase, the need to
quantify and mitigate circuit nonidealities, drove us into the deeper investigation of a
few relevant topics, mainly the effect of layout strategies on the mismatch variance
of nominally identical devices [5] and the stability analysis of a feedback leakage
compensation architecture [6].

The second theme is based on Phase-Change technology, allowing the nonvolatile
storage of information, which is encoded in the conductance of the device. The
extraction of numerical models from actual measurement allowed us to evaluate the
performance of the technology both in the context of Compressed Sensing [7, 8] and
Deep Neural Networks [9, 10].



2 Introduction

The thesis starts, in Chapter 2, with a theoretical explanation of the mathematics
behind Compressed Sensing, with results on the use of hardware-friendly sensing
matrices and showing how to leverage Deep Neural Networks for an additional
performance boost. In Chapter 3 the CMOS architecture we have proposed is
described in detail, with specific details on its elementary components (the capacitive
array, switches, comparator and digital logic), ending with its layout and the design
of an ad-hoc PCB for its testing. To preserve the flow of the discussion, more
detailed analysis of specific topics has been collected in Chapter 4, covering the
effect of parasitic capacitance on the nonlinearity of a C-2C capacitive DAC, the
input-referred offset stemming from asymmetries of the dynamic preamplifier within
the comparator, a general result on the relationship between matching and the layout
strategy in integrated circuit, endind with the stability analysis of a feedback-based
leakage compensator.

The final Chapter 5 introduces Phase-Change technology, presenting the nu-
merical models we have constructed on two revisions of the hardware computing
platform we could rely upon, the first having voltage inputs applied to the individual
conductances, the second enabling time-domain encoding of the inputs, thus prevent-
ing issues with the nonlinear dependence of the conductance on the applied voltage,
allowing us to focus on the issues of programming variability and conductance drift.
Results on Compressed Sensing encoding are shown, with an iterative decoding strat-
egy presented with the voltage-based platform and the evaluation of the resilience of
existing decoders with the time-domain one. Additionally, the chapter ends with an
evaluation of the performance obtainable when PCMs are used as synapses in analog
neural layers, both in regression and classification tasks.

Conclusions are then drawn.



Chapter 2

Compressed Sensing Fundamentals

I would rather sit on a pumpkin and
have it all to myself, than be
crowded on a velvet cushion.

Walden
HENRY D. THOREAU

Compressed Sensing (CS) is a signal processing technique able to reconstruct
particular signal families using far fewer measurements than what the Shannon
sampling theorem suggests. This chapter will delve into the mathematical theory
of CS, explaining the reasons of its effectiveness and discussing some theoretical
bounds defining the limits of applicability.

The general principle guiding the construction of a CS-based signal acquisition
chain is that of adaptation, i.e., tuning the process to the properties of the inputs.
Along those lines, rakeness-based CS is then introduced as a way to further improve
performance by properly selecting sensing matrices with a specific correlation profile.
The use of hardware-friendly sensing matrices will be analyzed in order to simplify
the design of a circuital implementation of a so called Analog-to-Information con-
verter.

Finally, a strategy to leverage the power of Deep Neural Networks to addition-
ally boost performance is presented, before delving, in later chapters, into a more
hardware-centric discourse.
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2.1 Why bother?

Whenever the need to acquire a continuous-time signal arises, Shannon sampling
theorem enters the discussion [11]. The theorem states that functions whose Fourier
spectrum is null above a certain frequency fmax, also known as the bandwidth or
the Nyquist frequency, can be described exactly from samples collected at least at
twice that frequency. As the operating speed of information-processing systems is
increasingly higher, complying with this bound becomes unfeasible because of tech-
nological limitations. At the same time, the frequency domain is not necessarily the
one that shows the most striking features of a signal, since the true information rate
might not be readily observable (a fixed-frequency sine wave, does not provide new
information over time, even if it is varying continuously), leading to an unnecessarily
high Nyquist bound. Weakening such a constraint would lead to dramatic reduction
of the resources employed.

The main advantage of the Nyquist-rate approach is that it is valid under general
conditions, i.e. for any signal having limited bandwidth. Therefore, once a system
has been designed to operate at a given sampling frequency, more often than not,
it can manage any signal whose Nyquist frequency is low enough. Furthermore, if
the sampling frequency fs is sufficiently larger than the Nyquist one (as a rule of
thumb fs > 10× fmax), a reasonable approximation of the original information can
be recovered by a simple linear interpolation.

In practice, any signal processing chain will be designed for a specific application.
The operating conditions, like the kind of signals involved, will therefore be known
in advance. Since some parameters already have to be matched to the specific
properties of the signals (e.g. the sampling frequency), one might ask if it couldn’t
be possible to further tune the system properties to take advantage of more prior
information. As an example, consider a pure sine wave at frequency f , Shannon
theorem requires a sampling frequency greater than 2 f to be able to recover the
original information. However, having prior knowledge of the fact that the signal
is indeed a sinusoid, only three measurements in total are sufficient to define its
amplitude, frequency and initial phase. Therefore including in the design of a signal
processing chain information on the properties of the signal family, the acquisition
effort can be significantly reduced. What Compressed Sensing achieves is to observe
the signal in a different domain and, using a property of the signal family called
sparsity, work with far less scalars than what the Nyquist constraint would require.
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Compressed Sensing has been developed as an extension of the theories on the
recovery of sparse signals, with the distinction that CS processes the samples in a
domain where the signal is not sparse. Therefore we will first analyze the properties
and bounds involved in sparse signal recovery, later moving to the features of CS.

2.2 Sparse Signals Recovery

While we typically work on continuous-time signals, Compressed Sensing theory
is most simply understood in a discrete, finite-dimensional setting. In that context,
signals can be thought of as sequences of n Nyquist-rate samples, i.e. vectors in
Rn. A basis of such a space is the smallest set of vectors able to represent any other
element by a proper linear combination. Although the number of basis for a given
space is unlimited, each signal has a unique representation in any of them. If the
matrix Φ ∈ Rn×n contains, on its columns, the basis vectors, a generic element x of
the space can be expressed as

x = Φξ . (2.1)

The vector ξ ∈ Rn is an equivalent way to look at the original vector. In geometrical
terms, the product in (2.1) is a change of coordinates. It preserves the informative
content, with the possibility to observe other features of the original vector.

The fundamental property required by the theory underlying Compressed Sens-
ing is sparsity of the signal. A vector in Rn is κ-sparse if the number of non-null
coefficients is κ ≪ n. In general, the linear combination of two κ-sparse vectors is
at most 2κ-sparse, since the non-null coefficients may occupy different positions.
Knowing the sparsity level of a vector, the quest is to reduce the number m of obser-
vations required to describe it uniquely such that κ < m≪ n, providing sufficient
information to recover the original data.

Consider ξ ∈Rn as a κ-sparse sequence of length n. A measurement corresponds
to the linear combination of the n scalars in ξ , weighted by some ai coefficients, and
resulting in a single number

y j =
n

∑
i=1

aiξi j = 1, . . . ,m.
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In Nyquist-rate sampling, a measurement would correspond to a single sample,
while in this context it involves the processing of an entire window of length n. The
evaluation of m such measurements can be compactly written as

y = Aξ , (2.2)

where the ai coefficients are placed on the m rows of A ∈ Rm×n. The mapping
described by A is from the n-dimensional space to a lower dimensional one.

Recovering ξ from y is, in general, not possible since the dimensionality reduc-
tion implies that multiple ξ map to a single y. Equivalently, this process corresponds
to solving an underdetermined system of equations which, according to Rouché-
Capelli’s theorem [12], has ∞n−p solutions, with p the rank of the matrix (the number
of linearly independent columns) and n− p being the number of free variables. Since
p≤ m, the number of free variables is greater than or equal to n−m. In reality, by
having prior knowledge on the sparsity of ξ , uniqueness of the solution can in fact
be guaranteed.

2.2.1 Uniqueness conditions

Intuitively, knowing that the ξ ’s of interest are κ-sparse, any of them should be
distinguishable from the others after the projection into the lower dimensional space.
That is, for any ξ1, ξ2, the difference ∆ξ = ξ1−ξ2 observed in the target space has
to be

∆y = A∆ξ ̸= 0.

The term ∆ξ is, in general, 2κ-sparse, and the non-null positions are unknown. Con-
sidering ∆y as the linear combination of columns of A, weighted by the coefficients
in ∆ξ , we have to guarantee that any 2κ columns of A are linearly independent.
This way, there is no possibility of obtaining the null vector from the weighted sum
of the matrix columns and, as a result, any ξ is still distinguishable in the smaller,
m-dimensional space. Identifying uniquely the original ξ , starting from y, is then
possible, with the advantage of having to perform only m≪ n observations.

This qualitative description can be formalized by introducing the concept of
spark of a matrix [13]. It is the maximum cardinality c such that any subset of c
columns of A contains only linearly independent elements Therefore, recovering
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uniquely a κ-sparse vector ξ ∈ Rn from m linear observations (m < n) is possible if

κ = ∥ξ∥0 <
1
2

spark(A), (2.3)

where ∥ · ∥0 is the ℓ0 (pseudo)norm, equal to the number of non null coefficients in
the vector.

Under this uniqueness condition, the solution of (2.2) can be found through a
minimization process that looks for the sparsest ξ such that y = Aξ , i.e.:

argmin
ξ∈Rn

∥ξ∥0

s.t. y = Aξ . (2.4)

However, computing the spark requires a combinatorial search (NP-hard) over
all possible subsets to evaluate the independence of their elements. A more easily
computable index resulting in a uniqueness condition for the solution of (2.2) is
based on the concept of mutual coherence of the columns of A, defined as:

µ(A) def
= max

i< j

⃓⃓
AT

i A j
⃓⃓

∥Ai∥∥A j∥
,

where Ai represents the i-th column of matrix A. Mutual coherence is constrained
in the range 0 ≤ µ(A) ≤ 1. It is equivalent to the maximum cosine of the angle
between any two columns, corresponding to the smallest acute angle between them.
A high coherence is therefore equivalent to aligned vectors. From a different point
of view, considering the columns as random vectors, mutual coherence represents
the maximum correlation coefficient between the columns.

Since the mapping represented by A should store as much information as possible
with the lowest redundancy, we expect a low coherence to result in better performance.
Equivalently, the columns should be as orthogonal as possible or, looking at them
as random vectors, as uncorrelated as possible. Indeed the uniqueness condition in
(2.3) can be stated in terms of the mutual coherence index, becoming

∥ξ∥0 <
1
2

(︃
1+

1
µ(A)

)︃
.
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This theoretical bound, representing the range of sparsity for which a unique solution
can be found, is effectively increased by a lower coherence of A. However, since it
can be shown [13] that

spark(A)≥ 1+
1

µ(A)
,

the new bound is lower than the one based on the spark, thus it is applicable on a
smaller subset of vectors, which have to be even sparsest.

2.2.2 Numerically tractable recovery

Up to now we have used the sparsity level of the vectors, quantified by their ℓ0 norm,
to find the correct solution to the minimization problem. Such a computation requires,
however, a combinatorial search across all possible candidates and is not suitable for
an efficient numerical implementation. An important consequence implied by the
mutual coherence number is the equivalence of the result found by using the ℓ1 norm
instead [13]. The ℓ1 norm corresponds to the summation of the absolute value of all
vector coefficients and it is the smallest-rank norm that is convex, therefore suitable
for use in a numerical implementation. The reconstruction in (2.4) then becomes:

argmin
ξ∈Rn

∥ξ∥1

s.t. y = Aξ , (2.5)

where the only change is the rank of the norm. In turn, this forces stricter conditions
on the sensing matrix A, which has to be generated with greater care.

Although this formulation leads to a (possibly) efficient numerical implementa-
tion, empirical evidence shows that the sparsity range for which the unique solution
can be found is actually larger than what the mutual coherence implies. New indexes
have been proposed, the most popular one being the isometry constant, defined as the
smallest number such that, for all κ-sparse vectors ξ , the following property holds:

(1−∆κ)∥ξ∥2
2 ≤ ∥Aξ∥2

2 ≤ (1+∆κ)∥ξ∥2
2.

This condition is also referred to as the Restricted Isometry Property (RIP). It implies
that the projection into the m-dimensional space approximately preserves the norm
of the original vector.
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Similarly to the reasoning on the meaning of the spark, the goal is to distinguish
any sparse ξ , therefore the distance ∆ξ should be preserved and the isometry constant
of interest is actually ∆2κ . It can be shown that for ∆2κ < 1, the ℓ0 minimization can
find the unique κ-sparse solution. The bound becomes ∆2κ <

√
2−1 in the case of

the ℓ1 minimization, highlighting the fact that using a more convenient norm in the
optimization process requires a more careful design of the measurement operator A.

The three indexes introduced thus far can be linked. Indeed if ∆2κ < 1, any subset
of 2κ columns of A has linearly independent elements, therefore spark(A) > 2κ .
Moreover, the RIP of order κ is satisfied, with ∆κ ≤ (κ−1)µ(A).

2.2.3 Sensing matrix design

The construction of the sensing operator A in order to achieve a small coherence or
a small isometry constant is of great concern. This would ensure a wide range of
sparsity in which a unique solution can be found. A deterministic process leading to
matrices with suitable properties would involve the solution of

argmin
A∈Rm×n

µ(A) or argmin
A∈Rm×n

∆2κ(A).

Both these problems do not lend themselves to an easy evaluation, being of combi-
natorial nature. Indeed it can be shown that these properties hold with probability
close to 1 for random matrices of size m×n [14]. In such matrices, each entry is a
realization of some random variable, with a chosen probability density function (e.g.
Gaussian, Uniform, Bernoulli). The simplest case is for the entries to be independent
and identically distributed (i.i.d.). Moreover, the number of measurements m cannot
be too low. Indeed

m = O
(︂

κ ln
n
κ

)︂
,

where the proportionality depends on ∆κ . Still, since the lower bound on m could be
higher than what is actually required for correct reconstruction, the empirical study
of a reasonable range for m might be a suitable way to approach the problem at the
beginning.

An alternative way to look at the use of random variables is that this ensures a
high degree of spreading of the matrix columns in the signal space, with the further
advantage of being robust against the loss of part of the measurements.
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2.2.4 Noisy measurements

All the previous theoretical guarantees have been obtained in the context of noiseless
measurements and exact κ-sparsity of the original vector. If any of these two
conditions is not met, we need to ensure that the tools developed so far can still
provide the expected results. Indeed, if the measurements vector is affected by a
noise term η

y = Aξ +η ,

the solution to the minimization problem is no more exact and (2.5) becomes

min
ξ∈Rn
∥ξ∥1

s.t. ∥y−Aξ∥2
2 ≤ ε

The solution ξ̂ has to result in a projection ŷ close to the measured one y, with its
uncertainty depending on the amount of noise ε(η). The same is true if the original
signal is not sparse but compressible, in which case most of its coefficients are small
but non-zero. Reconstruction based on sparsity won’t be able to result in the same
exact measurement acquired from the signal, but will be close enough.

Moreover, the uniqueness of the solution and the equivalence of the ℓ0 and ℓ1

minimization procedures no longer apply, but it can be shown that the RIP condition
guarantees robustness of the formulation against noise [13].

2.3 Enter Compressed Sensing

In the previous discussion, measurements were computed directly from sparse
vectors. In reality, sparsity is not necessarily observed in time domain, therefore if
one wants to apply the previous results, the observation have to be performed on
x = Φξ , where x ∈ Rn is a signal window containing n Nyquist-rate samples, Φ is
the n×n sparsity basis whose columns are the coordinate vectors of the space and ξ

is κ-sparse. The measurements vector y is obtained by applying a linear projection
S ∈ Rm×n to the vector x (containing the time-domain samples), such that

y = Sx = SΦξ . (2.6)
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It is the composition SΦ that has to satisfy the RIP of order 2κ . If the number of
observations m is sufficient, then a unique solution ξ can be found by the solving

argmin
ξ∈Rn

∥ξ∥1

s.t. ∥y−SΦξ∥2
2 ≤ ε

Then x can be recovered knowing Φ. The advantage introduced by Compressed
Sensing is the early reduction of the number of measurements to be acquired, thus
avoiding the need to collect every single sample. The Compression Ratio quantifies
this gain, being expressed as

CR def
=

m
n
.

Since the conditions on A are actually posed on the product SΦ, but the matrix
to be designed is S, it is necessary to look into how the properties of S are carried
over to the compound operator. If Φ is orthonormal, then building S according to
a Gaussian distribution and satisfying the RIP will result in a product SΦ with the
same properties [13]. The same is true if the columns of S have low coherence
to the columns of Φ. These consideration can also be extended to sub-gaussian
distributions [14].

2.3.1 Rakeness-based Compressed Sensing

Continuing along the path of specialization of the signal processing chain, a sig-
nificant improvement in reconstruction performance can be achieved by observing
another feature of the signal family. Intuitively, once the sparsity basis has been iden-
tified, not necessarily the coefficients associated to each basis vector have the same
average length, i.e. energy. Equivalently, the signal instances in the n-dimensional
space are not uniformly spread, but concentrate along some of the directions. By
focusing the measurements on the more energetic directions, the average energy
collected (raked) by each measurement can be maximized, with a significant gain in
the quality of the reconstructed signal.

The quantity measuring the distribution of energy across the basis vectors is
named localization [15] and it represents, together with the sparsity level, an addi-
tional prior to the reconstruction process. Its effect is observed on the correlation
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profile of the sensing matrix rows:

CS =
1
2

(︃
Cx

tr(Cx)
− In

n

)︃
,

where In is the n× n identity matrix, tr(·) the trace operator and Cx = E[xxT] the
expected correlation profile of the signal. Cx can be evaluated either having a model
of the signal (and running some Monte Carlo simulations) or having acquired a large
dataset of signal waveforms.

This simple modification to the generation of the sensing matrix leads to dramatic
improvements in the reconstruction quality, therefore becoming essential to minimize
the necessary resources.

2.4 Relevant Reconstruction Algorithms

A wide variety of techniques has been proposed for the solution of the optimization
problem in (2.5). A brief introduction on the algorithms employed in this work is
given here.

SPGL1 [16] solves the Basis Pursuit Denoise problem by recasting it as a root-
finding for an equivalent nonlinear equation. In doing so, it administers the trade
trade-off between the least-squares fit characterizing the constraints in (2.5) and the
|ξ |1 as an alternative objective function representing a good proxy of the sparsity-
level of ξ .

The Orthogonal Matching Pursuit (OMP) is a greedy, iterative algorithm for
sparse approximation. At each iteration, it looks for the component of the product
AD which best explains the measurements. Given a sparsity level k for the family of
input signals being acquired, it completes in at most k iterations, making it extremely
fast. The variant used in this work is the Generalized OMP (GOMP), which selects
more than one vector in each iteration thus reducing the computational complexity
and making the decoder more robust to measurement non-idealities [17].

Generalized Approximate Message Passing (GAMP) is based on the concept of
Belief Propagation, whereby the posterior distribution for each ξi is updated based
on the observations. It allows flexibility in the selection of prior models both on
x and the measurement process. In the case of uniform standard deviation of the
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sensing matrix weights A it performs at a level comparable to its variants specifically
designed to manage sensing matrix uncertainties [18], hence the reason to rely on its
non-specialized implementation.

Although, SPGL1 is designed to find the optimal solution for (2.5), we expect
lower performances if compared with ones that could be obtained by means of
both GOMP and GAMP since they posses the capabilities to manage sources of
non-idealities in the computation of y.

2.5 Reducing Complexity of the CS Acquisition Stage

The CS paradigm was originally introduced to reduce the energy requirements of the
encoder stage in a signal processing chain, thus additional reductions still align with
the general goal of CS.

A possible strategy is to constrain the admissible values of the sensing matrix
A. This method requires less resources to compute (2.6), and is adopted by almost
all hardware implementations of CS-based acquisition systems proposed in the
literature [19–23]. As an example, antipodal values, i.e. A ∈ {−1,+1}m×n, reduce
multiplications to simple sign inversions, that come almost for free in a differential
implementation and shows no performance loss [24].

Binary matrices, i.e. A ∈ {0,1}m×n, or ternary, i.e., A ∈ {−1,0,+1}m×n, allow
further energy saving since the zero entries of A do not contribute to the whole energy
cost. Several classes of matrices A belong to the latter class have been investigated
in the literature [25–28]. Authors of [28] explore the trade-off between zeroing at
random the entries of A and the CS performance in terms of signal recovery. The
same topic is also discussed in [29], where the position of the non zero entries is not
anymore randomly drawn, but tuned according to the statistical characterization of
the class of acquired signals. In that case, authors did not observe any performance
degradation even when 87.5% of the entries in the sensing matrix A are zeroed.

In this section we will go through a few other techniques developed in the
literature to ease the hardware implementation of (2.6) and that are of relevance
in the proposed architecture. In particular, we focus on two complementary ap-
proaches. The first one is focused on effectively reducing the complexity of the
circuitry required to implement the linear projection. In the second one we instead
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aim at improving the performance of the CS system. This may be interpreted ei-
ther as increasing reconstruction quality at a given CR, or as increasing CR at a
given reconstruction quality. The latter corresponding to a reduction the number of
measurements m and therefore of the complexity of the encoder generating y.

2.5.1 Reducing encoding complexity: short windowing

In a CS-based acquisition, the signal is processed in batches of n consecutive samples.
If the total length of the signal is N > n, it has to be partitioned into N/n contiguous
and non-overlapping time windows, each containing n samples1. CS is then applied
separately to each window.

To reduce the computational complexity of the encoder, the system should be
designed to operate with the smallest possible n. To understand why, we have to
consider that the application of (2.6) to a single time window requires O (n ·m)

multiply-and-accumulate operations. Extending the computation over all N/n time
windows, the total number of operations increases to O (n ·m ·N/n) = O(n ·N/CR).
If CR is chosen to guarantee a target reconstruction quality and assuming, reasonably,
that the input signal length N is a constraint, the computational complexity increases
linearly with n.

However, some other effects have to be considered as well. Let us reformulate
(2.6) component-wise as

y j =
n

∑
k=1

A j,kxk +ν j, j = 1, . . . ,m (2.7)

where A j,k is the element of A at the intersection of the j-th row and k-th column,
and ν j the j-th component of ν .

First, the hardware resources needed to compute (2.7) are increasing2 with m, and
a large n implies a large m = n ·CR. At the same time, the noise on y j increases, since

1We are implicitly assuming that N is an integer multiple of n in order to keep the description
simple. This assumption holds for the rest of the thesis.

2This is certainly true when the circuit to compute y j is replicated m times. A possible alternative
to the simple hardware replication is to use the same circuit in an interleaved way to compute all m
measurements [19]. In this case, the speed (hence the power consumption) has to be increased by a
factor m, leading again to an increase in the required resources.
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nb

mb

A =

1

Fig. 2.1 Example of a block-diagonal sensing matrix A, with n = 24, nb = 6, m = 12 and
mb = 3. White blocks correspond to zeroes.

detrimental effects such as clock feedthrough or charge injection cause a degradation
that depends linearly on n.

Finally, as the individual xk are available at different times, they must be sampled
and held by the circuit to allow the computation of y j. For slowly varying signals,
leakage currents become a concern, as their effect increases with the hold time,
which is proportional to n.

Regrettably, in many CS applications a straightforward reduction of n is not a
valid option, since the sparsity properties (hence the ability of correctly retrieving
the original signal) are only observed for values of n sufficiently large [30]. A
workaround is the design of A as an antipodal block-diagonal matrix as in Figure 2.1,
i.e. where the mb×nb blocks lying on the main diagonal of A have antipodal-valued
entries, while the rest are set to zero. The aspect ratio of the blocks is the same of the
original matrix, with mb/m = nb/n or, in terms of compression ratio, mb = CR ·nb.

With this, there are only nb non-null elements in every row of A, and they are
consecutive. This reduces to nb the effective number of terms in (2.7). Furthermore,
non-null elements in different blocks do not overlap, so that the corresponding mea-
surements can actually be computed reusing the same hardware. As a consequence,
the number of physical channels required to compute all measurements is reduced to
mb.
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Table 2.1 Summary of the tradeoffs involving n or, equivalently, nb, indicating the section
where the topic is discussed. Whenever possible, an estimate of the dependence is given.

Tradeoff Dependency Section

Encoder computational complexity O (n ·m)

Sec. 2.5.1
No. of encoder hardware channels O(n ·N/CR)
Noise injected in measurements O(n)

Extension of the acquisition window O(n)
Observed signal sparsity ↑ with n

Achievable reconstruction quality ↑ with nb Sec. 2.5.4
Leakage-induced degradation ↑ with nb

Compensator dissipated power ↑ with nb Sec. 3.4.3
Number of leakage compensators O(nb)

The effectiveness of this matrix structure is confirmed by the empirical results
published in the literature [31, 32]. For an exhaustive discussion on the consequences
of employing a block-diagonal sensing matrix, we refer to [33].

Yet, this approach actually introduces a tradeoff. Values of nb too low result in
structured sensing matrices having a large number of structured zeroes, violating the
requirements of the standard CS theory for some classes of signals [24]. Therefore,
even if noise and degradation of the measurements are reduced, also the theoretical
performance achievable by the CS reconstruction decreases. An example of this
trade-off will be analyzed in Section 2.5.4.

As a convenient aid to the reader, Table 2.1 collects all the parameters and
properties having a dependence on n and nb described in the text.

2.5.2 Improving performance by adaptation: Rakeness CS

Many optimization techniques have been proposed with the aim of improving CS
performance by adapting the statistical properties of A to those of the signals under
consideration [34–36]. For an overview of these techniques, we refer the reader to
[37] and we focus here on the approach known as rakeness [36, 29].

To the best of the authors’ knowledge, this technique ensures a large performance
improvement in comparison with other optimization approaches when applied in a
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realistic setting [37]. Due to this, we will consider a rakeness-based CS system as a
reference case for all the analyses conducted in this thesis.

The rakeness approach exploits an additional prior on the input signal named
localization. Intuitively speaking, the higher the localization of a signal, the farther is
the generating process from being white. Formally, x is localized if the n×n matrix
Cx describing the correlation profile of the instances of x, computed as E

[︁
xxT]︁, is

not the n×n identity matrix In.

Let us indicate with a ∈ Rn the generic row of A. According to the rakeness
approach, the elements of a are not drawn as instances of i.i.d. Gaussian or sub-
Gaussian (e.g., Bernoulli distributed, as in the antipodal case) random variables, but
using instead a multivariate random process defined by a n×n correlation matrix Ca,
computed as follows:

Ca =
1
2

(︃
Cx

tr(Cx)
− In

n

)︃
,

where tr(·) is the trace operator.

The generation of the rows of A according to such a correlation profile maximizes
the expected value of the energy collected by each measurement, ρ = E [ax], as well
as the performance of the CS system.

