
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (35thcycle)

Study and implementation of new

computational paradigms exploiting

neuromorphic hardware

architectures

By

Evelina Forno

Supervisors:

Prof. Gianvito Urgese

Prof. Enrico Macii

Doctoral Examination Committee:

Prof. Steve Furber, Referee, University of Manchester

Prof. Alejandro Linares Barranco, Referee, Universidad de Sevilla

Prof. Andrea Calimera, Politecnico di Torino

Prof. Egidio Falotico, Scuola Superiore Sant’Anna

Dr. James Knight, University of Sussex

Politecnico di Torino

2023

Declaration

I hereby declare that the contents and structure of this dissertation constitute my

own original work and do not compromise in any way the rights of third parties,

including rights related to the security of personal data.

Evelina Forno

2023

* This dissertation is presented in partial fulfillment of the requirements for a Ph.D.

degree at the Graduate School of Politecnico di Torino (ScuDo).

Abstract

The increased use of machine learning (ML) techniques for predictive mainte-

nance and real-time anomaly detection in embedded devices, IoT, and edge

computing has led to challenges with limited power and memory. Neuromorphic

systems offer low power consumption and effective data interchange, and spiking

neural networks (SNNs) offer potential for offline and online learning. SNN-based

solutions have shown comparable accuracy to ANNs while outperforming them

in energy consumption.

This dissertation presents a general approach to generating neuromorphic

models for IoT applicatios that can be used directly by users to facilitate the design

process of solutions by exploring new computational paradigms. The structure of

the thesis follows the flow of data in a neuromorphic pipeline, from raw sensory

data to a completed application.

Embedded neuromorphic applications for edge deployment require interac-

tion with sensors, including digital and event-based sensors. Event-based sensors

offer extreme power efficiency and are likely to see widespread adoption for spe-

cialized tasks. However, digital sensors remain a more accessible and low-cost

alternative for now, and their use is likely necessary for systems exploiting neuro-

morphic platforms to be deployed in the near future.

The author discusses encoding techniques for event-based and digital sensors,

finding temporal contrast encoding to be a suitable first choice for most appli-

cations handling input data with an important time-varying component. The

efficiency of coding techniques correlates with input frequency, so a technique

must produce a sufficiently high spike count to stimulate all layers of the clas-

sification network. The work presents experiments involving a variety of SNN

architectures, finding that for time-varying data in the spiking domain, recurrent

neural networks like Lagrange Memory Unit and RSNN are more suitable due to

iv

their memory trace of past events. Model compression by edge pruning is also

evaluated, obtaining significant reductions in synaptic activity without impacting

performance.

Hyperparameter optimization is important for finding the optimal configu-

ration of a network design. Results are reported for two HPO case studies and

an exploration of the flexibility of the SpiNNaker system software to expand ca-

pabilities by implementing new placement and routing strategies. To evaluate

the potential of neuromorphic hardware, the author performs a profiling of the

parallel processing ability of the SpiNNaker board using a Message Passing Inter-

face (MPI) implementation and the PageRank application as a benchmark. The

performance of spiking neural networks on the neuromorphic Loihi chip is also

compared to equivalent traditional and spiking classifiers on GPU, focusing on

energy consumption per sample inference as a metric for assessing the advantages

of a neuromorphic paradigm in this kind of application.

Finally, the author provides a summary of the research work by illustrating

partial and complete neuromorphic pipelines, starting with a description of an in-

terface for integrating the neuromorphic chip ODIN with a RISC-V coprocessor on

a single SoC prototype. The processes used for neuromorphic classification of IoT

time-varying signals are then compared through three case studies, showing the

evolution of the pipeline from one project to the next, eventually encompassing

the entire neuromorphic stack. The resulting method demonstrates a viable strat-

egy for using neuromorphic tools in creating novel designs and implementations

that offer outputs with limited error compared to those generated by applications

implemented for general purpose architectures, while reducing execution time

and power consumption, resulting in a net gain in adaptability for IoT and edge

computing applications.

Contents

List of Figures ix

List of Tables xvi

1 Introduction 1

1.1 The building blocks of a neuromorphic pipeline 6

2 Event-driven and standard sensors 10

2.1 Digital sensors and datasets . 13

2.1.1 Inertial sensors for human activity recognition 14

2.1.2 Audio sensors for speech recognition 16

2.2 Neuromorphic sensors . 18

2.2.1 Event-based tactile sensing . 18

2.2.2 A silicon cochlea: the Neuromorphic Auditory Sensor (NAS) 20

2.2.3 A silicon retina: the Dynamic Vision Sensor (DVS) 21

2.2.4 Neuromorphic sensor fusion: the LIPSFUS dataset 22

2.3 Chapter summary . 23

3 Input encoding and pre-processing 24

3.1 Preprocessing . 25

3.1.1 Frequency decomposition . 26

3.1.2 Feature extraction . 26

vi Contents

3.2 Encoding techniques . 28

3.2.1 Rate coding . 29

3.2.2 Temporal coding . 30

3.2.3 Comparing different classes of encoding algorithms 35

3.3 Additional analysis: Event-based encoding of tactile sensor data . . 41

3.4 Chapter summary . 45

4 Neural models 46

4.1 Neuron models . 47

4.1.1 Leaky Integrate and Fire (LIF) 47

4.1.2 Multi-compartmental neurons 49

4.2 Spiking Neural Network architectures 50

4.2.1 ANN-to-SNN conversion: a spiking CNN 50

4.2.2 Feed-forward and recurrent SNNs 51

4.2.3 A comparison of convolutional and recurrent SNNs for Hu-

man Activity Recognition . 55

4.3 Learning methods . 60

4.3.1 Transfer learning . 62

4.4 Optimizing the architecture: model compression 63

4.5 Chapter summary . 66

5 Software frameworks 68

5.1 SNN specification software . 68

5.1.1 PyNN . 69

5.1.2 Nengo . 69

5.1.3 EONS . 70

5.2 SNN optimization . 70

5.2.1 Case study 1: HPO for HAR . 71

Contents vii

5.2.2 Case study 2: HPO for Braille reading 73

5.3 System software: the SpiNNaker example 77

5.3.1 Placement and routing exploration on SpiNNaker 78

5.4 Chapter summary . 83

6 Hardware platforms 85

6.1 Exploring the SpiNNaker communication infrastructure with MPI . 86

6.1.1 The SpiNNaker hardware . 87

6.1.2 SpinMPI . 89

6.1.3 PageRank . 91

6.1.4 Implementation of PageRank with MPI 94

6.1.5 Comparison of SNN-PR and MPI-PR implementations 96

6.1.6 SpinMPI Performance Analysis on PageRank 98

6.1.7 Conclusions . 101

6.2 Braille classification on Loihi vs. GPU 102

6.2.1 NVIDIA Jetson Xavier NX . 102

6.2.2 Intel Loihi . 107

6.3 Chapter summary . 113

7 Bringing it all together: towards a complete neuromorphic pipeline 115

7.1 Configuring an embedded neuromorphic coprocessor with RISC-V 117

7.1.1 ODIN integration with Chipyard 119

7.1.2 RTL simulation and synthesis 120

7.2 From sensor to neuron: processes for neuromorphic classification

of IoT time-varying signals . 123

7.2.1 A neuromorphic approach for on-edge HAR applications . . 123

7.2.2 A time-varying signal benchmark for spike encoding techniques124

7.2.3 Braille letter reading benchmark on neuromorphic hardware 126

viii Contents

7.3 Chapter summary . 130

8 Conclusions 132

References 139

List of Figures

1.1 Block diagram of a complete neuromorphic pipeline for data pro-

cessing. 7

2.1 Spectral densities of two samples, one from the WISDM dataset and

the other from the FSD. The WISDM data from the accelerometer is

in the very-low frequency region, whereas the FSD sample is in the

middle range of human-audible signals. [1] 14

2.2 A representative comparison of 10-second samples collected by the

smartwatch on the 6 IMU sensors for the 7 classes in the WISDM

dataset’s general hand-oriented subset. [2] 15

2.3 Kernel density estimation of smartwatch values recorded on the 6

IMU sensor axes for the 7 classes in the WISDM dataset’s general

hand-oriented subset. [2] . 16

2.4 Setup for the recording of the Braille dataset. (A) Diagram of the

sensorized fingertip. (B) Experiment configuration with a braille

sample. (C) Random distribution for the starting location of the

fingertip’s sliding motion. [3] . 20

3.1 Architecture of the C6-C12-F2 convolutional neural network. [1] . . 26

3.2 Median accuracy values for each feature extraction class for various

network design and encoding technique combinations. [1] 27

3.3 A 32-channel sonogram rendered in 100, 50, and 14 time bins. The

50-bin subdivision provides the finest compromise between resolu-

tion and information density. [1] . 28

x List of Figures

3.4 Example of the spike trains generated by each of the examined en-

coding techniques from an arbitrary input signal. [1] 29

3.5 Median accuracy values of each encoding class for various network

architecture, filter type, number of channels, and feature extraction

bins combinations. [1] . 36

3.6 Median spike counts per sample generated by various combinations

of encoding technique, channel count, and filter type for the FSD

dataset. [1] . 37

3.7 Median spike counts per sample generated by various combinations

of encoding technique, channel count, and filter type for the WISDM

dataset. 38

3.8 Each encoding approach is characterized along a specific ring of

the circle-shaped graph. The computational complexity is reported

in the bottom center section by the quantities l (signal length), c

(number of channels), n (length of the bitwise representation), and

w (width of the convolution function). The results produced using

FSD data are on the left, while those obtained with the WISDM

dataset are on the right. The four signal-related metrics, S , MI S ,

H S and ε, are shown in a mirrored configuration with respect to

the circle’s vertical symmetry axis. The results of the two filter types,

Butterworth (B) and Gammatone (G), are reported for each of them

based on the number of channels utilized to separate the original

signal. [1] . 40

3.9 Event-based sample encoding and reconstruction: (A) Sensor read-

ing sequence for a sample letter, with the respective sigma-delta

modulated spikes. (B) Reconstructed sequences from event-based

data compared to the original sequence for a full letter reading. [3] 42

List of Figures xi

3.10 Spike encoding: (A) Top panel: total number of events counted in

the entire dataset with respect to the threshold and time_bin_size.

Bottom panel: relative number of events detected in the dataset with

time_bin_size = 1. (B) MSE of the reconstructed time-binned signal

as a function of the time_bin_size for each encoding threshold. The

markers emphasize the final time_bin_size selected to preprocess

the event stream. (C) Frame-based signal reconstructed from the

event stream after time binning with a bin size of 5 ms for all given

thresholds. (D) The same color coding as in (A,B) is used to represent

the number of events as a function of the ISI, with fixed time_bin_size

as reported in Table 3.2. The insets demonstrate the detail at ISI

values equal to the time_bin_size employed, with the vertical dashed

line showing the minimal temporal resolution of 1 ms. [3] 44

4.1 A summary of the networks investigated. The Converter in Nen-

goDL was used to transfer the convolutional architecture used in the

non-spiking domain (a) into the spiking domain (b). Instead, the

recurrent architectures have distinct structures in the two domains:

the non-spiking implementation (c) used LSTM units followed by

a dropout layer, whereas the recurrent SNN was obtained using

a Legendre Memory Unit (f), which was also implemented in the

non-spiking domain (d). An additional modification has been in-

vestigated for both the non-spiking (e) and spiking (g) LMU-based

architectures by introducing frequency filtering on the input. [2] . . 56

4.2 An energy vs. accuracy graphic can be used to effectively depict how

meaningful the gain in terms of energy reduction is with respect to a

hypothetical decline in classification accuracy. The results provided

here show that all of the examined SNNs and LMU-based networks

consume at least one order of magnitude less energy than typical

DNNs. In terms of memory footprint, the same conclusion can be

obtained, with CNN and LSTM proving to be the largest networks.

Spiking LMUs perform comparably to CNN and LSTM in terms of

accuracy, even outperforming the former. [2] 59

xii List of Figures

4.3 A radar chart of the supplied results for quick comparison of the

analyzed networks based on each of the evaluated variables. The

classic DNN designs under consideration, namely the LSTM and the

CNN, are surpassed by the alternative ones based on the LMU in

all energy and memory parameters; the spiking CNN also outper-

forms the LSTM and non-spiking CNN in terms of both energy and

memory. [2] . 60

4.4 Median test accuracy after synapse reduction (A, C) and fine-tuning

(B, D) of all encoding class, filter type, number of channels, and

feature extraction bins combinations for architectures C6-C12-F2

and C12-C24-F2 performing classification of the FSD and WISDM

datasets. [1] . 64

4.5 Summary of network settings that enhanced performance on the

WISDM dataset following model compression. [1] 65

5.1 Two iterations of NNI search for the LMU performing HAR classifica-

tion. (A) A first iteration of the search finds a range of optimal values

for the network parameters. (B) To refine the search, the parameter

optimization is repeated, restricting the search space to the best

performing ranges (the red areas in (A)). [2] 73

5.2 The accuracy performances of RSNN and FFSNN as a result of grid

search exploration in the two-step HPO technique are summarized.

(A) Best test accuracy results produced by the RSNN for all combina-

tions of time_bin_size and nb_input_copies. (B) Mean and standard

deviation of the FFSNN and RSNN accuracy results, with the best

parameters for each encoding threshold. [3] 76

5.3 A visual representation of "hot spots" on a SpiNNaker chip, courtesy

of Urgese et al. [4]. The top row shows the flow of packets traversing

the chip, which the local router needs to deliver to neighboring

chip. The bottom row shows the percentage of successfully delivered

packets with the given configuration in tests featuring heavy packet

traffic. © 2016 IEEE. 78

List of Figures xiii

5.4 Diagram of the 2-layer multi-compartmental MNIST classifier. High-

lighted is the pyramidal neuron, showing the fan-in on the different

synaptic compartments. 79

5.5 Results of the single-neuron communication test with 16 input pop-

ulations connected to each target synapse core. In the top figure, the

target is placed on chip (4,4), while in the bottom figure, the target

is chip (7,4). Left column: number of local multicast packets. Mid-

dle column: number of external multicast packets. Right column:

number of multicast packets dumped by the chip router. 80

5.6 Visualization of the default placement for the reduced pyramidal-

based network. 81

5.7 Visualization of the custom placement for the reduced pyramidal-

based network. 82

5.8 (A) Custom routing and visualization feature. Highlighted is a cus-

tomized route for the input source at chip (4,0). (B) Multi-board

placement and routing feature. Highlighted is the route for packets

originating from the pyramidal population at core (0,0). 83

6.1 The Spin3 design. [5] . 88

6.2 The synchronization rings of the 48-chip Spin5 board. [5] 90

6.3 Flowchart of MPI-PR implementation on a general-purpose archi-

tecture and on SpiNNaker. Step A is for configuration, Step B is for

PageRank calculation, and Step P is for transferring the problem

data to the SpiNNaker board. [5] . 95

6.4 SNN-PR and MPI-PR execution times on a fixed-size graph utilizing

only one SpiNNaker chip. [5] . 97

6.5 SNN-PR and MPI-PR execution times on a fixed-size graph utilizing

up to four SpiNNaker chips. [5] . 97

6.6 Scalability of three different PageRank implementations: SNN-PR

and MPI-PR on SpiNNaker, and PC-PR on a typical multicore archi-

tecture. [5] . 98

xiv List of Figures

6.7 MPI-PR computation and communication timings on SpiNNaker

with a medium-sized graph: the plot shows how the communication

buffer’s consumption rate affects the broadcast time. [5] 99

6.8 MPI-PR computation and communication timings on SpiNNaker

with a large graph: the diagram shows how different placements of

the same number of cores affect execution time. [5] 100

6.9 Test accuracy and number of trainable parameters of conventional

classifiers after 300 epochs of training and average across three runs.

eLSTM is an abbreviation for LSTM with event-based input. [3] . . 104

6.10 Comparison of inference metrics from common classifiers for frame-

based data in terms of energy consumption and average power uti-

lization as measured on an NVIDIA Jetson Xavier NX. eLSTM is an

abbreviation for LSTM with event-based input. Each bar’s label

indicates the inference time per sample on the relevant network. [3] 104

6.11 Inference metrics for all spiking neural networks compared in terms

of energy usage and average power consumption on an NVIDIA

Jetson Xavier NX. Each bar’s label indicates the inference time per

sample on the relevant network. [3] 107

6.12 Comparison of the FFSNN and RSNN accuracy results on Loihi,

with the best parameters discovered by the two-stage HPO for each

encoding threshold. [3] . 110

6.13 A comparison of inference metrics for all trained spiking neural

networks measured on Loihi in terms of energy consumption and

average power utilization. Each bar’s label indicates the inference

time per sample on the relevant network. [3] 111

7.2 Synfire chain network with 8 neurons. This is the setup used to

validate the architecture integrating ODIN and Rocket Chip. © 2021

IEEE. 120

7.3 Synfire chain with 8 neurons: neuron 0 is stimulated by a virtual

synapse event (signals 1-3), then every neuron of the synfire chain

fires in sequence (signals 4-7). © 2021 IEEE. 121

List of Figures xv

7.4 Preliminary processes are shown by the vertical arrows: dataset se-

lection in (a), hyperparameter search space specification in (c), and

optimization experiment configuration in (d). The pipeline’s main

structure, instead, is represented by the horizontal arrows: neural

network architecture selection in (b), hyperparameter optimization

in (e), and classifier evaluation in (f). [2] 124

7.5 The proposed encoding benchmark pipeline includes a frequency

decomposition stage via a filter bank, a spike encoding phase, fea-

ture extraction by sonogram creation, transfer learning via a non-

spiking network, and model compression. [1] 126

7.6 The workflow is broken down into five parts. (A) Data acquisition

and encoding. (B) Information content and reconstruction loss

analysis. (C) Various non-spiking classifiers are used to generate a

benchmark for the proposed RSNN. (D) The RSNN is subjected to

hyperparameter tuning. (E) Performance is analyzed, taking into

consideration multiple metrics and hardware solutions. [3] 127

List of Tables

1.1 Table of contents . 6

3.1 A summary of encoding strategies, with emphasis on their perfor-

mance in relation to the type of input data. A ✓ indicates that the

technique is highly suitable for the purpose, whereas − shows that

the technique has some downsides and an ✗ indicates that it is not

suitable for the purpose. [1] . 39

3.2 Event-based encoding characterization for each of the generated

datasets at different threshold settings. [3] 42

4.1 Summary of the metrics evaluated. The stated values were achieved

using the best hyperparameter setup for each network. [2] 58

5.1 Summary and description of the optimized hyperparameters. All of

the hyperparameters reported for the non-spiking implementations

are also used for the corresponding spiking networks. [2] 72

5.2 Description of the hyperparameters contained in the HPO problem

search space. [3] . 74

5.3 Optimized hyperparameter values for each encoding scheme after

grid search. [3] . 75

6.1 RSNN on Loihi and RSNN, eLSTM, and LSTM on Jetson: accuracy,

total power, energy per sample, latency, and energy-delay product

summary. [3] . 112

7.1 ODIN + ROCKETCORE SYNTHESIS - SLICES. [6] © 2021 IEEE. 122

List of Tables xvii

7.2 ODIN + ROCKETCORE SYNTHESIS - RAM. [6] © 2021 IEEE. 122

Chapter 1

Introduction

As a result of recent technological advancements, embedded devices are now more

effective and ubiquitous than ever [7]. The rise of embedded devices, the Internet

of Things (IoT), and edge computing has transformed the way we interact with

technology. The adoption of machine learning (ML) techniques in IoT and edge

computing applications employing such devices has significantly increased as a

result [8], as they can help to optimize performance, reduce latency, and improve

accuracy. For example, in a smart factory [9], machine learning algorithms can

be used to analyze data from sensors on manufacturing equipment to identify

patterns that indicate when maintenance is needed, helping to prevent equipment

failure and reduce downtime while improving the overall efficiency. This process

is known as predictive maintenance [10]. In addition, machine learning can be

used to analyze data from IoT devices in real-time, which can help to detect

anomalies [11, 12] and potential security threats; for instance, monitoring security

cameras to identify suspicious behavior and alert security personnel [13].

There are several advantages to deploying ML models directly on the remote

endpoint rather than distributing them as a service via the cloud. For starters,

edge devices can perform real-time inference, lowering system latency in time-

critical operations like autonomous driving. Second, the retention of all data on

the device increases the reliability of the application, avoiding the consequences

of network outages; at the same time, user privacy is enhanced as no data is

exchanged between the machine and the internet. Finally, the removal of the

cloud dependency lowers the cost of the infrastructure as a whole as well as the

power consumption associated with communication operations.

2 Introduction

While producing ML code for embedded devices has become much easier over

the years, there are still a few challenges. Because edge devices continue to be

limited in terms of power, memory, and computational capacity [14], candidate

models must be carefully selected based not only on the type of input information,

but also on the hardware requirements. After collecting a massive quantity of

sample data from the exact embedded sensors that will be utilized in the end

product, the models go through a training phase, which is often performed on a

server computer because of the significant computing load. Several models can

be evaluated, and the most promising ones are chosen for deployment on the

system at hand. Specific end-to-end solutions for data gathering, labeling, model

optimization, and deployment are available from major hardware manufacturers

(for example, Qeexo AutoML [15]) as well as open source releases (for example,

the Embedded Learning Library [16]). However, the efficacy of ML solutions is

heavily informed by the size of the training dataset: large amounts of information

are needed in order to produce meaningful results. The unprecedented volume

of data generated by IoT devices is creating new issues for cloud-based solutions

reliant on back-and-forth communication with end devices. Edge computing can

provide solutions to these problems by bringing data processing closer to sensors

by relocating computation from the cloud application layer down to the edge

devices [17].

Artificial Neural Networks (ANN) are without a doubt the area of ML that has

attracted the greatest interest from the scientific and corporate worlds over the

last decade. While simpler machine learning models can be effective for simpler

tasks, deep learning models are suitable for complex edge computing tasks that

require a deep understanding of high-dimensional data; ANNs are capable of

learning complex and non-linear relationships and are particularly effective in

handling high-dimensional data — such as images, audio, and text — which are

common in edge computing applications. The majority of ANN models require

large quantities of memory and specialized, power-hungry technology like GPUs,

making them too resource-intensive to execute on embedded systems.

This situation creates a bottleneck in the development of new effective solu-

tions for automatic data handling, analysis and interpretation [18, 19]. In order to

circumvent the consequences of the end of Moore’s law [20], this past decade has

seen the advent of novel architectures such as heterogeneous platforms, which in-

tegrate multicore von Neumann machines with specialized hardware accelerators;

3

however, these developments must face growing economic and environmental

costs in the operation and maintenance of said hardware, as the computational

power increase brought by platforms such as GPUs come with exponentially

higher power consumption figures.

Various alternative solutions have been proposed in order to overcome the

limitations imposed by the currently available hardware roster. Among these

are neuromorphic systems, which employ design innovations inspired by neuro-

science and biology [21]. The development of computational models based on

Spiking Neural Networks (SNNs), a biologically-inspired model built around the

behavior of animal neurons and characterized by sparse internal activity [22], is

the focus of neuromorphic systems. These event-driven architectures guarantee

very low power consumption while enabling effective data interchange between

several independent processing units [23], meeting edge computing’s demands

for low power consumption, localized memory, and real-time response. This vari-

ety of neural network can be accelerated on compact, low-power neuromorphic

hardware such as SpiNNaker [24], Intel Loihi [25], and Dynap-SEL [26], with the

potential to execute both offline and online learning [27], although much work

remains to be done on the software support [28, 29] and compilers [30, 4, 31] in

order to attain said goal.

The most effective data encoding types, network designs, training methods,

and hardware platforms for exploiting the benefits of SNNs are still under investi-

gation. Nonetheless, despite the fact that neuromorphic technology is still in its

early stages, several neuromorphic applications are starting to emerge in the field

of embedded systems [32]. It is already possible to achieve same-chip integration

of neuromorphic hardware with a traditional embedded processor using industry

standard tools, enabling SNN-based co-processing [6]. Image and video frame

analysis [33], dataset clustering [34], detection of pedestrians [35, 36], self-driving

robots [37], and robotic fine-touch sensing, including dynamic motor control and

Braille [38] or texture recognition [39], are examples of implementation areas that

have been studied in the literature. Neuromorphic computing platforms can also

be coupled with natively event-based sensors for improved efficiency, such as

DVS imaging devices for gesture identification [40] or robotic vision [41].

Neuromorphic applications are also gaining popularity as viable options for

the deployment of human-related time series data analysis: while deep learning

4 Introduction

techniques have been successful in classifying time-varying data, their execution

on hardware with limited resources encounters difficulties, due to the required

signal pre-processing and to the need to identify both long- and short-term de-

pendencies in the data, which affect the effectiveness of the selected model [19].

Previous work by the authors [2] found that SNN-based solutions obtained accu-

racies comparable to ANN implementations, while outperforming them in terms

of energy consumption.

Spiking Neural Networks (SNNs)

Spiking Neural Networks (SNNs) are a bio-inspired form of Artificial Neural Net-

work (ANN) that encodes input data with a series of pulse spikes [42]. This dis-

tinguishing feature of SNNs over non-spiking ANNs can be traced back to the

main characteristic differentiating biological neural networks from non-spiking

ANNs: in the brain, neurons interact by spreading information in the form of

spikes, or action potentials [43–45]. These network models are of major impor-

tance as a natural programming paradigm in neuromorphic computing due to

their brain-inspired features.

Despite their origins as a tool for neuroscience researchers to investigate

computational representations of the living brain, SNNs have exhibited a number

of advantages that set them apart from other neural network models. First and

foremost, because spike-based encoding produces inputs that are sparse in time as

well as space, SNNs can offer computational capabilities comparable to equivalent

ANNs while consuming less power [46, 47]. Second, because SNNs’ biologically-

inspired learning algorithms support online learning, synaptic weights allow for

real-time reconfiguration in response to the cause-and-effect relationships that

emerge in the network’s neuronal firing events. Finally, the ability to choose from

several encoding techniques in the spike domain is yet another benefit [48].

Since SNNs rely on event-based activity, they are intrinsically suited for pro-

cessing temporal information, allowing them to regard time as an additional

dimension of the input signals [49, 27]. Additionally, because of their remarkable

energy efficiency, SNNs are ideal choices for embedded applications. However,

due to the substantial amounts of data transfer between the computational and

memory units needed for their implementation, von Neumann-based architec-

tures are not a suitable platform; cutting-edge neuromorphic processors, on the

5

other hand, employ colocation of memory and computation to address this issue.

These include Digital ASIC (Loihi, ODIN, TrueNorth) and Mixed-signal (Braindrop,

BrainScaleS, DYNAP-SE) solutions, as well as early devices featuring memristive

synapses [50].

Benchmarks and IoT applications of neuromorphic solutions

In the last few years, the prospects for brain-inspired and neuromorphic tech-

nologies promising energy efficiency increases have been increasingly explored.

Blouw et al. [51] benchmarked various hardware platforms executing keyword

identification tasks, demonstrating the lowest energy consumption when utilizing

Intel Loihi. Davies et al. [52] summarized researchers’ successes with Loihi, while

Yan et al. [53] compared the platform’s performance with that of a SpiNNaker 2

prototype.

The effectiveness of transforming an ANN to an SNN tackling the heartbeat

identification task and then deploying it on Loihi is reviewed in Buettner and

George [54]. Azghadi et al. [55] then presented an expanded evaluation of neuro-

morphic hardware by testing biomedical applications on multiple platforms.

The advantages of a neuromorphic method are underlined in Blouw and Elia-

smith [56], comparing the computational cost decrease given by SNNs produced

in Nengo to architecturally equivalent deep neural networks (DNNs).

We examined the advantages of employing the SpiNNaker neuromorphic

architecture [24] for performing massively-parallel general-purpose programs

such as PageRank and DNA sequence matching developed with the MPI paradigm

in Forno et al. [5] and Urgese et al. [57].

The Internet of Things (IoT) field is expected to profit the most from the growth

of neuromorphic modeling and technology. Kim et al. [58] compiled a survey

of IoT platforms supporting artificial intelligence (AI) applications, while An et

al. [59] explored the impact of neuromorphic systems on Industry 4.0. Chang et

al. [60] instead analyzed the importance of edge computing in the field of artificial

intelligence of things (AIoT), healthcare, and other smart environments. Stuijt et

al. [61] presented the neuromorphic IC µBrain, demonstrating promising results

for event-driven edge AI applications in the IoT sector.

6 Introduction

1.1 The building blocks of a neuromorphic pipeline

While the entirety of this thesis’s contents constitutes original research conducted

in part or fully by the candidate, parts of the contents presented have been pre-

viously published in academic literature. For the sake of transparency, Table 1.1

features a reference map matching each chapter in the thesis to its source papers.

Table 1.1 Table of contents

References
[2] [1] [3] [5] [6]

Chapter 2: Sensors ■ ■ ■
Chapter 3: Encoding and pre-processing ■ ■
Chapter 4: Neural models ■ ■ ■
Chapter 5: Software frameworks ■ ■
Chapter 6: Hardware platforms ■ ■
Chapter 7: Neuromorphic pipeline ■ ■ ■ ■

[2] Vittorio Fra, Evelina Forno, Riccardo Pignari, Terrence C. Stewart, Enrico Macii, and Gianvito Urgese. Human activity
recognition: suitability of a neuromorphic approach for on-edge AIoT applications. Neuromorphic Computing and
Engineering, 2(1):014006, 2022. This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

[1] Evelina Forno, Vittorio Fra, Riccardo Pignari, Enrico Macii, and Gianvito Urgese. Spike encoding techniques for IoT
time-varying signals benchmarked on a neuromorphic classification task. Frontiers in Neuroscience, 16, 2022. This work is
licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

[3] Simon F. Müller-Cleve, Vittorio Fra, Lyes Khacef, Alejandro Pequeño-Zurro, Daniel Klepatsch, Evelina Forno, Diego G.
Ivanovich, Shavika Rastogi, Gianvito Urgese, Friedemann Zenke, and Chiara Bartolozzi. Braille letter reading: A benchmark
for spatio-temporal pattern recognition on neuromorphic hardware. Frontiers in Neuroscience, 16, 2022. This work is
licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

[5] Evelina Forno, Alessandro Salvato, Enrico Macii, and Gianvito Urgese. Pagerank implemented with the MPI paradigm
running on a many-core neuromorphic platform. Journal of Low Power Electronics and Applications, 11(2):25, 2021. This
work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

[6] Evelina Forno, Andrea Spitale, Enrico Macii, and Gianvito Urgese. Configuring an embedded neuromorphic
coprocessor using a RISC-V chip for enabling edge computing applications. In 2021 IEEE 14th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pages 328–332. IEEE, 2021. © 2021 IEEE.

The goal of this dissertation is to present a general approach to the generation

of neuromorphic models that can be exploited directly by users for describing their

algorithms, so as to further facilitate the modeling process and the exploration of

new neuromorphic computational paradigms which can be practically applied in

data analysis and integration performed in the industrial field. To that end, the

author endeavored to acquire experience with all elements of the neuromorphic

pipeline and build a catalog of neuromorphic-based computational blocks, tools,

1.1 The building blocks of a neuromorphic pipeline 7

and frameworks, and identify favorable pipelines and strategies to implement

new algorithms matching various use cases in the IoT and industrial fields.

The structure of the thesis follows the flow of data in a neuromorphic pipeline,

starting from the raw input caught by sensors and ending with a completed

application realizing a given task. The hardware and software building blocks

identified during the PhD work are displayed in the diagram in Figure 1.1.

Fig. 1.1 Block diagram of a complete neuromorphic pipeline for data processing.

Each of the following chapters will present a brief overview of the available

tools, models and techniques for each layer of the stack, followed by in depth

reports of the analyses and benchmarks performed on selected tools during the

PhD research work. This structure intends to guide the reader through the grad-

ual building of a complete neuromorphic pipeline, focusing on classification

of time-varying signals as a main task, but also exploring other applications of

neuromorphic devices.

We will begin in Chapter 2 by tackling the issue of gathering input for the

analysis stack. Suitable sensors are identified both among off-the-shelf digital

solutions and in the novel, brain-inspired domain of event-based sensors. For

8 Introduction

event-based sensors, we explore the gathering of a new event-based dataset using

tactile sensors to acquire the Braille dataset; for digital sensors, an encoding step

is needed to enable efficient processing by a SNN.

Chapter 3 is an examination of multiple encoding and preprocessing tech-

niques, benchmarked on time-varying data from audio and inertial datasets ac-

quired from digital sensors. After data is collected and properly encoded, it must

be fed to the downstream SNN. In order to design and deploy a neural network

application, choices must be made in two major areas: the neural modeling archi-

tecture and the software framework to implement it. Neural models comprise a

variety of building blocks: from the model of the single neuron, to the intercon-

necting architecture, to the learning method used to train the network. These

are explored in Chapter 4, along with an architecture optimization method using

synapse reduction.

On the software side, Chapter 5 will offer a few examples of SNN specification

software, which allows users to describe and deploy standard and novel neural

models either on PC simulators or neuromorphic hardware accelerators. A special

section is dedicated to hyperparameter optimization, that is, the automated search

for the optimal configuration of a network design. Results are reported here for

two different case studies. Finally, the chapter features an exploration of the

SpiNNaker system software and its flexibility to expand on the capabilities of the

underlying system by implementing dedicated placement and routing methods

for a new task.

Neuromorphic hardware proper is investigated in Chapter 6. Continuing re-

search conducted at the Politecnico di Torino in collaboration with the University

of Manchester, a thorough profiling of the parallel processing ability of the SpiN-

Naker board is carried out with the development and refinement of a Message

Passing Interface (MPI) implementation for this neuromorphic hardware and

using the PageRank application as a benchmark. In the second part of the chap-

ter, the performance of spiking neural networks running on the neuromorphic

Loihi chip is compared to that of equivalent traditional and spiking classifiers

running on GPU, using the classification of the Braille tactile dataset as reference.

Particular attention is paid to the comparison in energy consumption per sample

inference, which is the most helpful metric for assessing the advantages brought

by adopting a neuromorphic paradigm in this kind of application.

1.1 The building blocks of a neuromorphic pipeline 9

Chapter 7 represents the culmination of the research work, providing a bird’s

eye view of the full neuromorphic pipelines realized during the PhD research work.

First, we describe an interface for integration of the neuromorphic chip ODIN

with a RISC-V coprocessor on a single SoC prototype. The embedded system is

evaluated in RTL simulation and synthesized for FPGA. Then, we compare the

processes used throughout this research for neuromorphic classification of IoT

time-varying signals. Three case studies are presented, showing how the data

processing pipeline evolved from one project to the next, eventually encompassing

all 6 layers displayed in Figure 1.1.

The resulting method highlights a viable strategy for the employment of the

many neuromorphic tools at the disposal of developers and researchers in creating

novel designs and implementations; the applications generated by the neuromor-

phic pipeline are shown to provide outputs with a limited error with respect to

experimental data generated by applications implemented for general purpose ar-

chitectures, while reducing execution time and the power consumption, resulting

in a net gain in adaptability for IoT and edge computing applications.

Chapter 2

Event-driven and standard sensors

In order to deploy low-power solutions in an edge-computing environment, input

data acquisition must be considered as a required aspect of the pipeline. For

instance, the IoT paradigm relies on networks of millions of sensors across a vast

region. These sensors are the foundation of IoT, and they generate the vast bulk

of measurement data in networks. These sensors can supply many forms of data

to assist the IoT in environmental awareness. Furthermore, the majority of the

resource requirements are supplied by the end devices of consumers: end users

can utilize the devices as human-computer interfaces to recognize user needs and

send them to the IoT. All of these sensors and end devices will be linked together

so that they can exchange data and deliver new services [62].

The integration of sensing devices opens up a world of possibilities for data

collection, system management, and resource optimization. Smart grid planning,

transportation, and healthcare are examples of systems that can benefit from the

employment of smart devices. Smart grid interoperability is achieved through the

deployment of smart measurement equipment such as smart meters, sensors, and

phasor measurement units (PMU) [63–65]; distributed sensors that respond to

changes in energy needs, supplies, and costs allow energy providers to assess the

state of the power grid and ensure the efficient operation of the power grid [66],

furthermore providing readily available data for establishing relevant key per-

formance indicators [67]. In the realm of transportation, information collected

from inertial and visual sensors in a distributed network can provide input for

real-time route guidance [68, 69], traffic signal control [70], and infrastructural

monitoring [71]. Finally, recent advancements in technology have produced non-

11

invasive wearable sensors supporting a variety of healthcare applications, such as

neonatal health monitoring [72], nutritional management of ketosis and diabetic

ketoacidosis [73], and smart solutions for continual quality-of-life improvement

for elderly and disabled people [73, 74]. A variety of wearable sensor applica-

tions [75–78] have become possible thanks to device miniaturization and the

reduction of Body Sensor Networks to compact packages. Edge computing can

provide the lowest-latency processing and storage options, while increasing the

resilience of privacy- and safety-sensitive data environments. Despite this, the size

and portability of the devices leads to additional constraints [79]: further growth

of edge computing for wearable devices necessitates a paradigm shift to produce

a reduction in processing efforts [80]. In order to overcome these obstacles, the

environment must be set up for efficient real-time data processing, which will

increase the variety of tailored services that can be effectively and extensively used

on smart edge devices [81–85].

There are a few opportunities for neuromorphic technology to penetrate the

domain of sensor networks at the edge:

• Embedded sensors provide better reactivity to the front-end environment of

the edge computing system. However, digital sensors often come embedded

into devices with limited computing capacity due to the power restrictions

on the edge. Typically, data elaboration is then offloaded to powerful servers

on the cloud, creating a communication bottleneck and a possible point

of failure for data security. With neuromorphic platforms implemented

close to the sensors, neural network-based tasks could be performed locally,

limiting the need for cloud computing while respecting power constraints.

• A typical IoT sensor network produces massive amounts of data, which can-

not be sent directly to cloud servers without compression or preprocessing:

it would require considerable network capacity, causing a variety of chal-

lenges such as transmission delays and packet loss. As a result, IoT gateways

often undertake data pre-processing and even aggregate before delivering

it to remote cloud servers. There are a few ways neuromorphic paradigms

could help here, as the event-based encoding required by SNNs significantly

reduces the size of the relevant data: said encoding can either be performed

within the sensor, by a dedicated external ASIC solution, or in software by

an embedded digital coprocessor acting as a middleman between a digital

12 Event-driven and standard sensors

sensor and a neuromorphic computer. In this and later chapters, we will see

examples of all these solutions.

• User data storage is also generally outsourced to various third-party vendors,

whose storage devices are installed at the network’s edge and situated at a

variety of physical locations. The fragmentation of data thus makes it diffi-

cult to maintain data integrity and may expose the information to malicious

attacks. As stated in the previous point, spike-encoded data can drastically

reduce storage needs; at the same time, using SNN accelerators to execute

computational tasks close to the sensor could completely eliminate the

need to store data, if not for historical reasons.

A neuromorphic pipeline can interface with two sorts of sensors: regular

digital sensors, and event-based neuromorphic sensors. At each time instant,

digital sensors generate floating-point or integer samples, and their signals must

be encoded into spikes before they can be processed by a Spiking Neural Network.

Event-based sensors, on the other hand, produce output in the form of spike

trains, and remain quiet when no input is present; the spike encoding happens

entirely within the sensor, and its output may be immediately fed into an SNN.

Sensors and datasets also come into play as neuromorphic researchers face the

problem of fairly assessing the performance of SNN designs. As things currently

stand, while many natively event-based sensors have been proposed, very few

data acquisition campaigns have been organized exploiting them. On the other

hand, there is a vast availability of datasets recorded by digital sensors, which

nonetheless require an encoding stage before they can be handled by an SNN.

In this chapter, we will examine both types of sensors, investigate differ-

ent techniques for event-based encoding, and study the production of various

datasets useful for benchmarking the performance of SNNs on time-varying sen-

sory data.

Section 2.1 gives an overview of digital sensors and their interaction with

downstream neuromorphic processes. Entering more detail, we select two areas

of applications for digital sensors in the IoT domain: human activity recognition

(Section 2.1.1) and speech classification (Section 2.1.2). For each of these appli-

cations, representing time-varying signals occupying different part of the energy

spectrum, we select representative datasets (WISDM and FSD) that will be used in

2.1 Digital sensors and datasets 13

subsequent chapters to benchmark several characteristics of the neuromorphic

pipeline.

In Section 2.2, we will move on to consider neuromorphic sensors. This type

of sensor outputs data that is already in the spike domain and can be delivered to

a downstream SNN without the need for an encoding step. First, we will consider

the novel case of event-based tactile sensing (Section 2.2.1), describing the back-

ground of this task and the method for creating the Braille dataset, a repository of

time-varying spiking data produced by sliding a robotic finger over 3-dimensional

braille characters. Then, we will examine two well-known neuromorphic sensors:

the Neuromorphic Auditory Sensor (NAS) (Section 2.2.2) and the Dynamic Vision

Sensor (DVS) (Section 2.2.3). Finally, in Section 2.2.4, we will describe LIPSFUS, a

sensor fusion dataset that seeks to combine NAS and DVS data to improve speech

recognition tasks in the neuromorphic domain.

2.1 Digital sensors and datasets

Spiking Neural Networks (SNNs), with their low energy consumption and com-

putational cost, can provide major benefits to the field of embedded machine

learning for edge applications. Input from normal digital sensors, however, needs

to be encoded into spike trains before it can be processed by neuromorphic com-

puting methods. The author and colleagues examined the characteristics of data

acquired from digital sensors in Fra et al. [2] and Forno et al. [1], focusing on the

creation of neuromorphic pipelines for the classification of time-varying signals.

We sampled time-varying signals from two distinct datasets: the Free Spoken

Digit (FSD) Dataset [86], which provides audio signals, and the WISDM Smart-

phone and Smartwatch Activity and Biometrics Dataset [87, 88], which is com-

monly used for human activity recognition (HAR) [2]. Their distinction can be

drawn from two different angles: first, the nature of the activity involved, and

second, the signal frequency. Of these, only the signal frequency has important

repercussions on the brain-inspired pre-processing procedures being carried out.

Using the range of human audible frequencies as a discriminant, we can

distinguish between signals at very low frequency (below 20 Hz), low frequency

(20–500 Hz), middle frequency (500 Hz–2 kHz), and high frequency (2–20 kHz). The

samples from the FSD dataset and the WISDM dataset can be assigned to the

14 Event-driven and standard sensors

middle frequency and very low frequency ranges, respectively, based on these

definitions and the on Nyquist-Shannon sampling theorem.

The spectral densities for both datasets are depicted in Figure 2.1, which

demonstrates how the two forms of data occupy distinct, non-overlapping regions

of the frequency spectrum.

Fig. 2.1 Spectral densities of two samples, one from the WISDM dataset and the other from
the FSD. The WISDM data from the accelerometer is in the very-low frequency region,
whereas the FSD sample is in the middle range of human-audible signals. [1]

2.1.1 Inertial sensors for human activity recognition

Body sensor networks have undergone significant change in the last few years: the

work of complete BSNs once consisting of a number of wearable, interconnected

sensor nodes can nowadays be performed by a single consumer device with

sufficient precision [89–91]. As a result, smartphone sensors, most often inertial

measurement units (IMUs), are frequently used for collecting datasets describing

human activity: the most well-known are are WISDM [92] and UCI-HAR [93] (also

known as SBHAR [94]), but a more recent version of the WISDM dataset [87] is also

gaining popularity because of its more evenly distributed classes and the inclusion

of smartwatch signals. Other datasets, like MHEALTH [95, 96], OPPORTUNITY [97,

2.1 Digital sensors and datasets 15

98], PAMAP2 [99, 100], PUC-Rio [101], USC-HAD [102], UTD-MHAD [103], and

WHARF [104] take into account additional wearables and sensors.

Mekruksavanich et al. [105] provided a thorough benchmarking for various

network architectures on diverse datasets. Said work also highlighted how data

segmentation affects classification accuracy. In fact, there are two good reasons

to carefully select the sample window size for time-varying signals like those

handled by HAR: it can improve accuracy, resulting in more dependable classifiers,

and it determines the classification time, which can be critical in determining

applicability for real-time applications. Peppas et al. [106] gave an overview of

representative window sizes used in the HAR task, demonstrating that typical

options fall between 1 and 10 seconds. Exceptions are research by Ordóñez et

al. [107], Wan et al. [108], and Xia et al. [109], which use temporal frames as small

as 0.25 s for distinct datasets. Ihianle et al. [110], Mekruksavanich et al. [111, 112]

and Oluwalade et al. [113] instead used a 10-second signal segmentation.