A method to generate rows of A according to the rakeness approach under the
constraint of random ternary values can be found in [29]. Both the case of non-
structured zeroing (i.e., when the position of the zero elements is a degree of freedom)
and of structured zeroing (when the position of the zero elements is constrained a
priori) are considered. The latter approach fits perfectly the use of the antipodal
block-diagonal matrices depicted in Figure 2.1.

2.5.3 Improving performance through DNNs: TCSSO

Joint use of DNNs and CS can be found in many recent works [38–45]. Typically,
DNNs replace the classic BPDn approach of reconstructing the input signal either as
x̂ or as ξ̂ directly from the measurement vector y.

Several examples are focused on compressed images, such as the 3-layer neural
network proposed in [42], or the DNN described in [46]. As for other application
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fields, fast recovery and improved reconstruction quality of videos is obtained in
[43], while a joint optimization of the encoding and decoding stages in the CS-based
acquisition of EEG signals is presented in [45].

Interestingly, in some works (e.g. [45]) the training process of the DNN also
generates the sensing matrix A, ensuring optimal results when applied to the signals
contained in the training set, and also when using the DNN for signal reconstruction.

Here, we focus on the innovative approach introduced in [30], where the recon-
struction process is split in two consecutive steps. First, a DNN is used to divine
the signal support ŝ of the reconstructed signal. After that, standard linear algebra is
employed to get x̂ and ξ̂ from ŝ and y. The training process of the support oracle net-
work also determines the optimal sensing matrices A to be used for signal acquisition.
According to the results presented in [30], the approach ensures a largely improved
reconstruction quality. However, the application to antipodal block-diagonal matrix
as that in Figure 2.1 is not straightforward, and requires a major modification of
the DNN training algorithm. Details on how to make TCSSO work with antipodal
block-diagonal matrices, as well as numerical results on its performance, will be
provided in Section 2.6.

2.5.4 Case study: synthetic ECG signals

The numerical evaluation of the solutions previously discussed has been carried out
on synthetic ECG signals. The generator employed is thoroughly described in [47]3

and the experimental setup is the following.

The heart-beat rate is randomly selected from a uniform distribution between
60 beats/min and 100 beats/min. Signals are generated as noiseless waveforms,
sampled at 256 samples/s and split into chunks of length n.

Moreover, in order to obtain a better fit of the signal properties with respect to
the requirements imposed by CS, each signal window is modified as follows. i) The
sparsity level is set to κ = 24 by zeroing the less energetic components of every
signal instance, under the assumption of an orthonormal Symlet-6 wavelet sparsity
basis D [48]. This operation introduces a sparsification-induced noise between 30 dB
and 55 dB. An example is given in Figure 2.2, where a 32.4 dB signal-to-noise ratio

3The MATLAB code is freely available for downloaded from the Physionet website at http:
//physionet.org/content/ecgsyn/

http://physionet.org/content/ecgsyn/
http://physionet.org/content/ecgsyn/
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Fig. 2.2 Example of a synthetic ECG with its sparsified version (κ = 24). The separation in
consecutive time windows of length 0.5s (i.e., n = 128 at 256 samples/s) is also highlighted.

(SNR) is observed. ii) In order to define a target for an ideal reconstruction, we
superimpose white Gaussian noise to the sparsified signal so that its SNR is 50dB.

Our benchmark is a CS system with nb = n = 128, i.e. full antipodal sensing
matrix, in which A is drawn according to the rakeness approach and where the signal
is reconstructed by a standard BPDn technique through the SPGL1 algorithm as
in [49]. In Figure 2.3 we compare the benchmark results with those obtained for
block-diagonal matrices A with different values of nb, as a function of the desired
CR. The figure of merit under consideration is the reconstruction SNR (RSNR),
defined as

RSNR[dB] = 20log10

(︃ ∥x∥2

∥x̂− x∥2

)︃
The plot shows the average value of the RSNR (ARSNR) observed over 1000
Monte-Carlo trials.

According to the data depicted in the figure, a full sensing matrix (i.e., nb = 128),
for values of CR ≈ 2 achieves performance close to the theoretical limit of 50dB.
As nb is decreased, the number of zeroes in the matrix grows and less energy is
collected from the signal. As a consequence, performance noticeably drops.

A significant decrease is also observed when the degradation problems addressed
in Section 2.5.1 concerning the analog implementation of the CS encoder are consid-
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Fig. 2.3 Performance of a CS-based signal processing chain for synthetic ECG signals at
approx 60 beats/s, with fs = 256Hz and n = 128. Solid lines refer to an ideal system; dashed
lines to measurements corrupted by a constant-current leakage discharge.

ered. Targeting the sensing of low-frequency biomedical signals, leakage currents
are indeed the predominant source of noise. In the example, using nb = 128 with
a sampling frequency fs = 256Hz implies that the value of A j,1x1 in (2.7) has to
be sampled and preserved for a time period of almost 0.5s, a hold time typically
unaffordable even for pF-range hold capacitances.

In Figure 2.3, the solid lines obtained by an ideal system where no measurement
degradation is considered are compared with the dashed curves, representing an
acquisition process affected by a constant-current discharge of the hold capacitors
due to leakage currents. The discharge model is based on actual data from a 180nm
CMOS technology. It considers a realistic configuration of four minimum size
switches for each hold capacitor, leading to a 300pA discharge current in the un-
favorable condition of 85°C. Moreover, the total sampling capacitance Ctot of the
SAR array is kept constant to emulate equal area occupation and conversion power.
Each hold capacitance is therefore equal to Ch =Ctot/nb. For a fair comparison with
respect to the solution proposed in [21], the value of Ctot has been set to 16pF.
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It is clear from the observation of the dashed curves in Figure 2.3 that block size
has an opposite effect on reconstruction quality as compared to the ideal setup: a
lower nb shortens the acquisition window, reducing the degradation of measurements,
with a positive effect on the reconstruction performance. However, it is also evident
that performance is not sufficient for a decent reconstruction, requiring ad-hoc
measures to counter the leakage-induced discharge (Section 3.4.3).

2.6 Decoding by TCSSO with Short Windowing

The application of the TCSSO approach proposed in [30] to the architecture con-
sidered in this thesis is not straightforward. In this section we first introduce the
original method, then we show how to modify it to handle antipodal block-diagonal
sensing matrices. Finally we apply the modified TCSSO to the case study introduced
in section 2.5.4 and provide numerical results.

2.6.1 The TCSSO approach

The architecture of the TCSSO approach is depicted in Figure 2.4 and is described
in the following.

The computation of the reconstructed signal x̂ starts from a set of measurements
y coming from the CS encoder. The vector y is fed into a DNN, named “support
oracle”, trained to predict the support ŝ of the input signal that generated y. Once the
support ŝ has been estimated, it is possible to reconstruct the original input signal
from y ,i.e., to invert (2.6), using standard linear algebra.

Consider ξ|ŝ ∈ Rκ as the vector containing only the non-null elements of ξ ,
whose positions are identified by ŝ. Similarly, we can define D|ŝ ∈ Rn×κ as the
matrix containing only the columns of D selected by ŝ. Neglecting the noise term ν ,
the sensing equation (2.6) can be rewritten as

y = AD|ŝ ξ|ŝ (2.8)

While the inversion of (2.6) gives rise to an underdetermined system of equa-
tions whose solution is a complex task involving a minimization problem (2.7), the
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Fig. 2.4 Architecture of the TCSSO framework, with the CS encoder optimized along with
the support oracle DNN during the training phase. The recovered signal x̂ is computed using
the estimated ŝ.

inversion of (2.8) corresponds to an overdetermined system. Several known methods,
such as the least-squares based ones, can be used to find its approximate solution. In
[30] the authors consider the Moore-Penrose pseudoinverse operator (·)†, so that

ξ̂ |ŝ =
(︁
AD|ŝ

)︁† y (2.9)

and the original signal is finally reconstructed either as x̂ = D|ŝ ξ̂ |ŝ or as x̂ = Dξ̂ .

Figure 2.4 also details the internal structure of both the CS encoder and the
support oracle DNN. The encoder is considered as part of the neural network only
during the training phase, to generate the optimal A. It emulates the linear projection
y = Ax, having n inputs (i.e., the dimensionality of x) and m outputs (dimensionality
of y). With no bias, using as interconnection weights the actual elements of A, and
employing a linear activation function, its behavior is equivalent to (2.6).

The actual oracle starts from the second layer of nodes, which are shared with
the encoder during training. It is built with m inputs and three hidden layers with 2n,
2n and n neurons each, and ReLU activation functions. The n outputs use a sigmoid
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Fig. 2.5 Equivalent views of the CS encoder in the case of block-diagonal sensing. (a) Antipo-
dal block-diagonal sensing matrix A. (b) DNN layer modeled as several parallel, independent,
fully-connected sub-layers. Each block A±(l) is mapped to a subset of the weight matrix of a
DNN layer so that it can be optimized during the training phase of the support oracle. In the
example, nb = 6 and mb = 3, with CR = 2.
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activation function α(a) = 1/(1+ e−a) and generate the output vector ô∈Rn, which
can be interpreted as the probabilities of the coefficients of ξ being non-zero. The
divined support ŝ is obtained from ô by simply thresholding it elementwise, so that
(ideally) its κ largest elements are set to 1 and the rest to 0 4.

2.6.2 TCSSO with antipodal block-diagonal matrices

In the TCSSO approach, as well as in many other frameworks where the CS recon-
struction relies on a DNN which is jointly trained with the sensing matrix A [42, 45],
the key point is to model the matrix-vector product required by the CS acquisition in
(2.6) as an extra layer of the DNN.

It is evident that any constraint on A (e.g., forcing it to be antipodal, ternary or
block-diagonal) corresponds to an equivalent constraint on such a layer. In reality,
when the neural network is used for inference, sensing matrices of any kind can
be used with the support oracle. However, during the training phase, obtaining an
optimized A with a specific structure requires particular care.

In the original TCSSO framework [30], a full antipodal sensing matrix A± ∈
{−1,+1}m×n is considered. The algorithm used for the optimization of the neural
network is the Stochastic Gradient Descent (SGD), which consists of two phases,
namely forward- and back-propagation. The convergence of the SGD algorithm
requires tiny variations of A, which are not possible if training is performed directly
on the antipodal matrix A±, whose values are either -1 or 1. Therefore a real valued
AR ∈ Rm×n sensing matrix is employed since, during back-propagation, its values
can be finely adjusted to minimize the error at the output. In the forward-propagation
phase, the corresponding antipodal matrix A± is extracted from AR by evaluating the
sign of each matrix element.

At the same time, if the sensing matrix has to be block-diagonal, we may actually
observe that such a matrix can be split into smaller antipodal matrices A±(l) ∈
{−1,1}mb×nb as in Figure 2.5, where l is the index of the l-th block. Each elementary
block acts only on a portion of the input signal x(l) ∈ Rnb , contributing to a subset

4In practice the number of ones in the recovered support is on average no less than κ .
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Fig. 2.6 Reconstruction of the sparsified ECG waveform depicted in Figure 2.2, using an
ideal setup (no leakage) with nb = 8 and CR = 2.7. The different decoders result in a 16 dB
RSNR for SPGL1 and 31 dB for the TCSSO.

y(l) ∈ Rmb of the measurements vector y. Hence, the sensing operation becomes

y(l)j =
nb

∑
k=1

A±(l)j,k x(l)k . for

{︄
l = 1, . . . , n/nb

j = 1, . . . , mb

In other words, we have decomposed the encoding process (2.7) into n/nb indepen-
dent and parallel operations, each of them defined by an antipodal matrix A±(l). This
is illustrated in Figure 2.5. From the point of view of the DNN, the input layer is
no more a single, fully-connected layer, but it is the composition of n/nb mutually
independent, fully-connected sub-layers. All the zeroes of the sensing matrix and
the corresponding interconnections between neurons are thus neglected altogether.

Equivalently to what is done in the original framework, here the SGD algorithm
is applied to multiple full-precision matrices AR(l) ∈ Rm×n. The corresponding
antipodal sensing matrices A±(l) are obtained by extracting the sign from each
element of every AR(l). Finally, the desired antipodal block-diagonal matrix A± is
composed by a proper arrangement of the individual blocks on the main diagonal.
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2.6.3 Numerical results with the modified TCSSO

Simulations using the same input signals defined in Section 2.5.4 prove that the
TCSSO approach is extremely effective. When properly modified to work with
antipodal block-diagonal sensing matrices, it ensures better performance with respect
to the BPDn approach boosted by the rakeness optimization. A time-domain
comparison of the two decoding is shown in Figure 2.6, where the techniques are
applied to the signals depicted in Figure 2.2. The behavior is noticeably improved at
the window boundaries, which are the largest noise contributors.

The ideal setup without the effects of the leakage currents is considered in details
in Figure 2.7a. Similarly to what is shown in Figure 2.3 for the BPDn reconstruction,
a higher value of nb results in an improved performance. Furthermore, for all
considered values of CR, reconstruction quality using the TCSSO is higher with
respect to the reference case given by the SPGL1 algorithm with rakeness-optimized
sensing matrices.

In Figure 2.7b measurements are degraded by leakage. It can be readily observed
that TCSSO achieves up to 20dB of increased ARSNR with respect to the reference
case. As already described for the curves Figure 2.3, the value of nb sets a trade-
off. However, whereas for a BPDn-based reconstruction the optimal performance
is obtained for nb = 16, using TCSSO the optimum is found for nb = 8. This is
extremely important from the hardware point of view, since it allows at the same time
an improvement in performance and a reduction of the complexity of the architecture,
requiring a coarser decomposition of the SAR capacitive array (reduced number of
hold capacitors Ch).

Leakage discharge currents represent one of the most detrimental factors for the
maximum hold time in analog sample-and-hold circuits. Apart from the obvious
passive solution of enlarging the sampling capacitor, alternatives based on active
circuits have been proposed. We focus here on an existing solution which has proven
to be effective in reducing the leakage discharge, hence extending the hold time, by
a factor of 20. Being based on a feedback circuit built around the hold capacitor,
it is paramount to understand its stability properties. This work tries to close the
gap by analyzing the closed-loop stability of the nominal circuit. Classical control
systems techniques are employed to thoroughly analyze the dynamic behaviour of
the feedback circuit, highlighting the detrimental effect of device mismatches.
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Fig. 2.7 Performance of a CS-based signal processing chain expressed in terms of ARSNR
as a function of CR, for synthetic ECG signals at approx 60 beats/s, with fs = 256Hz and
n = 128. Solid lines refer to the TCSSO reconstruction, dashed lines to the SPGL1 algorithm.
(a) Ideal sensing (b) Sensing corrupted by leakage, with the presence of the compensator
introduced in Section 3.4.3 and the same parameters used to obtain Figure 2.3.



Chapter 3

CMOS Analog-to-Information
Converter

Quannu si’ marteddru vatt’.
Quannu si’ ’ncudine statt’.

Old Calabrian saying

In the previous chapter, we have outlined the requirements and properties
of an adapted signal acquisition process, tuned to specific signal families. This
Compressed-Sensing-based approach has been presented in a specific configuration,
with compression being applied after sampling the input. This chapter will start from
a more general viewpoint, so that tradeoffs can be better understood when designing
ad-hoc hardware. The features of notable architectures published in the Literature
will also be described, to introduce our proposed low-power analog implementation
of the sensing process, based on a Successive Approximation Register (SAR) A/D
converter. Minor modification of the textbook architecture, namely the addition
of a few extra switches and a revised control logic, enable the circuit to act as a
Compressed Sensing encoder, performing the matrix-vector product y = Ax in the
analog domain, maximizing the use of the passive structures already found in the
A/D converter.

The chapter will then continue with implementation details, such as the structure
of the capacitive array, the topology of the selection switches, the operations of the
dynamic comparator and the description of the necessary digital logic.
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Finally, we will go through the layout of the entire integrated circuit, show
some post-layout simulations and introduce the design of the PCB to physically
test the chip. Unfortunately, due to delays in the fabrication of the chip, no actual
measurements are included in this work.

Additional analysis that have been helpful in the design but are somewhat tan-
gential have been collected in Chapter 4 not to interrupt the flow of the following
discussion.

3.1 Where to Apply Compression

Compressed Sensing condenses all the meaningful information carried by a signal in
as few measurements as possible, fewer than what the Shannon sampling theorem
would require. Along the signal acquisition chain, the compressed encoding can be
performed in different locations, affecting the hardware requirements and potential
benefits. Fig. 3.1 depicts the main blocks of a typical A/D signal processing chain,
along with the sections where compression can be performed to obtain the desired
Analog-to-Information conversion.

Fig. 3.1 Compression applied at different locations of the signal processing chain.

The first possibility (Case A) is to work in the continuous-time analog domain,
where the continuous-time operator A j{x} modulates the input. In general, active
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circuits1 are required to implement the analog multiplication and continuous-time
integration, leading to significant additional power consumption. This “CS-first”
signal processing chain becomes interesting at extremely high frequencies, where
even sampling the input at Nyquist-rates becomes difficult. In that case the compres-
sion introduced by CS directly translates to a reduction of the switches’ operating
frequency.

If instead the input is sampled first (Case B), compression can still be applied
in the analog domain. Having discrete-time samples, the transformation becomes a
modulation of the sampled input x by some coefficient vectors A j. With the same
considerations as in Section 2.5, the modulating coefficients can be limited to 0 and
±1, so that the product effectively becomes a much simpler sign inversion. The sum
of the partial terms A j,kxk involved in the matrix-vector product can be implemented,
other than using a discrete time integrator, with an entirely passive solution, as we
will presented in this chapter. The input switches still work at Nyquist-rate, but A/D
conversions are performed only at the end of an acquisition window and extremely
low power consumption can be obtained.

The final solution (Case C) involves a digital compression, with no modifications
of the blocks before the ADC, which generate quantized samples of the inputs as
usual. This could be intended as a plugin solution attached to an existing ADC chain
to compress the acquired data before sending them out to some receiving platform.
The benefits are only in terms of the transmission data-rate and no more in terms of
acquisition energy.

Our discussion will be focused on the second solution, with an in-depth analysis
of how the traditional architecture of a SAR ADC can be adapted to include the pro-
cessing steps required by a CS encoder. We will initially go through some significant
architectures proposed in the Literature, in order to gain a better understanding of
the tradeoffs and design choices available when implementing CS encoders in the
analog domain.

1We denote as active circuits any circuit block that draws current continuously from the power
supplies
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3.2 Existing analog CS encoders

Table 3.1 summarizes the main features and performance metrics of integrated
solutions recently proposed in the Literature. For each architecture being considered,
a simplified schematic highlights the additional hardware blocks required with respect
to a straightforward Nyquist-rate acquisition, given by the direct A/D conversion of
the input signal samples. The table includes the energy required by the additional
active elements to compute a single measurement, as well as the signal bandwidth and
the ADC resolution. Of course, a fair comparison would look also at more CS-centric
capabilities (mainly, the possibility to work at different levels of compression by
controlling m or the availability of a multi-channel input). The aim of the comparison
is to highlight how existing architectures require significant additional energy as
compared to the that of a mere A/D converter circuit.

In [23] a sub-Nyquist rate receiver for radar pulse signal is presented. A single
input, amplified by an LNA drives 8 parallel channels. Each channel has its own
modulator, operating at Nyquist rate, its output is integrated over a fixed time and
then digitized. The sparsity basis for the signals of interest, i.e., radar pulses, is a
multi-scale Gabor dictionary, as the pulses are sparse in the time-frequency domain.
Each channel is a modified direct-conversion receiver, working in the current domain
to maximize the dynamic range.

Authors of [22] presented a data acquisition front-end for RF communication
assuming a multi-tone input signal. Both solutions embed a passive mixer that
exploits A j,k ∈ {−1,1} by exchanging the two wires of the differential input signal.
However, they also require a power-hungry continuous-time integrator.

Solutions designed for lower bandwidths typically rely on a switched-capacitors
integrator architecture. In [50] an analog front-end for ECG signals is presented,
with a passive mixer designed for approximating A j,k ∈ R. It exploits the differential
architecture to implement the sign change, and a 6-bit multiplying DAC embedded in
the integrator. In [19] the target application is given by intracranial EEG signals, and
also in this case a passive mixer is adopted, implementing A j,k ∈ {0,1} by means
of simple pass-transistors. The last considered architecture is that described in [21],
where a passive mixer is obtained constraining A j,k ∈ {−1,+1} and exploiting the
fully differential architecture for sign inversion via pass-transistors. Anyway, all
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Table 3.1 Summary of solutions implementing a CS encoder according to (2.7). The addi-
tional hardware with respect to a Nyquist-rate approach is highlighted.

Schematic and Description Figures of Merit

LNA gm

Aj,k

ADC

(external)

C
[23] (2012, 90 nm). Continuous-time

gmC integrator with passive mixer
(A j,k ∈ {−1,1}, fully differential).
2 GHz BW, 506.4 mW (n = 100,

m = 8), 1.58 nJ/conv, 15.8 pJ/conv/n.
–1

gm

Aj,k

ADC

(dig. oscilloscope)

C
[22] (2012, 90 nm). Continuous-time

gmC integrator with passive mixer
(A j,k ∈ {−1,1}, fully differential).

500 MHz BW, 30 mW
0.083 nJ/conv, (nb = 22, mb = 8)2,

3.75 pJ/conv/nb, 8 bit2

AFE

Aj,k

ADC

(SAR, 10 bit)

Cf

Cs

[19] (2014, 180 nm). Switched-cap.
integrator with passive mixer

(A j,k ∈ {0,1}, pass-transistors).
10 kHz/m BW3, 8.4 µW, (n = 16),

0.42 nJ/conv, 9.2 bit

|Aj,k|
ADC

(SAR, 10 bit)

Cf

C-2C array
Cs

sgn(Aj,k)

[50] (2014, 130 nm). Switched-cap.
integ. with passive mixer (A j,k ∈ R,

module of A j,k via modulation of the
sampling capacitance).

1 kHz BW, 1.8 µW, (n = 256, m = 64),
3.58 nJ/conv, 14 pJ/conv/n, 6.5 bit

Aj,k

ADC

(SAR, 11 bit)

Cf

Cs

[21] (2016, 180 nm). Switched-cap.
integrator with passive mixer

(A j,k ∈ {−1,1}, fully differential).
60 kHz BW, 430 µW, (n = 128,

m = 16), 13.2 nJ/conv, 216 pJ/conv/n,
9.0 bit

This work, 180 nm. Integration by
passive charge redistrib. within the

ADC. Passive mixer (A j,k ∈ {−1,1}
through fully diff. implementation).

Negligible extra energy

1Uses an external ADC, whose resolution is not indicated.
2Uses a block-diagonal sensing matrix. 8 bit assumed for the oscilloscope resolution.
3BW decreases with m (resource sharing). Energy indep. of n (integration over space).
4Includes the power consumption of the ADC (not declared for the other analog blocks).
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these solutions require an operational amplifier as additional active circuit to execute
the integration.

The last line of the table presents the architecture to be discussed. We can
already see how the integrator is absent from its diagram, while the only significant
addition are the extra switches required to collect and store individual samples to be
compressed in a single measurement. The extra energy is considered to be negligible
as compared to the other circuits, since the integration is performed by an entirely
passive structure and the control logic only requires a counting mechanism to keep
track of the samples acquired within a window. As a reference case, a 10-bit SAR
converter [51] in a 90 nm technology, employing the conversion technique described
in the previous section (also known in the literature as VCM-based method), shows a
power consumption of 3 mW at 100 MS/s, equivalent to 30 pJ per conversion, with
more than 9 effective bits. This energy is almost negligible when compared with the
additional energy required by all previous solutions in Table 3.1.

An additional drawback of the active integrators is the possibility of saturating
the output of the operational amplifiers. As shown in [24], this is disruptive in terms
of performance, unless some ad-hoc strategy is applied to signal the saturation to the
decoder. The passive charge redistribution in our proposed architecture is unaffected
by such an issue. This comes, however, with two major drawbacks, leakage of the
capacitive elements and a reduced dynamic range, as we will see in more details in
the following.

3.3 Proposed architecture

An enlarged view of the last schematic of Table 3.1 is shown in Figure 3.2. It depicts
the key elements of the proposed architecture, which is based on a traditional charge-
redistribution SAR ADC [52], suitably modified to simultaneously hold different
signal samples at the same time. This is indeed the key idea behind the circuit. Once
different signal samples are stored, either acquired sequentially from a single input
channel or sampled from multiple channels, their linear combination can be obtained
by entirely passive means.

Before delving into the details of the architecture, we will briefly describe the
general structure of SAR converters.
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Fig. 3.2 Proposed entirely-passive CS encoder based on a charge-redistribution SAR ADC.
The extra blocks enabling CS functionality are highlighted.

3.3.1 Successive Approximation Converters

The successive approximation algorithm allows the conversion of an analog value
in digital form by performing a sequence of comparisons of the input against an
adaptive reference [53]. The reference is updated across several cycles, until the
required accuracy is reached. If the steps’ height decreases as a power of two,
a resolution of N bits is achieved in N cycles. A high-level view of the circuit
blocks involved in such a conversion is depicted in Fig. 3.3a, with the time-domain
behaviour of the most important signals in Fig. 3.3b.
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Fig. 3.3 SAR A/D converter. a) Circuit diagram and b) Signal waveforms during conversion.

The input signal is sampled and held constant during the entire conversion and
the adaptive reference voltage evolves according to the previous comparison. If the
reference voltage was lower than the input sample, the comparator output would go
high and the reference is increased. The opposite happens if the reference voltage
becomes higher than the input sample.
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The outcome of the comparison is stored in a digital register, starting from the
Most Significant Bit (MSB) at cycle 1 and moving towards the least significant ones
as conversion goes on. The register content is initially reset and represents, over time,
the approximation of the input signal, hence the name of Successive Approximation
Register (SAR) converter. The analog equivalent of the register content becomes,
through a D/A conversion, the adaptive comparator reference. Fig. 3.3b clearly shows
how the difference between the DAC voltage and the signal sample progressively
decreases, beginning from the assertion of the Start-of-Conversion (SOC) signal.

Over time, the reference voltage converges to within 1 LSB of the input sample.
It is also possible, as it happens in the figure, that the final error is not the minimum
one obtained during the conversion (which in the example is achieved at the cycle
before the last), though it is guaranteed to be below the quantization error by the end
of the conversion.

The most critical element required by the SAR A/D converter is actually the
D/A converter embedded in it. A popular solution in CMOS technology is to
employ switched capacitors [53], both because of the good technological properties
of switches and capacitors in CMOS processes, for the absence of static currents
and the ability to combine the Sample-and-Hold block and the DAC into a single
structure, as depicted in Fig. 3.4, freeing one of the comparator inputs. In single
ended systems, the remaining input is connected to a constant voltage. Differential
implementations take advantage of it by duplicating the capacitive array to process
the inverted replica of the input, for increased dynamic range and noise performance.
In Fig. 3.4b the capacitive arrays are divided into identical banks at sampling time,
to process independent input channels or different samples from the same input, if
the channels are shorted together and the sampling cells are activated in different
instants. This principle underlies our proposed architecture and will be explained in
more detail in Section 3.3. Note however that it represents a natural extension of the
original circuit.

Notwithstanding the energy efficiency of the charge redistribution solution, dif-
ferent SAR algorithms have been proposed in the Literature to lower the energy
consumption even more [54, 55].

We will now describe analytically how a CR SAR operates, both in traditional
sampling and when adapted to work as a CS encoder.
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Fig. 3.4 Charge-redistribution SAR converter, combining sample-and-hold and D/A function-
alities within the same block. (a) Typical circuit diagram for a differential implementation.
(b) Decomposition of the capacitive arrays enabling the acquisition of different samples from
either the same input, over time, or from independent inputs in multi-channel systems. Here
4 samples can be stored, from 2 input channels.

Charge-Redistribution SAR converter

A single-ended implementation is depicted in Figure 3.5, where the capacitive
array is split, for generality, into a 4-bit binary-weighted array and a 2-bit C-2C
structure. This solution is usually preferred to limit the total size of the array, which
becomes critical at high-resolutions. To first order, the time-domain dynamics of
the capacitive array are independent of the array implementation, and would be
unchanged if considering a binary-weighted secondary array, or even a single main
array exclusively.

To sample the input, the top plates of the capacitors are grounded by SW0, while
the bottom plates are all connected to the input signal Vin (selectors in Fig. 3.5 on
the rightmost position), tracking the input. This technique, commonly referred to
as bottom-plate sampling is advantageous when considering the effect of parasitic
capacitances, which introduce a constant attenuation that can be easily compensated
for and does not affect the linearity of the conversion.

SW0 is then opened, isolating the top plates and all the capacitances are grounded.
This stored charge makes the D/A operations of the array signal dependent, as
required by the SAR algorithm, but using a single structure. Therefore only one
comparator input is occupied and the other can be set to a constant voltage. The
actual conversion starts right after driving all bottom plates to ground, with the top
plates allowed to float.
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Fig. 3.5 Schematic and working principle of a traditional charge-redistribution SAR ADC
with a 4-bit binary-weighted array, and a 2-bit C-2C array. Notice that, having the comparator
reference in the middle of the range [−Vre f ,+Vre f ], the overall ADC gains an extra bit,
reaching a total of 7 bits.
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Fig. 3.6 Capacitive array during: a-b) sampling, c-d) conversion. The charge in the isolated
node remains constant across the operations.

Using the notation v[n]
de f
= v(ntclk), where n represents the conversion cycle and tclk

the time required by each step, the initial array voltage can be expressed as

vtop[0] =−Vin

and the most significant bit bN , considering a bipolar representation where bi ∈
{−1,+1}, is obtained as

bN = sign
(︁
vtop[0]−Vcm

)︁
.

In the circuit in Fig. 3.6 Vcm corresponds to the ground potential. If vtop is lower
than the common mode level, bN = −1 and the array voltage has to be increased
to get closer to the common mode. The value of bN determines the connection of
the MSB capacitor to either V+

ref or V−ref resulting in a new array voltage. This value
can be derived by considering the fixed charge stored on the top plates and the new
connection of the largest capacitor.

The array can be grouped into two elements, CMSB = 8Cu and Crem = 8Cu, such
that CMSB +Crem =Ctot = 16Cu (Fig. 3.6c). Forcing the conservation of charge, we
obtain

−VinCtot =
(︁
vtop[1]−bNVref

)︁
CMSB +Cremvtop[1]

and consequently

vtop[1] =−Vin +bN
CN

Ctot
Vref =−Vin +

bN

2
Vref.

Since the MSB capacitor represents half the total capacitance, the array voltage
changes by half the reference voltage.
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For the second bit:

−VinCtot =
(︁
vtop[2]−bNVref

)︁
CMSB +

(︁
vtop[2]−bN−1Vref

)︁
CMSB−1 +Cremvtop[2].

Coherently with the fact that the (MSB-1) capacitor has one fourth of the array
capacitance, the voltage becomes

vtop[2] =−Vin +

(︃
bN

2
+

bN−1

4

)︃
Vref.

As conversion proceeds, new bits are generated, each of them determining the
position of one selector. Since the capacitors have values that decrease as powers of
two, every new bit leads to an increasingly smaller variation of the array voltage. At
the end of the conversion

vtop[N] =−Vin +
bNCN +bN−1CN−1 + · · ·+b0C0

Ctot
Vref

=−Vin +

(︃
bN

2
+

bN−1

4
+ · · ·+ b0

2N+1

)︃
Vref. (3.1)

The fact that the number of terms in (3.1) is N+1 whereas the capacitors are N stems
from the fact that the first bit is generated by grounding all the array elements, and
the remaining N by acting on the capacitors (the closure capacitance of value Cu is
excluded from the count since it is introduced only to have power-of-two coefficients
and is unused during conversion). The quantization error is therefore bounded by

|εq|<
1

2N+1Vref.

As N is increased, the error is reduced and the approximation improves. However,
every additional bit doubles the array capacitance, with an exponential increase of
both the area and the power consumption. The total capacitance is in fact

Ctot = 2NCu.

As a consequence, also the impedance of both the source and the switches has to be
extremely low to avoid slow transients.
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Charge-Redistribution CS Encoder

The proposed architecture modifies the behavior of the traditional converter when
sampling occurs, as shown in Figure 3.7. Additional switches allow a finer-grained
control of the largest array capacitors, and through the presence of SWin at the input
the signal modulation described by equation (2.7) can be implemented directly in the
analog domain. The modulation is achieved by the switch SWin, which selects either
+Vin or −Vin, inherently available in differential implementations. The structure
depicted in the figure corresponds to one row of the sensing matrix A and is used to
compute the j-th measurement y j.

The original capacitive array can be used as nb identical sampling capacitors (8
in Fig. 3.7), each of size Ch = Ctot/nb, so that nb samples of the modulated input
can be stored independently (in the figure, with Ch = 2Cu we are able to obtain 8
hold cells). This operation requires the decomposition of the largest capacitors in
Figure 3.5, i.e., 8Cu = 4×2Cu and 4Cu = 2×2Cu, into smaller elements, hence the
requirement for additional switches. At the same time, the smallest capacitors have
to be driven simultaneously, so that their combined sampling capacitance is equal to
Ch.

Before each sampling instant, only one among the switches SWA to SWH connects
the input to a sampling capacitor. By the end of the acquisition window, each of
them will hold a value equal to A j,kV [k], with k = 1,2, . . . ,8, in agreement with the
notation of the figure.

Finally, SW0 opens, and all other switches move to the ground position. All the
sampling capacitors are thus connected in parallel, sharing the accumulated charge
and generating a voltage level at the input of the comparator equal to the average of
the individual capacitor voltages:

Vy[ j] =−
nb

∑
k=1

ChA j,kV [k]
nbCh

=− 1
nb

nb

∑
k=1

A j,kV [k] .

Apart from the scaling factor −1/nb, this is equivalent to the measurement y j

described by (2.7).

The acquisition phase is now complete and the A/D conversion can start by
logically reconfiguring the capacitive array in its original shape. The largest of the
binary-weighted capacitors, initially split into smaller elements, can be re-obtained
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Fig. 3.7 Schematic and working principle of the CS-based acquisition system, based on
a charge-redistribution SAR ADC, proposed in this thesis. The structure has Ctot = 16Cu,
nb = 8 and Ch = 2Cu. The +Vre f and −Vre f levels in the timing diagrams are not to scale.
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by driving its switches simultaneously. Equivalently, the smallest capacitors, jointly
driven during acquisition, have to be controlled independently.

Note that, as we will analyze in Section 4.1, the C-2C sub-array requires particular
care because of its sensitivity to parasitic loading of the internal isolated nodes. Hence
it is preferable not to change its topology during the acquisition phase, using it as a
whole. This determines a minimum value for Ch, which has to be Ch ≥Cu.

3.4 Implementation details

A practical realization of the proposed Charge-Redistribution CS encoder requires
the estimation of unwanted nonidealities, their mitigation through component sizing
and an accurate selection of the employed circuit blocks. Here we will go through
some of the considerations made during the design.

3.4.1 Block diagram and I/Os

The overall structure of the converter is shown Fig. 3.8. Each integrated circuit
is split in two identical halves, each containing a coefficient memory and two CS
encoders. The coefficient memory controls the state of the input modulators, as
well as the activation of the sampling capacitors within the capacitive arrays. The
following subsection will go through additional details of the specific blocks.

3.4.2 Capacitive Array and Sub-Arrays

The greatest concern as resolution is increased is the matching accuracy of the capac-
itive elements, since the operations of the DAC depend inescapably on exact ratios of
capacitance. As larger capacitors are added to introduce new bits, guaranteeing the
accuracy of the ratios becomes problematic. Two structures typically employed to
mitigate the issue are the split array and the C-2C sub-array, both shown in Fig. 3.9.

In the scaled capacitive array considered in the previous section, all the capacitors
shared the top node. If a series element (bridge) is introduced, the array is split.
Between the two top nodes now present, only one needs to be grounded during
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Fig. 3.8 I/Os of the converter and inner block diagram.

sampling and subsequently observed by the comparator. In Fig. 3.9a it is the left
node, since the closure element Cu is on the right-hand side.

Looking from the comparator input, the capacitance on the other side of the
bridge is attenuated, acting as an equivalent smaller elements, even though their size
shares the range observed in the original array. The range of capacitances is thus
limited and matching can be guaranteed more easily. Eventually the entire primary
array, having Np bits could be replicated, doubling the resolution while doubling
the area and total capacitance 2Np+1Cu +Cb. The same resolution increase, using
exclusively a scaled array, would require a capacitance 22NpCu, the square of the
original one.

The value of bridge capacitance making the secondary array look as an extension
of the scaled array is derived by considering that its total capacitance Csec = 2NsCu

in series with Cb has to equal Cu (to have a total capacitance, as seen from the input,
expressed as a power of two). Therefore

Cb =
2Ns

2Ns−1
Cu.

The values of bridge capacitance are not integer multiples of the Cu, requiring a
careful layout. The procedure could be repeated even more than once, adding several
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Fig. 3.9 a) Split array with unequal sections b) Mixed-type array: scaled plus C-2C sections.
The comparator in both cases would be connected to the same node as leftmost switch.

bridges. However, having non-integer multiples of Cu and introducing at the same
time many isolated nodes reduces the achievable accuracy, making the structure
extremely sensitive to injected noise and parasitic loading, with detrimental effects
on the conversion quality.

Notwithstanding this last consideration, the structure that minimizes the total
capacitance and that has been actually considered in the proposed solution is the
mixed-type array, employing a C-2C topology. It involves the cascade of several
capacitive dividers, with values 2Cu and Cu and loading the original scaled array.
One cell per each new bit is introduced, with a final closure capacitance equal to
Cu. In Fig. 3.9b, two C-2C cells are added to the original scaled array. The total
capacitance expressed as a function of the number of bits in the sub-array is:

CC2C = (3N +1)Cu

This is lower than in a scaled implementation if N ≥ 4. Moreover, requiring only
two values of capacitance, high matching can be easily achieved.
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The downside of this solution is the presence of the many isolated nodes. What
will be shown in Section 4.1 is that the amount of parasitics loading the internal
nodes determines the maximum number of bits achievable with such a structure.
This is the main limitation preventing the realization of the entire array as a cascade
of C-2C cells.

Evaluation of the array voltage in both the split and C-2C solutions, as already
done in (3.1) for the scaled topology, is slightly more complicated. However, using
superposition and considering the expression of a capacitive voltage divider under
the assumption of no net charge in the hidden isolated nodes, the result can be
obtained. Indeed the expressions in the case of the C-2C-based mixed-type array
will be derived in Section 4.1, where the effect of the parasitic loading of the inner
isolated nodes is evaluated for the resulting conversion nonlinearity.

3.4.3 Switch Architecture

The selection of an effective switch topology and sizing has to constraint a few
limitations our architecture may suffer from, namely, charge injection, clock and
input feedthrough, and leakage currents.

Charge injection errors

The so called “pedestal error” is a common phenomenon in CMOS sample-and-hold
circuits whereas a voltage step is observed across the hold capacitor upon switch
turn-off. Being a voltage-dependent effect, it introduces a nonlinearity. Extensive
studies have been conductive to model the effect and find mitigation strategies [56].
The general rule is that a slow gate turn-off transient allows charge to flow towards
the input source, provided that its output impedance is sufficienty low. Conversely
a fast transient results in a more predictable, albeit larger charge injection, which
becomes closer to half the charge held within the channel during the ON time. The
use of a complementary switch, i.e., a “transmission gate”, is helpful, as each device
injects capacitance of a different sign. Though the different depths of the channel
below the gate electrode requires a specific ratio of the PMOS to NMOS widths.

In order for a MOS transistor to change its conduction state, the conductive chan-
nel has to be created/destroyed, implying a transfer of charge with the surrounding
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elements. When the transistor is driving a hold capacitor, the exchange leads to a
voltage drop on the capacitor whose amount depends on the charge and the size of
the capacitor itself. Since the charge stored inside the channel is a function of the
local potential, modeling the injection effect is challenging as it would require a
pointwise, time-dependent description of the channel potential as the gate voltage is
modified [53].

If one of the switch terminals is connected to a low impedance source, a suf-
ficiently slow gate voltage transition allows the charge to be gradually removed
from the channel to the source. Conversely, if the transition of the gate voltage is
fast enough, a reasonable approximation is to consider the charge equally divided
between source and drain (Fig. 3.10).

Vg

Vin
ChQch

2
Qch

2

Vin

vh

t

∆V

Fig. 3.10 Charge injection and its effects on the sampled value

The voltage drop induced in the hold capacitor Ch is

∆V =
WLC′ox

2Ch
|Vg,on−Vin|.

Here W and L are the transistor dimensions and C′ox the oxide capacitance per unit
area. Being dependent on the input voltage, it leads to a distortion of the reconstructed
waveform.

Other than increasing the value of the hold capacitor and minimizing the channel
area, a couple of techniques can be employed to limit the errors. The first and most
effective one involves the use of dummy switches (Fig. 3.11a). The dummy element
is driven in phase opposition with respect to the main switch, so that when the
inversion layer is removed from the main switch, the charge is absorbed entirely by
the dummy.

The technique is effective only if the clock transitions are fast enough, so that the
half-splitting approximation holds. Thus the dummy size has to be half that of the
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main transistor (considering that the effective size of small-size devices is different
from the design dimensions, it means the main switch should be built as the parallel
of two fingers, while the dummy element by a single finger). Since it is important to
ensure that the injected charge is captured by the dummy element a small delay in
the driving signal of the dummy has to be introduced so that the inversion layer in it
is formed after the main switch is opened.
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Fig. 3.11 (a-b) Charge injection compensation techniques: (a) dummy transistor and (b)
transmission gate. (c) T-switch configuration.

A second solution is the use of a transmission gate (Fig. 3.11b). This is typically
employed when the input signal varies in the entire supply range. Since transistor of
opposite polarity have inversion charges of opposite kind, when both of them are
turned off, they inject charges that mutually compensate. However the solution is
not as effective as the first one, since the channel charge depends on Vgs and the two
transistors are turned on by opposite voltages.

Clock and input feedthrough

The other effect induced by commutations of the switches is due to the capacitive
coupling from the gate terminal to the hold capacitance. A capacitive partition takes
effect, so that a voltage variation is observed on the hold capacitor.Also in this case,
minimum size switches minimize the problem. The techniques previously described
to mitigate the charge injection errors are also beneficial from a clock-feedthrough
standpoint, as they require opposite voltage transitions to drive the dummy elements
or the complementary pairs. This leads to injection of an opposite charge that
partially compensates the original one.

Input-feedthrough requires a different technique to better isolate the input from
the output of the switch. One of the easiest is to introduce an intermediate node,
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shorted to a low-impedance constant voltage source whenever the switch is in the
OFF state. This topology, also known as a “T-switch”, prevents capacitive coupling
through the source-drain capacitance of the MOSFET. It is shown in Fig. 3.11c.

Leakage currents

The mere presence of the switches leads to a continuous discharge of the hold
capacitors because of subthreshold conduction through the channel as well as the
reverse current through the source/drain diffusions. Minimizing the junction area is
the first step to reduce the loss. However, the hold time in this CS-based applications
is a significant fraction of one ECG period, i.e. 1 s. In Section 2.5.4 we have
already shown how reconstruction may become impossible operating on a time
scale this large if the capacitors discharge significantly. The search for a leakage
compensation scheme in the Literature lead us to the in-depth analysis of the most
promising architecture we have found, in terms of efficacy and robustness. The
analysis is shown later, in Section 4.4 and our conclusion is that it is unsuitable for
real world applications, as its stability is extremely sensitive to asymmetries of its
circuit elements.

The T-switch topology used to decouple the input from the output can be used
to minimize the subthreshold channel conduction. If the intermediate node created
to decouple input and output is brought to the most positive (negative) voltage for
the NMOS (PMOS) branch, the source node is the one on the side of the capacitor,
which is the best we can do.

The selected switch topology, accounting for all the effects we want to mitigate,
is shown in Fig. 3.12.

As an additional remark, the solutions proposed here to minimize the noise
injected by the switches are detrimental from the point of view of leakage, since
the number of junctions seen by the hold capacitors increases. The solution using
the dummy element is the worse, with four junctions of the same kind acting on the
hold node. Even though junction leakage is not modeled accurately in the simulation
models provided by the foundry of our selected technology, its tabulated values
derived from experimental characterization are reasonably low for our use case.
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Fig. 3.12 Selected switch topology. The four external inputs IN, REFp, CM and REFn can be
routed to the shared COM node. Dummy elements compensate charge injection errors and a
T-switch topology prevents coupling from the inputs and minimizes subthreshold leakage.

3.4.4 Dynamic Comparator

The clocked nature of the SAR converter enables the use of dynamic comparators,
enabled on-demand to perform the required conversion and preventing continuous
current drawn from the supplies. Other than the power consumption, additional
metrics to be considered are the response time from the stimulation of the comparator
until a decision is made, since it determines the speed at which bits can be generated,
the so called kickback effect, where charge is injected towards the input because of
rapid voltage transients within the comparator, as well as the ability to resolve an
input voltage smaller than the expected quantization error of the D/A converter.

All these constraints drove the selection of a suitable topology. The candidate
architecture we have analyzed in detail and that will be described in the following
is shown in Fig. 3.13 and has been taken from [57]. It is built as the cascade of a
dynamic residual preamplifier and a parallel-coupled regenerative latch.

Each stage will be analyzed separately, deriving the analytic expression of the
transient response in the different operating phases. Then, asymmetries of the circuits
will be quantified as an input referred offset voltage.
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Fig. 3.13 Elements of the comparator: (a) dynamic residual preamplifier and (b) parallel-
coupled regenerative latch.

Preamplifier

The first stage of the comparator is a dynamic residual amplifier. Its main purpose is
to decouple the fast transitions of the comparator outputs from the highly sensitive
inputs. It works by unbalancing the current flowing in two identical, capacitively
loaded branches. The output voltage difference, observed on the capacitors, grows
over time, resulting in a time dependent voltage gain. The cross-coupled transistors
in the middle of each branch introduce positive feedback, increasing the gain until
one branch saturates.

The circuit shown in Fig. 3.14a, requires steady inputs, which the capacitive DAC
is able to provide. They are applied to the differential couple M1, M2, which charges
the parasitic capacitance Cl of two clocked MOS transistors M5, M6. When the clock
signal is active, the output nodes are shorted to ground, removing any memory of
the previous cycle. Releasing the clock, the capacitances between drain and ground
become the load for each branch (Fig. 3.14).

The cross-coupled pair (M3, M4), is initially current-biased and contributes a
little gain. Its most significant effect is the positive feedback introduced during
the regenerative phase, turning the weakest branch off and resulting in further
amplification.

Assumptions in the analysis are:

• quadratic MOSFET model, neglecting channel length modulation
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Fig. 3.14 (a) Preamplifier circuit. (b) Equivalent circuit in the active phase. (c) Equivalent
circuit with parasitic capacitances.

• exact symmetry of the circuit (mismatches will be considered separately)
• small input differential voltage, as this is the most critical operating condition

for the amplifier
• parasitic capacitive loading at the inner nodes X{1,2}, as well as across the

branches

Under these assumptions, the circuit can be linearized around its DC operating point,
obtaining Common-Mode (CM) and Differential-Mode (dm) equivalent circuits.
Given a couple of signals y1 and y2, they can be described in an equivalent form as:

y1 = yCM +
ydm

2

y2 = yCM− ydm

2
,

where yCM =
y1 + y2

2
ydm = y2− y1.

The analysis is simplified if the branches are decoupled, removing the crossed
connection involving M3 and M4 in such a way as to preserve the behaviour of the
original circuit.

In the initial phase of linear output voltage growth, assuming all devices in
saturation, the crossed couple acts as a voltage shifter from the output on one branch,
to the X node on the opposite branch. Therefore it can be represented as an equivalent
voltage source Vsh acting on a single branch, with a proper value. Let us first write
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down the voltage at nodes X :

vx1 = vo2 +Vthp +

√︄
2i1
βxcp

vx2 = vo1 +Vthp +

√︄
2i2
βxcp

We want to express it in terms of the output voltage on the same branch:

vx1 = vo1 +Vsh1

vx2 = vo2 +Vsh2

Solving for Vsh and linearizing the square root of the current, considering a small
differential voltage vdm

i applied to the input of the amplifier, we obtain

Vsh1 = vo2− vo1 +Vthp +

√︄
2i1
βxcp

= vdm
o +Vthp +

√︄
IB

βxcp

(︃
1+

gdiff
m vdm

i
IB

)︃

=Vthp +

√︄
IB

βxcp
+ vdm

o +

√︄
βdiff

βxcp
vdm

i

Vsh2 =Vthp +

√︄
IB

βxcp
− vdm

o −
√︄

βdiff

βxcp
vdm

i (3.2)

In these expressions, Vth is the threshold voltage of the devices, IB the bias current
determined by M0 and β the transconductance of the MOS devices.

The first two terms in the result belong to the common mode, the last two are
instead differential terms. Since the expressions are mutually-decoupled, the CM-
DM half circuits can be easily obtained (Fig. 3.15). In the first, parasitic ‘across’
capacitances Cp and Cpx see the same voltage on both terminals, therefore they can
be safely removed. In the latter, those same capacitances see the positive differential
voltage on one side, and the negative one on the other, therefore, using a single
branch, the equivalent capacitive loading has to double.
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Linear growth regime
Common mode: Applying only the common mode input voltage, the differential

Fig. 3.15 Preamplifier equivalent half-circuits during the linear growth phase. (a) CM circuit
(b) DM circuit.

couple injects half of the bias current in each branch. The crossed couple introduces
a voltage shift of value Vthp +

√︁
IB/βxcp between the output and the inner node. The

output voltage is then

V CM
o (t)≃ IB

2(Cx +Cl)
t.

The linear increase in voltage goes on until a time t1, when the differential couple
leaves saturation. Assuming vdm

o (t1) still small compared to V CM
o , the time t1 can be

approximated by imposing the condition V cm
x (t1) =V CM

in +Vthp, obtaining

t1 ≃
V CM

in
IB

2(Cx +Cl),

where the overdrive voltage of the crossed couple has been neglected and the thresh-
old voltages of the crossed and differential couples have been considered equal.
Under the same assumption of small vdm

o (t1), then both branches of the differential
couple have similar voltages, therefore they leave saturation almost at the same time.

Differential mode: In differential mode, the input transistors are ground-referred
transconductors, being their source terminal equivalent to virtual ground (Fig. 3.15b).
The crossed couple, according to (3.2), is modeled as a voltage-controlled voltage
source, depending on both the input and output differential voltages. This substitution
unveils the origin of the positive feedback. While the output changes as −vdm

o /2, the
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inner node goes in the opposite direction, being +vdm
o /2+ kvdm

i . If vo1 is the lowest
output voltage, vx1 is the highest inner voltage, weakening the differential couple on
its branch and further decreasing the growth of vo1 . The differential output voltage is
then

vdm
o (t) =

gmvdm
i

Cl−Cx +2(Cp−Cpx)
t

At time t1, when the linear growth ends, its value is

vdm
o (t1)≃ gmvdm

i
V CM

in
IB

2(Cl +Cx)

Cl−Cx

≃ 2gmvdm
i

V CM
in
IB

where last approximation holds if Cx is small compared to Cl .

Regenerative regime
Let us reconsider the original circuit (Fig. 3.14a) with a trioded differential couple.
The effects of vdm

i can be neglected and the couple can be modeled as two equal-
valued resistors R acting as source degeneration for the crossed pair. The differential
voltage across the internal nodes is then

vdm
x = vdm

o +

√︄
Ib

βxcp

(︃
− i1− i2

IB

)︃

= vdm
o −

√︄
Ib

βxcp

vdm
x

RIB

=
vdm

o

1+
√︂

Ib
βxcp

vdm
x

RIB

≃ gxcp
m R

1+gxcp
m R

vdm
o

Being the resistance in the order of 10kΩ, and the transconductance a few to tens
of µS, vdm

x is much smaller than vdm
o . Neglecting it, the sources of the crossed couple

are both at virtual ground. The equivalent circuit then is the one in Fig. 3.16a.

Transistors M3 and M4 act as transconductors, driven by the voltage on the
opposite branch. Since the output voltages at the end of linear growth are slightly
unbalanced, the currents through the branches, depending on the conduction of the
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Fig. 3.16 Preamplifier in the regeneration phase.

cross-coupled transistors, are unbalanced, too. For simplicity, let us assume the
transconductance to be constant.

Since the control voltage of each transconductor is the output on the other branch,
the transistors behave as a negative conductance, as shown in Fig. 3.16b. The
time constant of the circuit is negative, resulting in an exponential growth of the
differential output voltage:

vdm
o (t) = vdm

o (0)exp
(︃

gxcp
m

Cl +2Cp
t
)︃

Being the total capacitance relatively small, the transient immediately determines a
voltage sufficient to turn one branch off (by reducing the source/drain voltage) and
bring the transistor on the other side into triode region. Such a condition can be
expressed as vdm

o (t) =Vthp and it is reached after

∆t =
Cl +2Cp

gxcp
m

ln
Vthp

vdm
o (t1)

In reality the transconductance decreases rapidly during the transient, causing the
transient to last longer than predicted.

The fundamental result is that even a small vdm
o is rapidly amplified to a value

close to one threshold voltage, large enough to make the second stage of the com-
parator insensitive to mismatches. To achieve that, we have to guarantee the correct
sign of vdm

o (t1) with respect to vdm
i , thus enforcing constraints on the asymmetries
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that can be tolerated.

Saturation
After regeneration only one branch is still active and receive the entire bias current.
Until the tail transistor is in saturation, both CM and dm output voltages continue to
rise linearly; when also M0 enters triode, an exponential transient (the resistive tail
charging the capacitive load) ends the evolution.