The WISDM dataset

0 2 4 6 8 10
10

5

0

5

10

15

20

m
/s

2

Accelerometer x-axis

0 2 4 6 8 10
20

10

0

10

20

ra
d/
s

Gyroscope x-axis

0 2 4 6 8 10
20

10

0

10

20

m
/s

2

Accelerometer y-axis

0 2 4 6 8 10

10

5

0

5

10

ra
d/
s

Gyroscope y-axis

0 2 4 6 8 10
time (s)

10

5

0

m
/s

2

Accelerometer z-axis

0 2 4 6 8 10
time (s)

7.5

5.0

2.5

0.0

2.5

5.0

ra
d/
s

Gyroscope z-axis

dribbling catch typing writing clapping teeth folding

Fig. 2.2 A representative comparison of 10-second samples collected by the smartwatch
on the 6 IMU sensors for the 7 classes in the WISDM dataset’s general hand-oriented
subset. [2]

The Wireless Sensor Data Mining Lab released the WISDM Smartphone and

Smartwatch Activity and Biometrics Dataset in 2019. Using the accelerometers

16 Event-driven and standard sensors

and gyroscopes on consumer-grade smartphones and smartwatches, it gathers

3D data signals linked to 18 different activities carried out by 51 people, with

an acquisition rate of 20 Hz and a total time of 3 min for each activity. With a

percentage contribution of each activity ranging from 5.3 to 5.8 % of the 15630426

total samples, it also assures stronger class balancing and a larger selection of

activities with respect to the previous version of the WISDM dataset [92]. The

dataset can be divided into three subsets based on the different types of activities:

on-hand-oriented, general hand-oriented, and eating hand-oriented. Figure 2.3

depicts the kernel density estimate of 3D smartwatch data from accelerometer

and gyroscope in the general hand-oriented subset of the WISDM dataset. An

overlap between the raw signal values can be seen here.

Fig. 2.3 Kernel density estimation of smartwatch values recorded on the 6 IMU sensor
axes for the 7 classes in the WISDM dataset’s general hand-oriented subset. [2]

2.1.2 Audio sensors for speech recognition

One of the most popular and effective uses of ANNs has been audio classification.

This method is crucial to consumer-grade AI technology, which includes virtual

assistants, speech recognition algorithms, and text-to-speech apps [114]. Precise

information about the sensors employed in the gathering of speech datasets is

rarely available; in fact, this type of dataset can easily be crowd-sourced by having

speakers submit recordings taken with off-the-shelf devices. For instance, the

LibriSpeech dataset [115] has been assembled using audiobooks from the Lib-

2.1 Digital sensors and datasets 17

riVox project, which is driven by volunteer readers. Their quality can therefore

vary from studio-recorded, high-quality samples to amateur home recordings.

This variety is desirable for many applications, especially mobile tasks where

real-time input is usually noisy. In the neuromorphic field, research into auditory

sensors has received a great deal of attention, starting with the pioneering work of

Carver Mead [116] and finding a groundbreaking first implementation in Liu et

al. [117]. Datasets of note in neuromorphic research include the Spoken MNIST

dataset [118], the Free Spoken Digit (FSD) dataset [86], and the Google Speech

Commands (GSC) [119] dataset, which are generally used in a spoken word clas-

sification challenge. The Google Speech commands has spurred the creation of

derivative datasets: the written and spoken digits database [120] is a subset of the

Google Speech Commands dataset restricted to utterances of the ten digits, with

added preprocessing and feature extraction using the Mel Frequency Cepstral Co-

efficients (MFCC) method, coupled to written digits from the MNIST project, while

the Heidelberg Spiking dataset [121] was created by applying a software method

based on the inner ear model to encode the audio files into spike trains. Cramer et

al. [121] then benchmarked a variety of spiking and non-spiking classifiers using

the Heidelberg Spiking dataset, finding that the best performing models were

those having explicit recurrence, such as LSTMs and RSNNs. Rostami et al. [122]

instead chose to process the GSC with MFCC extraction, FFT and spectrogram

generation in order to test a recurrent SNN on the SpiNNaker 2 neuromorphic

hardware prototype. The FSD is also present in several research works in the

field: Peterson et al. [123] recently used it as a baseline for the performance of

SNNs trained with spike-timing-dependent plasticity (STDP) on the speech classi-

fication task, and it has also been employed to test cutting-edge neuromorphic

hardware based on memristors [124] and Atomic Switch Networks [125].

The FSD dataset

The Free Spoken Digit Dataset is a crowd-sourced open database of spoken digits,

first released on GitHub by Zohar Jackson in 2017. It contains homemade record-

ings contributed by volunteers. In its latest release (v1.0.10, published in 2020),

it counts 3000 recordings by 6 individuals speaking English with diverse accents,

with each speaker pronouncing each of the 10 digits 50 times. All recordings are

.wav files encoded at 8 kHz; since they are cut in such a way to guarantee minimal

18 Event-driven and standard sensors

silence at the start and end, each sample has variable length. While the dataset has

mostly seen use in word classification tasks, the dataset also provides metadata

for speaker identification. Furthermore, a simple API for data access and manipu-

lation is included, with dedicated trimming and spectrogram plotting scripts. The

FSD dataset is included in the Tensorflow and Accord.NET frameworks and the

official train-test set provided has a 90 : 10 split. This dataset has been utilized in

previous research on spike encoding in the neuromorphic domain [126].

2.2 Neuromorphic sensors

Neuromorphic event-driven sensors use circuits that mimic the behavior of bi-

ological sensors, like the retina and cochlea, to generate dynamic binary events

in response to constantly varying stimuli. Locally sensing a signal (light, sound,

touch, etc.), biological sensing systems transform it to an asynchronous spike

format and convey it to the central nervous system. The electronic equivalent of bi-

ological spikes, known as events, are also asynchronous in time and therefore carry

information about the location and time at which the input was perceived [127].

Event-based sensing is a great fit for resource-constrained computing and

robotics because of its built-in data encoding features and sparse communica-

tion [128]. In fact, this type of sensors reduce processing and communication

efforts by only sending signals when a change in their sensory region is recog-

nized [129]; the event-driven domain [130] avoids the ongoing polling of sensor

readouts by using binary, time-discrete events. Additionally, since the exchange of

information is initiated by sensor atoms (pixels or taxels activated by an above-

threshold input), events are relayed with minimal latency, offering these sensors

an improved latency/power tradeoff [127].

2.2.1 Event-based tactile sensing

Tactile perception is by nature sparse in terms of time and space, with only local

correlation where multiple nearby receptors or sensors are activated by the same

event. Therefore, the peculiar advantages of event-based sensing are particularly

desirable in the touch domain. Tactile events are perceived for a short duration,

as long as the stimulus is applied, and in a confined portion (patch) of the sensor.

2.2 Neuromorphic sensors 19

When there is no stimulus, the tactile system is said to be at rest. While other event-

driven neuromorphic sensors, such as the Dynamic Vision Sensor (DVS) [131] and

the silicon cochlea [132], have piqued researchers’ interest, giving rise to special-

ized data pipelines and standardized benchmarks like the TIDigits [133] and DVS

gesture recognition dataset [134], there have been relatively few developments in

the field of touch. One of a handful of classifiers utilizing tactile neuromorphic

sensors [135, 39] is the Spiking Tactile MNIST (ST-MNIST) dataset of handwritten

digits, created by writing on a neuromorphic tactile sensor array [136]: because

of the type of input, the information in the ST-MNIST spike patterns is primarily

spatial, and a feedforward Convolutional Neural Network (CNN) has the most

accuracy when adding all the spikes together to produce a "tactile image".

Bologna et al. suggested a neuroengineering system for robotic applications

that included spatiotemporal event coding, probabilistic decoding, and closed-

loop motion policy adaptation implementing active touch. This method was

tested on Braille text, demonstrating that fingertip kinematics could be modulated

effectively based on the complexity of the letters encountered. A subset of 7 Braille

symbols were used to classify the signals captured by a fingertip sensor attached

on a robotic arm, yielding an (89±5.3)% identification rate [137, 38].

The Braille dataset

During the 2021 Telluride Neuromorphic Cognition Engineering Workshop, the

author joined a group of international researchers focusing on the Tactile Percep-

tion topic area in order to produce a novel dataset of haptic information based

on the Braille dataset. The team’s work resulted in a journal paper published

the following year [3]; the result in this and subsequent sections draw from said

article.

The Braille dataset was created with the intention of investigating the possi-

bility of an end-to-end neuromorphic system for tactile perception that would

incorporate event-based communication (sensor level), asynchronous processing

(hardware level), and spike-based computing (algorithmic level). However, to the

best of the authors’ knowledge, no event-based tactile sensor was yet available;

therefore, the output of such a device was emulated by utilizing a digital capacitive

sensor and converting its output to spikes.

20 Event-driven and standard sensors

Fig. 2.4 Setup for the recording of the Braille dataset. (A) Diagram of the sensorized
fingertip. (B) Experiment configuration with a braille sample. (C) Random distribution
for the starting location of the fingertip’s sliding motion. [3]

The dataset was recorded at IIT using an Omega.3 robot [138], sliding a sen-

sorized fingertip [139] with 12 capacitive sensors over 3D printed Braille letters

from "A" to "Z" as well as "space" at a regulated speed and position. The robotic

fingertip and the experiment setup are shown in Figures 2.4: the inner region of

the fingertip is made up of 12 capacitance plates (A), which are wrapped in a three-

layer fabric and moved over the braille letters with a constant sliding distance and

velocity (B). To introduce noise, the starting location was randomly changed from

sample to sample according to a Gaussian distribution (C).

The size of the Braille letter was chosen to match the geographical dispersion

of the fingertip’s taxels, which allows the entire letter to be identified with a single

sliding movement. The sliding distance (15.5 mm), sliding velocity (20 mms−1),

and distance to the plate’s flat surface all remained constant. 200 instances of each

letter were recorded at a sample rate of 40 Hz, encoding the capacitance value of

the sensor as a sequence of 8-bit positive integers.

2.2.2 A silicon cochlea: the Neuromorphic Auditory Sensor (NAS)

Event-based audio sensors typically take inspiration from the biological cochlea, a

structure in the inner ear that is sensible to vibrations in the audible spectrum. The

hair cells in the membrane stimulate spiral ganglion cells, which encode the audi-

tory sensation to spikes [140]. Since the first proposal for a silicon cochlea [141],

2.2 Neuromorphic sensors 21

many analog and digital implementation of said design have been realized; one

of these is the Neuromorphic Auditory Sensor (NAS) [142], developed in 2016 at

the University of Seville, Spain. It reproduces the frequency-decomposing abil-

ity of the cochlea using two cascaded banks of specially-designed spike-based

low pass filters (SLPFs) [143], which convert digitalized stereo streams to spike

trains and then decompose them into N frequency bands. The sensor outputs

the spike-encoded data on 2N channels (to account for the ON and OFF spikes

in each frequency band) through an Address Event Representation (AER) inter-

face. The NAS was originally designed as an FPGA implementation, and it was

released in 2021 as a modular open-source HDL netlist, OpenNAS [144]. Since

its inception, the NAS has been put to the test on various types of audio data. In

Domínguez-Morales et al. [145], the NAS was used to preprocess and encode heart

sound recordings from the PhysioNet/CinC Challenge database [146], and in later

work by the same group [147], the NAS served as the entry point for a neuromor-

phic speech recognition pipeline powered by the SpiNNaker hardware; the input

dataset was the GSC discussed here in Section 2.1.2. Recently, the OpenNAS has

served as one of the input devices involved in the LIPSFUS sensory fusion dataset;

we will discuss it in section 2.2.4.

2.2.3 A silicon retina: the Dynamic Vision Sensor (DVS)

Neuromorphic vision was also among the first applications of neuromorphic sens-

ing [116], with a first realization of a silicon retina with adaptive photoreceptors by

Misha Mahowald in 1991 [148]. Over the past two decades, a variety of solutions

have been developed which try to emulate different features of the biological

eye [149]; among these, the most well-known and tested is the Dynamic Vision

Sensor (DVS), originally realized by Lichtsteiner et al. in 2006 [130]. The DVS is

composed of a collection of pixels which asynchronously reacts to the temporal

contrast in the scene dynamics, outputting an array of ON/OFF events which

capture the outline of any moving object in the observed frame. The highly effi-

cient integration of the DVS circuit gives it exceptionally low power consumption

and excellent temporal resolution irrespective of lighting conditions [149]; for

instance, a later implementation of the DVS by Serrano-Gotarredona and Linares-

Barranco [150] reached a power requirement of 4 mW with an output of 100000

frames per second, 30µs latency, and a contrast sensitivity of 1.5 %. These char-

22 Event-driven and standard sensors

acteristics make it an ideal candidate for motion detection and object tracking

tasks [149].

Hu et al. [151] presented a comprehensive dataset realized by exposing a

DVS vision sensor to existing benchmark videos on a monitor, including object-

tracking, action recognition, and object recognition sequences. The 37410-sample

library remains one of the largest neuromorphic datasets in the field of machine

vision. Other derivative datasets include the CIFAR10-DVS [152], Poker-DVS and

MNIST-DVS [153], created from existing frame-based image datasets by animating

the images in order to make them detectable by the DVS. Examples of datasets

created ad hoc for the DVS are still few and contain a limited number of samples.

Miao et al. [154] presented three event-based datasets for pedestrian detection,

action recognition, and fall detection, while IBM’s DVS128 dataset [134] contains

recordings of hand gestures under different lighting conditions.

2.2.4 Neuromorphic sensor fusion: the LIPSFUS dataset

Sensor fusion is the merging of synchronized sensor data received from multiple

devices observing the same phenomenon, so that the fused information is less

uncertain than when these sources are used separately. Developments in audio-

visual sensory fusion with neuromorphic engineering offer up new opportunities

for latency and power-critical applications in robotics, IoT and edge computing.

In Rios-Navarro et al. [155], the novel LIPSFUS dataset was presented, which

integrates the NAS with the DVS to record a speech command dataset where

each event-based audio sample is coupled to the corresponding lip movement

for each word. The dataset was recorded in two environments with different

noise levels, and involved 22 speakers of diverse nationality, gender and age. The

NAS received input from two microphones mounted on a binaural dummy head,

allowing for stereo recording; the samples were recorded by rotating the dummy

at different angles with respect to the speaker (0º, -45º, -90º, 45º and 90º). The

dataset is intended to serve as a baseline for the development of integrated audio-

visual sensory systems capable of improving speech recognition at the edge by

integrating environmental and contextual signals other than sound (in this case,

lip reading).

2.3 Chapter summary 23

2.3 Chapter summary

Sensors are a vital part of any application deployed in an edge environment. At

the moment, the expansion of the low-cost sensor market thanks to the devel-

opment of MEMS devices has created a large field of applications for low-cost

edge computing platforms, which constitutes an appealing entry point for the

use of neuromorphic technology. In order to deploy these SNN-based solutions

effectively, the sensing input must be in the form of spikes. This can be achieved

either by using novel event-based sensors or by retrofitting digital sensors with an

additional encoding step.

Event-based sensors, while promising, are still under active development and

research. This type of device has shown excellent results in low-power operation

and represents the most natural pairing for neuromorphic applications. However,

given the market predominance of digital sensors and their low cost, they must

not be discounted as a solution in the short term.

We face, then, the problem of interfacing a neuromorphic computational

pipeline with digital inputs. The encoding technique to bridge the digital floating-

point signal to the event-based spiking signal must be chosen carefully, as the

transition into the spike domain can heavily affect the information content of the

data and, thus, the efficacy of the downstream neural network. In Chapter 3, we

will examine in detail the problem of translating digital signals into spikes and the

implications of each encoding technique.

Chapter 3

Input encoding and pre-processing

In Chapter 2, we established that incoming analog and digital data must be trans-

formed into a stream of spiking signals before they can be processed by an SNN.

Biological research shows that, even in nature, sensory information can be ren-

dered into spikes in a variety of ways; likewise, several kinds of encoding schemes

have been derived from the animal neuron [156]. One such method are rate-based

encodings, which have been in use since the early days of SNN research [157]

and have proven to be an effective method for converting trained ANNs into

SNNs [158–160] for classification applications. The event-based neuromorphic

cochlea [161] also converts audible signal amplitudes into neural firing rates, and

rate codes are generally prominent in the field of robotic control [162]. In contrast,

interest in temporal coding methods has grown in recent years: these approaches

have been applied to reduce the power consumption of converted networks [163–

165], but a variety of applications that use time-based encodings natively have also

emerged. These include bio-inspired olfactory sensors [166] and cameras [167],

hybrid ANN/SNN [168] and entirely spiking [169–171] networks for image classifi-

cation, speech recognition [172, 173] and speaker authentication [174] systems,

time series forecasting [175] and anomaly detection [176, 177], and many other

applications.

This chapter examines the effects of various spike encoding methods on the

performance of a spiking convolutional neural network (sCNN) that was trained

with the process of transfer learning. The generated networks have been eval-

uated using time-varying input signals from the WISDM and FSD datasets (see

Section 2.1) and encoded into spikes before being supplied to the classifiers. This

3.1 Preprocessing 25

approach allows us to exploit the abundance of digital-output sensors on the

market compared to the scarcity of neuromorphic sensors; it also ensures fairness

in the comparison of various encodings because they are all produced from the

same input data. The research offered here, previously published in Forno et al. [1],

attempts to trace a roadmap for the future advancement of encoding/decoding

approaches for integrated System of Systems with interoperability of various

modules and neuromorphic sensing solutions.

3.1 Preprocessing

We drew inspiration from biology and the animal kingdom to build various pre-

processing approaches for time-varying signals. Specifically, we implemented a

procedure that mimicked the working principle of the cochlea using a method-

ology inspired by the human auditory system. The cochlea is the final section

of the auditory system, consisting of a spiral structure whose nerve cells, due

to their location along the so-called basilar membrane, allow for filter-bank-like

activity. As a result, the incoming stimulus is frequency-decomposed, and each

of the resulting components, identified by the excitation of specific regions of

the basilar membrane when exposed to their matching characteristic frequency,

is translated into pulses, producing the electrical signal to be processed by the

brain [178–182]. According to the literature, gammatone and Butterworth filters

are suitable methods for simulating such a mechanism [183–187]; this type of

filter bank may also successfully extract characteristics from other time-varying

signals, such as vibrations acquired by an accelerometer [188], by carefully al-

tering the expected frequency range. We used these two filter types to execute a

pre-processing step on the data, resulting in the division of time-varying signals

into separate frequency channels.

We also looked at how the cochlea-inspired frequency filter affected a set of

spiking and non-spiking Recurrent Neural Networks (RNNs). The frequency filter

was applied to the input, decomposing the original signals into five channels

via the application of a Butterworth filter bank. All the spiking RNNs under

consideration used the rectified integrate and fire neuron model.

26 Input encoding and pre-processing

3.1.1 Frequency decomposition

Decomposing the input signal into frequency channels can improve encoding

performance by increasing the number of extractable features and resulting a

more information-rich input. We did extensive testing to see how input frequency

filtering affected the accuracy of a sCNN doing classification on the FSD and

WISDM datasets. The network under examination consists of 1 convolutional

layer with I feature maps, 1 average pooling, 1 convolutional layer with J feature

maps, 1 average pooling, and K fully-connected layers; we identify each variation

on this structure with the acronym CI -CJ-FK . Figure 3.1 depicts a sample design

with the combination C6-C12-F2.

Fig. 3.1 Architecture of the C6-C12-F2 convolutional neural network. [1]

In all experiments, the gammatone filter performed better than the Butter-

worth filter. When classifying input data from the FSD, we tested decomposition

with 32 and 64 channels, achieving a median accuracy of 77.50 % for the Butter-

worth filter and 84.00 % for the gammatone across all channel configurations. In

the case of the WISDM dataset, due to the lower sample frequency, only the 4-,

8-, and 16-channel separation setups could be examined. Compared to the FSD,

lower average test accuracy rates were observed for all encoding options: 66.67 %

with the Butterworth filter and 46.67 % with the gammatone, both paired with a

C12-C24-F2 network architecture.

3.1.2 Feature extraction

The feature extraction stage is required to employ the transfer learning approach

with a non-spiking CNN model, and it consists of creating the sonogram, which is

a binned representation of the input appropriate for elaboration by convolutional

3.1 Preprocessing 27

layers. We adopt this definition of sonogram from [147]; while it was initially used

to describe the binned representation of an audio signal, hence the name, we

utilize the same definition for the WISDM dataset’s analogous representation as

well as the FSD. The number of bins, or intervals into which the spike-coded signal

is divided, is the parameter that defines the sonogram’s resolution and the quality

of feature extraction. We experimented with several interval lengths to get the

best bin separation. The tested binning intervals for the FSD dataset are 50 and

250 for the 32-channel filter bank and 50 and 125 for the 64-channel filter bank.

We have 24, 18, and 18 bins for the separation of the WISDM dataset into 4, 8,

and 16 channels; we chose only one binning type for each channel separation

because other values exhibited inadequate accuracy results. Figure 3.2 shows

the comparison results. As seen in section 3.1.1, the WISDM dataset had overall

lower accuracies. Finally, regardless of the number of channels used in the pre-

processing step, greater bin counts result in overall lower performance. In fact,

excessively big or small values for this parameter result in a quasi-uniform pattern

with less information, because the difference in intensity between the sonogram’s

pixels becomes too small; an example is illustrated in Fig. 3.3.

Fig. 3.2 Median accuracy values for each feature extraction class for various network
design and encoding technique combinations. [1]

28 Input encoding and pre-processing

Fig. 3.3 A 32-channel sonogram rendered in 100, 50, and 14 time bins. The 50-bin subdivi-
sion provides the finest compromise between resolution and information density. [1]

3.2 Encoding techniques

Although the availability of neuromorphic, event-based sensors is increasing,

as evidenced by Sony [189] and Prophesee commercializing silicon retina cam-

eras [190], spiking neural networks are typically used for the analysis of continuous

data from conventional sensors. As a result, spike encoding of these signals is

required to provide sparse, event-based input data. There are two approaches

to spike generation: in the first, the neural response to a continuous signal is

produced using specific neuron models and characteristics, similar to what is

defined as the Representation Principle of the Neural Engineering Framework

(NEF) [191]; in the second, a continuous signal is transformed into discrete spikes

using a variety of possible algorithms. In this section, we focused on the second

method, which assures that neuro-inspired tactics can be fully used in the context

of IoT applications even in the absence of dedicated neuromorphic hardware.

Rate Coding and Temporal Coding are the two main categories of spike encod-

ing algorithms, with significant differences in the number of degrees of freedom

allowed in the encoding: in Rate Coding, a signal is encoded by the number of

spikes per time unit, whereas Temporal Coding includes a variety of approaches.

Figure 3.4 shows an example of spike train production. In the following, we will go

over the encoding approaches employed in our study, each of which falls into one

of the two aforementioned coding categories.

3.2 Encoding techniques 29

Fig. 3.4 Example of the spike trains generated by each of the examined encoding tech-
niques from an arbitrary input signal. [1]

3.2.1 Rate coding

Rate coding, which is widely used for ANNs due to its simplicity and robustness,

provides a mechanism for information representation based on the number of

spikes per unit time [48].

Among the many different rate coding algorithms [156], we focused on the

Poisson rate method, based on the Poisson distribution. With this approach, the

likelihood of having n ∈N spikes in a time interval ∆t via this process is:

Pn(∆t) = (r∆t)n

n!
e−r∆t (3.1)

where r ∈R is the value to be encoded, corresponding to the spike rate.

From an operational standpoint, the algorithm can be implemented as fol-

lows [192]:

30 Input encoding and pre-processing

1. Define the time interval ∆t during which the spike train will be generated.

2. Generate a random number sequence x ∈ [0,1] ⊂R;

3. Define spike timings ti from t = 0 as:

ti = ti−1 + ISI i for i ≥ 1 (3.2)

where

ISI i = − log(1−xi)

r
(3.3)

is the i th inter-spike interval, defined as the i th time interval in which the

probability of having n = 0 spikes is equal to xi ;

4. Generate a spike at every time step ti until ti >∆t .

3.2.2 Temporal coding

The encoding processes in the temporal coding family encompass diverse infor-

mation representation strategies. Aside from the quantity of spikes per unit time,

one distinctive aspect of temporal coding is the ability to account for accurate

spike timing to transport information [193]. Furthermore, factors such as relative

spike timing and temporal distance between spikes can be exploited. Temporal

Contrast, Deconvolution-based, Global Referenced, Latency/ISI, and Correlation

and Synchrony are the five kinds of temporal coding algorithms that may be

identified based on which of these qualities is taken into account [156].

Temporal contrast

This category’s algorithms are primarily concerned with signal fluctuations in

time, and they are used to generate spikes with either a positive or negative sign.

Because the fundamental feature encoded by this class is time-based variation,

it is not well suited for solely spatial data, such as still photographs. Audio sig-

nals [117], electromiography data [194], voice recognition [195], failure prediction

based on machine vibrations [188], and robotic Braille reading [3] are examples of

applications.

3.2 Encoding techniques 31

Threshold-based representation The Threshold-Based Representation (TBR)

algorithm is a constituent element of the Temporal Contrast category [196]. It

encodes data by creating spikes based on the absolute signal fluctuation in relation

to a specified threshold. The key actions in this approach are as follows:

1. Given an n-channel signal, fluctuations along each channel are analyzed

between consecutive timesteps.

2. A certain threshold is specified for each channel as:

Threshold = mean(Variation)+γ · std(Variation) (3.4)

where γ is a configurable parameter that affects the Variation values be-

tween −Threshold and +Threshold by directly reflecting on the amplitude of

the noise-reduction band: e.g., greater values of γ lead to a wider threshold

band, and a smaller number of spikes. Different ranges of values for γ can

be identified, depending on the noise level to be filtered out:

• γ= 0: all signal fluctuations are retained, and the threshold is defined

as the mean of their values;

• 0 < γ ≤ 1: noise in the signal is not a serious issue, but fine signal

changes are not required to preserve the information content;

• γ > 1: there is meaningful noise present, and its impact must be re-

duced to generate meaningful spikes.

3. The spike train timesteps are defined by dividing the ∆t interval in which

the spikes are generated by the length (L) of the input signal;

4. If Variation exceeds Threshold in absolute value, a spike is generated with

polarity given by the sign of both Variation and Threshold.

Moving window Moving Window (MW) employs the same underlying notion of

employing a threshold value as the TBR algorithm. However, unlike the previous

encoding approach, this threshold is used in conjunction with a number known

as Base, which is defined as the mean of the signal along each channel inside a

32 Input encoding and pre-processing

sliding window of specified length:

Threshold = mean(Variation) (3.5)

Base = mean(Signal[1 : Window]) (3.6)

Furthermore, unlike TBR, the requirement for spike emission depends on the

signal’s value rather than its variation in time. A positive spike is formed when

the signal exceeds the value Base+Threshold, while a negative spike is produced

when the signal is less than Base−Threshold. With the introduction of a sliding

window along the signal, this spike generating process appears to be more resilient

to noise than TBR [197].

Step-forward The Step-Forward (SF) technique, proposed by Kasabov et al. [197]

as an enhancement over the encoding used for the artificial silicon retina in

Delbruck and Lichtsteiner [196], likewise depends on the concept of an iteratively

updated baseline value. Similarly to MW, Base and Threshold are used to compute

said baseline, and their definitions for each signal channel are as follows:

Threshold = mean(Jump)

γ
(3.7)

Base = Signal[1] (3.8)

where Jump is an array of maximum-to-minimum differences for each channel

and γ is an adjustable parameter. As is the case for TBR and MW, SF produces

both positive and negative spikes: the former occur when the signal exceeds

the value Base+Threshold, whereas the latter occur when the signal is less than

Base−Threshold.

Zero-crossing step-forward (ZCSF) By taking zero-crossings into account, we

can derive an alternate implementation of SF [198, 199]. The Zero-Crossing Step-

Forward (ZCSF) method inherits the Threshold specification from SF but does

not include the Base value, which is replaced by a half-wave rectifying behavior

induced by the condition Signal > 0. With ZCSF, spike emission happens for

all positive signal levels greater than Threshold, resulting in exclusively positive

spikes, as opposed to the preceding encoding techniques.

3.2 Encoding techniques 33

Deconvolution-based

This class of encoding techniques, which includes the Hough Spiker Algorithm

(HSA) [200] and the subsequent Modified HSA and Ben’s Spiker Algorithm (BSA)

[201], stems from the inverse problem of reconstructing an analog signal from a

spike train using a finite impulse response filter (FIR). The algorithms in this class,

in fact, allow analog-to-spike conversion by reversing said operation and applying

the convolution function in a subtractive approach [200]. They produce unipolar

spikes, like in the case of ZCSF.

Hough Spiker Algorithm The HSA performs progressive subtraction by compar-

ing the value of the analog signal to the result of a specified convolution operation.

If the level of the signal to be encoded exceeds this value, the convolution value

is subtracted. As a result, for each signal channel, the main iterative step in the

Hough Spiker Algorithm is:

Signal[i + j −1] = Signal[i + j −1]−filter[j] (3.9)

where i represents the signal’s time steps, filter the convolution result, and j its

value indices. As the convolution function in our investigation, we used a rectangle

window.

Modified Hough Spiker Algorithm The Modified HSA maintains the HSA’s core

idea of a subtractive, deconvolution-based procedure, but differs by the introduc-

tion of a Threshold value. The operation in Eq. (3.9) is executed at any time step

where error ≤ Threshold. This error is the result of an accumulation that occurs at

each time step where the input signal is less than the convolution function. For

each signal channel, the accumulation is defined by the equation:

error = error+ (filter[j]−Signal[i + j −1]) (3.10)

Ben’s Spiker Algorithm (BSA) With respect to the Modified HSA, the Ben’s Spiker

Algorithm adds two cumulative error metrics for each signal channel alongside

34 Input encoding and pre-processing

the Threshold value:

error1 = error1 +abs(Signal[i + j −1]−filter[j]) (3.11)

error2 = error2 +abs(Signal[i + j −1]) (3.12)

The criterion to be tested before applying Equation (3.9) in the original study dis-

cussing BSA [201] is that error1 does not exceed the value error2−Threshold. How-

ever, in this work, we refer to the implementation proposed by Petro et al.[202],

where the condition is adjusted as follows:

error1 ≤ error2 ·Threshold (3.13)

Global referenced

This third class of temporal coding algorithms includes approaches whose spike

generation process is based on some global temporal characteristic of the input

signal. The time difference with respect to an oscillatory reference is the relevant

feature in the case of Phase Encoding [203], whereas Time-to-First-Spike (TTFS)

measures the time since the stimulus began [204, 205].

Phase encoding Montemurro et al. [206] showed the possibility of effectively

establishing an encoding system based on a phase evaluation with regard to an

oscillating reference. In our work, we use the approach described by Kim et

al.[163], in which the binary representation of the input by β fractional bits is used

as the oscillatory reference after rectifying and normalizing the signal into the

range [0,1] for each channel.

Time-to-first-spike Different ways for applying Time-to-First-Spike encoding

depending on the membrane potential threshold specification have been exam-

ined by Rueckauer and Liu [164]. In our study, we use an exponentially decaying

function to build a dynamic threshold, similar to Park et al. [207]:

Pth(t) =ϑ0e−t/τth (3.14)

where ϑ0 is a constant and τth indicates the membrane potential decay time. For

the experiment described here, we utilized ϑ0 = 1 and τth = 0.1. In comparison to

3.2 Encoding techniques 35

other solutions, we used a bitwise approach similar to Phase Encoding, eventually

producing a bin-based binary-like representation of the input signal values. Al-

though this additional phase increases the overall number of spikes, it can result

in more robust encoding typical of spike bursts [208].

Latency/ISI

It is well known that neural communication via bursts of spikes, i.e. increasing

the number of spikes delivered to carry information about a given event from 1 to

N , improves dependability. However, the latency between these N spikes, known

as the inter-spike interval (ISI), can also be used to effectively encode informa-

tion [209]. As a result, the Latency/ISI encoding algorithm class is established,

with Burst Encoding as a representative example.

Burst encoding Burst Encoding, as stated by Guo et al. [48], is a technique that

takes advantage of two different time-based properties of a single spike train.

In fact, the algorithm is based on both the number of spikes and the ISI, and it

employs three variables: Nmax is the greatest number of spikes in each burst, tmin

is the minimum ISI, and tmax is the maximum ISI. The number of spikes and their

relative spacing are defined as follows, using these variables and the additional

parameter rate, which is obtained by normalizing each signal channel:

SpikeNumber = ⌈rate ·Nmax⌉ (3.15)

ISI =
⌈tmax − rate(tmax − tmin)⌉ if SpikeNumber > 1

tmax otherwise
(3.16)

Burst Encoding, like the last two algorithm classes, produces spike trains with a

single polarity.

3.2.3 Comparing different classes of encoding algorithms

While the encoding stage is crucial and required for using digital input data with

an SNN, selecting the best encoding approach for the signal to be analyzed can

increase accuracy. Figure 3.5 compares the median accuracy attained by various

families of encoding algorithms when paired with various channel separations,

36 Input encoding and pre-processing

feature extraction methods, and network architectures. The Temporal Contrast

class had the highest accuracy for the FSD, with a median of around 91.00 %

(Fig. 3.5 A). The Global Referenced class, on the other hand, has the lowest me-

dian result (about 53 %), with a considerable variance. This is because the two

algorithms in the Global Referenced family perform extremely differently: while

Phase Encoding produces respectable results (median 77.5 %, with a maximum of

93 %), TTFS yields very low accuracy (median 35 %, with a minimum of 8 %). This

is most likely due to the lower number of spikes produced by TTFS, resulting in

insufficient network stimulation: we will go over this notion in greater detail in

Section 3.2.3.

While the different algorithms produce quite disparate results on the WISDM

dataset, the median accuracy aggregated by algorithm class remains around 48 %

for all classes except Rate Coding, which produces the worst median results at

21.67 % and the overall minimum at 5 %. Burst Encoding achieves the best median

result with 55 % accuracy, while the ZCSF algorithm combined with a 16-channel

Butterworth filter and a C6-C12-F2 network architecture achieves the best single

result with 93 % accuracy.

Fig. 3.5 Median accuracy values of each encoding class for various network architecture,
filter type, number of channels, and feature extraction bins combinations. [1]

Spike density

Spike density is the number of spikes produced per unit time. When developing

a neuromorphic system, this parameter should be carefully examined: a lower

spike density leads to energy savings due to less communication between network

layers, but a too low number of spikes can prove insufficient to successfully encode

information without loss. Our observations reveal that the encoding strategy has

3.2 Encoding techniques 37

a relevant influence on this quantity: given identical input data, the differing

implementation logic of each approach results in distinct spike densities. Figures

3.6 and 3.7 depict the distribution of spikes created by each coding approach

following channel separation by a Butterworth (left column) or gammatone (right

column) filter bank. The Deconvolution-based family of encoding methods (HSA,

MHSA, BSA) generates the maximum spike count in all scenarios studied.

Fig. 3.6 Median spike counts per sample generated by various combinations of encoding
technique, channel count, and filter type for the FSD dataset. [1]

38 Input encoding and pre-processing

Fig. 3.7 Median spike counts per sample generated by various combinations of encoding
technique, channel count, and filter type for the WISDM dataset.

The number of spikes produced is also affected by including the refractory

period in the encoding model. We conducted early experiments with different

values for the refractory period τref : 3 ms, 2 ms and 1 ms. In every instance, using

this parameter in the encoding step results in an extreme reduction in the spike

count, preventing the SNN layers from being appropriately stimulated. This

drastically reduces classification performance: the median test accuracy for the

FSD across all architectures, channel decomposition, and encoding schemes is

22.00 %. In the case of WISDM, the value of τref is constrained by the low sampling

frequency fs = 20Hz of the dataset signals, resulting in a lower bound of 50 ms.

Because of the performance degradation we saw even with modest values for τref ,

all findings provided are obtained with τref = 0.

Discussion

The performance of the encoding techniques under consideration is affected

by the frequency of the input data. With a broader bandwidth for the middle-

3.2 Encoding techniques 39

frequency FSD dataset, more features may be retrieved from the signal, and it is

easier to identify the encoding classes that enable more accurate classification.

For very-low frequency data, such as the WISDM dataset, there is no clear ad-

vantage for one algorithm class over another; however, several configurations

featuring Temporal Coding, such as ZCSF encoding, vastly outperformed Rate-

based Coding, demonstrating that, while the algorithm for the encoding must be

carefully chosen, Temporal Coding has a higher ability to extract features suitable

for analysis in the neuromorphic domain. We saw especially strong classifica-

tion accuracy with Phase Encoding, with Butterworth filters reporting 83.00 %

and gammatone reaching 93.00 %. This is because redundant components in

the frequency response result in a higher number of spikes for this algorithm

class, allowing it to encode more information. We also discovered that the spike

count produced by each coding must be sufficiently high to appropriately excite

all layers of the downstream SNN; thus, spike count reduction aiming at power

savings must be carefully balanced with information preservation. Figure 3.8

depicts a quantitative and comparative summary of all the evaluated encoding

strategies. Each of them is defined by five metrics: Shannon entropy S [210], mu-

tual information of the encoded signal with the original input [211] normalized

with respect to entropy MI S , sparsity H S [212], spiking efficiency ε [193], and

computational complexity O (f).

Table 3.1 A summary of encoding strategies, with emphasis on their performance in
relation to the type of input data. A ✓ indicates that the technique is highly suitable for
the purpose, whereas − shows that the technique has some downsides and an ✗ indicates
that it is not suitable for the purpose. [1]

Encoding class and technique
Temporal data

Spatial data1

Very low frequency Middle frequency

Rate coding Poisson Rate ✗ ✓ ✓

Temporal Coding

Temporal Contrast

TBR ✓ ✓ ✗

SF ✓ ✓ ✗

MW ✓ ✓ ✗

ZCSF ✓ ✓ ✗

Deconvolution-based

HSA − − ✗

MHSA − − ✗

BSA ✓ − ✗

Global Referenced
PHASE ✗ ✓ ✓

TTFS ✗ ✓ ✓

Latency/ISI BURST ✗ ✓ ✓

1 Guo et al. (2021); Auge et al. (2021)

40 Input encoding and pre-processing

Fig. 3.8 Each encoding approach is characterized along a specific ring of the circle-shaped
graph. The computational complexity is reported in the bottom center section by the
quantities l (signal length), c (number of channels), n (length of the bitwise representa-
tion), and w (width of the convolution function). The results produced using FSD data
are on the left, while those obtained with the WISDM dataset are on the right. The four
signal-related metrics, S , MI S , H S and ε, are shown in a mirrored configuration
with respect to the circle’s vertical symmetry axis. The results of the two filter types, But-
terworth (B) and Gammatone (G), are reported for each of them based on the number of
channels utilized to separate the original signal. [1]

3.3 Additional analysis: Event-based encoding of tactile sensor data 41

A summary of suggestions matching each encoding approach to the input

frequency of the time-variant input data is presented in Table 3.1. This analysis

serves as a first step toward a more thorough evaluation of the tools available

for signal encoding in the neuromorphic domain. The need for directions for

the solution of engineering challenges in the realms of IoT and Industry 4.0 will

increase as commercial interest in this field of study grows.

3.3 Additional analysis: Event-based encoding of tac-

tile sensor data

For the acquisition of the Braille dataset (Section 2.2.1), the authors used a sigma-

delta modulator [213] to encode the frame-based digital input into temporally

sparse streams of spikes. An offline preprocessing phase transforms each original

stream of frames from a 12-taxel time sequence to 24 binary event-based channels,

simulating an event-based touch sensor. Figure 3.9A shows how threshold (ϑ)

crossings result in ON or OFF digital events for an increase or decrease in pressure,

respectively: the upper section of the graph depicts 600 ms of sensor measure-

ments from a single taxel while sliding, while the bottom section displays the

generated events for the ON (green) and OFF (red) channels, with rising threshold

values resulting in a decrease in the number of events. Figure 3.9B compares a

sequence reconstructed from event-based data to the original; the same frame-

based sequence is reconstructed using a different threshold in each subgraph.

This analysis highlights how increasing the threshold improves compression, but

it also increases the reconstruction error. The highest implemented precision for

lossless conversion is the one with the threshold value ϑ = 1; larger values of ϑ

lead to greater sparsity, a lower data rate, and improved efficiency, at the expense

of information loss and decreased accuracy.

The authors compared the reconstructed temporal sequences to the original

frame-based signal to characterize the event-based datasets. The same analysis

was again conducted after performing the temporal binning process, required

to prepare the data for clock-driven computation (see Section 4.2.2). Table 3.2

summarizes the results by reporting the mean number of events, compression

ratio γ with respect to encoded data at ϑ = 1, and reconstruction MSE values ϵ

both before and after the binning step for each threshold.

42 Input encoding and pre-processing

Fig. 3.9 Event-based sample encoding and reconstruction: (A) Sensor reading sequence
for a sample letter, with the respective sigma-delta modulated spikes. (B) Reconstructed
sequences from event-based data compared to the original sequence for a full letter
reading. [3]

Table 3.2 Event-based encoding characterization for each of the generated datasets at
different threshold settings. [3]

Before time binning After time binning

Threshold (θ) Events Comp. ratio(γ) MSE(ε) Bin size (ms) Events Comp. ratio(γ) MSE(ε)

1 87.6 1 0 5 58.1 1.5 39.5

2 38.0 2.3 0.35 3 35.5 2.5 12.5

5 10.5 8.3 3.70 3 10.5 8.3 4.1

10 3.4 25.7 12.29 5 3.4 25.7 12.3

Compression ratio γ is defined as the number of events at perfect encoding (θ = 1) divided by the number of events at each

higher threshold value. Values of the reconstruction error ϵ are calculated per reconstructed frame by MSE. Mean events

are calculated per sample.

Signal reconstruction before time binning

Starting from zero, the signal was reconstructed from the event stream by in-

creasing (in the case of an ON event) or decreasing (OFF event) the output by

an amount equal to the threshold used in the encoding. Figure 3.9B depicts the

reconstruction values for a single sample and taxel at various threshold settings.

The compression ratio γ is expressed as the quantity of events at ϑ= 1 divided by

the quantity of events at each threshold level. For each event-based dataset, the

reconstruction error ϵ is the mean square error between the original series and its

reconstructed frame-based series.

3.3 Additional analysis: Event-based encoding of tactile sensor data 43

The study of the reconstructed frame-based signal shows that increasing the

threshold reduces the number of events considerably, worsening the reconstruc-

tion error. However, the compression ratio γ grows faster than the reconstruction

error ϵ, indicating that the event-based dataset gains sparsity at the expense of

information content.

Signal reconstruction after time binning

The segmentation of data into time bins is necessary for certain classification net-

work implementations. Therefore, we tallied the total number of events after time

binning to measure the impact of time binning on the different encoded datasets.

Regardless of time binning, a lower encoding threshold always corresponds to a

higher total number of events, as illustrated in the top panel of Figure 3.10A. For

this reason, higher encoding thresholds result in less signal degradation in the

temporal binning phase; while increasing the encoding threshold considerably

reduces the number of events, lower-threshold encoding loses many events with

increasing time_bin_size, as shown in the bottom panel of Figure 3.10A.

The reconstruction of the frame-based signal from the event stream was con-

ducted for each feasible time_bin_size of the event stream and for each threshold

value. The reconstruction error ϵ is determined by the encoding threshold on the

one hand, and the implemented time binning on the other. Figure 3.10B depicts

the results, with markers at the optimal time_bin_size for each encoding threshold.

With increasing time_bin_size, there is a significant rise in reconstruction error

ϵ. This can be explained by the loss of events when many events fall within a

single time bin, which increases the reconstruction error by introducing an ac-

cumulating offset, as illustrated in Figure 3.10C. Furthermore, the discriminative

strength of amplitudes is lost, resulting in identical amplitudes for minor and

major changes following reconstruction. As seen in Figure 3.10D, as the threshold

increases, ISIs generally become longer, due to the growing sparsity of spikes.

The effect of time binning then diminishes, while the inaccuracy produced by

higher encoding thresholds becomes more significant. Overall, higher thresholds

are more resistant to the effect of time_bin_size, but they are also less capable of

reflecting temporal dynamics.