At the very end of the transient, one voltage reaches the supply while the other
is still close to V CM

in . If the latch that follows is turned on after this transient has
completed, then only one of its input transistors will be on, causing a huge unbalance
and making sure the decision of the regenerative circuit goes in the expected direction.

Signal waveforms
Fig. 3.17 shows the most significant waveforms describing the operations of the
preamplifier. The bottom plot represents the differential input voltage applied to the
circuit. Its values are ± 5 mV in the two halves of the simulation.

The preamplifier is activated just after instants 0 ns and 250 ns and it is reset
after 200 ns and 450 ns. Looking at the vo1 and vo2 waveforms, it is clear how
their difference increases over time until a point where the two curves diverge
(regeneration, around 90 ns and 340 ns). As already remarked before, on the branch
of the highest output voltage, vx is lower.

The common mode output voltage increases steadily towards the supply, with a
slope that decreases slightly at the end of the transient. A reasonable approximation
might be to consider it constant, therefore having a lower bound on the duration of
the transient. The differential mode output voltage is also varying monotonically.

Regenerative latch

The output of the preamplifier is coupled to the regenerative latch through a couple of
parallel transistors that unbalance the internal nodes of the latch by injecting unequal
currents.

Modeling the inverters as constant transconductances Gm driven by the voltage
on the opposite branch and capacitively loaded, the behaviour of the output voltages
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can be derived. Performing the analysis with respect to the common and differential
modes, the descriptive equations are:

V CM
o =V CM

o (0)exp
(︃
−Gm

Cl
t
)︃
+

ICM

Gm

[︃
1− exp

(︃
−Gm

Cl
t
)︃]︃

vdm
o = vdm

o (0)exp
(︃

Gm

Cl +2Cp
t
)︃
+

idm

Gm

[︃
1− exp

(︃
Gm

Cl +2Cp
t
)︃]︃

The result shows a CM voltage that decays exponentially, while the dm signal grows
with the same time constant, up to the point where the devices change operating
region. The differential output response, ideally, should only stem from the in-
jected currents. However, the fact of having an exponential growth implies careful
evaluation of possible noise injected in the output nodes.

An interesting perspective on the evolution of the CM and dm output voltages
of a simpler regenerative latch is provided [58]. The model for the latch analyzed
here has been compared to the more simple one, however, the results have not been
included. What has been observed is that the curves get closer to the middle of the
plot, as the injected current speeds up the transient of both modes.

3.4.5 Coefficient memory and SAR logic

The need to constrain the number of digital control pins has driven us to include a
digital memory block into the system. Its logical layout is depicted in Fig. 3.18. The
memory holds the coefficient of two independent CS encoders. Focusing on the left
half, the small blocks on the top hold two bits controlling the delay elements along
the latch clock signal. The rows just below contain the configuration of the input
modulators (left-hand side) and the capacitive sampling cells (right-hand side).

The memory element can be populated through a serial stream that gradually fills
its content, entering from the top as shown in Fig. 3.18a. This enables the possibility
of programming exclusively the rows to be used during acquisition, speeding up the
initialization phase.

Once the memory is programmed, linear indexing is implemented through an ad-
dress counter, which scans through the memory to make use of the stored coefficients.
Up to 32 ACQ_CYCLES, i.e., acquisition cycles, can be programmed representing,
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according to the required functionality, any condition from 32 acquisitions-then-
conversion, to 4 8-sample acquisitions with conversion of the 4 measurements.

Through serial programming, few I/O pins are needed:

• CLK: clock one more serial bit in (write mode) and increment the address
counter (read mode).

• DIN: serial input to program the memory.
• WRITE_EN_n: enable memory programming (when ’0’) or data output to the

encoders (when ’1’)
• CNT_RESET_n: reset the address counter to reuse the memory coefficients
• DOUT: verify the memory works correctly by overfilling it and checking the

output stream, which should be identical to the input one, although delayed

the latter allows verification that data can propagate through the entire memory, seen
as a shift-register during programming.

A few possible configurations of the coefficient memory are shown below. The first
behavior uses the CS encoder as a standard SAR ADC, the entire capacitive array is
used to simultaneously sample the input2. After sampling, the A/D conversion can
be triggered, by appropriately driving the chip I/Os. Resetting the address counter of
the memory, the same configuration is reused over and over.

-- Behavior: Sample all inputs simultaneosly, without inversion,
-- then convert and repeat
-- INPUT_CHANNEL_STATE SAMPLING_CELL_STATE
-- ACQ_CYCLE 0 1 2 3 0 1 2 3 4 5 6 7
-- =============================================================
-- #1 0 0 0 0 1 1 1 1 1 1 1 1

This second snippet shows how the converter can alternate between two different
configurations, with a different state of the input multiplexers. The first input is
acquired, then converted, if the address counter is not reset, during the next cycle
we will use the following row, with a different state of the input muxes. The newly
acquired sample is converted and the address counter is now reset, restarting from
ACQ_CYCLE #1.

2Multiple channels are available, but if they can potentially be driven by the same signal. If the
input channels are driven independently, this already returns a CS encoding measurement
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-- Behavior: Sample all inputs simultaneosly, inverting channels
-- 2 and 3, then convert. Next samples to be acquired
-- by inverting channels 1 and 2, then convert and
-- repeat
-- INPUT_CHANNEL_STATE SAMPLING_CELL_STATE
-- ACQ_CYCLE 0 1 2 3 0 1 2 3 4 5 6 7
-- =============================================================
-- #1 0 0 1 1 1 1 1 1 1 1 1 1
-- #2 1 1 0 0 1 1 1 1 1 1 1 1

Finally, true CS encoder operations, collecting four input samples over time,
while changing the input modulation.

-- Behavior: Capture four samples in different time instants,
-- inverting the first and last sample, then convert
-- and repeat
-- INPUT_CHANNEL_STATE SAMPLING_CELL_STATE
-- ACQ_CYCLE 0 1 2 3 0 1 2 3 4 5 6 7
-- =============================================================
-- #1 1 0 0 0 1 1 0 0 0 0 0 0
-- #2 0 0 0 0 0 0 1 1 0 0 0 0
-- #3 0 0 0 0 0 0 0 0 1 1 0 0
-- #4 0 0 0 1 0 0 0 0 0 0 1 1

The digital memory has been described in VHDL, then synthesized and placed
in the design with the so called Analog-on-Top [], methodology, where the design
phase is schematic-driven as the amount of digital logic within the design is limited3.

The logic driving the evolution of the SAR algorithm has been also synthesized
from a VHDL description. The corresponding block diagram is depicted in Fig. 3.19.
It is based on a thermometric encoding, implemented by the chain of flip-flops,
denoted as thermo, with a ’1’ input. The comparator output, representing the
different bit values are stored at the boundary where the thermometric encoding goes
from ’1’ to ’0’, through gate A1. The bit value then drives the connection of the

3this holds true in our case, even if the digital memory occupies more than a third of the entire
layout area
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Fig. 3.18 Memory layout and its use during (a) write and (a) read operations.

converter switches for the subsequent evaluation, through a state decoder, whose
details are depicted in the enlarged inset.

3.5 Layout

Fig. 3.20 depicts the layout of the entire chip. It highlights the division in two
identical half, each having its own digital memory and two independent CS encoders.
A more detailed view of a CS encoder is shown in Fig. 3.21, where the elementary
blocks are highlighted. A few relevant aspects can be noted.

Looking at the structure of the capacitive arrays, in Fig. 3.21b, dummy elements
are placed on the outer boundaries so that every unitary capacitance sees the same
surroundings. A common centroid layout has been employed to try to cancel vari-
ability due to linear gradients, at least on the scaled section of the array. As the
selected switch topology requires ad-hoc driving logic, being able to place it close to
the capacitive cells has driven us to place it below the capacitive cells. Since this
usually leads both to variability of the geometrical features of the plates, as well
as electromagnetic coupling, the capacitors above digital logic have been used as
supply and reference decoupling.

The layout of the dynamic comparator, including its bias resistor and the latch
delay selection logic is shown in Fig. 3.22 The input differential couple of the its
preamplifier has been constructed by splitting each transistor in two fingers, placed
in a common-centroid structure. In Section 4.3 we will indeed motivate this selection
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Fig. 3.19 SAR logic block diagram, with a detailed view on the switch-state decoder.

by a theoretical analysis conducted on the effect of interdigitated geometries in terms
of matching performance of nominally identical elements.
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Fig. 3.20 Layout of the entire chip. The zoomed-in view highlights the two independent
differential CS encoders whose behavior is defined by the programming of the coefficient
memory.
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Fig. 3.21 (a) Layout of a single differential CS encoder. (b) Common centroid layout of the
capacitor array, with dummy elements on the outer boundary and dummy elements in the
middle to allow a closer placement of the driving switches to the capacitive elements. (c)
Layout of the dynamic comparator.
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Fig. 3.22 Layout of the (a) preamplifier and (b) latch
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3.5.1 Post-layout results

A few results on the post-layout performance of the main circuit blocks within the
chip are shown here. Fig. 3.23 depicts the nonlinearity metrics of the capacitive DAC
within the CS encoder, separating the contribution of the scaled and C-2C subarrays.
As expected, the mid-range transition is the most critical for both structures, limiting
the maximum achievable resolution of the block with respect to the nominal one. A
possible solution to be employed in a future revision of the chip is a thermometric
driving of the capacitive cells. Once the ’01...1’ value has been reached, going
to the ’10...0’ with the current driving strategy means switching back all the
previously-active capacitive cells, and activating the MSB one. In a thermometric
strategy, the active cells are retained, and a single unitary cell is added, reaching the
desired value. This effectively removes the jump in DNL observed in the current
setup, at the cost of a larger area of the digital logic.

Time-domain operations of the most critical block within the dynamic comparator
are shown in Fig. 3.24, together with the computation of the time-dependent voltage
gain. The input-referred voltage offset has been computed as (1.23± 0.01)mV,
independent of the common mode input voltage, which has been varied from 0.7 V
to 1.1 V, with the nominal value for our differential implementation equal to 0.9 V.

The global operation of the chip, in a simulation which included both configura-
tion of the coefficients memory, input sampling and A/D conversion is depicted in
Fig. 3.25.

At the time of writing, we had just started the process of testing the physical chip,
whose manufacturing was delayed multiple times. For this reason, this section does
not contain more detailed analysis. An overview of the support PCB is given in the
following section, with additional details to be found in [59].

3.6 Testing the chip

The requirements of versatility and reconfigurability of the SAR-AIC testbed drove
the selection of the test platform to a Field Programmable Gate Array (FPGA)
evaluation board. Indeed, the testbed has been designed as an addon PCB hosting
the SAR-AIC, and to be plugged into the General Purpose I/O (GPIO) headers of an



3.6 Testing the chip 67

0.0

0.5

1.0

A
n

al
og

O
u

t
N

o
rm

a
li
ze

d

BWA section C-2C section Entire array

−5

0

5

IN
L

(L
S

B
) Endp

Bfit

0 1024 2048

Digital Input

−5

0

5

D
N

L
(L

S
B

)

0 16 32 48 64 0 1024 2048

Endp

Bfit
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Fig. 3.26 System-level schematic diagram of the test platform. The digital control lines all
come from an FPGA evaluation board.

FPGA board. The system-level block diagram of the test platform is illustrated in
Fig. 3.26.

Three energy sources have been foreseen: directly from the evaluation board
GPIO headers, from a DC-jack or three AAA batteries. From the 5 V VCC external
power supply, two ADP3300 regulators generate independent 3.3 V lines, V33A and
V33D. The latter powers the I/O cells of the SAR-AIC. The former powers the DACs
onboard the PCB, as well as a 1.8 V V18 line by means of an LT3085 regulator.

Three, 8-bit DAC081 DACs are used to generate the VREF_P, VREF_CM and
VREF_N references. They are all provided to the SAR-AIC, which needs them
during conversion. VREF_P and VREF_N are also sourced to the high-resolution
signal DACs. The three DACs are controlled through an SPI bus, with shared SCLK
and DIN lines and independent SYNC. Ideally these would be only configured at the
beginning of a test and left as is for the rest of the system operations.
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Fig. 3.27 Layout of the support PCB.

Two 16-bit 4-channel DAC8555 generate the inputs to the SAR-AIC, which
expects 4 differential input channels. Using the SAR-AIC in single channel mode,
its 4 positive lines would be driven by the same signal, and so will be the negative
lines. The most convenient way to operate the 16-bit DACs would then be to use
one for the positive signals, and the other for the negative ones. But convenience of
routing was preferred, therefore each DAC drives two differential lines. The DACs
communicate through an SPI bus, independent from the one of the low-resolution
DACs. Since their programming time limits the operating speed of the entire circuit,
separate DIN lines have been provided for each DAC.

Passive input filters have been placed on the differential signal lines, to reject both
common-mode and differential-mode high-frequency noise. Decoupling capacitors
have been inserted wherever specified by the technical documentation or needed, to
obtain steady, well-behaved signals.

The layout of the discrete components has tried to follow the signal paths as
much as possible, as depicted in Fig. 3.27.



Chapter 4

Results on Nonidealities Estimation
and Management

Don’t step over dollars to pick up a dime.

AUTHOR UNKNOWN

In the previous chapter we have dealt with the proposed architecture, analyzing
the intended behavior of its components. From the system level description of a
SAR converter used as a CS encoder, down to the transistor level operations of the
dynamic comparator. However, to design a circuit that can withstand the unavoidable
nonidealities of an actual implementation, the effect of parasitic elements, as well as
parameter variations has to be accounted for.

In this section, we will isolate some of the components of the proposed ar-
chitecture and analyze the most critical deviations to be observed on a physical
implementation. We will derive analytical expressions to guide the design process,
for a more resilient circuit.

First, the resolution and linearity limits of the capacitive array will be analyzed,
observing in particular the effects of parasitics and matching. Then, a proper switch
configuration is defined, to minimize their injected charge and leakage currents.
Since the ability of the circuit to operate properly relies on the storage of samples for
the entire duration of an acquisition window, the stability and mismatch-robustness
of a known leakage current compensation circuit is introduced. Its stability margins
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are derived, so that the absence of unwanted oscillations can be guaranteed. Indeed
the deep study of the compensator reveals unexpected flaws that prevent its use in
practice, to the point that we decided to not include it in the final circuit.

We will then analyze the dynamic comparator, computing the input-referred
offset due to different asymmetries within the circuit.

Going one step further, towards the actual layout of the individual transistors, a
general result on the effects of different layout strategies on the mismatch of topolog-
ically symmetric devices has been quantified, obtaining approximate expressions of
the long-distance parameter mismatch. Instead of the well known mismatch model
presented by Pelgrom et al. in [60], we construct our analysis on a more general
statistical model already published in the Literature, for it more easily allows us to
include the geometry of Manhattan-style structures in the computation.

Finally, the stability properties of a leakage compensation circuit is studied in
detail. Though initially considered a robust candidate to solve the leakage-induced
issues, our analysis proves its extreme sensitivity to mismatch terms, making it
unsuitable for practical applications.

4.1 Parasitics-induced nonlinearities in the C-2C Ar-
ray

As described in Chapter 3.3, the capacitive array is at the core of the proposed A/I
converter. It is used to collect and store several modulated samples of the input signal,
combine them and convert the result. All these operations rely on the redistribution
of the charge stored in the isolated nodes.

To increase the resolution of the conversion, we have shown that the most
efficient solution is to cascade a C-2C sub-array to the smallest scaled capacitor.
This structure, however, introduces secondary isolated nodes which are particularly
sensitive to injected noise and parasitic loading. Fig. 4.1 shows a 3-bit C-2C structure
loading a scaled array, which has been compacted into one single capacitance Csc.
The smallest element of the scaled array is considered as belonging to the C-2C
structure, so that scaled array starts with a 2Cu capacitor. Each isolated node has
been named as Ni and all the parasitics have been identified in gray.



4.1 Parasitics-induced nonlinearities in the C-2C Array 73

Ci,0Csc CcCi,2Ci,1

Cb,1 Cb,2

Cp,1 Cp,2

in0 in2in1

Cp,0

N0 N1 N2

Fig. 4.1 Schematic of a 3-bit C-2C sub-array. The elements are (nominal value in parenthesis):
input capacitors Ci (Cu); bridge capacitors Cb (2Cu); parasitic capacitors Cp (0); equivalent
capacitance of the scaled array Csc (2Cu +4Cu + · · · ); closure capacitance Cc (Cu)

In the following we will construct an approximate analytical model to estimate
nonlinearities of the capacitive D/A converter from the amount of parasitic loading
at the intermediate nodes.

Analytical modeling of capacitive parasitics

Since the evolution of the SAR A/D algorithm depends on the voltage of the main
isolated node N0, all the issues affecting the array capacitors have to be observed
from such node.

Let us consider the parasitic loading observed at every isolated node due to the
capacitive coupling from the physical plates to the external environment. Having a
unitary capacitance Cu, the amount of parasitics can be expressed as a fraction αCu.
The parameters involved in the analysis are summarized below:

• nsc: Total # of inputs of the scaled section of the array Csc = 2Cu +4Cu + . . .

• n: Total # of inputs of the C-2C section
• i = [0 : n−1]: Index of each array section
• Ni: Isolated nodes
• ini: Input nodes
• Cp, i = αiCu: Parasitic loading of section i

Note that, for convenience, the smallest capacitor in the scaled array is considered
part of the C-2C section. This allows the analysis to be valid also for the limit
condition of an independent C-2C structure, i.e., without a scaled section.

When observed from the N0 node, voltages applied at different C-2C inputs
experience an attenuation increasing with its i index, expressed as a power of 2. The
presence of non-idealities introduces errors in the nominal attenuation that we will
try to estimate analytically.
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4.1.1 Algorithmic derivation of the complete model

We want to derive an expression that links the perturbations within the capacitive
array to the attenuation from the input, to the N0 isolated node, the one where the
C-2C and the scaled array merge, as well as the one observed by the comparator. Let
us define the attenuation between the input node A and the output node B as RA,B.
We want to obtain the ratios Rini,N0 , i.e. from the external inputs ini to the N0 node.

The Rini,N0 attenuation can be decomposed in two terms, the Rini,Ni capacitive
partition from input ini to the closest isolated node Ni, and the RNi,N0 term. This, in
turn, is due to the cascade of attenuations from Ni to Ni−1 to. Therefore:

Ri,0
def
= Rini,NiRNi,Ni−1RNi−1,Ni−2 · · ·RN1,N0. (4.1)

Nominal setup

For the ideal, unperturbed structure the partial attenuations terms appearing in (4.1)
are shown in Table 4.2 and Table 4.1. The ⊕ operator describes the harmonic sum of
the two operands, defined as:

x⊕ y def
=

1
1
x +

1
y

=
xy

x+ y

and refers to the series connection of capacitors.

Table 4.1 Attenuation from an input node to the adjacent isolated node. Results shown for
the first 4 inputs.

Index Attenuation Definition Result

0 Rin0,N0
C

2C+Csc
1

2nsc+1

1 Rin1,N1
C

C+C+2C⊕(C+Csc)
1+2nsc+1

2nsc+3

2 Rin2,N2
C

C+C+2C⊕(C+2C⊕(C+Csc))
1+5·2nsc+1

2nsc+5

3 Rin3,N3
C

C+C+2C⊕(C+2C⊕(C+2C⊕(C+Csc)))
1+21·2nsc+1

2nsc+7

The overall attenuation Ri,0 defined in (4.1) is given by the product of the index-i
row of Table 4.1 by all the rows in Table 4.2 from the first, up to i-th. This cumulative
product across the rows results in the cancellation of the denominator in one row
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Table 4.2 Attenuation from an isolated node to the adjacent one, moving towards N0. Results
shown for the first 3 nodes.

Index Attenuation Definition Result

1 RN1,N0
2C

2C+C+Csc
2

1+2nsc+1

2 RN2,N1
2C

2C+C+2C⊕(C+Csc)
2 1+2nsc+1

1+5·2nsc+1

3 RN3,N2
2C

2C+C+2C⊕(C+2C⊕(C+Csc)
2 1+5·2nsc+1

1+21·2nsc+1

with the numerator of the adjacent one, thus obtaining 2i divided by the denominator
of the last term. In turn, this is exactly equal to the numerator of the row selected in
Table 4.1. The overall Ri,0 attenuation from a generic input to the 0-th isolated node
is then:

Ri,0 =
2i

2nsc+2i =
1

2nsc+i , (4.2)

as one would expect. The weight of each C-2C input decreases as a power of two,
with the absolute attenuation depending on how big the scaled array is.

Parasitic-loaded setup

A similar procedure can be used to construct the mathematical description for a
nonideal setup. However, obtaining a meaningful result requires us to approximate
the terms so that the parasitic loading, which is assumed to be small, is only evaluated
up to a first-order deviation.

Considering the modularity of the C-2C structure, the i-th section depicted in
Fig. 4.2 becomes the starting point of the analysis. To its left and right-hand sides,
the section sees capacitances CLi and CRi , respectively. Bridge capacitances Cbi and
Cbi+1 , of value 2Cu isolate the section, which is loaded by the nominal capacitance
Cini =Cu and Cpi = αiCu.

The equations describing the elementary section are:

CLi =

⎧⎨⎩Csc if i = 0

(CLi−1 +Cini−1 +Cpi−1)⊕Cbi if i > 0
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Ci,i−1Csc Ci,i+1Ci,i

Cb,i Cb,i+1

Cp,i Cp,i+1

ini−1 ini+1ini

Cp,i−1

Ni−1 Ni Ni+1

CR,i+1CR,iCL,iCL,i−1

Fig. 4.2 Capacitances in a generic section of a C-2C array

and:

CRi =

⎧⎨⎩(CRi+1 +Cini+1 +Cpi+1)⊕Cbi+1 if i < n

Cu if i = n

The Ri,0 attenuation can then be computed, according to (4.1), through a recursive
equation for the adjacent isolated nodes:

RNi,N0 = RNi,Ni−1

Cbi

Cbi +CLi−1 +Cini−1 +Cpi−1

,

leading to:

Rini,N0 = RNi,N0

Cini

Cini +CLi +CRi +Cpi

.

The pseudocode describing how to evaluate every term is shown in Algorithm 1.
Any symbolic manipulation library can be used to implement it (e.g. sympy for
Python).

Algorithm 1: Pseudocode to compute Rini,N0

Given Cini = 1, Cbi = 2, Cpi = αi, CL0 =Csc, CRn = 1, RN0,N0 = 1
// Backward pass
for i = n-2:0

compute CRi according to (4.1.1)
// Forward pass
for i = 1:n-1

compute CLi according to (4.1.1)
compute RNi,N0 according to (4.3)
compute Rini,N0 according to (4.3)
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The resulting attenuations will be expressed as fractions whose numerator and
denominator can be approximated to first order in αi, as shown in Table 4.3 for
different sizes of the C-2C array, where Csc is normalized with respect to the unitary
capacitance, i.e. γsc =Csc/Cu = 2(2nsc−1).

Table 4.3 First order approximations of the attenuations from input i to node N0 in the case
of (a) n = 2, (b) n = 3 and (c) n = 4

i Rini,N0

0 4+α1
8+4Csc+4α0+3α1+Cscα1

1 2
8+4Csc+4α0+3α1+Cscα1

(a)

i Rini,N0

0 16+4α1+5α2
32+16Csc+16α0+12α1+11α2+4Cscα1+5Cscα2

1 8+2α2
32+16Csc+16α0+12α1+11α2+4Cscα1+5Cscα2

2 4
32+16Csc+16α0+12α1+11α2+4Cscα1+5Cscα2

(b)

i Rini,N0

0 64+16α1+20α2+21α3
128+64Csc+64α0+48α1+44α2+43α3+16Cscα1+20Cscα2+21Cscα3

1 32+8α2+10α3
128+64Csc+64α0+48α1+44α2+43α3+16Cscα1+20Cscα2+21Cscα3

2 16+4α3
128+64Csc+64α0+48α1+44α2+43α3+16Cscα1+20Cscα2+21Cscα3

3 8
128+64Csc+64α0+48α1+44α2+43α3+16Cscα1+20Cscα2+21Cscα3

(c)

Assuming α j = α for each j, the numerical coefficients can be collected and their
patterns exploited. The overall contribution can be expressed by a simple formula
dependent only on n and i, resulting in a description of the effects of parasitics for a
generic size of the array and from any input, just as desired. Expressing each fraction
in Table 4.3 as

Rini,N0 =
Ui +α ·ui

Vi +α · vi +Csc(Zi +α · zi)
,
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where U , V and Z represent the nominal terms and u, v and z the first-order error
coefficients. The nominal terms are equal to

Ui =
4n−1

2i

Vi = 2 ·4n−1

Zi = 4n−1

resulting in the nominal value of the attenuation already found in (4.2):

Rnom
ini,N0

=
Ui

Vi +Csc ·Zi
=

1
2+Csc

1
2i =

1
2nsc+1

1
2i . (4.3)

Concerning the coefficients of the errors, through the analysis of the patterns we can
compute their closed-form expression:

ui =
4n−2

2i

n−i−2

∑
j=0

1
4 j (n− i− j−1) =

2i

9

[︃
1+4n−i

(︃
3
4
(n− i)−1

)︃]︃

vi = −
n−1

∑
j=1

j4 j−1 +n4n−1 =
1
9

[︃(︃
3
2

n+1
)︃

4n−1
]︃

zi =
n−1

∑
j=1

j4 j−1 =
1
9

[︃(︃
3
4

n−1
)︃

4n +1
]︃

(4.4)

Using Taylor’s expansion of Rini,N0 for small α:

Rini,N0 ≃ Rnom
ini,N0

(︃
1+

αui

Ui

)︃(︃
1− αvi

Vi +CscZi
− αCsczi

Vi +CscZi

)︃
(4.5)

= Rnom
ini,N0

[︃
1+α

(︃
ui

Ui
− vi +Csczi

Vi +CscZi

)︃]︃
(4.6)

Plugging (4.4) into (4.6) we obtain:

4
9

4i−1
4n − 1

3

(︃
i− 1−4n

4n
4

Csc +2

)︃
=

4
9

4i−1
4n − 1

3

(︃
i− 1−4n

4n
1

2nsc−1

)︃
≃ 4

9
4i−1

4n − 1
3

(︃
i+

1
2nsc−1

)︃
if(n > 2)
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These attenuations can be used to compute a few notable values, shown in
Table 4.4, as well as to compute the converter output for any digital input value, as
shown in the top left subplot of Fig 4.3.

Relevant metrics for the static performance of D/A converters are its offset and
gain errors. While the former is 0, the latter can be computed from the error observed
at a digital input of 2n− 1 (last row of the Table 4.3. The error is proportional to
α , the amount of parasitic loading, since the C-2C sub-array weighs more than the
unitary capacitor it is originally replacing.

As a consequence, nonlinearity metrics have to be computed by first compensat-
ing the potentially significant gain error. Two common strategies are shown in the
second and third subplots at the top of Fig 4.3, namely, a least-squares best fit and a
linear interpolation through the end points.