44 Input encoding and pre-processing

Fig. 3.10 Spike encoding: (A) Top panel: total number of events counted in the entire
dataset with respect to the threshold and time_bin_size. Bottom panel: relative number of
events detected in the dataset with time_bin_size = 1. (B) MSE of the reconstructed time-
binned signal as a function of the time_bin_size for each encoding threshold. The markers
emphasize the final time_bin_size selected to preprocess the event stream. (C) Frame-
based signal reconstructed from the event stream after time binning with a bin size of
5 ms for all given thresholds. (D) The same color coding as in (A,B) is used to represent the
number of events as a function of the ISI, with fixed time_bin_size as reported in Table 3.2.
The insets demonstrate the detail at ISI values equal to the time_bin_size employed, with
the vertical dashed line showing the minimal temporal resolution of 1 ms. [3]

3.4 Chapter summary 45

3.4 Chapter summary

Whether using event-based or digital sensors, the issue of selecting the proper

encoding is of great importance within the neuromorphic pipeline. Performing a

thorough comparison of the available encoding techniques, we found a depen-

dency between the quality of the encoding and the shape of the input data: its

frequency spectrum and bandwidth of the input especially make a difference in

which encoding techniques perform better than others. Additionally, the spike

count generated by an encoding technique influences the performance of the

downstream SNN: too long intervals between spikes — i.e., a reduced number of

spikes — lead to insufficient stimulation of the deep layers of the network and

inaccurate performance. This results poses a lower bound to the potential of SNNs

to limit power consumption by using sparse communication.

The encoding used for gathering the Braille dataset highlights a different

aspect of the issue. Despite not having access to an event-based tactile sensor, the

authors effectively created one by surrounding the digital sensor and a software

sigma-delta encoder with a conceptual black box, and recording its output. This

simulated event-based sensor effectively recreates the design process behind a

proper event-based sensor: an efficient encoder must be carefully prototyped and

tested, ensuring that the output format retains sufficient information about the

sensor input. In summary, the problem of encoding remains relevant even when

dealing with event-based sensors; meanwhile, the use of digital sensors coupled

with software encoders is not only a more accessible solution, but it can also be

useful for prototyping the qualities of different coding techniques and tuning their

interactions with other elements in the neuromorphic pipeline.

Once the input data has been gathered and encoded, it can be applied to the

inputs of a SNN. In Chapter 4, we will begin to examine the issue of building an

efficient neuromorphic application, starting from its abstract building blocks:

neuron models and network architectures.

Chapter 4

Neural models

Deep neural networks have seen tremendous success in a variety of disciplines

during the last decade. This accomplishment has been enabled by the mas-

sive availability of annotated data, as well as the spread of high-performance

computer equipment such as GPUs. On the other hand, DNNs are extremely

resource-intensive when it comes to energy usage, quantity and quality of training

data, and computing effort. Additionally, although ANNs have demonstrated

remarkable success in a wide range of applications, they are still constrained in

their ability to cope with temporal information. These factors have drawn re-

searchers’ attention to biological neural networks, which, in comparison to ANNs,

use fundamentally different architectures, neural computations, and learning

rules to attain extraordinary energy efficiency and online learning abilities. Within

Spiking Neural Networks (SNNs), biologically plausible neuron models such as

those explored in Section 4.1 communicate with one another in real time through

discrete electrical signals or spikes. Although SNNs have not yet matched the

performance of DNNs, there are specific tasks for which the gap is closing, and in

nearly every case, SNNs use significantly less energy to operate [214].

This chapter delves into the algorithms that underpin SNNs. Neuromorphic

computing has progressed thanks to significant advances in neuron modeling,

learning methods, and network topologies. Because event-based computing

introduces inputs with time domain information, it is necessary to rethink the

learning techniques heretofore used with non-spiking ANNs.

4.1 Neuron models 47

4.1 Neuron models

Spiking Neural Networks (SNNs) are made up of spiking neurons, linked together

by synapses. Biological neurons interact through the transmission of voltage

spikes, which determine the activity of recipient neurons: when a neuron reaches

a certain voltage polarization, it produces a spike and then reverts to its reset state,

or resting potential [215]. This allows neurons to pass around data asynchronously.

Since the energy consumed by a neuron depends on the amount of stimulation

it receives over time, biological brains are extremely energy efficient. This ap-

pealing characteristic is what compels neuromorphic computing to emulate the

mechanics of the animal neural network [216].

The field of neuron modeling has been stimulated by neuroscience researchers

seeking to generate accurate biological simulations in order to gain a better un-

derstanding of the brain. The Izhikevich model [217] is an example of a neuron

model that tries to bridge biological plausibility while maintaining computational

efficiency; the popularity of this model in the neuroscience world has led to it

being integrated into neuromorphic hardware accelerators such as ODIN [218].

On the other hand, neuromorphic engineers interested in brain-inspired comput-

ing for its power efficiency and unique time-encoding properties are willing to

deviate from biological plausibility in order to obtain better SNN performance or

higher compatibility with the hardware platforms that support them. For instance,

most widespread optimization strategies such as transfer learning and surrogate

gradient techniques perform better with simple models such as Integrate and Fire.

This variety of interests and applications in the neuromorphic computing field

has led to the development of a large variety of neuron models. The majority are

composed of a few common elements: an internal state, that keeps track of the

stimulation received; a threshold value for said internal state, which triggers the

firing output; and an optional refractory period τref, in which the neuron does not

fire and remains insensitive to stimuli [219].

4.1.1 Leaky Integrate and Fire (LIF)

The Leaky Integrate and Fire (LIF) model is by far the most popular and supported

archetype along all neuromorphic platforms and applications. It is the simplest

48 Neural models

and least computationally demanding representation, originally codified by neu-

roscientist Louis Lapicque in 1907 [220]. First, the internal state of the neuron is

its membrane voltage Vmem, which evolves as described by the time derivative of

the capacitance law with respect to a variable input current Isyn:

Isyn(t) =Cmem · dVmem(t)

d t
. (4.1)

The above equation describes the leak-free version of the model, simply referred

to as Integrate and Fire (IF). When a current appears at the input, V grows with

time until it hits a threshold voltage Vth. As soon as this happens, the neuron

emits a spike, then resets its membrane voltage to a preset resting potential Vrest .

Optionally, the model can remain at the resting potential for a refractory period

τref, reflecting more accurately the biological working of the neuron.

In the LIF model, a leak term Vmem(t)
Rmem

is introduced which allows the membrane

potential to slowly discharge over time, reflecting the diffusion of ions that natu-

rally occurs through the neuronal cell’s membrane. This not only matches more

closely the biological working of the neuron, but it also strengthens the temporal

dimension of the model, making repeated and frequent inputs more relevant than

inputs that are spaced apart in time. The LIF formula changes to

Isyn(t)− Vmem(t)

Rmem
=Cmem · dVmem(t)

d t
. (4.2)

The LIF model has long been a staple of computational neuroscience [221],

and it is currently a favorite method of building SNNs, not only for its computa-

tional and conceptual simplicity, but also because it allows compatibility with

existing ANN training methods. In fact, when τref = 0, τmem = 1, Rmem = 1, and

Vϑ = 1, the firing rate of a LIF neuron is similar to that of the ReLU activation

function in ANNs [214]: this allows to convert trained ReLU-based ANNs to an

equivalent spiking version, side-stepping the difficulty of training networks di-

rectly in the spiking domain [222]. In general, the LIF model does not account

for neural plasticity, and several modified models have been proposed in an

attempt to maintain the LIF’s computational simplicity while adding adaptive

terms that would allow for more powerful cognitive capabilities, especially in

time-dependent deep learning applications that require the neural network to

withhold memory of a prolonged input. One such model is the Adaptive LIF.

4.1 Neuron models 49

Adaptive LIF (ALIF)

The Adaptive LIF (ALIF) model modifies the LIF neuron with an adjustable thresh-

old that is increased after each emitted spike, then decays exponentially with a

time constant τa. Bellec et al. [223] demonstrated that this adaptive spiking neuron

model improves SNN performance. Additionally, the ALIF has attracted much at-

tention because its use in recurrent SNNs enables a powerful new training method

called e-prop, which aims to reproduce the performance of back-propagation

through time (BPTT), the most well-known training approach for recurrent neural

networks in traditional machine learning [224]. This advancement has shown

enough promise that future next-generation neuromorphic platforms such as

SpiNNaker 2 [122] and Loihi 2 [225] have announced support for some type of

ALIF.

4.1.2 Multi-compartmental neurons

Multi-compartmental neuron models differ from LIF and other simple models

such as Izhikevich because they attempt to replicate not only the pointwise be-

havior of a neuron but also its spatial configuration. The division of the neuron

into compartments allows to model the behavior of the dendrites separately from

that of the cell body (soma). The Urbanczik-Senn model [226], for instance, is

composed of 2 neuron compartments (somatic and dendritic) and 2 synapse types

(static and plastic); this implementation aims to emulate spike-timing-dependent

plasticity to enable supervised, unsupervised, and reinforcement learning. An-

other example is the pyramidal model, which reproduces the topology of the

biological pyramidal brain cell: with a pyramidal-shaped soma and two separate

dendritic trees. This model can be described by 3 compartments (somatic, basal

dendritic, and apical dendritic) and 3 synapse types (static apical, plastic apical,

and plastic basal).

As things currently stand, the real-time (and faster-than-real-time) simula-

tion of multi-compartmental neurons is an important target for neuroscientists.

Learning and development occur over lengthy durations in real brains, making

long-term investigation of these traits a substantial scientific problem; computer

models capturing accurate neuron and synapse dynamics can enable the explo-

ration of long-term phenomena such as lifelong learning or the exploration of

50 Neural models

brain disorders. While many analog or mixed analog-digital neuromorphic hard-

ware do not support multi-compartmental neurons, focusing instead on ASIC

implementation of simpler and more popular point-neuron models, there is an

effort to implement more complex models via software modifications on more

flexible digital platforms such as SpiNNaker [227].

4.2 Spiking Neural Network architectures

SNNs incorporate the biological concept of communication sparsity, and they

are very compatible with time-varying signals because of their functional simi-

larities to biological neural networks. On the other hand, direct training of SNNs

poses significant challenges, because of the complicated inter-neuron dynamics

and the non-differentiability of spiking signals [214]. For this reason, the most

widespread method of developing SNN architectures for practical applications is

ANN-to-SNN conversion; we will explore an example of this type of network in

Section 4.2.1. The development of ad hoc SNN structures is still a subject of lively

debate and research, and we will see some examples of proposed solutions in sec-

tion 4.2.2. The experiments detailed in this section will include architectures that

are particularly suited for the treatment of time-varying signals, either because of

proven functionality and good performance (as in the case of the spiking CNN),

or because of promising innovations brought by a new paradigm (as in Recurrent

Spiking Neural Networks).

4.2.1 ANN-to-SNN conversion: a spiking CNN

A convolutional layer, one of the most common ANN building blocks, is a type of

fully-connected layer that enables optimal analysis of data with a grid-like layout,

such as pictures, by making use of the spatial correlation of the input signal.

The representational qualities of early layers in CNNs are comparable to the

response properties of neurons in the primate’s primary visual cortex (V1) [214].

The substantial improvement achieved by the CNN architecture in the ImageNet

classification problem [228] remains one of the most prominent breakthroughs in

the field of deep learning.

4.2 Spiking Neural Network architectures 51

The analysis of time-varying signals can be accomplished using either con-

volutional or recurrent architectures. In previous work by the author and col-

leagues [2, 1], the convolutional neural network (CNN) was chosen as the basic

architecture to undertake initial training and enable transfer learning of a spiking

version of the same network. This decision was based on the state-of-the-art

results obtained by this type of network in the classification of audio signals cap-

tured by a neuromorphic cochlea [147]; subsequent trials [2] validated the CNN’s

computational and energetic efficiency in the analysis of time-varying data.

Architectural parameters

Starting with the work published in Dominguez-Morales et al. [147] and perform-

ing structural hyperparameter optimization, we created multiple test configura-

tions for the CNN structure. The tested networks all had the fundamental structure

shown in Figure 3.1, but the number of filters in the two convolutional layers and

the number of fully-connected layers differ. All configurations were trained and

tested using the WISDM and FSD datasets (see Chapter 2).

C12-C24-F1, C6-C12-F2, and C12-C24-F2 were the best performing networks.

The median accuracy recorded by the C12-C24-F1 configuration for FSD classi-

fication is 53.00 %, whereas the other two networks perform significantly better,

getting 82.50 % for C6-C12-F2 and 84.00 % for C12-C24-F2. C6-C12-F2 and C12-

C24-F2 are the best-performing architectures for the WISDM dataset, with median

accuracies of 45.00 % and 52.50 %, respectively. The explanation for these low

values is not fundamentally linked to the network structure, but rather to a lower

efficiency of the evaluated encoding techniques with this type of low-frequency

input.

4.2.2 Feed-forward and recurrent SNNs

Recurrent SNNs are composed of recurrently connected layers of spiking neu-

rons. Yin et al. [229] showed that RSNNs could outperform traditional ANNs for

tasks with an inherent temporal dimension, including speech recognition. Fur-

thermore, their RSNNs brought a significant advantage in energy savings over

non-spiking RNNs with comparable accuracy, thanks to their sparse spiking ac-

tivity. In Müller-Cleve et al. [3], the author and colleagues deployed a RSNN to

52 Neural models

achieve a quantitative comparison of the different possible strategies suitable for

effectively dealing with time-based Braille reading signals. In Fra et al. [2], instead,

a Legendre Memory Unit was considered for the classification of HAR signals. The

characteristics of these two networks are detailed in the following paragraphs.

RSNN for event-based Braille data

The authors used a two-layer RSNN based on Cramer et al. [121] and Zenke and

Vogels [230] to perform classification on the Braille dataset (see Chapter 2). The

input was encoded as an event stream with four different thresholds.

The network employed a modified version of the LIF, the current-based (CUBA)

LIF model:

τmem
dU (l)

i

dt
=−(U (l)

i −Ur est)+RI (l)
i , (4.3)

with Ui representing the membrane potential of neuron i (hidden state) in layer

l , Urest representing the resting potential, τmem representing the membrane time

constant, R representing the input resistance. The input current Ii is defined as:

dIi

dt
= Ii (t)

τs yn
+X

j
Wi j S(0)

j (t)+X
j

Vi j S(1)
j (t), (4.4)

with τsyn representing the synaptic decay time constants, S j (l) representing the

spike train of the j th neuron at the l th layer, Wi j representing the forward weights,

and Vi j representing the recurrent weights.

I (l)
i (t) =αI (l)

i (t −1)+X
j

Wi j ·S j (t) (4.5)

U (l)
i (t) = (βU (l)

i (t −1)+αI (l)
i (t)) · (1.0−Ureset), (4.6)

with β= exp(−time_bin_size
τmem

) being the voltage decay constant, α= exp(−time_bin_size
τmem

)

the current decay constant, Ureset the reset potential after an event is elicited, and

Ii (l) the synaptic input current from neuron i in layer l multiplied by the input

resistance R. R =1Ω for convenience.

4.2 Spiking Neural Network architectures 53

The learning technique adopted was Backpropagation Through Time (BPTT).

In this algorithm, the error at the output must be transmitted backwards through-

out the whole network, unrolled in time. The feedforward and recurrent weight

matrices Wi j and Vi j change after a specified loss L to accomplish supervised

learning:

Wi j ←Wi j −η ∂L

∂Wi j
and Vi j ←Vi j −η ∂L

∂Vi j
, (4.7)

with η as the learning rate. The partial derivative of a fast sigmoid function σ(x) is

used as a surrogate gradient in the backward pass (training) to avoid vanishing

issues when using a binary step function Θ(x) in the forward pass (inference),

whose derivative is zero everywhere except at the zero crossing, where it is infinite.

σ(U (l)
i) = U (l)

i

1+λ|U (l)
i |

, (4.8)

WhileΘ(x) is insensitive to multiplicative re-scaling, σ(x) requires the inclu-

sion of the scale parameter λ as part of the hyperparameter optimization.

To compute the gradients, the authors used custom PyTorch code [231, 230] to

substitute the derivative of spiking non-linearity with said differential function.

We apply the cross entropy to the active readout layer l = L for the loss. It is

formulated as follows for data with Nbatch samples and Nclass classes:

L =− 1

Nbatch

NbatchX
s=1

✶(i = y2) · log

exp

‡PT
n=1 S(l)

i [n]
·

PNcl ass
i=1 exp

‡PT
n=1 S(l)

i [n]
·
 , (4.9)

with n as the time step.

Finally, we must define the regularization loss functions L1 and L2:

L1 = sl

Nbatch +N

NbatchX
s=1

NX
i=1

h
max

n
0,

1

T

TX
n=1

S(l)
i [n]−θl

oi2
(4.10)

indicates the lower-threshold spike count regularization per neuron, with strength

sl and threshold ϑl , and

54 Neural models

L2 = su

Nbatch

NbatchX
s=1

h
max

n
0,

1

N

NX
i=1

TX
n=1

S(l)
i [n]−θu

oi2
(4.11)

is the upper-threshold mean population spike count regularization, with strength

su and threshold ϑu . The overall loss is represented by

Ltot =L +µ1L1 +µ2L2, (4.12)

using µ as a scaling factor, and is reduced using the Adamax optimizer [232].

It is necessary to account for a time binning step for the input event stream

while implementing and simulating SNNs based on this model in PyTorch. Despite

the goal of working with asynchronous and sparse event-based data, fixed frame

lengths were required to correctly represent algorithmic time steps in the domain

of traditional clock-driven hardware such as CPUs and GPUs. The time retrieved

from the signal recordings (Trec) was divided into T chunks, with T defined as T =R
(Trec/time_bin_size) and the quantity time_bin_size inserted as an additional

hyperparameter of the HPO. The encoded signal was then iterated over with a

stride equal to time_bin_size, and a value of 1 was assigned to any time bin where

at least one spike was found, otherwise a 0. The neuron in the output layer with

the greatest spike count at the end of a trial is the winner.

Legendre memory unit

The Legendre memory unit (LMU) is a novel recurrent architecture capable of

approximating the behavior of time cells using ordinary differential equations

(ODEs) integrated over time [233, 234] for a continuous-time delay [235]. The LMU

network’s fundamental attribute is its capacity to decode a delayed signal u(t −θ′)
contained within a sliding window of length θ via a high-dimensional projection

of the input u(t) orthogonalized using the shifted Legendre polynomials [236].

Equation 4.13 gives the i th shifted Legendre polynomial:

Pi (r) = (−1)i
iX

j=0

ˆ
i

j

!ˆ
i + j

j

!
(−r) j , (4.13)

4.2 Spiking Neural Network architectures 55

which is used to delay the input signal via Equation 4.14:

u(t −θ′
) ≈

d−1X
i=0

Pi

ˆ
θ

′

θ

!
mi (t), (4.14)

where the highest-order d −1 in the series expansion is related to the dimension

of the state vector m(t) — defined by the input u(t) — as shown in equation 4.15:

θṁ(t) = Am(t)+Bu(t), (4.15)

with A and B representing the ideal state-space matrices derived using the Padé

approximants as follows in Equations 4.16 and 4.17:

A = [a]i j ∈Rd×d , ai j = (2i +1)

(
−1 i < j

(−1)i− j+1 i ≥ j
(4.16)

B = [b]i ∈Rd×1, bi = (2i +1)(−1)i , i , j ∈ [0,d −1]. (4.17)

Despite the fact that there is limited literature on LMU applications, remark-

able findings have already been reported, demonstrating state-of-the-art out-

comes in terms of accuracy and an interestingly small number of parameters

while performing keyword detection [237].

4.2.3 A comparison of convolutional and recurrent SNNs for Hu-

man Activity Recognition

In Fra et al. [2], the author and colleagues benchmarked spiking and non-spiking

networks of both convolutional and recurrent types with the HAR task. As shown

in figure 4.1(a), the CNN consisted of two convolutional layers followed by a max

pooling layer, a flattening layer, and two dense layers. We used the same structure

for both non-spiking and spiking convolutional neural networks (figure 4.1(b)),

which are referred to as CNN and sCNN in the following. The spiking CNN was

converted from its non-spiking counterpart using the Nengo neural simulator and

the NengoDL converter. In contrast, we constructed a recurrent architecture with

a structure consisting of two long short-term memory (LSTM) layers connected to

a dropout layer, followed by a dense layer (figure 4.1(c)).

56 Neural models

Fig. 4.1 A summary of the networks investigated. The Converter in NengoDL was used
to transfer the convolutional architecture used in the non-spiking domain (a) into the
spiking domain (b). Instead, the recurrent architectures have distinct structures in the
two domains: the non-spiking implementation (c) used LSTM units followed by a dropout
layer, whereas the recurrent SNN was obtained using a Legendre Memory Unit (f), which
was also implemented in the non-spiking domain (d). An additional modification has
been investigated for both the non-spiking (e) and spiking (g) LMU-based architectures
by introducing frequency filtering on the input. [2]

Unlike convolutional designs, our spiking implementation of recurrent net-

works does not rely on the same architecture as in the non-spiking domain: Fig-

ure 4.1(f) summarizes how we employed an LMU instead of an LSTM, using a

single LMU layer instead of a sequence of LSTM-dropout pairs. We used the

LMU in a non-spiking network as well to extend the network comparison and

benchmarking (Figure 4.1(e)). The spiking CNN, the LMU-based network, and its

spiking version (sLMU) were built straight from their non-spiking counterparts

using the Nengo neural simulator and the NengoDL converter.

Comparison criteria

We produced a trained classifier with optimal hyperparameters for each network

architecture at the end of the proposed workflow, denoted as step (f) in figure 4.1.

4.2 Spiking Neural Network architectures 57

We then set out to evaluate these classifiers in order to assess the benefits of

neuro-inspired techniques.

We examined various metrics in addition to classification accuracy to make a

full comparison across networks that rely not only on distinct designs, but also on

different intrinsic functioning principles. For instance, the number of parameters

and memory footprint have been taken into account for all networks. For Intel’s

Movidius Neural Compute Stick 2, we calculated the number of floating point

operations (FLOPs) and the accompanying anticipated energy consumption for

non-spiking networks. For Intel Loihi, we analyzed the number of neurons, the

number of synaptic operations (SOPs), and the accompanying predicted energy

consumption for spiking networks. Our energy assessments are based on the

findings in Blouw and Eliasmith [56].

Results and discussion

In the neuromorphic realm, accuracy can not be treated as the only significant

parameter in neural network benchmarking, and classifiers comparison in general.

Other metrics, such as energy consumption and memory footprint, provide critical

information for a more thorough evaluation and understanding of neuro-inspired

solutions to classification challenges.

As a result, we accounted for several metrics. They were evaluated for each

network by taking into account the ideal hyperparameter configuration provided

by specially built NNI experiments, each of which performed 1000 trials; therefore,

the development effort in optimizing the parameters for the various systems was

equivalent. Table 4.1 summarizes the metrics studied, along with the associated

values for each network.