In terms of estimation of Integral and Differential Non-Linearities (INL and
DNL), they result in approximately equal worst case values. The endpoints interpo-
lation, guarantees however the derivation of an analytical approximation, using the
quantities derived in this section, and allowing, as a final result of this analysis, the
designer to use them as guides based on the technology at hand.

INL and DNL parameters are defined as follows [53]:

INL(x) def
=

A(x)− xLSB
LSB

(4.7)

DNL(x) def
=

A(x+1)−A(x)
LSB

−1 (4.8)

Digital value Analog value

00...01 −2
3

1
2n

(︁
n+ 2

2nsc − 4
3

)︁
01...11 −2

3
2nsc+1

2nsc

10...00 −2
3

1
2nsc

11...11 −2
3

2nsc+2
2nsc

Table 4.4 Approximate error on the analog value induced by the presence of parasitic loading
on the inner isolated nodes.
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where x is the digital code being represented and A(x) the corresponding analog
value. Both parameters are normalized with respect to one ideal step (LSB). Let us
first express the INL as a function of the error associated to each bit. The term A(x)
in (4.8) is substituted with (4.7) and one LSB with (4.3).

The maximum deviation using the endpoints model, for this setup is always
observed around the mid-scale transition, with the input code changing from 01...1
to 10...0, leading to:

max
x
{INL(x)}= INL(2n−1)

≃ α

3
1

2nsc+1
2n

1−2n

(︃
1− n+5/3

2n +
2
4n −

4/3
8n

)︃
(4.9)

≃ α

3
1

2nsc+1
2n

1−2n (4.10)

max
x
{DNL(x)}= DNL(2n−1−1)

= 2max
x
{INL(x)}

Equations (4.9) and (4.10) are our accurate and coarse model, respectively. Their
prediction is shown in the right-hand subplots of Fig. 4.3. The coarse model, easier
to manipulate, provides a reasonably-conservative estimate of the errors, as desired.

A more extensive characterization is shown in Fig. 4.4, where the different
columns refer to different width of the C-2C subarrays. The crosses represent INL
and DNL points evaluated in SPICE simulations, for varying amount of scaled
capacitance. The two models provide identical answers as the C-2C subarray, i.e., n,
gets larger, with the more accurate description being valid also for extremely small
arrays. The first order approximation being applied at the very beginning of the
section in terms of the parameter α is valid up to a value of 0.1. Above that, the
errors are lower than the prediction.

From the coarse model one can derive an upper limit on the number of C-2C bits
based on the amount of tolerable error γ < 1:

α

3
4n

2n−1
< γ

α

3
2n < γ

n < log2 3+ log2 γ− log2 α .



4.1 Parasitics-induced nonlinearities in the C-2C Array 81

0.00

0.25

0.50

0.75

1.00

A
n

al
og

o
u

tp
u

t

Ideal ref. char. Best-fit ref. char. Endpoints ref. char.

α

0.01

0.1

0.5

Curve

Sim.

Ref.

−0.2

−0.1

0.0

0.1

0.2

IN
L

(x
)/
α

Model

Coarse

Accur.

0 8 16 24 32

Input code x

0.0

0.1

0.2

0.3

D
N

L
(x

)/
α

0 8 16 24 32

Input code x

0 8 16 24 32

Input code x

Model

Coarse

Accur.

Fig. 4.3 Integral and differential nonlinearities computed on a 5-input C-2C structure, without
any scaled array. Different columns consider different reference transfer curves (ideal, best-
fit, endpoints). For the latter, the estimates of our accurate and coarse models for the maxima
are shown as horizontal lines.
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Fig. 4.4 Maximum INL and DNL for different widths of the C-2C section (along the
columns), amounts of scaled capacitance (different colours) and amount of parasitics loading.
Comparison between the simulated datapoints and the model predictions.

As an example, with α = 0.1 and γ = 0.5 (maximum error of LSB/2), n should be
lower than 4. The result is depicted in Fig. 4.5.

4.2 Preamplifier mismatch analysis

Mismatches are small deviations of a device parameter from its nominal value.
Accounting for such deviations, parameters of topologically symmetric devices can
be decomposed into an average and a differential term. The analysis in Section 3.4.4
can be considered as based on the average values of the parameters. The differential
term is responsible for the coupling of CM and DM modes [61]. This phenomenon
can be understood by examining the case of mismatched capacitive loads.

Consider the capacitances expressed as an average and a differential term:

CL1 =CL +
∆C
2

CL2 =CL−
∆C
2
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Fig. 4.5 Maximum number of bits as a function of the parasitics fraction and the amount of
tolerable error γ .

If a constant current I is equally applied to them, the voltage across each capacitor
becomes:

vC1 =
I

CL +
∆C
2

t

≃ I
CL

t− I
CL

∆C
2CL

t

vC2 =
I

CL− ∆C
2

t

≃ I
CL

t +
I

CL

∆C
2CL

t

The response due to the average value of the parameter is common to both branches.
The mismatch determines a differential component. If such a component is small
with respect to the common one, then the operating point of the circuit is not affected.
In this example this is meaningless since we are considering passive components and
an ideal current source. In an active circuit, where the device parameters depend on
the physical quantities in the circuit, this allows us to approximate the response for
small differential terms and use superposition to work separately with the common
mode and differential mode circuits. The alternative would be to keep track of the
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coupling by solving the exact differential equations. If the approximation holds, the
effort can be spared.

The differential response that stems from a mismatched parameter with a common
mode input signal can be moved to the differential mode half circuit. Since the effect
depends only on common mode parameters it becomes an independent source.

Conversely, by considering the effects when a differential input is applied to the
circuit, the response becomes:

vC1 =
i

CL +
∆C
2

t

≃ I
CL

t +
I

CL

∆C
2CL

t

vC2 =
−i

CL− ∆C
2

t

≃ −I
CL

t +
I

CL

∆C
2CL

t

The average parameter value results in a differential component, as desired, while
the mismatch generates a common mode response. This becomes an independent
source in the common mode equivalent half circuit. However, since this is typically
negligible with respect to the original common mode signal, this part of the analysis
is not performed.

The technique can be applied to the preamplifier, considering a small variation
associated to each parameter in the CM circuit and evaluating the resulting differential
response. This, in turn, is placed into the DM circuit as an independent source and
referred to the input in order to determine the equivalent offset voltage in the amplifier
transcharacteristic. A few notable cases are shown here, the remaining values in
Table 4.5 are derived with the same methodology.
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Capacitor Cl

Consider a variation on the load capacitor. It can be represented as a parallel element
of value ∆C

2 on one branch, and the opposite on the other. The current it sources is

i∆ =
∆Cl

2
dV CM

o
dt

=
∆Cl

2
IB

2
1

Cl +Cx +2(Cp +Cpx)

≃ ∆Cl

2
IB

2
1

Cl +Cx

The effect can be compared to the other DM quantities, by introducing it as an
independent generator in the DM equivalent circuit.

If the differential current forced in the branch by vd is exactly equal to the one
just evaluated, then no differential output voltage is generated. In this condition an
offset has appeared at the input.

−gm
vd

2
=

∆Cl

2
IB

2
1

Cl +Cx

voff
d

⃓⃓
∆Cl
≃ ∆Cl

Cl +Cx

IB

2gm

Cross-coupled pair Voff

Suppose on the gate connection of the cross-coupled pair appears a differential offset
voltage Voff. Since the XCP is current-biased, the voltage appears as a shift of the
source voltage. If this constant differential voltage is so large to change the sign of
vdm

x (t1), then the wrong decision is taken.

vdm
x (t1) =

(︄
Cl +Cx

Cl−Cx

2gmV CM
in

IB
+2

√︄
(W/L)1
(W/L)2

)︄
vd

≃
(︄

2gmV CM
in

IB
+2

√︄
(W/L)1
(W/L)2

)︄
vd

voff
d

⃓⃓
Voff
≃ Voff

2gmV CM
in

IB
+2
√︂

(W/L)1
(W/L)2
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Clock transition

The release of the reset condition may not happen simultaneously on both branches.
The variation is modeled differentially by a delay td applied to the start of the
amplification in the CM circuit. Its differential effect is:

vdm
o =

IB

2CL
td

since it stems from the charging of one load capacitor at half the bias current.

The input-referred offset is evaluated as the vd that would result in the opposite
differential output voltage reached at the end of the linear growth.

voff
d

⃓⃓
td
=− I2

B

gmV CM
in

Cl−Cx

4Cl(Cl +Cx)

=− I2
B

gmV CM
in

td
4Cl

Table 4.5 Input-referred offset voltage due to parameter variations. Curly braces are used to
compact the table when the same multiplicative factor affects a given term.

Component Parameter Offset (absolute)

Differential couple
Vth ∆Vth

β
∆β

β

IB
2gdiff

m

Rds
V CM

in
gmRds

∆R
Rds

Crossed couple {Vth,β ,Voff}
{︂

Voff,∆Vth,
∆β

β

√︂
IB
β

}︂
2gmV CM

in
IB

+2
√︃

(W/L)1
(W/L)2

Capacitances Cl,Cx
{∆Cl ,∆Cx}

Cl+Cx

IB
2gdiff

m

tsoc
I2
B

gmV CM
in

td
4Cl
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4.3 Mismatch variance in interdigitated geometries

Variability in electronic devices is one of the key issues limiting performance of
analog integrated circuits [62]. To get the most out of a given technological process,
designers are used to adopt layout strategies allowing at least a partial compensation
of this unwanted effect. Commonly accepted guidelines are based both on rules-of-
thumb and analytical considerations, and typically require each device to be split
into several identical segments (also knows as fingers) placed according to specific
patterns. An example is the interdigitated layout, which alternates segments of
different devices.

However, these layout strategies are often analyzed only with respect to deter-
ministic effects such as gradients along the wafer, neglecting any stochastic variation.
The well known work by Pelgrom et al. [60], considers random variations only
in the case of adjacent devices always being uncorrelated. Under this simplifying
assumption, we will actually prove that geometry does not play any role on the
spreading of device parameters caused by stochastic variations.

In recent years, many works have proposed an improvement over the original
Pelgrom’s model for mismatch variance [63–66]. In [65] the hypothesis of short
correlation length is removed, and in [67], the authors analyze numerically the effects
of different layout strategies. The same model has been extended by Poiroux et
al. in [66], accounting for wide sense stationary (WSS) stochastic processes whose
second-order statistic (i.e., correlation) can be expressed as a linear combination of
Gaussian functions. WSS processes are characterized by statistical properties that do
not depend on absolute positions but are only distance-dependent.

Here, starting from the theoretical model in [66], we derive an approximated
model of the effects of geometry on mismatch variance, under the assumption of
strong device correlation. This allows us to extend the theoretical analysis con-
ducted on pairs of devices to complex multi-finger structures, deriving closed-form
expressions in the case of interdigitated layouts.

We will initially introduce the analytical model of mismatch variance on which
the analysis is built, taken directly from the original paper [66] and only adapting
the notation when required. We will then describe the geometry of interest and
the approximations of the model both for extremely slow and fast decay of device
correlation over distance, observing that, in the latter condition, the resulting variance
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Fig. 4.6 (a) Geometry of devices A and B. (b) Interdigitated layout on a grid of Nr rows and
Nc columns. Device segments are named linearly, starting from the bottom left corner. (c)
Invariance of centroid distance on the number of columns Nc for a given number of rows Nr

(negligible spacing between segments). In parenthesis, the couple (Nr, Nc) for each layout.
(d) Mirroring half of the array to obtain a common centroid structure for Nc even and Nr odd.
The centroids of the half arrays are also highlighted in the mirrored structures.

is independent of the layout of the segments. Simplified expression of the variance
in terms of device size and placement for the multi-finger structures considered will
be finally obtained and validated in simulation.

4.3.1 Analytical Model of Mismatch Variance

Mismatch is defined as the difference in the parameters describing two nominally
identical devices. It is convenient to model mismatch as a random variable, with
a probability distribution that depends on its original causes. The mean of such a
variable stems from deterministic effects, whereas random fluctuations define its
variance [68]. In this work we focus on the spreading of device parameters due
to the latter effect. Since a large spreading might result in circuits not satisfying
their design specifications, hence limiting the yield, quantifying variance becomes of
paramount importance. The analysis proposed here is based on the results obtained in
[66]. Let us consider two nominally identical devices occupying rectangular regions
A and B on the Euclidean plane with Cartesian coordinates (x,y) as schematized
in Figure 4.6a. Both devices are characterized by dimensions Dx and Dy, and their
centroids are separated by distances Px and Py. The lowercase names appearing in
the figure refer to these dimensions normalized by a suitable parameter introduced
later in this section. We investigate the variation of a device parameter p that is
defined pointwise on the euclidean plane by means of the WSS process p(x,y). The
actual value of the parameter for the two structures is indicated with p̄A and p̄B, and
is computed as the average value p̄ of the process p(x,y) over the area occupied by
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the two devices. Finally, let ⟨p⟩ be the average value of p(x,y) over the entire area
of interest (i.e., the whole die, or the region where the structure is placed).

The original model in [66] represents processes p(x,y) defined by means of a
linear combination of Gaussian autocorrelations, here we will limit our analysis to
a single multivariate normal component, with independent x and y contributions.
This assumption allows us to mathematically define the correlation lengths Λx and
Λy along the two plane directions as

√
2σx and

√
2σy, respectively, with σx and σy

being the standard deviations of the Gaussian functions under consideration.

Instead of the actual values of Dx, Dy, Px and Py, it is convenient to handle their
dimensionless counterparts dx, dy, px, and py, obtained after a normalization by Λx

or Λy. Employing this notation, the main result of [66] is to express, for A and B, the
autocorrelation of the difference p̄−⟨p⟩ as

Γp̄−⟨p⟩(px, py) =
α

4d2
x d2

y ΛxΛy
γ(px,dx)γ(py,dy), (4.11)

where α is a scaling parameter expressed in the appropriate units, and the remaining
dimensionless factors are

γ(p,d) = θ(p+d)−2θ(p)+θ(p−d),

being
θ(u) = u× erf(u)+ e−u2

/
√

π.

The variance of ∆p̄ = p̄A− p̄B, representing the spread of the difference between
the parameters describing devices A and B, can then be expressed as

σ
2
∆ p̄ = 2

[︁
Γ p̄−⟨p⟩(0,0)−Γp̄−⟨p⟩(px, py)

]︁
. (4.12)

Table 1 in the original work [66] collected asymptotic approximations for this formula
under the limiting conditions of px, py, dx and dy. In the following, this procedure
will be extended to multi-finger devices placed on a generic 2D grid.
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4.3.2 Geometry and Model Approximation

Consider a 2D grid of Nr rows and Nc columns. The original devices A and B, with
physical dimensions Dy = W and Dx = L, are divided into N f = NrNc segments
each, preserving the total area. The segment length is assumed to be the same of
the original device L, hence the height has to be scaled by 1/N f . Each grid cell
contains one segment of A and one of B, as depicted in Figure 4.6b, so that segments
of different devices alternate on the plane (interdigitation), separated by distances
Sx and Sy. Given the extension of the grid, the size of the devices, and the spacing
between their segments, our goal is to obtain an approximation of the mismatch
variance simple enough to be used for paper-and-pencil calculations.

The generalization of (4.12) to multi-finger structures is:

σ
2
∆ p̄ =

2
N2

f

N f

∑
i=1

N f

∑
j=1

[︂
Γp̄−⟨p⟩

(︂
pAA

x (i, j), pAA
y (i, j)

)︂
−Γp̄−⟨p⟩

(︂
pAB

x (i, j), pAB
y (i, j)

)︂]︂
, (4.13)

where i and j are linear indices defined on the grid (e.g. starting from the bottom-left
corner with segments A1 and B1 as in Figure 4.6b) and pAA

x (i, j) is the distance
between segments i and j of device A, while pAB

x (i, j) is computed between segment
i of device A and segment j of device B. Similar definitions stand for pAA

y (i, j) and
pAB

y (i, j). Closed-form expressions for the double summation can be obtained for
asymptotic values of the normalized dimension, as shown in the following.

Small correlation lengths (dx,dy, px, py≫ 1)

Under the assumption of small correlation lengths, normalized sizes and distances
assume values much greater than 1, therefore we can express θ(u) as

θ(u)≃

⎧⎨⎩
|u| if u ̸= 0

1√
π

if u = 0 .
(4.14)

The term for u = 0 is necessary since, whenever in (4.13) we have i = j, i.e. we
consider the couple made of a segment of A and itself, the distance terms pAA

x (i, j)
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and pAA
y (i, j), which are arguments of θ , are equal to 0 no matter the correlation

lengths.

Assuming d ̸= 0, p≥ 0 and p > d whenever p ̸= 0, then

γ(p,d)≃

⎧⎨⎩2d− 2√
π
≃ 2d if p = 0

0 otherwise.

Hence the autocorrelation of p̄−⟨p⟩ becomes

Γp̄−⟨p⟩(px, py)≃

⎧⎨⎩
α

dxdyΛxΛy
if px = py = 0

0 otherwise .

Plugging this expression into (4.13) and considering that pAB
x (i, j) and pAB

y (i, j) are
always nonzero, we obtain

σ
2
∆p̄ ≃

2
N2

f

N f

∑
i=1

N f

∑
j=1

Γp̄−⟨p⟩
(︂

pAA
x (i, j), pAA

y (i, j)
)︂

=
2

N2
f

N f

∑
i=1

(︄
∑
j ̸=i

0+Γp̄−⟨p⟩(0,0)

)︄
=

2α

ΛyΛx

1
wl

=
2α

WL
.

This result corresponds to the traditional model derived by Pelgrom in [60], where
variance depends on the inverse of device area. The expression depends neither
on the position of the fingers nor on their number hence, under the assumption of
correlation lengths much shorter than device sizes, geometry has no effect on the
variance whatsoever.

Large correlation lengths (dx,dy, px, py≪ 1)

Large correlation lengths result in normalized device sizes and distances tending
towards 0. The asymptotic approximation of (4.11) under this assumption is trivial.
Its expression is not included here for compactness reasons, but will be used in the
following sections to derive our main results.
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In any case the linear indexing method employed in (4.13) is not convenient
when working on a 2D grid since the expressions of the distance terms (pAA

x (i, j)
and the others) become unmanageable. Indexing the segments through their row and
column indices we can write, equivalently:

σ
2
∆ p̄ =

2
N2

r N2
c

Nr

∑
ri=1

Nc

∑
ci=1

Nr

∑
r j=1

Nc

∑
c j=1

[ Γp̄−⟨p⟩(pAA
x (ri,ci,r j,c j), pAA

y (ri,ci,r j,c j))

− Γ p̄−⟨p⟩(pAB
x (ri,ci,r j,c j), pAB

y (ri,ci,r j,c j))
]︂
. (4.15)

In general, (4.15) can be used to compute the variance for any 2D grid-based
geometry, once the distance terms have been determined. For simplicity, the notation
will be simplified in the following by not writing the explicit dependence of distances
on the row and column indices.

4.3.3 Variance in Interdigitated Structures

In an interdigitated layout as the one depicted in Figure 4.6b, segment distances can
be expressed as:

pAA
x = pxu

⃓⃓
2(ci− c j)+1odd(ri + r j)

⃓⃓
pAB

x = pxu
⃓⃓
2(ci− c j)+1even(ri + r j)

⃓⃓
pAA

y = pyu
⃓⃓
ri− r j

⃓⃓
pAB

y = pyu
⃓⃓
ri− r j

⃓⃓
,

(4.16)

where pxu = l+sx and pyu = w/N f +sy are the distances between adjacent segments.
The indicator function 1A(n) checks the membership of its argument to the set S and
is defined as:

1S(x) =

{︄
1 if x ∈ S

0 otherwise .

It is employed in this context to account for the alternation of segment positions
across consecutive rows of the grid. In the specific case of 1odd(n), the function
evaluates to 1 whenever n is odd. Equivalently for 1even(n) = 1− 1odd(n). An
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Fig. 4.7 Mismatch variance computed through (4.17) and normalized to the value obtained
for Nr = Nc = 1. (w = 0.02, l = 0.001)

expression for 1odd(n) that is also suitable for symbolic manipulation is given by

1odd(n) =
1− (−1)n

2
.

Combining expressions (4.16) and (4.15), and using Taylor’s expansion of (4.11)
around 0 (because of the large correlation lengths), mismatch variance can be
expressed as:

σ
2
∆ p̄ ≃

2α

πΛxΛy
p2

xu

(︄
1

N2
r

1odd(Nr)+
p2

yu

2
1even(Nr)

)︄

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α

πΛxΛy

p2
xu

N2
r

if Nr odd

2α

πΛxΛy

p2
xu p2

yu

2
if Nr even .

(4.17)

The dependence on geometry is explicit in the term N−2
r and is also embedded in

the value of pyu. If the device segments are tightly spaced, i.e. sx = sy ≈ 0, (4.17)
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reduces to

σ
2
∆ p̄ ≃

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α

πΛxΛy

l2

N2
r

if Nr odd

2α

πΛxΛy

l2w2

2N2
r N2

c
if Nr even

(4.18)

which is depicted in Figure 4.7 with respect to σ2
∆ p̄,ref, evaluated for (Nr, Nc) = (1,

1). The plot highlights the constant-valued peaks whenever the number of rows is
odd, notwithstanding the fact that as the number of columns grows, the increasingly
smaller device segments are more uniformly spread in the grid area. The valleys in
the plot actually vary with Nc, but it is not apparent in linear scale.

Intuitively, increasing Nc changes the absolute positions of the centroids of A
and B with respect to the origin of the grid, as shown in Figure 4.6c, although
their relative distance is unaffected. Since Nr odd implies a non-common-centroid
geometry, the constant centroid distance results in a constant contribution to the
variance. Increasing the number of rows to a larger odd number, such a distance
decreases, but is still invariant with respect to Nc. Conversely, whenever Nr is even
the centroids of A and B coincide and higher order effects result in Nc actually having
an effect on the variance.

Variance in a Mirrored Interdigitated Layout

As already pointed out, the simple interdigitated layout in Figure 4.6b is not common
centroid whenever the number of rows is odd. If, at the same time, the number of
columns is even, it is actually possible to obtain a common centroid geometry simply
by mirroring the right half of the structure, as shown in Figure 4.6d. The expressions
of segment distances describing such a layout require the introduction of the sets
L = {1, . . . ,Nc/2} and R = {Nc/2+1, . . . ,Nc}, which characterize the columns as
belonging either to the left (straight) or the right (mirrored) half of the array. Thus
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Fig. 4.8 Mismatch variance normalized with respect to the value for Nr = Nc = 1. Lines
are obtained through a Monte Carlo simulation using the model in [1], markers using the
asymptotic expressions derived in this work. Solid lines refer to the simple interdigitated
layout, dotted lines to the mirrored geometry. (w = 0.02, l = 0.001, sx = sy = 0, Λx = Λy =
103, α = 1)

we can write:

pAA
x = pxu |2(ci− c j)

+1odd(ri + r j)
[︁
1L(ci)1L(c j)−1R(ci)1R(c j)

]︁
+1even(ri)1even(r j)1L(ci)1R(c j)

+1odd(ri)1odd(r j)1R(ci)1L(c j)
⃓⃓

pAB
x = pxu |2(ci− c j)

+1even(ri + r j)
[︁
1L(ci)1L(c j)−1R(ci)1R(c j)

]︁
+1even(ri)1odd(r j)1L(ci)1R(c j)

+1odd(ri)1even(r j)1R(ci)1L(c j)
⃓⃓
.

Distances along y are unchanged with respect to (4.16).
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Following the same procedure as in the previous section, the variance can be
expressed as:

σ
2
∆ p̄ ≃

2α

πΛxΛy

3
2

(︃
Nc

Nr

)︃2

p4
xu

if Nr odd

and Nc even
(4.19)

Being pxu a constant, the dependence on the geometry is determined only by the ratio
(Nc/Nr)

2. Intuitively, as Nr is increased, the centroids in each half of the array get
closer, increasing the correlation between the devices and thus reducing the variance.
Conversely, as Nc increases, the distance between the centers of the two halves of
the array grows, resulting in a larger variance.

4.3.4 Results

Figure 4.8 shows the normalized behaviour of variance for the layouts analyzed in
this work. The results from the approximate models (4.17) and (4.19) are compared
to the variance computed on 10000 Monte Carlo trials of the CAD-friendly model de-
veloped by Lu in [1] and analyzed also in [66]. The maximum relative error between
datapoints in Figure 4.8 is less than 2%, validating the approximate expressions. For
the sake of clarity, the geometries corresponding to some of the data points have
been superimposed to the plot. In particular they represent the structures forced
to be common centroid, highligting the reduction in variance obtained by such a
modification.

In Fig. 4.9 we have computed the asymptotic expressions derived in this work
for two-fingers geometries, normalized with respect to the variance σ2

∆ p̄,ref of the
reference, single-finger layout (Nr = Nc = 1). With negligible device spacing, the
cross-coupled layout performs better than the mirrored-linear one whenever (w/l)2 <

12.

Fig. 4.9 Mismatch variance for two-finger alyouts, with respect to the single-finger reference
case (Nr, Nc) = (1, 1).
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4.4 Stability analysis of a leakage compensator

In its most trivial form, a sample-and-hold circuit consists of a capacitor, as in
Fig. 4.10a, tracking the input voltage until its access transistor M1 is in the ON state.
As soon as the transistor turns OFF, the charge in the capacitor is fixed and the voltage
information is available for other circuits to operate on. A real MOS transistor in its
OFF state, however, does not completely isolate the capacitor, causing a discharge
over time because of leakage currents through the channel and the diffusions.

In general, once a signal sample is stored, the input voltage will still vary. Since
this makes the analysis more complex, let us limit ourselves to the “T” shaped switch
topology of Fig. 4.10b [69]. Among its advantages, this solution removes the input
voltage dependency by shorting the inner node to the reference voltage. Moreover,
transistors M2 and M3 will be replaced by a Norton equivalent model as depicted in
Fig. 4.10c.

The leakage current cancellation circuit is shown in Fig. 4.10d. It was originally
introduced in [70] and experimentally validated, observing up to 20× reduction of
the voltage decay with respect to an uncompensated hold cell. The circuit requires
a replica of the original hold cell where the capacitance is scaled down by a factor
k < 1. Having unequal values, their discharge rates will differ, resulting over time
in an increasing voltage vdiff(t) = vh(t)− vrep(t). A compensation current iinj(t),
proportional to vdiff(t), is injected back into both cells, reducing the net current flow
through the capacitors.

Assuming R→ ∞, a steady state condition is reached with the leakage current
IL compensated exactly and the hold voltage, after an initial decay, preserved indef-
initely. Conversely, finite resistance values prevent a steady state condition from
being achieved and require appropriate sizing of the loop elements in order to satisfy
admissible voltage drop specifications.