We consider classification accuracy first: the LSTM-based network (table 4.1)

achieves the best performance in this regard, scoring (96.42±0.03)%. Remarkably,

its spiking counterpart achieves the second-highest accuracy. The recurrent net-

work based on the spiking implementation of the LMU with rectified integrate

and fire neurons achieves a test accuracy of (94.51±0.15)%, outperforming con-

volutional architectures in the non-spiking domain. Similarly, the spiking LMU

supplemented with auditory-inspired frequency filtering surpasses both spiking

and non-spiking CNNs, with a test accuracy of (94.39±0.13)%.

58 Neural models

Table 4.1 Summary of the metrics evaluated. The stated values were achieved using the
best hyperparameter setup for each network. [2]

LSTM CNN sCNN LMU
LMU
(ff) sLMU

sLMU
(ff)

Test
accuracy

(%)

96.42
±

0.03

93.81
±

0.10

92.47
±

0.08

91.71
±

0.13

88.16
±

0.13

94.51
±

0.15

94.39
±

0.13

Number of
parameters

2,125,222 144,899 167,973 76,130 89,014 91,200 132,540

Memory
footprint

(MB)

8.50 0.58 0.67 0.30 0.36 0.36 0.53

FLOPs
(x103)

4,249.65 2,828.89 / 158.66 197.00 / /

SOPs
(x103)

/ / 10.82 / / 99.91 127.95

Energy on
Movidius

(µJ)

3,199.99 2,130.15 / 119.47 148.34 / /

Energy on
Loihi

(µJ)

/ / 5.49 / / 50.66 64.87

The total number of parameters, which directly relates to the memory foot-

print, is the second statistic we analyzed further down the rows of table 4.1. From

this point of view, the LSTM-based network’s dominance as the ideal option is

challenged: this design, with more than two million parameters, is by far the most

demanding in terms of memory footprint, with a size of 8.50 MB. The network

based on the non-spiking LMU is more than one order of magnitude smaller, with

only 0.30 MB of memory footprint. Similar values are reported for LMU (ff) and

sLMU, while the spiking LMU with frequency filtering slightly surpasses them,

with a size comparable to convolutional architectures. The diameter of the circles

in Figure 4.2 indicates the relative size of the various networks.

It is simple to find the best network in terms of accuracy and the one with the

least memory footprint by combining the information received from the results

given above. However, as these two networks do not coincide, we must add a

third metric to our multi-objective assessment: energy consumption. This step

quantifies the advantage of a neuromorphic approach for the considered task;

the set of three fundamental quantities extracted from each network elevates the

reported benchmarking above a simple comparison of values, transforming it

into a useful tool for future applications of this neuro-inspired approach. The

4.2 Spiking Neural Network architectures 59

88 90 92 94 96 98 100

Accuracy (%)

100

101

102

103

104

E
n
e
rg

y
 (

J)

LSTM
CNN

sCNN

LMU
LMU (ff)

sLMU

sLMU (ff)

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s
 (

x
1

0
3
)

Fig. 4.2 An energy vs. accuracy graphic can be used to effectively depict how meaningful the
gain in terms of energy reduction is with respect to a hypothetical decline in classification
accuracy. The results provided here show that all of the examined SNNs and LMU-based
networks consume at least one order of magnitude less energy than typical DNNs. In
terms of memory footprint, the same conclusion can be obtained, with CNN and LSTM
proving to be the largest networks. Spiking LMUs perform comparably to CNN and LSTM
in terms of accuracy, even outperforming the former. [2]

bottom two rows of table 4.1 highlight that energy consumption is assessed using

two different and specialized pieces of hardware: Intel Movidius Neural Compute

Stick 2 for non-spiking networks and Intel Loihi for spiking networks. Quantitative

analyses are conducted in both circumstances using the results of Blouw and Elia-

smith [56], which provide the energy cost for a single operation. For each analyzed

network, the number of operations and the necessary energy per inference are

presented in table 4.1. The same results are shown in figure 4.2, where the energy

is on the y-axis and the number of operations determines the color of the circles.

As expected, all of the spiking networks are less computationally expensive, with

the spiking CNN delivering the lowest value of 5.49µJ. It is also worth noting that

the assessed energy usage for all LMU-based networks is at least one order of

magnitude lower than that of CNN and LSTM. LSTM reports the highest energy

consumption as well as the largest memory footprint. With more than 3000µJ,

said architecture consumes over three orders of magnitude more energy than

the sCNN. Within the range defined by these two opposites — the sCNN and the

60 Neural models

LSTM — the sLMU is the one pairing the highest accuracy to the lowest energy

cost: 50.66µJ to achieve the second-best accuracy in this test, which makes it

about two orders of magnitude less energy-hungry, but comparable in accuracy

to the LSTM-based architecture.

The spiking LMU’s trade-off between high classification accuracy and low

energy consumption, together with its tiny memory footprint, makes this archi-

tecture a viable contender for on-edge applications of neuromorphic classifiers

aiding real-time tasks. The reported results are also summarized in Figure 4.3,

where a radar graphic is employed to emphasize the strengths and limitations of

the researched networks, in order to evaluate the different designs’ capability to

address different tasks and applications.

Accuracy

P
a
ra

m
e
te

rs

M
em

ory
Operations

E
n
e
rg

y

LSTM CNN sCNN LMU LMU (ff) sLMU sLMU (ff)

Fig. 4.3 A radar chart of the supplied results for quick comparison of the analyzed networks
based on each of the evaluated variables. The classic DNN designs under consideration,
namely the LSTM and the CNN, are surpassed by the alternative ones based on the LMU
in all energy and memory parameters; the spiking CNN also outperforms the LSTM and
non-spiking CNN in terms of both energy and memory. [2]

4.3 Learning methods

Learning in neural networks, also known as training, entails changing the connec-

tions between neurons. While ANNs have found successful training methods in

4.3 Learning methods 61

stochastic gradient descent and backpropagation, research in the field of SNNs

has yet to uncover a reliable learning algorithm.

Several candidates for an effective native training method for SNNs have been

proposed [214].

Such methods can be based on a global or local technique. Global learning ap-

proaches, like the classical approach used for ANN architectures, involve updating

all of the network’s hyperparameters at each training step; such algorithms include

Spike-Time-Dependent Plasticity [169] and Back-Propagation Through Time [238].

Local techniques, on the other hand, modify only a subset of the hyperparameters

at each step; examples are Hebbian learning [239] and E-prop [224].

Spike-time-dependent plasticity (STDP) [240] is an unsupervised learning

method, incorporating a localized learning rule at the synapse level. Synaptic

plasticity determines changes in synaptic strength based on patterns detected in

the synapse’s activity. Although the synapse-based learning rule is thought to be

biologically more realistic, learning performance is typically lower than that of

supervised learning.

Other training methods take inspiration from established methods in the world

of ANNs, adapting supervised learning with surrogate gradient descent and spike

backpropagation. SLAYER [241] is a backpropagation-based learning mechanism

which establishes a time-based credit distribution policy to propagate the output

error to preceding layers in the network. This method uses a stochastic spiking

neuron approximation rather than a surrogate gradient method to calculate the

error backpropagation. Bellec et al. [224] proposed instead the eligibility propa-

gation (e-prop) algorithm, which leverages both synaptic plasticity and gradient

descent methods to achieve optimal training for recurrent SNNs. The e-prop

method was iterated upon by Frenkel and Indiveri [242] to improve the detection

of second-long time dependencies, and constitutes one of the most promising

novel learning methods in the neuromorphic field.

Finally, converting ANNs to SNNs [243] is an alternate method for indirectly

training SNNs which consistently delivers state-of-the-art results in terms of

accuracy. In the following section, we will delve deeper into this method, also

known as transfer learning.

62 Neural models

4.3.1 Transfer learning

The Transfer learning strategy is the most commonly used way to train an SNN

in the field of neuromorphic state-of-the-art for categorization of time-variant

signals [244, 245, 147, 246]. The reason for its popularity is that it allows network

designers to use established ANN methods (such as backpropagation and gradient

descent) to train SNNs, sidestepping the difficulty of training a network in the spik-

ing domain. These difficulties mainly stem from the non-differentiability of the

spike signals, and despite ongoing efforts [224, 247], a universally effective spike-

based training method has not yet emerged; transfer learning, then, represents a

useful shortcut to quickly optimize and deploy working SNN prototypes.

Implementing ANN-to-SNN conversion allows to maintain the ANN’s informa-

tion transmission and function, while lowering the effort associated with signal

transmission and matrix operations, thanks to the sparse and binary nature of

spiking signals [214]. The transfer learning strategy involves training an artificial

neural network (ANN) and then transferring the resulting weights to a spiking

network with the same topology [248]. These conversion methods allow the de-

rived SNNs to achieve results comparable to the original network, and therefore

represent a readily employable solution for the deployment of energy-efficient

neural network applications.

In Forno et al [1], we used transfer learning to study the effect of input signal

encoding on the training of a spiking convolutional neural network (sCNN). The

layer structure and perceptor model for CNN training were carefully selected to

ensure identical behavior in the SNN and CNN architectures after weight transfer.

A pooling layer implements an average pooling operation, using the method

proposed by Liu et al. [168] and used in Dominguez-Morales et al. [147] for the

CNN architecture. The neuron model utilized in the convolutional and fully

connected layers is the modified ReLU described by Liu et al. [168], and the

softmax activation function is used in the output layer. Finally, all neurons have

their bias parameter set to 0. The input data is fed to the non-spiking CNN in the

form of sonograms, as seen in the bottom left of Figure 7.5; the network can then

be trained using any of the traditional methods, such as the Back-propagation

or Stochastic gradient descent algorithms. Following the completion of the CNN

training process, a "twin" SNN network is constructed; this new network adopts

the Leaky Integrate and Fire (LIF) neuron model, with the synaptic weights set

4.4 Optimizing the architecture: model compression 63

equal to those recovered from the CNN. To adapt the data to the SNN’s input

layer, the sonogram is subjected to a final Poisson Rate encoding step. Because

all encoded data is processed in the same manner, this strategy allowed for a

consistent and fair evaluation method for the various coding systems.

4.4 Optimizing the architecture: model compression

After the training process, numerous optimization strategies may be used to

reduce the size of the network prior to deployment. One of these is model com-

pression. We used two phases [1] to perform model compression on a spiking CNN

trained by transfer learning: synapse reduction, which allows us to deliberately

minimize the number of connections between neurons, and fine-tuning, which

optimizes the network’s remaining parameters. The qualitative and quantitative

benefits of using model compression are numerous: obtaining a much smaller

network, suitable for embedded systems due to a smaller memory footprint and

a lower computational cost; making network simulation in non-neuromorphic

hardware faster; and, in some cases, improving accuracy thanks to a reduction in

the overall stimulus transmitted through the synapses, which can introduce noise

during the computation.

The synapse reduction approach used here involves selectively eliminating

connections between neurons in all layers except the pooling layer based on the

weight associated with the synapse. This elimination is applied without affecting

the network’s structure in terms of the number of layers and the neurons con-

tained in each, by determining the distribution of the values for synaptic weights

and then gradually deleting the connections with the lowest weights. Since for

excitatory connections a higher weight associated with a synapse equates to in-

creased excitability of the neuron when stimulated, this technique allows for

the elimination of synapses that contribute only marginally to the production of

spikes. Inhibitory synapses exhibit the opposite behavior.

The network’s classification accuracy often degrades after the synapse reduc-

tion phase. To restore or even improve on the original classification performance,

a fine-tuning step is used: after restricting the removed weights to 0, a CNN

with the remaining connections is retrained for 5 epochs, then the weights are

transferred back to the SNN version.

64 Neural models

Fig. 4.4 Median test accuracy after synapse reduction (A, C) and fine-tuning (B, D) of all
encoding class, filter type, number of channels, and feature extraction bins combinations
for architectures C6-C12-F2 and C12-C24-F2 performing classification of the FSD and
WISDM datasets. [1]

After determining the best-performing CNN structure (as explained in Sec-

tion 4.2.1), we employed the model compression approach to reduce network

connectivity, therefore lowering memory, compute, and energy needs. To put the

aforementioned strategies to the test, we apply the synapse reduction process

to the best-performing network topologies from prior experiments: C6-C12-F2

and C12-C24-F2. Based on the distribution of their absolute values, we gradually

eliminate connections with increasing synapse weights: initially, we remove con-

nections whose weight is less than or equal to the first quartile, then the median,

and lastly the third quartile. Figure 4.4A depicts the effect of synapse reduction on

FSD dataset classification: the more connections eliminated, the lower the classifi-

cation performance. This trend is caused by a decrease in the number of spikes in

the network, which makes it difficult to excite the neurons in the fully connected

layers correctly. To optimize the model described by the residual synapses, the

smallest network (C6-C12-F2) is fine-tuned by copying the connection settings

4.4 Optimizing the architecture: model compression 65

Fig. 4.5 Summary of network settings that enhanced performance on the WISDM dataset
following model compression. [1]

back to the original CNN and retraining it for 10-20 epochs. When the retrained

weights are applied to the final version of the sCNN, the accuracy is equivalent

to the entire network, with a few configurations surpassing the original network

by up to 1.75 %. By pruning up to the third quartile, the compressed networks

achieve a median test accuracy of 81.00 % while keeping only 25 % of the original

network size (Fig. 4.4B); this median value is attained across all filter bank, feature

extraction, and encoding algorithm combinations for this particular design.

In the case of WISDM, synapse reduction reduces accuracy as well (Fig. 4.4C).

However, after fine-tuning the network for the C12-C24-F2 design, an increase

in the maximum possible accuracy can be recorded for some configurations,

resulting in greater performance for the minimized network than the whole net-

work. For instance, the ZCSF algorithm for 16 channels, 18 bins with 3rd-quartile

synapse reduction achieves an increase of of 1.7 %, to 91.7 %, whereas the SF

algorithm for 16 channels, 18 bins with median synapse reduction achieves an

increase of 8.3 % to 95.0 % accuracy.

This enhancement can be attributed to the combined effect of synapse reduc-

tion and fine-tuning, which allows for a reduction in the number of connections

in the network while maintaining a model suitable for data representation: this

results in a reduction in the noise traveling through the network, which benefits

66 Neural models

the classification process. Figure 4.5 depicts configurations that improve their

performance after model compression.

4.5 Chapter summary

Choosing the right network architecture for a neuromorphic system is crucial for

its successful operation. Neuromorphic technology allows for a very detailed mod-

eling of the internal dynamics of a network layer, including the complex behavior

of a single neuron. When it comes to designing neuronal models, there is a high

degree of flexibility as they can be tailored to meet specific requirements, either

by drawing inspiration from biology or by creating computational units that are

less realistic but serve a particular purpose. Despite the numerous possibilities,

the most commonly used neuron model for practical applications is the Leaky

Integrate & Fire (LIF) model, which is preferred because of its low computational

load. In particular cases, the drawbacks of the LIF model can be compensated

by integrating populations of more complex neurons (such as Adaptive LIFs) to

enable additional features in these computational units. Whatever the chosen

neuron model, the interactions between layers and single neurons must be care-

fully evaluated in order to validate proper propagation of information throughout

the network.

The choice of the classifier network is especially important because it de-

termines the efficiency and accuracy of the neuromorphic system. The spiking

Convolutional Neural Network (sCNN) is appealing as a classification architecture,

due to its ease of implementation and the possibility of transfer learning using

well-known and reliable Artificial Neural Network (ANN) methods. However, more

complex networks such as the Legendre Memory Unit (LMU) and the Reservoir

Spiking Neural Network (RSNN) are capable of natively creating a memory trace

of past events in their recurrently connected reservoirs; this capability enables the

classifier to correlate time-varying events on a longer scale. In summary, selecting

the right classifier network, and incorporating the most advantageous neuron

models, can greatly enhance the functionality and performance of a neuromor-

phic system.

While it is crucial to carefully choose the best classifier network for the task at

hand and to consider the strengths and limitations of different neuron models,

4.5 Chapter summary 67

the modelling and architectural choices for a neuromorphic realization of a SNN

are also necessarily informed by the software and hardware available to imple-

ment them. In Chapter 5, we will examine some of the available software for the

design and deployment of neuromorphic applications, delving into two use cases

for hyperparameter optimization and an example of system hardware handling

placement and routing tasks for the SpiNNaker platform.

Chapter 5

Software frameworks

While research in neuromorphic hardware has been intense, creating a plethora

of alternatives focusing on many different aspects of SNN applicability, the ef-

fort on the software side has only recently begun to see significant results. Yet,

while neuromorphic hardware shows tremendous promise for time and resource-

constrained application, its potential cannot hope to be fully realized in practice

without a solid and accessible software stack enabling widespread access to these

platforms for as many developers as possible.

At the present moment, there is not a single all-encompassing framework that

has been embraced by the community to design the entire stack of a neuromorphic

application. In this chapter, we will focus on software designed to aim two main

goals: first, the design, optimization and simulation of a SNN, and second, the

mapping of such a network to a specific hardware platform and its interfacing

with the external world.

5.1 SNN specification software

In the wider world of deep learning, there are several end-to-end network specifi-

cation platforms, such as Tensorflow/Keras and PyTorch. Building on decades of

experience with Von Neumann-based computing, these frameworks are designed

to deliver an all-encompassing development environment that allows to design,

compile, test and deploy a deep learning model on CPU or GPU using the same

tool library. Furthermore, their availability as free/libre open source software has

5.1 SNN specification software 69

made knowledge sharing and experimentation easy and accessible to develop-

ers of all experience levels, enabling continuous innovation both in academic

research and in the commercial field.

The comparative complexity of Spiking Neural Networks and of the novel

hardware platforms designed to accelerate their execution has made it difficult

to realize software frameworks as powerful as those currently available for deep

learning. However, especially in recent years, an increasing number of solutions

have appeared, proposing to close this gap.

5.1.1 PyNN

PyNN [249] is one of the most well-known development frameworks in the neuro-

morphic field. When this Python library was proposed in 2009, the neuromorphic

community was seeing the advent of specialized SNN simulators, such as NEST

and Brian, which exploited efficient multi-threading parallelism to run complex

event-based simulations on multi-core machines and computer clusters. PyNN

provided a unified front-end to most unified simulators, allowing developers to

describe neuron models and network architectures at various levels of abstraction

and to run them on a variety of software and hardware simulators. With time,

PyNN was extended with the ability to compile and map SNN models on neuro-

morphic hardware, such as BrainScaleS [250] and SpiNNaker [28, 251]. Thanks

to its widespread adoption across different research institutions, PyNN has be-

come one of the most useful tools to quickly build portable SNN applications,

encouraging code sharing and reuse and serving as a basic framework to build

more analysis, visualization, and data-management applications.

5.1.2 Nengo

Nengo [252] was developed as a simulator capable of providing sophisticated

networks with cognitive abilities starting from single neuron models, using the

Neural Engineering Framework [191] as a guiding principle to build neural models

accounting for functional objectives as well as anatomical constraints.

Nengo translates the three NEF principles, namely representation, transforma-

tion, and dynamics, into the fundamental units for network development, defining

70 Software frameworks

three core objects: ensemble, node, and connection. Their combinations yield

two more items, network and model, while a probe allows data collection during

simulations. This set of six front-end objects is the toolbox for creating the neural

model that will be handed to the Nengo simulator, which contains the back-end

functionality for network execution.

The versatility of Nengo’s simulator is a major feature, as seen by the ability

to adapt it to specific, and possibly specialized, hardware [253]. NengoLoihi,

for example, is a dedicated backend to execute Nengo models on Intel Loihi.

Furthermore, because of this flexibility, models from various frameworks may be

easily integrated using NengoDL’s converter, which adapts deep learning models

to event-based models by substituting standard activation functions and layers

with Nengo’s spiking neuron populations.

5.1.3 EONS

Because of the complex interactions between spiking neurons, reusing knowledge

from the DL field to build SNNs may not yield the best results. An alternative

approach is EONS (Evolutionary Optimization for Neuromorphic Systems), a

platform that exploits the principles of evolutionary optimization to easily build

novel SNN applications and prototype them on neuromorphic systems. Starting

from randomly generated populations of neural architectures, EONS evaluates

them and assigns a fitness score to each solution, then employs evolutionary

operands such as crossover or mutation to "evolve" a new generation of networks

from the first one. This system allows to automatically build network "blobs" with

sometimes unintuitive connections, such as recurrently connected reservoirs,

which nonetheless perform well on classification and control tasks. EONS can

also be supplied with neuromorphic hardware constraints in order to adapt the

network mapping to a target machine.

5.2 SNN optimization

ANNs can be described from two complementary viewpoints. On the one hand,

there is the architecture, which specifies the number and kind of layers used, as

well as how they are interconnected; on the other, there are the hyperparameters,

5.2 SNN optimization 71

which specifically identify each network and determine its fundamental behavior.

As a result, hyperparameter optimization (HPO) must be considered while inves-

tigating and comparing different network topologies, especially when needless

complexity must be avoided [254].

The neural network intelligence (NNI) toolbox [255] is a software kit for run-

ning automated ML experiments. Users supply the program with one or more

target parameters and define the desired search space; then, NNI uses various

tuning algorithms to automatically generate trial jobs and determine the parame-

ter configurations that optimize the target result. In the following, we will explore

in detail two use cases for NNI with different applications.

5.2.1 Case study 1: HPO for HAR

In our study of spiking and non-spiking networks for HAR classification [2], we

performed NNI optimization for each of the networks introduced in Section 4.2.3

and described in Figure 4.1. Each optimization experiment consisted of 1000

trials, using the built-in annealing algorithm as the tuner. To help reduce the

problem of local minima affecting annealing techniques [256], each trial set in-

cluded 4 regularly spaced random tuner reinitializations. At the end of each trial,

made up of 100 training epochs, the sets of weights delivering the best training

accuracy were retrieved to evaluate the test accuracy, which was the experiment’s

optimization target. All of the analyzed networks were trained using the Adam

optimizer with constant learning rate, including learning rate optimization during

the experiment trials. Table 5.1 provides an overview of the hyperparameters

found by the HPO.

72 Software frameworks

Table 5.1 Summary and description of the optimized hyperparameters. All of the hyperpa-
rameters reported for the non-spiking implementations are also used for the correspond-
ing spiking networks. [2]

Network Hyperparameter Description

LSTM

units_1
Number of units in the LSTM layers

units_2

dropout_1
Dropout rate between the LSTM layers

dropout_2

l2_2
L2 regularization applied to the recurrent weight matrix

in the second LSTM layer

CNN

filters_1
Number of filters in the convolutional layers

filters_2

kernel_size_1
Dimension of the kernel in the convolutional layers

kernel_size_2

dense_1 Number of units in the first Dense layer

Spiking CNN

target_rate_1 Target value for neurons firing rates regularization
in the convolutional layerstarget_rate_2

reg_conv_1 L2-like regularization applied to the neurons firing rates
in the convolutional layersreg_conv_2

scale_firing_rates Scale factor for the neurons firing rates

synapse
Time constant of the synaptic low-pass filter

on the output of all the neurons

n_steps
How long (in simulation time steps ⋆) the input

is presented to the network

LMU

units Size of the LMU kernels

order Number of Legendre polynomials

theta Length of the sliding window

synapse_in
Time constant of the synaptic low-pass filter

on the input connection of the LMU

synapse_out
Time constant of the synaptic low-pass filter

on the output connection of the LMU

tau
Time constant of the discretized synaptic low-pass

filter on the internal connections to memory

Spiking LMU ⋆⋆

n_neurons
In place of units, size of the neuron ensembles (whose

number is defined by order)

synapse_all
Time constant of the synaptic low-pass filter on

the connections between neuron ensembles

max_rate Firing rate for neuron input equal to 1

All
batch size Number of training examples in each learning iteration

learning rate Step size for weights update in each learning iteration

⋆ The default value in Nengo of 1 ms is used
⋆⋆ All the hyperparameters for the non-spiking LMU are specifically re-optimized for the spiking implementation

5.2 SNN optimization 73

Fig. 5.1 Two iterations of NNI search for the LMU performing HAR classification. (A) A
first iteration of the search finds a range of optimal values for the network parameters. (B)
To refine the search, the parameter optimization is repeated, restricting the search space
to the best performing ranges (the red areas in (A)). [2]

5.2.2 Case study 2: HPO for Braille reading

In order to validate the novel Braille dataset [3], recurrent (RSNN) and feedforward

(FFSNN) models were built and tuned with the same parameter optimization

approach presented in Case Study 1. A separate optimization was performed

for each of the event streams derived from the original frame-based signal by

varying the encoding threshold value ϑ. Each HPO took 600 trials using the Anneal

algorithm with the values provided in Table 5.2. To limit the impact of local

minima, each experiment included two evenly spaced random reinitializations of

the tuner. All trials were made of 300 training epochs, with intermediate outcomes

for both training and test at the conclusion of each epoch and an 80/20 train-test

split. In order to account for possible overfitting, the test accuracy was selected as

the optimization objective of the HPO study, and the greatest value was extracted

at the end of each trial.

Following the annealing-based procedure, the authors explored a portion of

the initial search space using a grid search on the two most relevant hyperparame-

74 Software frameworks

Table 5.2 Description of the hyperparameters contained in the HPO problem search
space. [3]

Hyperparameter Description

scale, λ Steepness of surrogate gradient

time_bin_size Time binning of the encoded input

nb_input_copies Copies of the encoded signals provided to the input layer

tau_mem, τmem Decay time constant of the membrane

tau_ratio
Ratio between the decay time constants of the membrane

and the synapse (τs yn)

fwd_weight_scale
Scaling factor for weight initialization of the forward

connections (Wi j)

weight_scale_factor
Scaling factor for weight initialization of the recurrent

connections (Vi j)

reg_neurons, L1 Regularization on the number of spikes per neuron

reg_spikes, L2 Regularization on the total number of spikes

ters in terms of energy consumption, time_bin_size and nb_input_copies, because

they determine the number of operations that must be computed per inference.

This two-step HPO approach yielded an optimized network for each threshold

value in the sigma-delta encoding. All of these RSNNs have a recurrent, fully

connected hidden layer with 450 LIF neurons and an output layer with 28 LIF

neurons. The number of output neurons includes the 27 classes dictated by the

Braille alphabet plus 1 extra class designed to identify edge scenarios, such as

faulty contact between the fingertip and the letters, an eventuality that would

need to be addressed in the event of future online implementations. The size of

the input layer was instead optimized: the number of input neurons is defined

as (2 ·n_taxels ·nb_input_copies), with the factor 2 representing the event polarity,

n_taxels = 12 the sensors in the robotic fingertip, and nb_input_copies the variable

to optimize. All networks used a batch size of 128 and a learning rate of η= 0.0015.

The primary objective for the optimization using the two-step HPO technique

was classification accuracy, but we also monitored the Time-to-Classify (TTC) and

power consumption, with the latter separately reported in Chapter 6. The minimal

temporal length of the input required for successful classification is an instructive

figure of merit to be considered in the context of an online implementation of

the suggested RSNN. Therefore, TTC was defined as the ratio of the signal length

required for successful classification over the whole acquisition time of the Braille

letter, which was fixed to 1.35 s due to the fixed sliding speed.

5.2 SNN optimization 75

Table 5.3 Optimized hyperparameter values for each encoding scheme after grid search. [3]

Threshold (θ)

1 2 5 10

scale 5 15 10 10

time_bin_size (ms) 5 3 3 5

nb_input_copies 2 8 4 2

tau_mem (ms) 60 50 70 70

tau_ratio 10 10 10 10

fwd_weight_scale 1 1 1.5 4

weight_scale_factor 1e-2 2e-2 3.5e-2 1.5e-2

reg_spikes 4e-3 1.5e-3 1e-3 1.5e-3

reg_neurons 1e-6 0 0 0

For each threshold, the parameter space following NNI optimization and grid

search showed no notable trends: the complicated interaction of many parameters

results in a variety of local optima with comparable test accuracy. Singling out the

trials with the highest classification accuracy for each encoding threshold, as in

Table 5.3, yields similar results: only the forward weight scale (fwd_weight_scale)

appears to increase as the threshold rises. The membrane potential time con-

stant τmem varies just slightly, with no discernible trend, and the tau_ratio, which

describes the relationship between τmem and τsyn, is constant; this shows that

the membrane time constants are determined by the spatial-temporal features

of the data, regardless of the encoding threshold. This unvarying membrane-to-

synapse time constant ratio appears to strike an ideal balance between neuron

and synapse dynamics for the Braille reading task.

Figure 5.2 depicts a summary of the RSNN classification accuracy after grid

search optimization. The highest threshold (ϑ= 10) has the worst overall perfor-

mance. Out of all the explored combinations of time_bin_size, nb_input_copies,

and encoding thresholds, the best result in terms of accuracy was reported by

the network with encoding threshold ϑ= 5, a time_bin_size of 3 ms, and 4 input

copies. However, the standard deviation of its accuracy was larger than for other

combinations, as shown in Figure 5.2B. The best configuration found for an en-

coding threshold ϑ= 2 resulted in a similar mean accuracy, but with a significantly

lower standard deviation: (80.9±0.3)% test accuracy compared to (80.9±1.9)%.

Taking into account this information, the optimum configuration has encoding

threshold ϑ= 2 with a time_bin_size of 3 ms and a number of copies equal to 8.

76 Software frameworks

Fig. 5.2 The accuracy performances of RSNN and FFSNN as a result of grid search ex-
ploration in the two-step HPO technique are summarized. (A) Best test accuracy results
produced by the RSNN for all combinations of time_bin_size and nb_input_copies. (B)
Mean and standard deviation of the FFSNN and RSNN accuracy results, with the best
parameters for each encoding threshold. [3]

The accuracy results analysis provided an additional insight about the impact

of the encoding threshold and time_bin_size, as shown in Figures 5.2A-B. A varia-

tion in either of these two parameters causes a similar pattern in test accuracy:

after an initial increase that leads to a maximum, a further increase causes a

decline in classification performance. In contrast to the findings about the preser-

vation of events for different thresholds discussed in 3.3, the accuracy for higher

encoding thresholds reduces the most for greater time_bin_size. When comparing

the network performance of the RSNN with the FFSNN, as shown in Figure 5.2B,

we see a steady decrease for the FFSNN with rising thresholds, but practically

constant performance for the RSNN up to ϑ= 10, where it begins to drop off.

When planning an online hardware implementation, one must consider not

just classification performance, but also energy efficiency. In this regard, the en-

coding threshold of 1 is the most promising candidate, since it requires fewer input

copies and a larger time_bin_size, resulting in a much lower energy footprint at

comparable performance. Regardless of the hyperparameters, the TTC is constant

across all situations, and the entire time series is required for the best classification

performance. The authors also compared these findings to a 27-class implementa-

tion, in order to confirm the utility of the extra class. This investigation indicated

that similar results are obtained in both scenarios, indicating that the addition of

a 28th class has no negative impact on classification performance.

5.3 System software: the SpiNNaker example 77

5.3 System software: the SpiNNaker example

Any novel neuromorphic platform necessitates the development of system soft-

ware, containing the platform-specific compiler and run-time managers that

handle the execution of SNN applications on the hardware. The SpiNNaker soft-

ware stack provides a particularly complete example of an end-to-end toolchain

for the design and execution of SNN applications on neuromorphic software. As

application software, SpiNNaker adopts the PyNN libraries, allowing developers

to abstract the SNN design from the underlying software.

The sPyNNaker middleware [28] is composed of two parts: a set of Python

libraries that preprocess the PyNN models and translates them into SpiNNaker

applications, and an event-driven operating system running on the hardware

platform, which interfaces the user application with the underlying SARK manage-

ment software. The SpiNNaker system, being composed of fully-programmable

ARM cores, provides researchers with the flexibility to upgrade and expand the

system’s capabilities in tandem with advances in neuroscience and computing.

In fact, while sPyNNaker includes implementations of the standard cell models

defined in PyNN (such as LIF and Izhikevich neurons), it also allows users to

implement their own neuron models.

Another important step in the sPyNNaker toolchain is the optimization of the

application for execution on the physical hardware. The software must map the

SNN to an application graph, partition that into a machine graph, and generate

the routing information among machine vertices. Efficient mapping and routing

on SNN applications is a problem that has been previously tackled by researchers

at Politecnico di Torino. Urgese et al. [4] extensively profiled the SpiNNaker board’s

communication bottlenecks and proposed the SNN-PP methodology for SNN

partitioning and placement focused on reducing inter-core spike communication.

Barchi et al. [257, 258] re-evaluated the neuron-to-core mapping issue and real-

ized a task-based placement pipeline based on the minimization of the distance

traveled by packets exchanged by cores. These works especially highlighted the

importance of communication directionality between network vertices: chips

intercepting the flow of packets in opposing directions create traffic "hot spots"

due to the increased burden placed on the local router. Figure 5.3 summarizes

this finding.

78 Software frameworks

Fig. 5.3 A visual representation of "hot spots" on a SpiNNaker chip, courtesy of Urgese et
al. [4]. The top row shows the flow of packets traversing the chip, which the local router
needs to deliver to neighboring chip. The bottom row shows the percentage of successfully
delivered packets with the given configuration in tests featuring heavy packet traffic. ©
2016 IEEE.

Building on the above work, the author joined researchers at the University

of Manchester to assist in the implementation of new neural models exploiting

the flexibility of the SpiNNaker hardware. The goal of this research was to create

functional multi-compartmental neuron models based on the Urbanczik-Senn

and pyramidal designs (see Chapter 4). Due to hardware limitations, in order to

make real-time simulation feasible on the machine, the choice was made to use

rate-based neuron models and to split the execution of the synapse and neuron

compartments on separate hardware cores. While the researchers at Manchester

oversaw the development of the neuronal model, the author undertook the task of

exploring placement strategies to enable the execution of a multi-compartmental

network on the SpiNNaker supercomputer. This led to a collection of results

presented for the first time in the following section.

5.3.1 Placement and routing exploration on SpiNNaker

As a test application for the multi-compartmental model, we selected a 2-layer

MNIST classifier using said neurons, the structure of which is portrayed in Fig-

ure 5.4. The goal was to reach real-time execution at 1 ms timestep, and in order

to avoid overwhelming the communication infrastructure, rate-based coding

was an obligatory choice for interneuron data exchange. However, SpiNNaker is

designed for spike-based coding; that is, the router was built with the assump-

tion that each communication packet contains one spike worth of information.

Therefore, the router is designed to drop packets when its buffer is full, because

5.3 System software: the SpiNNaker example 79

the loss of a single spike does not significantly degrade communication quality

in event-based encoding. This poses a significant problem with the adoption

of rate-based coding: with this paradigm, a packet now encapsulates a whole

timestep worth of information. Packet loss, then, leads to significant informa-

tion loss, which can snowball throughout the simulation, leading to classification

failure. While SpiNNaker’s system software includes a reinjector system which

intercepts dropped packets and attempts to re-circulate them, the complexity

of the multi-compartmental network is such that this measure is not sufficient

to guarantee correct performance. Then, it becomes necessary to respect strict

timing constraints in order to reduce packet loss as much as possible. This issue

can be tackled not only by reducing the processing time, but also by finding the

most efficient hardware placement that minimizes the distance traveled by the

packets.

Fig. 5.4 Diagram of the 2-layer multi-compartmental MNIST classifier. Highlighted is the
pyramidal neuron, showing the fan-in on the different synaptic compartments.

Communication test with a single neuron

In our first test, we profiled the performance of a single pyramidal neuron, based

on the MNIST network design. The source-to-synaptic input part of the network

was isolated for a feasibility study, without taking into consideration any delay

introduced by the later processing of the input by the neuron model. In order to

reproduce the total fan-in of 1784 for the first-layer pyramidal neurons, we used

random Poisson spike generators to excite the target synapses with the same rate.

Then, we extensively tested a number of configurations by varying the coordinate

80 Software frameworks

of the target chip, the number and placement of the spike source populations

connected to each synaptic core, and the number of neurons in each source and

target population.

Two example configurations are showed in Figure 5.5. In this particular test,

16 source populations were connected to each of the 14 synapse populations

in the target core. The yellow square in the figure highlights the coordinate of

the target chip; 42 chips were used to generate the random input, and the chips

with a gray hash pattern were not used in the simulation. The most notable

result is the rightmost column, showing the heatmap of dumped packets for

each chip on the board. In all simulations, the communication tests showed

that packet loss has a clear dependence on the relative placement of the sources

and targets. Additionally, the middle column in Figure 5.5, showing the overall

traffic of multicast packets, demonstrates that the packet traffic is heaviest in the

central diagonal set of chips, regardless of target placement. For this reason, in

subsequent experiments, we try to avoid placing traffic-heavy nodes in this region.

Fig. 5.5 Results of the single-neuron communication test with 16 input populations con-
nected to each target synapse core. In the top figure, the target is placed on chip (4,4),
while in the bottom figure, the target is chip (7,4). Left column: number of local multicast
packets. Middle column: number of external multicast packets. Right column: number of
multicast packets dumped by the chip router.

5.3 System software: the SpiNNaker example 81

Custom placement, routing, and data visualization

In our second test, we attempted to find an optimal placement for a single-board

network. The target was a reduced single-layer network featuring as many pyra-

midal neurons as could fit in a single 48-chip board.

In order to accomplish this research, the author developed several pieces of

software interacting with the sPyNNaker framework. First, a custom placement

script intervenes at the partitioning and placement stage of the sPyNNaker stack,

in order to inject a predefined placement that overrides the default setting. Second,

a visualizer script was developed in order to quickly analyze the results of the

placement. The visualizer shows the position of all neuronal populations and

automatically calculates the size and direction of packet flow. It also visualizes a

heatmap of lost multicast packets in the hexagonal mesh layout.

In Figure 5.6 we can see the visualizer output when the sPyNNaker default

algorithm attempts to place the populations on the Spin5 hardware. This default

placement results in failure, with 1105 packets lost for a 6 s simulation.

Fig. 5.6 Visualization of the default placement for the reduced pyramidal-based network.

Figure 5.7 shows the best placement, empirically found by moving the source

populations off the diagonal and placing the strongly-interconnected top-down

and output neuron populations on the same chip. With this custom placement,

simulation is successful and no packets are lost.

82 Software frameworks

Fig. 5.7 Visualization of the custom placement for the reduced pyramidal-based network.

The customized routing script was later expanded to include customized rout-

ing. By default, SpiNNaker uses a technique called Neighbour Exploring Routing

(NER) [259]. While this algorithm is adequate for normal SNN applications, it can

create unwanted excessive load on the diagonal path, as seen in Section 5.3.1, as

well as conflicting directions for the traffic paths, as in Figure 5.3. As a proof of

concept, the author created an ad hoc traffic-aware routing algorithm based on

the original NER. In this algorithm, the source neurons are identified and given

priority for routing, avoiding conflicting directions and minimizing the number of

packets using the diagonal. The generated routing lists were successfully injected

and executed within the sPyNNaker framework. The visualizer was also expanded

with GUI options allowing to select a neuron population in order to visualize the

routing of its packets. Figure 5.8A shows the custom routing executed for the input

source at chip (4,0). The arrows show the path followed by packets originating

from this population.

The custom placement and routing options have also been tested on a multi-

board environment. At the time of writing, the only multi-board environment

available to the author was the remote SpiNNaker supercomputer accessible

through the Spalloc client. Due to limitations in the way machines are allocated to

individual users, however, the placement and routing could not yet be tuned in an

optimal way. For instance, in Figure 5.8B, a slightly larger network was placed on

5.4 Chapter summary 83

3 adjacent boards. However, the allocated cluster had a dead chip at (4,6), which

could not be controlled or foreseen at the moment of deployment.

Fig. 5.8 (A) Custom routing and visualization feature. Highlighted is a customized route for
the input source at chip (4,0). (B) Multi-board placement and routing feature. Highlighted
is the route for packets originating from the pyramidal population at core (0,0).

The lack of accessibility to multi-board testing has therefore slowed down the

research into multi-board performance, which is nonetheless extremely important

for the feasibility study of the multi-compartmental network, as the board-to-

board connections inevitably introduce delays and non-idealities in the data

exchange. It remains to be seen, then, whether innovations in placement and rout-

ing will be sufficient to guarantee efficient simulation of the multi-compartmental

neurons on SpiNNaker. However, this study demonstrates the exceptional flexibil-

ity and adaptability of this neuromorphic platform, and confirms the importance

of fully-programmable hardware simulators in this field of research, as they allow

for continued software-based innovation and experimentation that could not

have been foreseen at the time of their development.

5.4 Chapter summary

As we have seen in this chapter, the proper functioning of a neuromorphic appli-

cation requires the interaction of many complex pieces of software. On the one

hand, SNN specification software empowers developers to create simple, abstract

and portable descriptions of the desired models, also handling their compilation

84 Software frameworks

and deployment on simulated or physical hardware backends. On the other, tech-

niques that had been previously developed for ML and ANN applications remain

relevant for the specific needs of SNNs. Methods such as hyperparameter opti-

mization are an important tool to refine the details of a network and significantly

improve the results.

Finally, the importance of flexible system software serving as a middle layer

between the specification and deployment software and the hardware’s low-level

operation is not to be discounted. The author’s investigation found that SpiN-

Naker’s system software stack could effectively interact with the PyNN libraries to

enable the implementation of new functions, even compensating for restrictions

that could not have been foreseen at the moment of designing the hardware; for

example, exploring new placement and routing strategies to accommodate novel

and more computationally demanding neural models. In Chapter 6, we will fol-

low this lead into an exploration of the computational abilities of neuromorphic

hardware.

Chapter 6

Hardware platforms

Neuromorphic computing focuses on the replication of neural processes in novel

computer architectures [260, 52], directing efforts toward the development of

specialized neuromorphic hardware [24, 261, 25, 26, 262–264, 61].

The goal of a neuromorphic platform is to imitate animal brain behavior using

an event-driven mesh of biologically realistic neuron models called a Spiking

Neural Network (SNN), wherein each computational unit is a set of neurons.

Among the neuromorphic platforms in active development are:

• BrainScaleS [265]: the project’s purpose is to produce a hardware platform

capable of simulating biological neurons at speeds faster than real-time.

It is realized using transistors that operate over their threshold, fitted with

high-end FPGAs to externally configure synapses and neurons, and also

offers analogue synapses integrated at wafer scale. This architecture’s goal

is to simulate SNNs in accelerated time, so that a simulation that would

ordinarily take months or years can be completed in minutes or hours.

• Dynap-SEL [26]: an acronym for Dynamic Asynchronous Processor Scal-

able and Learning, it is a VLSI microprocessor. It has five neuromorphic

cores, and the neurons are linked together by a multi-router hierarchical

organization based on a mesh schema. There are two versions with different

grids: 16x16 and 4x4. This architecture was designed with edge computing

applications in the IoT and Industry 4.0 areas in mind.

86 Hardware platforms

• Loihi [25]: created by Intel in 2017, it is a self-learning neuromorphic re-

search chip with 128 cores and around 130000 neurons. The entire archi-

tecture is digital, with an asynchronous design to reduce power usage. The

design has potential uses as an SNN-based coprocessor in heterogeneous

SoCs.

• SpiNNaker [266]: a platform that targets real-time SNN simulations using

an event-driven computing method similar to that observed in the human

brain [24]. The fundamental distinction between SpiNNaker and other

architectures is that it does not rely on VLSI customization at the wafer or

transistor level: the platform’s nodes are made up of hundreds of ARM-based

general-purpose processors. As a result, SpiNNaker can natively support

any C program written for the ARM platform.

In this chapter, we will see two case studies delving into the details of neuro-

morphic hardware characteristics and performance metrics. The main platforms

used within this research are SpiNNaker and Loihi. In Section 6.1, we will thor-

oughly benchmark the SpiNNaker board’s efficient communication infrastructure

using the MPI paradigm for parallel computing. Section 6.2 is a detailed compari-

son of the performance of the Jetson GPU and the Loihi neuromorphic platform

on the Braille dataset classification task [3].

6.1 Exploring the SpiNNaker communication infras-

tructure with MPI

SpiNNaker is an entirely digital neuromorphic hardware platform that integrates

high-throughput multicore and distributed-memory devices with a dense net-

work of interconnections, forming a homogeneous lattice that connects all of its

computing units. The system was created specifically for the simulation of Spiking

Neural Networks (SNNs): to accomplish this, the platform includes massively

parallel processing and a powerful communication architecture based on small

packet transfer. Previous research [267, 268] demonstrated that the SpiNNaker

topology outperforms traditional multicore architectures when tackling massively

parallel computation, ensuring superior scalability as input sizes grow. While most

neuromorphic designs are focused on a particular implementation for a spiking

6.1 Exploring the SpiNNaker communication infrastructure with MPI 87

neuron model, the ARM-based SpiNNaker platform supports the computation of a

wide range of neuron models as well as general-purpose applications [28, 269, 270].