In the following, for a comprehensive analysis of the properties of the system, we
assume that the replica circuit is not identical to the original one due, for example, to
circuital mismatch. In details, assuming t = 0 is the sampling instant, the main inputs
applied to the circuit are the sampled voltages vh(0−) =V0 and vrep(0−) =V0 +∆V0

and the constant leakage current ILu(t), where u(t) is the unitary step function,
valued 1 for t ≥ 0 and zero otherwise. One of the main sources for the sampling
voltage error ∆V0 is the charge injected by the access transistors upon their transition
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Fig. 4.10 (a) Basic implementation of a sample-and-hold circuit. (b) Implementation by
means of a T-shaped switch. (c) Equivalent circuit for (b) in the hold mode. (d) Schematic of
the leakage compensator under analysis.

to the off state, an effect that depends on the capacitance values, asymmetric by
design. As such, it will affect even the nominal circuit.

The Laplace-domain block-diagram description of the compensator is depicted in
Fig. 4.11. Notice how the initial conditions applied to the capacitors act as currents in
the transformed domain. This is obtainable by transforming the constitutive equation
of a linear capacitor taking into account its initial condition [71]:

Ic(s) = L {iC(t)}= L

{︃
C

dvC(t)
dt

}︃
=C

(︁
sL {vC(t)}− vC(0−)

)︁
= sCVc(s)−CvC(0−)

Ic(s)+CvC(0−) = sCVc(s) .

Two transformed currents flow through the capacitor, the second of which represents
the initial conditions and corresponds to a Dirac-delta distribution in time domain
and a constant in Laplace domain.
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The equivalent load impedances in each cell are:

Zh =
Rh

1+ sRhCh
Zrep =

Rrep

1+ skRrepCh
.

4.4.1 Analysis of the nominal circuit

We will initially neglect any mismatch, i.e., Rrep = Rh. The transconductances will be
considered identical as well, and without any reactive effect, i.e. gm1(s) = gm2(s) =
gm0.

Being the circuit linear, we apply the superposition principle and derive the
response Vh(s) with respect to each input:

Vh(s) = H|V0V0 +H|∆V0∆V0 +H|IL

IL

s
.

Elementary algebraic manipulations lead to the desired transfer functions, approxi-
mated under the assumption of gm0Rh≫ 1:

H|V0(s) ≃ gm0R2
h(1− k)Ch

1
(1+ τ1s)

H|∆V0(s)≃−gm0R2
hkCh

1
(1+ τ1s)(1+ τ2s)

H|IL(s) ≃−Rh
1+T1s

(1+ τ1s)(1+ τ2s)
,

with:

τ1= gm0R2
h(1− k)Ch , τ2=

k
1− k

Ch

gm0
, T1 = kRhCh .

Being both τ1 and τ2 positive, the two poles lie in the left half-plane, hence the
system is stable for all parameter values. The dominant (slowest) time constant, τ1,
is given by the time constant of the original hold cell (without compensation), RhCh,
increased by a scaling factor gm0Rh(1− k)≫ 1. The voltage decay can therefore be
slowed down as much as needed by increasing the transconductance. At the same
time, τ2 becomes increasingly smaller. Notice also how H|V0 is a single-pole transfer
function.



100 Results on Nonidealities Estimation and Management

Zh(s)

Zrep(s)

gm(s)

kCh

IL/s
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∆IL/s ∆V0
Ch

Vh(s)

Vdi f f (s)Iin j(s)

Fig. 4.11 Complete block diagram of the compensator.

The time-domain response vh(t) is given by the sum of corresponding terms:

vh|V0(t) ≃V0 exp
(︃
− t

τ1

)︃
vh|∆V0(t)≃−∆V0

k
1− k

[︃
exp
(︃
− t

τ1

)︃
− exp

(︃
− t

τ2

)︃]︃
vh|IL(t) ≃−RhIL

[︃
1− exp

(︃
− t

τ1

)︃
(4.20)

+
k

1− k
1

gm0Rh
exp
(︃
− t

τ2

)︃]︃

The sampled voltage decays according to the nominal time constant. The voltage
asymmetry ∆V0, applied to the replica cell, is propagated to the original cell and
attenuated at least by a factor k

1−k . The effect of the leakage current is also slowed
down by the increased time constant.

According to the expressions in (4.20), the circuit can significantly reduce the
leakage-induced discharge, though the assumptions of identical values for some of
the parameter are not realistic and the effect of their asymmetries must be evaluated.
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4.4.2 Effects of device mismatches

The condition of exactly equal resistances, transconductances and leakage currents
will be nearly impossible to achieve in practice. Although mismatches in leakage
currents will not change the stability properties of the system, being only a different
input signal for the same feedback loop, their effect has to also be evaluated and, if
needed, mitigated.

A (constant) asymmetry in the leakage current can be modeled as a ∆ILu(t)
flowing through the replica cell. The additional term in the expression of Vh(s) is
given by H|∆IL(s) ·∆IL/s, with:

H|∆IL(s)≃ gm0R2
h

1
(1+ τ1s)(1+ τ2s)

.

The corresponding time-domain contribution is:

vh|∆IL(t)≃ gm0R2
h∆IL

[︃
1−exp

(︃
− t

τ1

)︃
(4.21)

+
k

g2
m0R2

h(1− k)2 exp
(︃
− t

τ2

)︃]︃
.

This time, the gm0Rh factor that slows the decay down also acts as a scaling
coefficient for the entire expression. Under the reasonable assumption of hold times
much smaller than the dominant time constant τ1, equation (4.21) becomes:

vh(t)|∆IL(t)≃
1

Ch(1− k)
∆ILt .

The circuit behaves almost as an ideal integrator of the leakage current mismatch
term, with an effective capacitance close to the hold capacitance Ch. The only terms
that can limit the error due to such an asymmetry, once the hold time is selected,
are the value of Ch, which should be enlarged if needed, and the amount of current
∆IL, which has to be minimized by ensuring that the transistors in both cells are as
matched as possible. Parameter k is already assumed to be small, hence its effect is
not significant in this expression.
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The presence of mismatch terms affecting Rrep = Rh(1+∆Rh/Rh) and gm2 =

gm0(1+∆g/gm0), modifies the circuit open-loop gain, which becomes:

T ′ = gm0

(︃
1+

∆gm0

gm0

)︃
Rh(1+∆Rh/Rh)

1+ skRhCh(1+∆Rh/Rh)

−gm0
Rh

1+ sRhCh
.

The zeroes of the corresponding characteristic equation 1+T ′ = 0 represent the time
constants of the systems. While τ2 is mostly unaffected, the dominant time constant
indeed becomes:

τ
′
1 ≃ RhCh(1− k)

gm0Rh

1+gm0Rh

(︂
∆Rh
Rh

+ ∆gm0
gm0

+ ∆Rh
Rh

∆gm0
gm0

)︂
≃ RhCh(1− k)

∆Rh
Rh

+ ∆gm0
gm0

+ ∆Rh
Rh

∆gm0
gm0

. (4.22)

Whenever the 1 at the denominator becomes negligible, i.e. gm0R≫ 1 and the
mismatch terms are significant, the sign of the time constant is determined by
those of the ∆Rh/Rh and ∆gm0/gm0 terms, which are unknown a priori. The time
constant can therefore become negative and the exponential decay may turn into an
exponential growth of the output voltage vh(t), i.e. a right half-plane pole arises.
Hence the system is conditionally stable, depending on the statistical properties of
the mismatch terms.

Note however that, to first order, the absolute variations |vh(t)−V0| are indepen-
dent of the sign of τ ′1 for t≪ τ ′1,.

As a final note, since the dominant time constant is limited in magnitude by the
∆Rh/Rh and ∆g/gm0 terms, a further increase of the transconductance is ineffective in
reducing the observed voltage decay and requires either a reduction of the mismatch
terms or an increase in Ch.

4.4.3 Stability with a dynamic transconductance

Up to this point, the transconductances have been considered as constants, resulting
in compensator dynamics which are at most those of a second order system, with
two real poles. Here we will consider identical transconductances with a dominant
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pole, i.e. gm1(s) = gm2(s) = gm(s) = gm0
1

1+s/pg
. The order of the system is thus

increased, and complex conjugate poles may arise, leading to damped oscillations in
the system response.

Two cases will be presented, the first in which the pole frequency is independent
of gm0, the second where the frequency is given by gm0

Cg
, as it happens in a two-stage

transconductance amplifier with gm0 determined by the input stage only.

Constant pole frequency

The open-loop gain with a dynamic conductance is expressed by:

T ′′ = gm0
1

1+ s/pg
(Zrep(s)−ZH(s)) .

The characteristic equation 1+T ′′ = 0 is linear in gm0 and can be studied with the
standard root locus technique [72].

With n = 3 poles and m = 1 zero in the expression T ′′, control systems theory
guarantees that the complex conjugate poles arising for any value of gm0 will not
give rise to instability, since the root locus will follow vertical asymptotes, whose
angles with respect to the positive real axis are:

θa,ν =
2ν−1
n−m

π =

{︃
π

2
,
3
2

π

}︃
,

with ν ∈ {0,1} the index of the pole. The asymptote crosses the real axis at a point:

σa =
1

n−m

(︄
n

∑
i=1

pi−
m

∑
i=1

zi

)︄
=−1

2

(︃
1

RhCh
+

1
kRhCh

+ pg

)︃
, (4.23)

with pi and zi the poles and zeroes of T . If the pole frequency −pg is independent of
the transconductance and pg > 0, then the system is unconditionally stable.
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Pole frequency proportional to gm0

If instead pg = gm0
Cg

, i.e., proportional to the transconductance, the characteristic
equation can be manipulated into an expression quadratic in gm0. The standard root
locus technique is no more applicable and we would have to resort to the polynomial
root locus method [73]. Its most peculiar feature is that each point of the root locus
may be obtained for multiple values of the gain variable that parametrizes the curve
(in our case, gm0). Since our interest is mainly in the stability of the feedback loop,
we will limit our analysis to finding the conditions of system instability.

Table 4.6 Routh-Hurwitz table for the characteristic polynomial when the dominant pole in
gm(s) is proportional to gm0.

3 a3 = kR2
hC2

hCg a1 = g2
m0R2

hCh (1− k)

2 a2 = (1+ k)RhChCg a0 = gm0

1 b1 =
gm0RhCh

1+k

[︁
(1− k2)gm0Rh− k

]︁
0 c1 = gm0

In order to evaluate the presence of roots with positive real part in a polynomial
equation ansn+ . . .+a1s1+a0 = 0, we can readily apply the Routh-Hurwitz criterion
[72]. The method requires the construction of a table whose top two rows contain
the polynomial coefficients in a specific order, as in Table 4.6, constructed under the
assumptions gm0Rh≫ 1 and RhCh≫Cg/gm0. In a third order equation, two more
elements have to be evaluated, whose expressions are:

b1 =
a2a1−a3a0

a2
, c1 =

b1a0

b1
= a0 .

The criterion states that, moving along the first column, every change of sign
of the elements in consecutive rows corresponds to a root with positive real part.
Conversely, sign permanence is equivalent to a root with negative real part. All
the terms but b1 are always positive, hence the stability of the closed loop system
depends on the sign of b1. If positive, all roots have negative real part, if negative, a
couple of unstable roots arises. The corresponding inequality(︁

1− k2)︁gm0Rh > k
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is immediately verified under the initial assumption gm0R≫ 1, hence the closed-loop
system is stable.

4.4.4 Numerical evaluations

The root loci of the closed-loop system, parameterized by the value of gm0, are
shown in Fig. 4.12. They have been evaluated for Rh = 1GΩ, Ch = 100pF and
k = 0.1. Parameter values have been selected to validate the analytical models
and may be far from realistic conditions. Plots 4.12a and 4.12b, correspond to the
model with a constant transconductance, with no reactive effects. The system is
a second-order one, with clearly separated real roots. In Fig. 4.12b the positive
zero for a ∆gm0/gm0 = −0.1 determines a transition to unstable behavior as gm0
increases. Conversely, in 4.12c a dominant pole in gm(s), at -5 krad/s, results in a
third-order system, possibly with a pair of complex-conjugate poles. The vertical
asymptote abscissa has a real part of -2.55 krad/s as computable also by (4.23).
Finally, Fig.4.12d, 4.12e and f depict the loci for Cg/Ch = 1/50,1/100,1/1000,
respectively. As the ratio becomes smaller, the region enclosed by the complex
conjugate loci shrinks. That same region is characterized by extremely low values of
transconductance and may not be observed in practice.

The transient behaviour of vh(t) in different operating conditions has been ver-
ified in SPICE simulations and is depicted in Figure 4.13. The V(vh_no_comp)
curve represents the uncompensated voltage decay of a hold cell, with a leakage
current IL = 10nA and an sampled voltage V0 = 1V. Applying around the cell the
compensator without any mismatch, the V(vh_nom) waveform is obtained, showing
a fast, limited-amplitude initial transient followed by a slower decay. The addition of
an asymmetry on the transconductance ∆gm0/gm0 =−0.1 determines the exponential
growth of V(vh_mism). Finally, a constant pole in gm(s), together with the previous
mismatch, results in the damped oscillations observed in V(vh_dyn).

Evidently, the theoretical analysis, validate by numerical evaluations proves the
extreme sensitivity of the active compensator to all sorts of hardware nonidealities
and its initially assumed robustness is not at all there in reality. Let us then go back
to the simplest solution of trying to cancel the leakage current components by an
entirely passive structure, made only of MOS switches.
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Fig. 4.12 Root loci for the closed loop poles of the leakage compensator as a function of
the gm0 parameter, in S. (a) Nominal circuit. (b) Circuit with a ∆gm0/gm0 =−0.1 mismatch
term. (c) Nominal circuit with a constant pole in gm(s). (d) Nominal circuit with a gm(s)
pole proportional to gm0, pg = gm0/Cg, with Cg ∈ {Ch/50,Ch/100,Ch/1000}. Both plot axis
employ a symmetric log scale so that positive and negative values can be represented over a
wide range. The region x ∈ [−1,1], y ∈ [−1,1] is in linear units.
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Fig. 4.13 Transient behaviour of the voltage in the hold cell for several system configurations.
The subplot on the right provides the zoomed-in view of the rectangular region highlighted
on the left.



Chapter 5

Phase-Change Analog In-Memory
Computing

There once was a brainy baboon,
Who always breathed down a bassoon,
For he said, “It appears
That in billions of years
I shall certainly hit on a tune.”

New Pathways in Science (1935)
SIR ARTHUR S. EDDINGTON

This chapter initially deviates from the previous discussion, since we are going to
evaluate the performance of a different material technology as a potential candidate
for low-energy analog processing.

In the following we will focus on Phase-Change technology, whose history
goes back to the seminal works by S.R. Ovshinsky in 1968 [74]. Since then, these
materials have found applicability in commercial devices, e.g. as optical storage
media as DVD-RAM and Blu-ray discs, or as compact digital memory elements
in automotive-grade integrated circuits [75]. In the realm of digital memories
interfaced with general purpose computing platforms, PCMs would be filling the
performance/cost gap between DRAMs, fast, reliable but non-volatile, and NAND
flash, slow and with a limited life span. Here we will use them as analog memories,
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trying to evaluate whether the current state of both the technology and the circuit
topologies used to drive them can enable them for real-world applications.

The chapter will start with an overview of the device physics and the two hard-
ware (HW) platform we have employed to evaluate the devices. Device programming
and measurement acquisition are then described. Finally, we will detail the construc-
tion of application-based DC models, to enable virtual testing of the devices in the
context of classification and regression tasks by means of Neural Networks (NNs),
as well as Compressed Sensing (CS) encoding.

5.1 Phase-Change Technology

Phase-change materials are made of chalcogenide alloys containing elements from
group V of the periodic table, most often tellurium [75]. Their definining feature
is the ability to reversibly switch between an amorphous and crystalline state, both
stable at room temperature and having wildly different optical and electrical proper-
ties. These differences allow the atomical structure of the lattice to encode and store
information, acting as proper optical and electrical memories.

The phase transition underlying the operations of phase-change materials is
induced by thermal processes, using either optical sources or Joule heating due to
electric currents. In the following we will only consider electric interactions and we
will be referring specifically to the Ge-Sb-Te (GST) alloy, being currently the most
extensively researched.

The typical physical structure we will consider is a sandwich of active phase-
change material between two metal electrodes, as depicted in Fig. 5.1a. A heating
element, usually fabricated from doped TiN, acts as a contact from the bottom
electrode to the active region and shows higher electrical resistance and lower
thermal conductivity than typical metals. Current flowing through the heater raises
the temperature of the small volume of material above it through Joule heating.
Once the melting temperature is reached, (depending on the actual composition, but
usually in the range of 400−800°C) the phase-change material liquefies. Controlling
the cooling profile, the final crystalline state of the molten volume can be tuned.
An abrupt temperature drop freezes the atoms in a disordered, highly resistive,
amorphous state, also defined RESET. If instead the current is decreased gradually,
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Fig. 5.1 (a) Elements of a mushroom-type PCM cell. (b) Typical electrical response of PCM
cells programmed in either the RESET or SET states. (c) .

crystal nucleation and growth allow the crystallization of the volume, with a lower
final resistance. The crystalline properties of this state, defined as the SET state,
vary based on the parameters of the electric stimulus being applied. A trapezoidal
pulse of high intensity creates a polycrystalline volume, having several grains. A
low intensity pulse leads more easily to a crystalline column of material passing
through the amorphous dome that forms on top of the electrode. A series of pulses
of decreasing amplitude results in a polycrystalline structure, having large grains
in the active area of the device. This dependence of the final crystalline state on
the qualities of the programming pulses potentially allows a fine-grained control of
the programmable volume, enabling multilevel programmability and is an actively
researched topic.

An I/V characterization of a typical PCM cell highlights one of its peculiarities,
a phenomenon called threshold switching, clearly visible in Fig. 5.1b. At sufficiently
high bias voltages the RESET state I/V curve collapses into the SET state one, with
a significantly lower resistance. This is a purely electronic phenomenon and does
not induce any permanent change in the crystalline lattice. Indeed, removing the bias
restores the original device state. The root causes explaining the threshold switching
phenomenon are not yet understood [75]. Some hypothesis include recombination
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through trap levels with generation driven by electric field, or the creation and
expansion of conductive filaments that act as shorts bypassing the highly resistive
amorphous region. Notwithstanding the alternative explanations, threshold switching
is extremely advantageous to reprogram the device, as it allows higher current levels
even through cells in RESET state without requiring extremely high bias voltages.

The non-volatile, reversible state change is instead called memory switching. It
enables the encoding of information in the crystalline state, which can be recovered
through a low-voltage readout to avoid excessive perturbation of the state itself.

Phase change material can potentially enable extremely scalable arrays through
architectures of the type depicted in Fig 5.1c. A thin-film chalcogenide layer is
deposited continuously on top of a row of heating elements, with different active
volumes insulated by the same material in the amorphous state. Using as a metric
the minimum cell half-pitch F , i.e. half the distance between identical element in a
uniform array, the minimal device area would be 4F2. The scaling limitation stems
both from data retention (a smaller active volume more rapidly relaxes back to a
crystalline state), and the necessity of having access devices capable of supplying the
RESET current pulses. BJT selectors are more compact than MOSFETs, with areas
of 8F2 as compared to the 20F2 of MOSFETs, though the advantage of an easy
integration to CMOS system-on-chip solutions with only a few additional masks
makes MOSFET technology extremely more valuable. As a reference, embedded
flash memories require 10+ additional masks in the Back End Of the Line (BEOL)
[75].

Typical implementations subdivide the entire PCM array into smaller tiles so
that leakage, power-consumption and speed can meet specifications. Array tiles can
be than grouped in partitions and planes, with several tiles sharing the same sense
amplifiers. The IR voltage drop along the bit- and word-lines plays a major role in
limiting the size of the array tiles, with consequences on the programming voltage,
which has to compensate for the drop along the interconnection, a higher deselection
voltage on the word line and, in general, unbalances observed in the cells farther
from the line drivers. As the size of the tile increases, so does the capacitive coupling
between adjacent lines, slowing down the readout and adding latency.

One of the major drawbacks of phase-change materials is that the amorphous
volume experiences structural relaxation over time, leading to a resistance increase



112 Phase-Change Analog In-Memory Computing

described by the power-law relationship [75]

R(t) = R0

(︃
t
t0

)︃ν

, (5.1)

with R0 and t0 constants, and the drift exponent ν ≃ 0.1. These parameters depend
both on temperature and device aging. The drift phenomenon is a minor issue in
binary digital applications, as the two states, SET and RESET, diverge over time.
For the use as multilevel cells this is, however, one of the major challenges to be
addressed. Indeed even if the (full) SET state does not experience significant drift,
partial SET states achieved with appropriate programming sequences still containing
residual amorphous volumes of varying size experiencing significant resistance
variations over time.

The only general consensus on the causes leading to the resistance drift is that
it is due to some kind of relaxation. Other than that, conflicting theories have been
proposed, considering the disorder, defect density or stress as the root causes of
the phenomenon [75]. A correlation to the presence of grain boundaries has been
identified, hence an improvement is to be expected if low-current programming
currents are employed. The specific material composition also affects drift, with
Ge-rich alloys enhancing the thermal stability of the RESET state.

Time also plays a role in the progressive change of the chemical composition of
the active volume. Indeed, each of the chemical species composing the phase-change
alloy experience different phenomena, leading to the independent migration, even
in opposite directions. As devices age, Sb atoms move towards the electrode, while
Ge is pushed out into the solid phase. As a consequence the molten region remains
Sb-rich and Ge-depleted, with a progressive change of the maximum achievable SET
conductance, and leading to reliability issues in the long term.

In general, device performance is strongly dependent on the PCM material prop-
erties. A high contrast between logical states immediately maps to the resistance
difference between the amorphous and crystalline states. Low power consumption
requires lower melting temperature, but a not-too-low resistivity in the crystalline
state to reduce the RESET current. The crystallization speed determines the switch-
ing (reprogramming) speed. Data retention is affected both by the crystallization
temperature and the drift exponent in the amorphous state. Long term endurance
needs lower variations of volumetric density between amorphous and crystalline
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Fig. 5.2 Architecture of the (a) Mk-I and (b) Mk-II PCM chips.

states. Finally, high scalability requires stronger control on the interface effects that
become significant at small volumes.

Through scaling, energy consumption can also be reduced by requiring signifi-
cantly lower currents during device programming, e.g., from melting current over
500 uA at the 90 nm node (heater diameter 56 nm) to under 100µA at the 16 nm
node (heater diameter of 10 nm) [75].

5.2 Available HW Platform

To evaluate the requirements, limitations and overall feasibility of energy-efficient,
PCM-based data processing schemes, we have used measurements from two different
AIMC implementations [76, 77]. The core PCM devices had the same technological
properties and the main differences were in terms of the surrounding circuitry, as
highlighted in Fig. 5.2. Both hardware architectures were the result of a collaboration
between the design team at STmicroelectronics and a research group based at the
University of Bologna. They provided us with extensive measurements for the
characterization of the major performance parameters of the specific implementation,
with a focus on the PCM devices.

In the following we will alternate between results obtained with the first design
iteration, hereafter denoted Mk-I, and the second iteration, Mk-II. Each design had
its own evaluation board, usable through a custom graphical user interface to define
repeatable programming and data-acquisition procedures.
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The Mk-I test vehicle [76] is a 2-Mb PCM memory array, realized in a 90-nm
BJT-CMOS-DMOS (BCD) technology for automotive applications. It employs a
crossbar 3D Memory, with long lines of a Ge-rich GST compound. The chip includes
8 independent 256 kB macrocells, with a PCM elementary cell based on an NMOS
selector and occupying 0.19 µm2 of silicon area. The programming-pulse generator
includes a 6-bit current-DAC and multi-output current mirror. Their combination
allows both the shaping of the time-domain currents being used to program the
devices, as well the ability to simultaneously program multiple cells. As RESET
current pulses have a much higher intensity, the maximum parallelism is more limited
(20) as compared to the one achievable during SET programming (80).

From our point of view, the major feature of the Mk-I chip is the possibility to
drive the PCM cells through the direct application of an analog voltage, as shown in
Fig. 5.2a. The consequences of this driving setup will be analyzed later on in this
chapter.

The Mk-II chip takes a different approach in the use of PCM devices. They
are no more driven by an analog voltage. The external inputs are now encoded as
constant-amplitude, width-modulated voltage pulses [77], obtained by comparing
the external inputs to a voltage ramp.

The reference ramp itself is generated by integrating a constant current flowing
through a resistive element, being either an integrated resistor or a PCM cell. Select-
ing the latter enables an effective drift-compensation strategy, since the output of
a single MAC becomes dependent on a ratio of PCM conductances. This is a well
known principle in circuit design, for ratios of homogeneous quantities inherently
compensate variations common to the individual elements. The effectiveness of this
compensation strategy stems from the fact that, as the PCM cells within the analog
array become increasingly more resistive over time, the current flowing through them
decreases1. The reference PCM cell, becoming more resistive as well, decreases the
slope of the voltage ramp, enlarging the duration required to reach the value of the
externally supplied input voltage. To first order, the integration of smaller currents
over a longer time compensates the drift.

Two drawbacks can be identified with this compensation scheme. The first con-
cerns the inherent variability of the reference cell. Though the ratio of homogeneous
elements is advantageous to cancel out common perturbations, the cell-to-cell pro-

1Remember that the PCM cells in the Mk-II chip are driven by a constant voltage.
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after 2- and 18-hours room temperature and 90°C bake drift. Dashed lines represent the
MAC accuracy in the same conditions when no compensation is adopted. Crosses report the
results of experimental evaluation of MAC accuracy for different gREF levels.

gramming error cannot be compensated exactly, especially since for convenience we
have a single reference conductance for every row of the analog array. Then, in a
multilevel use case, one reference cell is shared by a row of differently programmed
conductances and it has been observed how the drift exponent shows a dependency
on the actual programming state of the device. Therefore the reference conductance
can only be tuned so that on average it performs well. Fig. 5.3 indeed shows how
different values of the reference conductance lead to different average performance in
10k random MAC operations, with the optimum normalized range being [0.4−0.6].
A direct comparison of the compensated and uncompensated accuracy under differ-
ent drift setups can be seen in Fig. 5.4, with the compensated cells maintaining their
performance over time.

5.2.1 PCM Programming

The unpredictability of crystal nucleation and growth currently prevents the accurate
programming of arbitrary PCM conductance values. The trivial application of
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Fig. 5.4 (Top) Comparison of the MAC output for compensated and uncompensated cells (a)
after 2 hours from programming, (b) after 18 hours and (c) after a 24-hours bake at 90 °C.
(Bottom) Distribution of the MAC error ε .

programming pulses of different intensities, without any feedback to monitor the
actual states of the programmed devices is only sufficient in binary applications,
provided that some margin is guaranteed between the RESET and SET states.

Program-and-verify algorithms iteratively stimulate and characterize PCM cells
to ensure their conductance falls within a given tolerance of some target value. Part of
the measurements used in this work has been obtained from PCM cells programmed
through a variant of the SET-staircase technique defined in [78] and whose details
are depicted in Fig. 5.5. A hard RESET pulse is applied to the cell, bringing its
conductance to its lowest value, and progressively increasing it by partial SET pulses,
until its value is acceptable.

The feedback control currently requires digital processing, but one could easily
foresee an entirely analog loop, with an elementary state machine controlling the
evolution of the programming algorithm based on some external inputs, like target
value and tolerance.

Through this iterative programming algorithm, up to 16 non overlapping levels
have been obtained. Their cumulative distribution functions are shown in Fig. 5.6.
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Fig. 5.5 Outline of the cells programming algorithm.

5.3 Conductance Measurements and Processing

The Mk-I chip has been characterized by programming 5120 cells through one-shot
SET pulses. Different data sets have been acquired for different choices of pulse
amplitudes. Immediately after programming, a DC voltage has been slowly swept
across the cells to obtain their I/V transfer curves, depicted in Fig. 5.7a.

As it is clearly visible, the intensity of the SET pulses is not an accurate metric
to predict the programmed conductance. Therefore, to extract typical behaviors,
a different approach has been selected. Since our main goal is the evaluation of
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Fig. 5.6 Cumulative distribution functions of cells programmed to 32 equispaced target
conductances.

whether PCM technology represents a valid candidate for the implementation of
energy efficient data processing schemes, the device-level metric of interest is the
conductive state of the PCM cell, independently of the procedure applied to achieve
it. This is actually justified in practice by the existence of iterative programming
algorithms that, as previously stated, can guarantee accurate programming within
a given tolerance. As a consequence, the same dataset of I/V curves has been
interpreted in a different way. The programming state has been defined as a grid of
quantized currents, obtained at a reference voltage of vre f = 0.3V. All the measured
I/V curves falling within a ±5% of one of the grid points contribute to an averaged,
nominal behavior of an ideal PCM device. The result is a new categorization of the
same curves, as shown in Fig. 5.7b, and immediately leads to the nominal device
curves in Fig. 5.8a. The 3-D space depicting the measurements changes from the
(SET pulse intensity, applied voltage, device current) coordinates, to the (current bin,
applied voltage, device current) ones.

A selection of three such average behaviors is shown in Fig. 5.8a, chosen to
highlight significantly different conductance behaviors. The current profiles have
been normalized with respect to the maximum value of the state #1 curve. The
saturation observed at v > 0.8 is due to the access transistors entering the saturation
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region. Even though not an inherent feature of the I/V response of an isolated
PCM cell. It is taken into account as an unavoidable issue in the specific hardware
architecture selected for this specific chip. Consequently, conclusions will be drawn
taking it into account.

The three curves depicted in Fig. 5.8a will be considered as the nominal i(v)
behavior of typical cells in three different programming states, denoted as #1, #2
and #3. Fig. 5.8 also shows the large-signal, normalized conductances defined as
g = i/v. Notice how an ideal resistor would result in an horizontal line in Fig. 5.8b,
but only the curve associated to state #1 gets close to it in the lower half of the
voltage domain. The voltage dependency of the cell conductance has extremely
detrimental effects in applications where the exact values has to be known, as we
will analyze in Section 5.4.2.

The Mk-II chip allows individual programming of the array cells, but the readout
is only available through the computation of a MAC operations. The extraction of
single-cell measurements therefore requires in this case performing a MAC operation
with only one nonzero coefficient. The devices on this chip were all programmed
through the iterative programming procedure of Fig. 5.5.



120 Phase-Change Analog In-Memory Computing

0.0 0.2 0.4 0.6 0.8 1.0
v

(a)

0.0

0.5

1.0

i(v)

State
#1
#2
#3

0.0 0.2 0.4 0.6 0.8 1.0
v

(b)

0.0

0.5

1.0

1.5

g(v)= i(v)
v

State
#1
#2
#3

Fig. 5.8 (a) Average, normalized i/v characteristics of PCMs in three different states. The
curves have all been normalized with respect to the maximum current in state #1, I0 (i = I/I0).
The applied voltages have been normalized as well with respect to the maximum applied
voltage V0 (v =V/V0). (b) Large-signal, normalized conductance g = i/v.

As this architecture encodes inputs as constant-amplitude pulses, the nonlinearity
observed in the I/V curves of the previous setup is now absent. Each device operates
at the same operating point for a time proportional to the acquired input.

To summarize, two hardware platforms have been used to characterize phase-
change devices.

For the Mk-I chip:

• Applied voltages are continuous in nature, leading to the observation of a
nonlinear I/V dependence.

• Programming is performed by one-shot current pulses of controllable intensity.
• The cell programmed state is extracted from their vicinity to an arbitrary

quantization grid, neglecting the amplitude of the programming pulse.

Conversely, for the Mk-II chip:

• Inputs are encoded as the duration of constant-amplitude voltages pulses.
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Fig. 5.9 Accuracy of the AIMC unit: (a) Measured MAC operations as a function of the ideal
MACs, where MAC coefficients are implemented with programmable integrated resistances.
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error distributions of the two data sets.

• A hardware drift compensation scheme is introduced, introducing the output
dependency on the ratio of PCM conductances

• An iterative programming procedure is applied to have a finer control of the
cell conductance.

5.4 Device Modeling

In this section we will construct numerical models describing the most relevant
features of PCM cells, eventually including effects from the surrounding circuitry.
The sole objective of the models is to provide a way of rapidly verifying whether
real-world applications could benefit from the use of PCM analog arrays, notwith-
standing their nonidealities. Consequently, the models will not be concerned with the
underlying device physics, but will only describe the phenomena observed at their
terminals, specifically for the technology being employed and with a description
suitable for the application being evaluated. We will cover the general procedures
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Fig. 5.10 Effects of different values for the reference conductance gREF on the output swing
of the MACs. i) optimal swing (Equation (6)); ii) saturation due to low gREF level; iii) swing
reduction induced by PCM cells drift with constant gREF.

being used, as well as the results, but it is important to keep in mind that for us
the models only represent a mean to an end. As such, we will refer to them as
“Application-based models”.

For the Mk-I chip, having the possibility of applying analog voltages to the
elementary PCM cell, splines and polynomials of arbitrary degree will be employed
to model the nonlinear I/V curves observed in Section 5.4.2. With the newer Mk-
II chip, the nonlinearity disappears by virtue of the time-domain encoding of the
external inputs, and the focus is on the dependencies of both programming spread
and drift over time on the nominal conductance value. This data will be fitted either
by a tanh function or a degree-3 polynomial. In the following we will go through
the details and the caveats of the modeling procedures employed.

5.4.1 Application-based modeling

The work is a result of an increasingly better understanding of the possibilities offered
by the technology, more complex applications being evaluated, a better underlying
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hardware (since the Mk-II chip has been available). The complexity of the models
have followed the development.

Binary compressed sensing (CS) encoder

A PCM analog array implements the matrix-vector product between an appropri-
ately selected weight matrix (the encoder) and a window of the input signal to be
acquired. Being the matrix elements, i.e. the programmed conductances, either zero
or (logically) 1, there is no need to model the dependency of PCM conductances
on their programming state in a continuous manner, and two I/V curves obtained in
specific programming states are sufficient (one for the logical 0, the other for the
logical 1). Therefore different representative I/V curves for PCM devices in discrete
programming states have been computed by averaging subsets of programmed cells
behaviors as shown in Fig. 5.11a.

Deep neural networks (DNNs)

The PCM array implements the matrix-vector product at the core of a neural layer.
Since the layer weights have to be trained for a specific task, the model has to
be compatible with standard training procedure. The most commonly used is the
backpropagation [79]. It requires a model differentiable in terms of the matrix
weights, so that the weight updates can be computed to minimize an appropriately
selected loss function, computed on the output. Additionally to the continuous
I(V ) description required by the previous application, there is now the need for a
differentiable I(V,state) description. The definition of a state dimension through the
binning of measured I/V curves described in Section 5.4.2 allows the construction of
a three-dimensional model, through the interpolation of the available datapoints by
two-dimensional splines and polynomials as depicted in Fig. 5.11b.

Binary CS and DNNs with time-encoded inputs

Overall, the applications remain the aforementioned ones, though wider and deeper
DNNs are now used to solve more complex tasks. The conductance nonlinearity
is avoided by operating the PCM devices at constant voltage and encoding the
information as pulse durations. The focus is now on the accuracy of the programming
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procedure and the conductance drift over time. Models for the programming spread,
mean drift and drift spread are developed. Due to their visual appearance, standard
deviations versus target conductance are modeled using a scaled and shifted tanh
function, while the mean drift uses a degree-3 polynomial description. All the
models are only function of the nominal conductance, i.e. the target used by the
programming algorithm. The three modeled terms are shown in Fig. 5.11c.

A summary of the applications being evaluated, their requirements and the models
being used is presented in Table 5.1.

5.4.2 Numerical models for voltage-domain inputs

The starting point for the construction of a three-dimensional model is the averaged
I/V curves obtained in Section 5.3 and depicted for convenience in Fig. 5.12a. Their
intersection with the vertical line at V = 0.4V represents the nominal state of the
programmed conductance and allows us to extend the view into a 3-D plot, as shown
in Fig. 5.12b. Once a conductance state has been identified, this description would
already be useful for the initial use-case of a binary Compressed Sensing encoder, by
interpolating the I/V datapoints of a single curve. Nevertheless we will immediately
proceed to the derivation of the complete 3-D numerical model and use that to extract
the required curves even in the case of the binary application.

The search for a simple and efficient numerical interpolation of the available
data readily points towards spline representation [80]. They define a piecewise
sequence of low-degree polynomials, constructed so that the transition between
curve segments is smooth. Their main advantage is that, through a low degree
approximation of a limited region, they prevent the formation of artifacts observed
with high order models. We will select splines as the reference model of our nominal
PCM conductances in the Neural Network test-setups to be analyzed later on.

However, we will not be able to use them during training, since at the time of this
work no spline primitives were available in the commonly used software libraries
for Neural Network applications, namely Keras and Pytorch. Hence the need to find
a different description, more suitable for that specific task. Our selection has been
polynomials, both for their computational simplicity and their universality.

A limitation immediately stands out. The peculiarities of the surface to be interpo-
lated require especially high polynomial degrees, which results in the insurgence of
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Fig. 5.11 Practical use cases and their respective PCM models. (a)-(b) Voltage-domain PCM
inputs. (a) Discrete I-V curves are used for the binary CS application. (b) A continuous
surface for the training of DNNs. (c) Time-domain PCM inputs. Programming and drift-
induced variabilities are used for both the CS and DNN applications being tested.
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Fig. 5.12 (a) Average, normalized I–V characteristics of PCM devices in four different states.
(b) Spline-based interpolation of the average, normalized PCM behaviours, highlighting the
four states depicted in (a). (c) Low-order polynomial fitting of the same data. (c) High-order
polynomial fit.
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Fig. 5.13 Chebyshev grids to prevent the insurgence of Runge’s phenomenon in high-order
polynomial fit.

Runge’s phenomenon at the boundary of the domain if the interpolation is performed
on a uniformly-spaced grid [81]. At the application level, since the backpropagation
algorithm used to train Neural Networks has to glide over the surface, ringing intro-
duces nonmonotonicities which may be detrimental when finding optimal weight
values. The problem has been thoroughly studied, and a robust mitigation strategy
is to select the sampling point for the interpolation as the zeroes of Chebyshev
polynomials, whose value can be computed as the projection on the horizontal axis
of a uniformly sliced half circle:

xk = cos
(︃

2k−1
2n

π

)︃
, k = 1, . . . ,n .

The corresponding grid of sampling points becomes more dense at the boundary, as
shown in Fig. 5.13.
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Fig. 5.14 Comparison of the numerical representations of the same datapoints, using a spline
interpolation and a polynomial one both on an equispaced and a Chebychev grid.

Since we had to work with the data we already had, being acquired on a uniform
grid, we started from the spline model, considered as our reference, and resampling
it over the previously defined Chebyshev grid, using a grid resolution dependent
on the degree of the polynomial. The resulting surfaces are shown in Fig. 5.14
During training, the degree of the polynomial can be considered as a hyperparameter,
with lower degrees leading to faster trainings, though with a potential performance
penalty.

As the polynomials would be called a gazillion times during a single NN training
operation, the grouping and reuse of elementary terms can save an enormous amount
of computational resources, with immediate consequences on training time. To this
end, we have taken advantage of Horner factorisations of multivariate polynomials
[82], as implemented in the multivar_horner Python package. 2

Horner factorisation groups individual terms in the expanded polynomial descrip-
tion, to reduce the number of mathematical computations and increase the numerical
stability [82]. The uniqueness of Horner factorization however, only applies to
univariate polynomials, where their canonical form

f (x) = a0 +a1x+a2x2 + . . .+adxd

2https://pypi.org/project/multivar-horner/
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Fig. 5.15 Level curves to appreciate the advantage of a Chebychev grid. (top) Level curve
of the PCM current. Dashed lines refer to the spline model. (bottom) Level curve of
the difference between the polynomial and spline model. Notice the stronger oscillations
observed at the boundaries of the plots.

is readily transformed into

f (x) = a0 + x(a1 + x(. . .x(ad) . . .) .

The library uses a recursive procedure to obtain good factorisations in the multivariate
case. At each iteration, the most common factor among all monomials is factored out.
The stability advantage is not really relevant in our context, as it is truly observable
only when the number of coefficients is above 100 (Fig. 3 in [82]). Conversely, the
number of operations can be reduced 10-fold even for smaller polynomials.

The methodology presented here, summarized as:

1. Data acquisition and processing
2. Spline fitting for a locally-accurate low-order description
3. Chebyshev resampling to mitigate Runge’s phenomenon when using high-

order models
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4. Polynomial fitting for use in applications where spline primitives are not
readily available,

could be applied to arbitrary devices, for which specific software libraries are still
lacking, or to construct models based on specific measurements.

5.4.3 Numerical models for time-domain inputs

The improvements in the Mk-II PCM chip made the previous modeling effort irrel-
evant, since the individual PCM devices are operated at a constant voltage. At the
same time, the programming procedures being used have improved, with program-
and-verify techniques now available and guaranteeing a stricter control on the actual
device state.

Our focus, both to characterize the properties of the physical devices and under-
standing the resilience of the end applications, moved towards the quantification of
the spread observed after programming, as well as the monitoring of conductance
changes over time.

A set of 450 cells has been programmed repeatedly, each time to one of 32 target
levels, with a tolerance of 5%. The cells have been characterized by performing a
MAC operation3 involving a single device The characterization has been repeated
over time, monitoring the evolution of the individual conductances both with and
without the hardware drift compensation strategy described in Section 5.2. The
quantities to be modeled are: the programming variability ∆gp, describing the
residual spread of conductances programmed within a given tolerance, measured
after a few milliseconds from programming, and modeled as a zero-mean gaussian
random variable at every target conductance point. The drift conductance variation,
∆gd(t) = g(t)−g(t0), modeled as a gaussian distribution whose mean and standard
deviation are both function of the nominal conductance. Standard deviations, both
for the programmed conductances and the drift-induced spread, are described by:

σ(g) = σ0 +σ1 tanh(g/γ0). (5.2)

3the most elementary operation available on this AIMC chip is a MAC operation, involving
multiple PCM cells, thus to characterize a single cell, all the remaining ones within the same MAC
group have to be RESET
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Fig. 5.16 (a) Standard deviation of the spread resulting from the iterative programming
procedure, as a function of the average conductance of each programmed level. (b) Mean and
standard deviation of the drift-induced conductance variation for cells without compensation
and (c) with compensation.

Note that the model is not continuous over time, and different coefficients for the
numerical fit are associated to different drift times/conditions. Conversely, the mean
drift µ(g) trend has been described by polynomials of degree 3. A least squares fit
using the Levenberg-Marquardt algorithm has been used to find the parameters σ0,
σ1 and γ0 and the polynomial coefficients. The models are all shown in Fig. 5.16.

5.5 PCM-based Compressed Sensing Encoding

This section explores the tradeoffs observed while implementing Compressed Sens-
ing (CS) encoding schemes using PCM-based analog arrays. At the same time,
appropriate decoding schemes are either proposed or identified in the existing litera-
ture to better cope with the nonidealities of the encoding platforms.

We will be focused on binary CS encoding as it determines a marginal per-
formance drop when sensing matrix entries are constrained in a discrete set, e.g.
binary {0,1}, antipodal {−1,1} or ternary {−1,0,1}matrices [33]. Moreover, since
architectures where positive-only conductances can have a negative effect on the
output require additional circuitry, e.g. current mirrors [76], this also leads to the
most compact and efficient hardware implementation.
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Fig. 5.17 Evolution over time of two batches of PCM devices, programmed to a target
normalized conductance of 0.35 and 0.85. Both compensated and uncompensated cells are
shown.

We will discuss first the results obtained with the Mk-I PCM chip, where the
signals applied to the analog array are analog voltages applied as-is to the PCM cells,
hence exciting the nonlinear behaviour observed in Section 5.4.2. Conventional
reconstruction algorithms are not able to tolerate such a variability of the nominal
conductance and a procedure to recover the original signals is proposed. Then we
will present results built on top of the Mk-II platform, where the focus moves towards
the reliability of well-known CS decoders to unpredictable changes (either because
of an uncertain programming or for the drift over time) in the encoding stage weights.

5.5.1 Voltage-domain inputs

Let us start from the elementary encoding operation of a linear Compressed Sensing
encoder repeated here for convenience:

y = A · x , (5.3)



5.5 PCM-based Compressed Sensing Encoding 133

Fig. 5.18 PCM encoder followed by a one-shot decoder, using an estimate of the input-
dependent PCM conductance.

with A ∈ Rm×n the sensing matrix, x ∈ Rn the input and y ∈ Rm the measurements
vector.

The most natural choice is to map ideal zeros to conductances in the RESET
state, a highly resistive state with more than 2 orders of magnitude resistance as
compared to common SET states, so that the individual current through those devices
can reasonably be neglected, implementing an almost ideal zero.

The nonzero element, conversely, can be mapped to any SET state, though as
shown previously in Fig. 5.8b, different states have wildly different conductance
profiles versus the applied voltage, with the largest conductances being the most
well-behaved, with a region in the lower half of the voltage domain being almost
constant and a drop in the upper half. This effect, already discussed in Section 5.4.2,
and associated to the saturation of the access transistors, can also be observed in
terms of the differential conductance Fig. 5.8b to highlight how voltage variations
in the saturated region are indistinguishable, being all mapped to the same current
level.

If the sensing matrix A is implemented a conductance matrix G, the input x and
measurements y can be thought of as voltages and currents, respectively. Furthermore,
if the conductance matrix is built as a grid of PCM devices, we can immediately
see how the application of different input voltages to the analog array changes the
conductances of the array elements themselves. Eq. (5.3) then becomes:

y = A(x) · x . (5.4)
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This is a critical issues, since at the decoder side we are assuming the nominal
value for the sensing matrix and the actual changes depend on a quantity we still have
to estimate. The effect of the uncertainty in the actual values of the sensing matrix
weights, although deterministic in nature as it depends on a repeatable physical
phenomenon, is still extremely detrimental to the reconstruction performance of
known decoding algorithms, as clearly visible in Fig. 5.19a, where the reconstruction
target of 50 dB is far from the actual performance obtained.

The iterative reconstruction technique has been tested with 1000 signal instances,
sparse in the Discrete Cosine Transform basis, with n = 256, a sparsity level of
26 non-null coefficients, and a high-pass spectrum profile [33, Section 2.3]. The
sensing matrices are binary, of size 128× 256, with ideal zeroes, and ones being
implemented by one of the conductance models in Fig. 5.8b. The minimization
procedure being applied is the Orthogonal Matching Pursuit (OMP) [83].

Before the encoding step is performed, white gaussian noise is added to the
signal to reach a predetermined value of Signal to Noise ratio (SNR), denoted as
Intrinsic SNR (ISNR). Up to some denoising effects, which Compressed Sensing
is known to possess [33], this defines a target for correct recovery of the original
signal and makes the experimental setup more realistic. The reconstruction quality
obtained at iteration p is measured by the Reconstruction Signal-to-Noise Ratio
(RSNR), defined as:

RSNR = SNR(x, x̂|p) = 20log
∥x∥2⃦⃦

x− x̂|p
⃦⃦

2

Looking at Fig. 5.19a, higher-valued conductances having less variation in
relative terms lead to a better reconstruction quality, but still incur 20dB of RSNR
drop.

As we are used to do in Electronics, whenever some nonlinearity is the issue, we
find ways to limit the signal excursions so that we locally have a more well-behaved
response of the devices. Fig. 5.19b tries to analyze what happens when the dynamic
range of the input signal is reduced, assuming (and it is not the only available choice,
but a reasonable one) that the noise level is independent of the input signal. As the
signal is reduced, the noise power stays constant to the point where the two are no
more distinguishable in time-domain. Considering the input voltage dynamic ranges
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(DR), we thus have:

ISNR |DR = ISNR |DRref−20log
DRref

DR
.

In general, being the effective ISNR our target reconstruction quality, maximizing
it by making use of the largest possible dynamic range is desirable. However the
higher the allowed voltage excursions, the higher the variation of the conductances,
the lower the chances that the iterative technique will be able to recover the original
signal. This trade-off suggests the presence of an optimal dynamic range, as indeed
shown in the figure. The top two rows, corresponding to conductances of type
#1 and #2, confirm the expectation that the dynamic range has to be maximized,
while avoiding the region where the access transistors saturate, resulting in a low
differential conductance. The results for the [0:1] dynamic range show indeed a long
tail towards RSNR values lower than those of the [0:0.8] range, affecting around
25% of the tested signal instances. Conversely, for conductances of type #3, the
ISNR value is reached only for the minimum dynamic range, [0:0.2]. Limiting the
allowed dynamics to constrain the observed variability is indeed the typical design
choice in this context, and under such a severe variation the proposed technique is
not able to extend the range further than that.

From Fig. 5.19a, only the largest conductance state, used in the lower half of
the voltage domain manages to achieve the reference performance level. At the
maximum available dynamic range, performance does not increase and the answer
lies in the behavior of the PCM cell in the right half of the domain. The presence
of access transistors, discussed in Section 5.2, leading to the saturation of the I/V
curves in Fig. 5.8a is the culprit. An alternative point of view is to consider that
the differential conductance of the PCM device characteristic, i.e. the slope of the
tangent lines to the curves in Fig. 5.8, which go to zero at high bias voltages, hence
attenuating any information a signal may contain in that range.

Iterative decoding

The main idea for the proposed decoder starts from reanalyzing the issue at hand, i.e.,
the fact that the sensing matrix is modified by the input signal. Initially, the decoder
has no information on the signal-dependent variability of the sensing matrix and
has to assume some nominal value, e.g., that every matrix element has the nominal
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Fig. 5.19 (a) Empirical CDFs of RSNR values for the three conductance models, with input
signals in the [0:0.8] dynamic range for a one-shot reconstruction. (b) Empirical CDFs of
RSNR values for the three conductance models, one-shot reconstruction, at different dynamic
ranges for the input signals. Dash-dotted vertical lines, both in (a) and (b), define the ISNR
level, i.e. the target reconstruction quality.

Fig. 5.20 Architecture of a PCM-based system for CS applications with the proposed decoder.
The encoder implements the ideal, binary sensing matrix A by PCM conductances. The
decoder reconstructs the original signal by iteratively computing the estimate of the real
sensing matrix Ĝ.
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Iteration Sensing Matrix Estimate

0 G(x) ˆ︂x|1
1 G

(︁ˆ︂x|1)︁ ˆ︂x|2
2 G

(︁ˆ︂x|2)︁ ˆ︂x|3
· · ·

n G
(︁ˆ︂x|n)︁ ˆ︃x|n+1

Table 5.2 Sequence of iterative estimationsˆ︂x|n generated by the iterative decoding strategy in
Fig. 5.20.

conductance, observed at a specific voltage. After an estimate of the input has been
produced, and given a model of the voltage dependency of the PCM conductances (in
our case, the same numerical model used within the encoder), the sensing matrix fed
to the decoder can be re-evaluated so that each entry is aware of the signal estimate,
and it is updated accordingly, as seen in Fig. 5.20, with the introduction of a feedback
path from the reconstructed input x̂, to the sensing matrix, so that Ĝ = G(x̂) is fed to
a standard reconstruction algorithm. A second estimate of the original input is so
obtained. Repeating this process multiple times, as shown in Table 5.2 one hopes to
converge to the original signal. Empirical evidence shows that it is indeed true, in a
significant number of cases.

The pseudocode of this iterative reconstruction is described in Algorithm 2.

Algorithm 2: Iterative CS decoder for signal dependent sensing matrices
Data: A, y, g(x), xref
Result: x̂
Ĝ← g(xref) ·A
repeat

x̂←minimizer(y, Ĝ ·D)

Ĝk, j← g(x̂ j)Ak, j ∀k = 1, . . . ,m; j = 1, . . . ,n
Compute convergence metric

until convergence or timeout

As the proposed decoding strategy requires repeated calls of an inner minimizer,
which tries to solve an inherently complex, ill-posed mathematical problem, the
use of the computationally light Orthogonal Matching Pursuit (OMP) minimizer is
almost mandatory, if one only has access to limited computational resources.
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Fig. 5.21 (a) Empirical CDFs of RSNR values for the three conductance models, with input
signals in the [0:0.8] dynamic range at a selected number of iterations for the decoding
algorithm. (b) Empirical CDFs of RSNR values for the three conductance models, 30
iterations, at different dynamic ranges for the input signals. Dotted curves represent the
results at the first iteration. Dash-dotted vertical lines, both in (a) and (b), define the ISNR
level, i.e. the target reconstruction quality. (c) Mapping of RSNR values against ASNR,
at a fixed dynamic range [0:0.8]. For each of the 1000 signal instances, 30 data points are
represented, one for each iteration of the decoding procedure. The horizontal line represents
the ISNR value. The oblique line is the plane bisector.

In Fig. 5.21a. Conductances of type #2, show the most interesting behavior, start-
ing with a median RSNR of 12 dB, they rise to 30 dB in 5 iterations and 48 dB in 20
runs. The performance increase makes this programming state, whose performance
at iteration 1 is insufficient for virtually all applications, worth considering, with
the advantage of a reduction in energy consumption. Indeed, the expected power
consumption (accounting for the probability distribution of the input signal samples)
of the PCM array decreases by 28% if conductances of type #2 are chosen in place
of type #1.

One could try to force the sensing matrix adaptation into the minimizer itself.
We have not explored the issue enough to provide any guidelines, but preliminary
observations show that a premature adaptation may prevent the iterative strategy
from converging to the result, leaving it stuck in the wrong spot. A possibility could
be to use the Generalized-OMP minimizer, which selects multiple vectors at once,
thus adding some level of robustness against the overfitting of the sensing matrix to
a single basis vector.

Up to this point, no convergence metric has been defined, and the proposed
decoding technique has been characterized against a predefined number of iterations.
Since we have observed how the obtainable reconstruction quality saturates in a
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number of iterations that depends heavily on the behavior of the conductance, being
lower for less variable ones, the definition of an efficient halting criterion is highly
desirable to minimize the number of runs.

A good candidate for a convergence metric is
⃦⃦

x̂|p− x̂|p−1
⃦⃦

2, since this also
implies convergence of the effective sensing matrices Ĝ|p. It is convenient to observe
the SNR values computed from this difference, named Algorithmic SNR (ASNR),
defined as

ASNR = SNR(x̂|p− x̂|p−1) = 20log

⃦⃦
x̂|p
⃦⃦

2⃦⃦
x̂|p− x̂|p−1

⃦⃦
2

,

and depicted in Fig. 5.21c against the corresponding values of RSNR, for all the
instances used in Fig. 5.21a. Empirical evidence supports that RSNR and ASNR are
strongly linked (at least until the ISNR level is reached) with the advantage that the
latter does not need knowledge of the original signal x.

Observing that the clouds corresponding to different programming states reach
different maximum levels of ASNR, defining convergence by setting a threshold
on the observed ASNR is not efficient, since the threshold itself would have to be
adapted to the conductance type. Moreover, it has been empirically observed that
several signal instances are not able to achieve the threshold and run out of iterations
nonetheless. A promising approach yet to be explored is to monitor the ASNR for
the current signal instance until a local maximum is reached.

5.5.2 Time-domain inputs

The Mk-II PCM AIMC platform eliminates the need to address the conductance
nonlinearity, as the applied inputs are now encoded with constant amplitude, width-
modulated pulses. The remaining non-idealities to focus our attention on are the
conductance programming spread and the drift of the programmed state over time.

This section continues in the use of binary sensing matrices, where the zeroes
are considered ideal, as being implemented by cells in the RESET state. Conversely,
ones are realized by cells in a partial SET state, in one of three representative levels
selected to observe how different spread and drift device properties affect the quality
of the reconstructed signals.
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An elementary weight within the sensing matrix G ∈ Rm×n is described by:

g ji = gT +∆gp +∆gd(∆t) , (5.5)

with gT the nominal target conductance, ∆gp the programming spread and ∆gd(∆t)
the conductance drift.

The ∆gp and ∆gd(∆t) terms are modeled as described in Section 5.4.3. The
former is a zero-mean gaussian error term whose variance is a function of the
nominal value gT . The latter is still a gaussian random variable, whose mean and
variance are both function of gT and of the equivalent drift time, i.e., the drift setup
being considered.

A simulated performance evaluation has been run on 1000 signal instances,
sparse in the Discrete Cosine Transform basis, with n = 256, k = 26 and a high-pass
spectral profile, and 1000 binary sensing matrices, with 20% nonzero elements.
A compression ratio equal to 2 has been selected, consequently, m = 128. The
performance metric being considered is still the Reconstruction SNR (RSNR).

Each decoder requires knowledge of the sensing matrix being applied to the
input at the encoder. However, in accordance with (5.5), the only information truly
available is the target conductances gT used to implement the nonzero elements
of A. Here we consider to have reliable information also on the mean component
of the drift µd(g,∆t), as a result of the application of the hardware compensation
scheme presented in Section 5.2. This additional information is provided to the
decoder to explore the performance obtained after some time from the original
programming of the analog array. A more general characterization of the drift effect
(i.e., without considering any compensation technique) would require the inclusion
of additional information to be provided to the decoder, such as PCM devices
technology, chip-to-chip variations and real-time working temperature, whose effects
can be attenuated through the implementation of the compensation scheme. The
hardware compensation is therefore expected to provide a more robust and extensive
model of the drift phenomena.

Conversely, the reconstructor is unaware of the individual spread introduced
by both the programming procedure and drift over time. As a consequence, each
element in a given realization of the sensing matrix used at the decoder is identical,
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being either a true zero or a conductance gT whose value has drifted over time by
means of an estimation of µd(gT ,∆t).

All algorithms have been tested in a Python environment, using the spgl14, and
magni [84] libraries, the latter including an implementation of the GAMP decoder.
The GOMP algorithm has been constructed from an existing implementation of
OMP5. The SPGL1 decoder requires a parameter sigma representing the expected
measurement error. For each target conductances being tested, sigma has been
computed by encoding a batch of inputs with the perturbed and ideal sensing matrices,
computing the norm of the difference and then averaging across the batch. The
GAMP decoder requires instead an estimate of the input channel properties, namely,
the mean and variance of the nonzero components in the sparse representation of the
inputs. Moreover an estimate of the variance of the measurement noise is needed for
the output channel model.

To explore the tradeoffs involved in a PCM-based CS system, both in terms
of performance and energy consumption, three normalized target conductances
have been selected, 0.1, 0.4, and 0.7, to represent the nonzero values in the binary
matrix. These value are highlighted in Fig. 5.16 as vertical dotted lines. At the
lowest conductance, one observes the smallest programming spread, as well as small
variability induced by the drift. However, in relative terms this represents the worst
case scenario. Conversely, at the highest conductance, PCM devices show the best
properties, in terms of relative spread, at the cost of an increased energy consumption,
both in the programming phase and in the computation procedure.

Effects of the Programming Variability

Firstly, the reconstruction performance is evaluated considering the programmed
PCM cells in t0. Hence, the nonzero elements in G are implemented by

g ji = gT +∆gp(gT ) , (5.6)

with the decoder being aware only of the nominal value gT .

The behavior of the relative standard deviation of the programming spread
immediately maps to the reconstruction performance observed in Fig. 5.22a for the

4https://spgl1.readthedocs.io/en/latest/
5https://github.com/davebiagioni/pyomp
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three target conductances being tested. Increasing gT decreases the spread in relative
terms and leads to better performance, though with increasingly less benefits, as
summarized in Fig. 5.22b.

From the standpoint of the reconstruction algorithms, GAMP is the most suitable
decoder under any circumstance. Strikingly, the performance of GOMP, which is
unaware of the properties of the input or output channels, is extremely close, with <2
dB degradation compared to GAMP, requiring however a much lower computational
complexity and faster decoding times.

In relation to the encoding energy, Figure 5.22c shows that the additional energy
cost incurred with larger conductances does not result in a proportional gain in
performance, even when using the best performing decoder being tested, i.e., GAMP.
This leads to a tradeoff between the desired average reconstruction accuracy, which
is already > 30 dB for gT = 0.4 and the energy expenditure at the encoder. Indeed,
the energy consumption associated to a specific choice of target conductance is pro-
portional to the whole current absorbed by the AIMC unit. Accordingly, considering
the contribution of PCM cells only, the total current ITOT j required in the j-th MAC
computation of can be described using the well-known Ohm’s law:

ITOT j =VREF

n

∑
i=1

g ji =VREFNON jgT ( j = 1, . . . ,m) , (5.7)

where g ji has been assumed equal to gT , according to (5.6), and NON j is the number
of cells in SET state of the j-th computation. Therefore, the total energy required to
execute a single MAC operation, involved in the encoding phase of the CS algorithm,
can be assumed proportional to the target conductance. Fig. 5.22c confirms that
energy scales linearly with conductance, as the point clouds are equispaced along
the energy axis for equidistant conductance values gT . At the same time, the figure
highlights the decreasing benefits in terms of reconstruction quality obtained by
higher values of target conductance.

Effects of Drift

Let us now include the drift of the conductance for PCM devices when the hardware
compensation scheme is employed. In this setup, the nonzero elements in G are
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Fig. 5.22 (a) Performance of different reconstruction algorithms under the sensing matrix
uncertainty introduced by different levels of target conductance. (b) Comparison of the
median RSNR extracted from (a). (c) GAMP reconstruction accuracy versus encoding
energy. The crosses highlight the mean energy and mean RSNR points in each cloud. The
energy axis has been normalized with respect to the mean value of the gT = 0.4 setup.
According to (5.7), the normalized encoding energy is proportional to the total current
employed in each MAC operation.

implemented by
g ji = gp ji +∆gd(gp ji,∆t) , (5.8)

where gp ji = gT +∆gp(gT ) represents the perturbed conductance after programming.
The decoder knows gT and an approximation of the mean component of ∆gd , i.e., its
mean value µd(gT ,∆t), assumed to be well characterized and therefore predictable.
Note that the drift at the decoder is evaluated at gT instead of gp ji , leading to a
residual mismatch in the representation of the sensing matrix due to the finite (but
tunable) precision of the programming algorithm. In case uncompensated PCM
devices were employed, whose conductance drop would be up to one order of
magnitude larger, as shown in Fig. 5.16, the CS reconstruction performance would
dramatically decrease, along with considerable modeling-related issues. In any case,
the only significant effect being evaluated here is provided by the spread components
of programming and drift.

The simulation results are observed in Fig. 5.23, where only the results for the
GAMP and GOMP decoders are shown, being the most relevant. Notice how the
curves associated to different drift setups have very limited degradation, notwith-
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Fig. 5.23 Reconstruction performance for different drift setups: after 2 hours, after 18 hours
and after a 24-hours bake at 90 °C. Results are shown for different target conductances,
employing the hardware compensation scheme and the (a) GAMP and (b) GOMP decoders.

standing the extreme conditions being tested. Indeed, the loss in median performance
observed with the GAMP decoder, from 2 hours to the end of the bake, is limited to
2.3 dB for both the gT = 0.7 and gT = 0.4 setups.

As a reference example, the application in [85], identifies a 21-dB and a 34-dB
RSNR levels as reference thresholds for signal reconstruction quality. Considering
the results obtained after the programming procedure of Fig. 5.22a, the lowest
threshold is achieved by both the GAMP and GOMP decoders with gT = 0.4 or
0.7, whereas the highest threshold is only reached by GAMP when using gT = 0.7.
Including then the drift effects, as depicted in Fig. 5.23, the GAMP algorithm is able
to preserve a 21-dB RSNR only for gT = 0.7.
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5.6 PCM-based Neural Network

The past few years have seen revolutionary improvements in the efficacy of Deep
Neural Networks (DNNs) in solving real world tasks. At the time of writing, Chat-
GPT 6 has just been released. Its rapid adoption, with 1M+ users in less than a
week is a testament to its ability at generating relevant text content. At the opposite
side of the spectrum, the TinyML movement 7 is aggregating academic and industry
professionals to develop techniques and frameworks for low power implementations
of machine learning tools to be used with limited computational and energy resources.
As NNs are spreading towards the edges of the data acquisition chains, efficient
implementations are sought after. In this context, analog arrays represent a valid
candidate both in terms of speed, with their O(1) computational complexity, and
energy efficiency.

In this Section, we will analyze the results obtained when either the PCM models
from the Mk-I and Mk-II platforms are employed as the elements implementing the
matrix-vector multiplications at the core of the neural layers. We will first observe
how the backpropagation procedure is able to select the network weights even with
the nonlinearity of the PCM elements, to solve both the MNIST and Fashion-MNIST
classification tasks and a custom-defined regression task. Moving on, to the PCM
models from the Mk-II chip, we analyze the effects of programming variability and
conductance drift on the accuracy obtained on the CIFAR-10 classification task using
the Lenet-5 and VGG-8 DNNs.

5.6.1 Voltage-domain inputs

In a traditional dense layer, the core operation for the j-th neuron is h j = f (b j +

∑i w j,ixi), with inputs xi, weights w j,i, bias terms b j, and nonlinear activation f (·).
Aiming towards a circuital implementation where inputs are voltages, and they are
weighted by conductances programmed in different states, the expression becomes
h j = f (b j + ∑i I(xi,w j,i)), where we neglect any additional term introduced by
electrical noise, programming noise or even quantization of the inputs or the outputs.

6https://openai.com/blog/chatgpt
7https://www.tinyml.org/



146 Phase-Change Analog In-Memory Computing

Fig. 5.24 (a) Traditional dense and (b) PCM-based dense neural layer structures. The analog
array is highlighted in the latter, where we assume that the summation nodes are held at a
constant voltage for it to function properly.

Training a layer defined as such does not pose any difficulty, provided that
I(xi,w j,i) is differentiable with respect to the weights [79]. Standard software
frameworks are able to automatically differentiate even complex expressions if
described in terms of their library of operators [86]. To the best of our knowledge,
no spline primitives are available as elementary operators, hence the need to have
an alternative description of the synapses, expressed in terms of available operators.
Such a description is in our case of polynomial type. Potentially, a more physically-
informed model could be used as well, though as our measurement data includes
significant effects from the access devices surrounding the PCM cells, we have
preferred to have a unique model that could describe the behaviour of the entire
circuital block over the full voltage domain.

An additional advantage is that, at training time, the network could be trained
on a model of the neuron which is computationally simpler, though potentially less
accurate, enabling a faster exploration of different network topologies.

Two case studies will be analyzed in the following: a classification task performed
on the Fashion-MNIST dataset [87], and a regression problem, in which the network
has to estimate a parameter describing the spectral content of randomly generated
signal instances.

Results

In the following we will show numerical results on the training of neural networks in
which one layer is PCM-based. In all setups, the performance of a neural network
employing only conventional dense layers and having the same structure, is used
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Fig. 5.25 (a) Examples of Fashion-MNIST instances, employed in Section 5.6.1 (b) Spec-
trums for a selection of r with corresponding representative instances of length 128 in (c).
This data is used with the network in Section 5.6.1. (d) Normalized histograms of input
values for the two datasets being employed. A linear scale is used in the range [0,1] of the
vertical axis.

as a reference. To train the PCM-based network, the PCM synapses are always
described by their polynomial model, with an arbitrarily selected degree and by
identifying L = 10 different reference currents. An initial performance metric is thus
obtained, related exclusively to the use of the polynomial. The final evaluation is
then performed on the same network, preserving the trained weights, but replacing
in the PCM-based layer the polynomial model with the spline one, representing our
reference model for nominal PCM devices.

Since in a physical implementation the state of a PCM cell cannot be programmed
to arbitrary accuracy, we also test the robustness of the network towards this kind of
perturbation. We model the variation of the PCM state with a white gaussian noise
added to the nominal values of the weights (i.e., those suggested by training) during
the final evaluation. The variance of the weight noise is normalized to the nominal
value, so that their ratio is fixed. Clipping is then applied to ensure that the noisy
weights are still within the validity range of the numerical models.

Two different applications are shown, trying to highlight the different features
of the setups presented in this work. The optimizer in all setups is Adam [88], with
parameters: learning rate equal to 10−4 and the exponential decay rate for the 1st
and 2nd moments equal to 0.9 and 0.999. Results are condensed in Fig. 5.26.
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Fashion-MNIST Classification

The dataset is made of grayscale images of clothing articles, in a 28×28 pixel format.
Two examples are shown in Fig. 5.25a. The neural network topology being consid-
ered has an input-flattening layer followed by a single dense layer with 10 output
nodes and sigmoid activation functions. The loss function is the sparse categorical
cross-entropy. While the conventional reference network has no constraints on the
weights, in the PCM-based one we have introduced a “bathtub” regularization to
force them within the [0, 1] range. This implies a physical realization requiring only
positively-contributing PCM synapses on each layer output.

To asses the performance we use here the accuracy defined as the correct classifi-
cation rate. Analyzing the results shown in Fig. 5.26a, a monotonic trend is clear,
up to order 27, with networks trained on a high-order polynomial model almost
matching the performance of the reference network.

The fact that the weights obtained by training a low-order polynomial, as that
depicted in Fig. 5.12c is already sufficient to solve the classification task with∼ 0.78
accuracy has been associated to the statistical distribution of pixel intensities. Being
their density concentrated around the extremes of the available range, as shown in
Fig. 5.25d, the inherent nonlinearity of the models is not significantly excited. The
model feature that matters is that their output is different for low and high input
values. Both the spline and polynomials being employed possess such a feature,
resulting in a limited performance drop with respect to the reference case.

The application of noise on the trained weights only becomes significant around
10% relative standard deviation. With respect to the noiseless setup, the performance
loss is still within 3.5%. State-of-the-art iterative programming techniques of the
physical devices may indeed be able to achieve such a level of programming accuracy
[89, 90], thus incurring a limited performance penalty on the network task.

Spectral Estimation Regression

The second task being evaluated is a regression problem artificially constructed so
that the nonlinearity of the PCM I–V characteristic can be excited even more.

The problem is that of estimating the properties of the Fourier-spectrum of
random signal instances. Given a value −1 < r < 1, let us define an autocorrelation
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Fig. 5.26 Results for (a) Fashion-MNIST classification, and (b) spectrum estimation re-
gression. The black, dotted line represents the performance obtained by a neural network
employing standard dense layers, without noise. Solid lines refer to the performance of net-
works using the spline PCM model, with the weights trained on the polynomial description
of the device, and additional noise included during the evaluation phase.

matrix K such that K j,k = r| j−k|, 1≤ j,k≤ n, with n the length of the signal instances
being observed. The power spectrum of the stationary stochastic process thus defined
is [33]:

Ψ( f ) =
1− r2

1+ r2−2r cos(2π f )
.

Its profile is high-pass for −1 < r < 0, flat/white for r = 0 and low-pass for 0 <

r < 1. Examples of spectra for different values of r are shown in Fig. 5.25b, with
corresponding representative signal instances depicted in Fig. 5.25c.

Given a value for r, signals can be generated by computing instances of a
multivariate gaussian distribution N (0,K). Inverting the relationship between the
power spectrum and r is not possible, and the neural network has to estimate it by
looking at each signal instance and providing an answer in the [−1,1] range.
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The network structure being tested operates on signal instances of 32 samples
and it has three dense layers of size 256, 256 and 1. The first two layers have relu
activation functions, while the output layer has none. The loss function is the mean
squared error, while the performance metric being observed is the root mean squared
(RMS) error. A conventional network with such a structure achieves a 0.114 RMS
estimation error.

The weighting coefficients of the PCM-based layer in this case have been con-
strained in the range [-1, 1] by a “bathtub” regularization. From an implementation
point of view, this requires a way for a PCM cell, to have a negative contribution
on the sum of synapses currents. The practical approach could involve, for exam-
ple, having two arrays of conductances, with opposite contributions on the output
[91],[92].

Results in Fig. 5.26b highlight a monotonic trend up to order 24, with a sudden
worsening of performance observed at 27.

The detrimental effect of the additive noise on the weights is still under control
for 10% relative standard deviation, with variations on the order of 0.014 RMS error
as compared to the same setup, with noiseless weights.

5.6.2 Time-domain inputs

To evaluate the performance of the proposed variability mitigation strategies on
an actual application, a classification task on the well know CIFAR-10 dataset has
been selected as a testbench [93]. Two popular neural networks have been used, the
Lenet-5 [94] and the VGG-8 [95], having significantly different complexities, with
∼ 8×105 and ∼ 4×107 trainable parameters, respectively. Their implementation
has been suitably modified so that each synapse would emulate a PCM device, with
the possibility of enabling conductance programming variability and drift at will.

With reference to a typical dense layer, the description of the j-th neuron output
is h j = f (b j +∑i w j,ixi), with inputs xi, weights w j,i, bias terms b j and nonlinear
activation f (·). A PCM-based layer driven by time-encoded inputs would instead be
represented by [96]:

h j = f

(︄
b j +∑

i
k

g j,i

gREF
Vi

)︄
. (5.9)
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Fig. 5.27 Accuracy of the trained networks versus the programming spread scaling coefficient,
both for the conventional (dotted line) and device-aware (DA) trainings: continuous line
refers to results when inference is done with the same spread multiplier (SM) used for
the training; in the dashed one the training is performed with SM = 1 while inference is
implemented considering different values of SM. (a) Lenet-5 and (b) VGG-8 DNNs.

This same reasoning can be trivially extended to convolutional layers and allows the
definition of a fully PCM-based DNN.

If programming noise and drift are being introduced, the elementary synapse
conductance becomes

g j,i = g = g0 +∆gp(g0)+∆gd(g0,∆t) , (5.10)

where ∆gp(g0) is the programming-induced variability, having a normal distribution
N (0,σp(g0)) and ∆gd(g0,∆t) models the drift by drawing from a

N (µd(g0,∆t),σd(g0,∆t))

distribution, using the models depicted in Fig. 5.16.

Both neural networks have been trained with the Adam optimizer [97], using the
following parameters: exponential decay rate for the 1st and 2nd moments equal to
0.9 and 0.99, and learning rate equal to 10−2 for the Lenet-5 network and 10−3 for
the VGG-8 one. Whilst training, the learning rates have been halved whenever the
process would reach a plateau for a predefined amount of epochs.
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Fig. 5.28 Accuracy achieved when drift is applied to the DNN weights at inference time,
both with and without compensation. (a) Lenet-5 and (b) VGG-8 DNNs.

Let us first observe how the two DNNs, trained without any weight variability,
perform when the ∆gp term is introduced only at inference time. To widen the scope
of the analysis, the injected perturbation is scaled by a multiplying factor. One
reason to do it could be to relax the tolerance δg = 0.025gMAX of the programming
algorithm described in Section 5.2.1, allowing it to converge in a lower number of
iterations, speeding up the initial setup of the memory or a possible refresh of its
values. The dotted curves in Fig. 5.27 highlight the subitaneous loss of performance
as soon as noise is injected in the Lenet-5 DNN. The larger VGG-8 network, other
than having a higher accuracy, is also more resilient towards the injected perturbation.
This is thought to be the effect of the additional redundancy introduced by the larger
number of weights, as in [98]. The datapoint corresponding to a spread multiplier
(SM) of 1 has been highlighted, as it corresponds to the performance observed under
the current programming parameters.

To make the network aware of the programming spread affecting its weights,
a training methodology inspired by the fake quantization procedure [99] has been
employed. This is a known methodology for the construction of NNs robust against
synapse variability, and has been used extensively in the Literature [100, 101].
It requires, at train time, the addition of a perturbation before the weights are
actually applied to the inputs. This obviously affects the network result, hence the
starting point of the backpropagation algorithm [79]. The weight-update process
then computes the derivative with respect to the original, nominal weights. Empirical
evidence shows that this makes the network more resilient to weight variations. The
original technique was devised for the purpose of making the network robust towards
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weight quantization. In that case, the properties of the injected variability would have
been dependent on the number of allowed levels. For the PCM-based layers, instead,
the injected perturbation models the programming-induced variability, i.e., the ∆gp

term in (5.10). Results in Fig. 5.27 plotted as solid lines refer to DNNs trained and
evaluated with an identical spread multiplier. The performance gain is much more
pronounced for the smaller Lenet-5 than the larger VGG-8, so much so that the
former becomes implementable also on the currently available technology. At a
multiplier of 1, the Lenet-5 shows a 2.2% drop (69.4% down to 67.2%) in accuracy
compared to the ideal, unperturbed, setup and a 15% increase (52.2% to 67.2%)
with respect to the conventionally-trained DNN with weight perturbation injected
at evaluation-time. This result, in conjuction with recent observations on the issues
with the IR drop in large PCM arrays [102], highlights the value of the device-aware
training technique to construct small and robust DNNs. Dashed plots of Fig. 5.27
represent the DNNs accuracy as a function of the increasing spread multiplier applied
in the inference phase, while the device-aware training is performed with a constant
∆gp (i.e., with a spread multiplier being kept equal to 1 in the training phase).
Results show an accuracy decrease with respect to the previous case, but still with a
performance gain against the employment of a conventional training, allowing thus
to tolerate a higher spread on the networks coefficients. From a power consumption
point of view, the device-aware technique permits then to take advantage of less
sophisticated programming procedures, with a consequent gain in speed and energy
efficiency of the programming phase.

Additional nonidealities, e.g., quantization of pre- and post-activation signals,
the presence of parasitic elements along the conductive paths, to mention a few, have
not been included in the analysis, which focuses only on the properties of the PCM
devices. However, it has been observed how device-aware training techniques do not
need to accurately describe the variability of interest, because of an inherent ability of
the training to lead to networks robust against effect different from the perturbations
used in training [100, 101]. In any case, the same injection-perturbation principle
used in this work could be used to address signal quantization and the presence of
parasitic elements [101]. Concerning the former, 6 bits have proven to be sufficient
to limit the performance degradation below 1% point, while 5 bits introduce, for a
network trained only to address conductance variability, a loss around 5% points.

Having a network that can tolerate programming variability, the final step is to
observe its robustness against weight drift. Both networks, trained with a spread
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Fig. 5.29 Classification accuracy when quantizing only the global network I/O vs the I/O at
every layer.

multiplier of 1 (i.e., with programming tolerace δg = 0.025gMAX), have been re-
evaluated by introducing the drift component of the conductance ∆gd at inference
time. From Fig. 5.28 it is clear how the presence of the hardware compensation
allows the accuracy to be retained over time. The accuracy gain after the 24-hours
90 °C bake is 36% for the Lenet-5 (even though the corresponding point for the
uncompensated evaluation falls outside the range of the plot) and 22% for the VGG-8
DNN. While the drop with respect to the no-drift condition is 3% and 0.2%. Still,
the benefit is larger for the smaller network. However, even the VGG-8 one, which
would lose significant accuracy after the 24-hours bake, would be able to preserve
its original performance with the introduction of the compensation technique.
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Conclusion

This work has focused on the analysis of low-energy data processing architectures.
Two alternative directions have been undertaken. A CMOS charge-redistribution
SAR converter has been modified to enable Compressed Sensing functionalities.
Compared to existing solutions, it avoids additional active circuits. Details of the
design, as well as tangential analysis developing analytical models of specific issues
have been presented. The extra results are the development of an approximate
model of the integral and differential nonlinearities in C-2C D/A topologies, when
parasitic capacitance loads the inner isolated nodes. The effect of interdigitated
geometries on the matching properties of nominally identical elements is evaluated
and models are presented to compute the expected mismatch. The search for robust
leakage compensation architectures has lead us to the extensive analysis of stability
and mismatch robustness of a known circuit topology, highlighting its practical
unfeasibility because of its extreme sensitivity to the slightest of nonidealities.

A different approach has been undertaken in the second half of the work, which
is based on Phase-Change Memories (PCM). The DC response of PCM devices has
been evaluated, as well as programming and drift variability, for two physical chips
using different driving methodologies, namely amplitude-modulated voltage pulses
and constant-voltage width-modulated pulses. The performance of the technology
have been tested in two different applications, compressed sensing encoding, and
neural network classification and regression tasks. Measurements-based numeri-
cal models have been constructed, though not physically based, they are built to
accurately map the observed behavior. This new promising technology is still far
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from unleashing its true potential, but the work shows that ad-hoc robust architec-
tural choices, as seen for the hardware drift compensator, can greatly enhance their
practicality. Surely the following years will see tremendous progress in the device
composition, geometry, driving and readout circuit, as well as nonideality mitigation
strategies. The combined optimizations at several abstraction levels will definitely
pave the way for a widespread application of PCM technology in computational
nodes.
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