To enhance the accessibility and efficiency of general-purpose programs, Barchi

et al [271] extended the SpiNNaker application stack by integrating the SpinMPI

library, which takes full advantage of the platform’s brain-inspired connectivity

mesh for effective inter-chip communication. In the research presented in this

section, the author demonstrates through on-board tests that MPI provides for

simple and efficient general-purpose code implementations, and compares its

results to those produced using the SNN framework [5]. The targeted applica-

tion is PageRank (PR), an algorithm that had been evaluated in previous work

by Blin et al. [267] through the development of a bespoke SNN implementation

on SpiNNaker. The author implemented PageRank with the MPI programming

model and transferred it to the SpiNNaker platform, in order to compare the

scalability of the MPI application to that of the corresponding SNN implemen-

tation and use the PageRank algorithm’s characteristics to test the behavior of

the MPI implementation on SpiNNaker when faced with large communication

requirements.

6.1.1 The SpiNNaker hardware

The SpiNNaker platform is available in two flavors. The Spin5 board contains 48

chips, whereas the Spin3 board contains four chips. A SpiNNaker chip contains

18 ARM processors, a proprietary 6-link router, a System NoC, and 128 MB of

SDRAM [24]. The chip is regarded as the fundamental building component of

the design; its architecture is depicted in Figure 6.1, which describes the four

chips of a Spin3. By default, internal clocks run at 200 MHz to ensure minimal

power consumption. Furthermore, each CPU has two tightly coupled memories

(DTCM and ITCM) for data and instructions. Within the low-level programming

elements included in SpiNNTools [272], cores are organized as follows: 1 serves

as a Monitor Processor (MP), 16 as Application Processors (AP), and the final as a

backup in case of hardware failure. The Monitor Processor is in charge of running

the low-level SARK operating system, while the Application Processors execute

the user program.

88 Hardware platforms

Fig. 6.1 The Spin3 design. [5]

A critical component of the design is the physical setup of the communica-

tion channels. These channels could connect two cores on the same chip or two

cores on different processors. The former is the simplest scenario, where "close"

communication occurs in a synchronous manner, taking advantage of a 128 MB

Synchronous DRAM. In the latter situation, communication is asynchronous,

drawing on mechanisms found in the biological brain. A 1024-line integrated

router, one on each SpiNNaker chip, drives packets. Because embedded routers

are small CAMs, they have a low latency (∼0.1µs per hop) [270]. Despite con-

straints on synchronous packet transmission [30, 4], the router’s unique archi-

tecture enables the transmission of two operative packet types: Multicast (MC)

and Point to Point (P2P). Routers facilitate the transfer (and re-transmission) of

72-bit packets; for longer communications, the platform’s low-level APIs must be

used to encapsulate them into datagrams. Said APIs also provide mechanisms for

packet reconstruction: the SpiNNaker Datagram Protocol (SDP) layer manages

6.1 Exploring the SpiNNaker communication infrastructure with MPI 89

large-packet communication up to 256 bytes [266]. The Monitor Processor is in

charge of running SDP facilities.

SpiNNaker comes with three basic communication profiles, regardless of the

type of data:

• P2P (Point-to-Point): a core communicates data to another core on the

same or a different chip via the monitor processor.

• Multicast: a single core communicates to a subset of cores on the connected

chips at the same time.

• Broadcast: a single core communicates to every other core on the board at

the same time.

Because the base network is structured as a mesh, any chip can initiate a

communication channel (broadcast, multicast, or P2P) or act as a forwarding spot

to assure connectivity between two chips that are not physically connected.

Applications and experiments on SpiNNaker are sustained by two environ-

ments: the Host PC, which runs Python modules [28], and SpiNNaker itself, which

runs a software stack entirely written in C and Assembly language [272]. On top of

this core is the SpinMPI library [271], a SpiNNaker translation of the MPI paradigm

that seeks to provide a high-level interface for the user to easily control communi-

cation among physical cores: the Application Command Framework (ACF), which

uses lengthy datagrams to encode application commands as a Remote Procedure

Call (RPC) [273]. The Multicast Communication Middleware on the hardware

side determines the format of each packet based on the communication profile

(unicast or broadcast).

6.1.2 SpinMPI

SpinMPI [271] is a package that provides support for MPI (Message-Passing In-

terface) communication and synchronization primitives on SpiNNaker. The MPI

paradigm includes a synchronization barrier function as well as message-passing

primitives that can be used to handle synchronous communication on a platform

with distributed-memory computing units such as SpiNNaker. SpinMPI also in-

cludes standards for the implementation of communicators. A communicator is

90 Hardware platforms

an interface that collects methods for managing synchronous communication

among variously structured groups of units; many MPI communicators can exist

on the same physical network; SpinMPI’s current release includes point-to-point

and broadcast communicators. Each process in the MPI paradigm is assigned a

unique identification, or rank. A communicator’s processes are identified by their

rank: for example, a point-to-point communicator involves two processes, one

triggering an MPI Send and the other enabling an MPI Receive; on the other hand,

a broadcast communicator includes every process in the system. To synchronize

all processes, the MPI Barrier is invoked. At the end of the execution, the findings

and metadata are saved into dedicated reports, which are downloadable straight

from the memory of SpiNNaker cores.

SpinMPI includes synchronization methods to ensure that multiprocess com-

putations are valid. Although synchronization is not needed in point-to-point

communication, both multicast and broadcast require it to ensure that messages

are received by all processes in the communicator. The board’s chips are separated

into logic subregions within the SpinMPI communication logic: a hierarchical

strategy assigns chips to concentric ring-shaped layers based on the distance of a

node from the axis origin, which corresponds to the chip (0,0). Ring 0 includes

only the chip (0,0), which manages Ethernet communications with the host and

other Spin5 boards. Ring 1 is formed by its neighboring chips — (1,0), (1,1), and

(0,1); the other rings are constructed as shown in Figure 6.2.

Fig. 6.2 The synchronization rings of the 48-chip Spin5 board. [5]

A three-tiered hierarchy is used for broadcast synchronization. Each level is

overseen by one or more managers, who are responsible for gathering all synchro-

6.1 Exploring the SpiNNaker communication infrastructure with MPI 91

nization messages from that level. The manager then sends a synchronization

packet to the upper level (Figure 6.2). The tiers of hierarchy are as follows:

1. Chip level: SYNC1 packets are sent to all cores of a SpiNNaker processor.

After collecting all synchronization packets, a SYNC2 packet is produced

and transmitted to the upper level.

2. Ring level: a ring is made up of chips that are the same distance from (0,0).

The chips labeled (x, y)|x = y are the SYNC2 managers, who are in charge

of collecting the group’s synchronization packets. Each ring master knows

how many SYNC1 packets should be sent; once all of the predicted packets

have been received, they send a SYNC3.

3. Board level: all level 2 managers send SYNC3 signals to the level 3 manager,

i.e., chip (0,0). When all level 2 managers have submitted their packets, the

level 3 management sends a SYNCunlock, also known as an ACK packet,

through MPI Broadcast. The synchronization phase is now complete.

6.1.3 PageRank

As a benchmark application for the developed SpinMPI module, we selected

the PageRank algorithm. The PageRank method [274] appears to be a logical fit

for architecture designs such as multiprocessing neuromorphic hardware, as it

involves iterative computing on a highly interconnected graph with high commu-

nication requirements. The graph topology is complex enough that scalability

concerns easily arise, both in terms of processing time and in the number of

packets traveling throughout the network. In fact, at every iteration, each node

must share its data with all of its neighbors; the creation of an expansive, densely

connected graph where each node acts independently necessitates an architecture

that supports a large number of concurrent operations and efficient inter-process

communication: SpiNNaker meets all of these characteristics.

Blin et al. [267] set out to prove that, for massively parallel queries that also

require the exchange of numerous short messages among workers, neuromorphic

technology outperforms standard architectures in terms of scalability. We pro-

pose to validate this assertion by presenting MPI libraries specifically created for

SpiNNaker, a valuable tool to be employed alongside Spiking Neural Networks on

92 Hardware platforms

neuromorphic hardware. A secondary result of the presented research are the clear

potential benefits that a mesh of computing elements duplicating the SpiNNaker

interconnection design might bring for running PageRank-like algorithms.

PageRank algorithm

PageRank is a well-known graph-based method that provides a quantitative classi-

fication of a set of items. Its original purpose was to categorize web pages based

on the number of links a single page has in comparison to all others [274]. When

PageRank was introduced in 1998, the algorithms used by internet crawlers for

indexing web pages were becoming an increasingly important topic as the World

Wide Web expanded exponentially in size. The PageRank model was designed to

provide effective scalability for the WWW ecosystem by creating high-quality cate-

gorization based on hypertextual and keyword-based search rather than statically

indexed directories. The classification is based on providing a rating, or rank, to

each website that represents its "popularity" across the web, depending on the

cardinality of incoming links to the page. The formula in Equation 6.1 is used to

compute a page’s rank [275]:

PR(A) = 1−d

N
+d ·

ˆ
nX

k=1

PR(Pk)

C(Pk)

!
, (6.1)

where:

• PR(A) is the PageRank score for the target page A

• N is the total number of pages in the domain

• n is the number of pages on which a link involving both Pk and A exists

• C(Pk) denotes the total number of incoming links for Pk

• d is the damping factor, which is used for calibration; a typical value is 0.85.

PR() and d are both probabilities. PR(Pk) indicates the likelihood that a user

would randomly query a particular page Pk ; d is the possibility that a user will

stop following links and begin a completely new and unrelated search. In contrast,

1−d represents the complimentary probability that the hypothetical visitor will

6.1 Exploring the SpiNNaker communication infrastructure with MPI 93

move on to a connected page. To calculate the PageRank score for a generic item

A in a graph, each of the vertices must know the PageRank score for every other

vertex.

PageRank Implementation on SpiNNaker Using sPyNNaker

Blin et al. [267] suggested a PageRank solution for SpiNNaker that uses the SNN

framework (SNN-PR). The implementation is built on the sPyNNaker software

libraries [28], which provide high-level services for developers to interact with

SpiNNaker. sPyNNaker is primarily used to map "web page" objects onto spik-

ing neurons in SNN-PR. For that purpose, the rank of a page is modeled as a

neuron’s membrane potential. This modeling choice is based on the real-world

low-level activity of a spiking neural network (SNN), allowing it to take advantage

of the SpiNNaker board’s existing simulation infrastructure. The actual neuron

implementation is a variation of the classic Leaky Integrate-and-Fire (LIF) model,

which provides both the PageRank application’s transient function and a mes-

sage parsing algorithm. While SNN-PR strives to design a synchronous method,

the underlying SpiNNaker modules do not support synchronization across cores,

since it isn’t generally required in SNN simulations. SNN-PR uses a semaphore

to synchronize the computation of vertices belonging to the same core. Because

cores iterate asynchronously to each other, a buffer mechanism is used to ensure

that incoming messages are handled at the right time step.

SNN-PR exhibits good scaling due to its effective SNN-based operation, which

fully uses the SpiNNaker platform to its advantage. However, the degree of com-

plexity of such a unique implementation is fairly significant because a new neuron

model, as well as auxiliary utilities to manage message forwarding and asyn-

chronous buffering, must be developed. Furthermore, due to inherent constraints

in the SNN libraries, each core can handle a maximum of 255 vertices, each of

which corresponds to a spiking neuron. Finally, due to the huge quantity of data

circulating in the network, SNN-PR necessitates an increase in the machine time

step from 1 to 25 ms; this gives the routers and cores sufficient time to handle

incoming messages and avoids simulation errors due to packet loss.

94 Hardware platforms

6.1.4 Implementation of PageRank with MPI

The computation of PageRank for a particular blob of sites is not difficult in a single

iteration; but, due to the huge size of the average web network, a parallelization

framework is frequently necessary. Because the rank of any node is determined by

the rank of its neighbors, each worker’s computation is not independent: at the

end of each iteration, a synchronized data exchange step is required. As detailed

in Forno et al. [5], our MPI-PageRank (MPI-PR) implementation takes as input a

binary file holding the list of edges in the graph. Each edge is represented by an

integer tuple (Source, Destination), each of which represents the ID of a node.

The software can be separated into two parts, as shown in Figure 6.3: setup

(A) and PageRank loop (B). The MPI worker with rank 0 is designated as the MPI

Master during the configuration step (A). This core is responsible for collecting

the edges list from the file system and sending it to the other MPI workers; each

worker core receives a copy of the entire graph description. This decision was

made with the intention of porting to SpiNNaker, a distributed-memory platform.

The problem data is transmitted via a single MPI_Bcast call, and the graph data’s

segmentation into packets is entirely managed by the underlying SpinMPI library.

The core that was previously operating as the MPI Master resumes work as a

regular MPI worker at the end of this transmission.

After receiving the edges list, each MPI worker executes a graph preprocessing

step. Each worker is given a subgraph of size k = nvertices/nworkers; for each node in

the subgraph, the worker scans the edge list, creates the list of incoming connec-

tions (represented by the source vertex’s ID), and counts the node’s outgoing links.

As a result, each worker prepares the bare minimum of data structures required

to calculate PageRank for each node, and the preprocessing effort is distributed

evenly among the MPI workers.

During the PageRank loop (B), each worker updates the rank for all the vertices

to which it is allocated, as shown in Equation 6.1. Then, each worker sends its new

rankings to each other worker in turn, which is performed with a single MPI_Bcast

instruction. To reduce computational efforts, each worker delivers the ranks of its

nodes divided by the number of their own outbound links [276] [23]. Loop (B) is

repeated until convergence or a defined number of steps is reached. At the end of

the computation, each worker returns a list of PageRank values for the vertices to

which it was allocated.

6.1 Exploring the SpiNNaker communication infrastructure with MPI 95

Fig. 6.3 Flowchart of MPI-PR implementation on a general-purpose architecture and on
SpiNNaker. Step A is for configuration, Step B is for PageRank calculation, and Step P is
for transferring the problem data to the SpiNNaker board. [5]

Adaptation of PageRank with MPI for SpiNNaker

The MPI program for PageRank outlined in Section 6.1.4 is compatible with any

MPI-enabled device, including ordinary PCs. To run the same software on SpiN-

Naker, an additional stage (P) is introduced to the process: data are sent from a

host machine to the SpiNNaker board during this phase.

The SpinMPI Python library enables the host to configure the size of the MPI

Context, which is defined as the number of chips and cores to be employed

during computation: the capacity of the MPI Context equates to the number of

available MPI workers. Urgese et al. [57] provides detailed information regarding

the host-board connectivity and setup process. Finally, the MPI Runtime installs

the application binaries onto the board and starts the program.

96 Hardware platforms

After starting the application, the host writes the problem data straight to the

memory of the MPI worker of rank 0, which corresponds to processor (0,0,1). To

make the most of the available memory on SpiNNaker, we choose to treat each

node ID as a 16-bit unsigned integer, allowing for a maximum of 216 = 65536

nodes in a graph.

Until this procedure is completed, all MPI employees must wait on an MPI Bar-

rier. Phase (A) can begin once MPI worker 0 receives the problem data; calculation

continues as specified in Section 6.1.4.

6.1.5 Comparison of SNN-PR and MPI-PR implementations

In this part, we compare the efficiency of our MPI-based PageRank implementa-

tion (MPI-PR) on SpiNNaker to that of Blin et al. [267] (SNN-PR). We set up our

tests in the same manner as the cited study describes: a runtime option indicates

how many nodes should be assigned to a single worker, and every experiment

runs the PageRank loop 25 times.

We compare the execution times of MPI-PR with SNN-PR on a fixed-size graph

(|V | = 255, |E | = 2550) with different number of cores in Figure 6.4. It should be

noted that the size of 255 was chosen in the original work because it reflected

the highest number of vertices per core permitted by the PyNN framework; here,

because the MPI framework places no such constraints, the total number of ver-

tices that can be handled is limited only by available memory. A single worker is

sufficient for a graph of said size, and the time cost of MPI transmission is never

incurred. Even with MPI engaged and several workers involved, we get faster com-

putation speeds than SNN-PR, up to 12 cores. We can also see that MPI improves

computation time only up to 8 workers: after that, the cost of MPI communication

outweighs the time saved by multithreading the computation, and employing

many cores becomes less advantageous than in the SNN-PR version. The dashed

line in the graph represents the time spent by workers in the broadcast phase: we

can see that the cost of communication grows with the number of cores faster

than the cost of the PR compute step shrinks. Additionally, in this experiment,

assigning MPI workers to the same chip or dispersing them across four chips has

minimal effect on execution time.

6.1 Exploring the SpiNNaker communication infrastructure with MPI 97

Fig. 6.4 SNN-PR and MPI-PR execution times on a fixed-size graph utilizing only one
SpiNNaker chip. [5]

The behavior of SNN-PR and MPI-PR on a bigger graph, distributed among

cores employing up to four SpiNNaker chips, is depicted in Figure 6.5. We see a

repeat of the prior behavior: MPI performs best at 10 cores, when the subgraphs

are sufficiently small that all of the problem data fits in the cores’ DTCM. This is

also the point at which the calculation/communication cost offers the optimal

tradeoff. However, because of the higher communication costs associated with

MPI, MPI-PR fails to scale as well as SNN-PR on this graph.

Fig. 6.5 SNN-PR and MPI-PR execution times on a fixed-size graph utilizing up to four
SpiNNaker chips. [5]

In Figure 6.6, we evaluate the scalability of MPI-PR compared to SNN-PR and

the standard multicore implementations studied in Blin et al. [267]. The results

are shown as the normalized execution time relative to the single-core execution

98 Hardware platforms

time, corresponding to the 255-node graph. Both SpiNNaker implementations

exhibit smoother and more favorable scaling, demonstrating the efficiency of the

SpiNNaker many-core architecture’s custom toroidal-shaped, triangular-mesh

communication network. Overall, however, MPI-PR scales better than the PyNN

implementation; when employing 15 cores, MPI-PR scales around 1.75× faster

than SNN-PR.

Fig. 6.6 Scalability of three different PageRank implementations: SNN-PR and MPI-PR on
SpiNNaker, and PC-PR on a typical multicore architecture. [5]

6.1.6 SpinMPI Performance Analysis on PageRank

Let us now evaluate MPI-PR’s performance on larger graphs. Figure 6.7 depicts the

PR computation time as a function of the number of workers (i.e., cores) involved

in the computation for a fixed-size graph of |V | = 768, |E | = 7680. Depending on

the number of cores and rings engaged in the context, multiple configurations are

feasible for a given number of workers; for instance, a 48-worker configuration

can be obtained by selecting (7 rings, 1 core per chip), (4 rings, 2 cores per chip),

or (3 rings, 3 cores per chip). The graph’s black line depicts the mean runtime for

all of the equivalent settings.

The SpinMPI design does not scale indefinitely for the PageRank task; in fact,

the computation time trend is rather erratic and tends to grow when the number

of cores exceeds a specific threshold. There are a few points to be made: first,

the trend in PR execution time is predominantly determined by the duration

of the broadcast communication step. It is common for communication times

6.1 Exploring the SpiNNaker communication infrastructure with MPI 99

Fig. 6.7 MPI-PR computation and communication timings on SpiNNaker with a medium-
sized graph: the plot shows how the communication buffer’s consumption rate affects the
broadcast time. [5]

to increase as the MPI context expands, especially when employing broadcast

communications that require board-wide synchronization; as a result, the best PR

execution time is at a relatively small context of 48 cores.

Several variables contribute to the uneven trend of the broadcast time. As

shown in Figures 6.4 and 6.5, one such element is the memory location of the data

to be sent and received. For this experiment, we changed the software so that the

PR array would always be stored to DTCM, hence this factor is no longer relevant.

The dimension of the MPI transmission buffer, on the other hand, does play a role.

The data to be transferred is written to a fixed-size communication buffer in

the SpinMPI framework. This buffer’s size is specified at compile time, and the

default value is 64 B. The more cores participating in the context, the smaller the

subgraphs allotted to each core: because the PR rankings are stored as 4-Byte

fixed-point integers, the size of the send/receive buffer for this arrangement is

exactly 64 Bytes at 48 cores, when each core handles 16 vertices. Therefore, 48 is

the minimum number of workers required to fill the communication buffer once;

by minimizing write/read access to this buffer, the broadcast time is decreased as

well. The graph’s vertical lines illustrate places where the broadcast time decreases

due to variations in the number of required buffer accesses.

Finally, in Figure 6.8, we examine MPI-PR’s behavior when dealing with a very

large graph. Due to the 16-bit integer format of the vertex ID, the 65536-vertex

100 Hardware platforms

graph is the largest that the algorithm can assess. The figure depicts the trend in

execution time for various ring arrangements as the number of cores per chip rises.

Again, we can see how each ring layout has an optimal number of cores per chip

after which communication costs become prohibitive in comparison to the time

saved in PageRank computation. Most notably, we can see how execution times

increase when the same number of workers are concentrated in fewer chips (fewer

rings), but decrease when the workers are spread out over numerous chips (more

rings). This is due to the fact that for a huge graph like this, none of the problem

data can be saved to DTCM; instead, the vertex information and PR arrays are

stored in RAM. All cores on a single chip must fight for access to the same memory

bank, since RAM is chip-local. We can see how RAM access time is another crucial

component in SpinMPI performance, as having fewer workers competing for the

same chip’s RAM produces better results.

Fig. 6.8 MPI-PR computation and communication timings on SpiNNaker with a large
graph: the diagram shows how different placements of the same number of cores affect
execution time. [5]

Overall, the study detailed here showed that for communication-heavy applica-

tions like PageRank, the parameters influencing MPI execution time on SpiNNaker

are numerous, complex, and difficult to determine. To summarize our findings,

such factors include (but are not necessarily limited to):

1. The tradeoff between the calculation time saved by parallelization and the

cost of MPI Broadcast communication, which increases with worker count

(Figures 6.4 and 6.5).

6.1 Exploring the SpiNNaker communication infrastructure with MPI 101

2. The memory location of the data to be sent and received over MPI (DTCM

or SDRAM) (Figures 6.4 and 6.5).

3. The size compatibility between the data to be delivered and the MPI com-

munication buffer (Figure 6.7).

4. The worker density on each chip, which effects SDRAM access time (Fig-

ure 6.8).

6.1.7 Conclusions

An MPI-based version of PageRank was developed to test the scalability of the

SpiNNaker multicore architecture when running a parallel algorithm with high

communication requirements and a low computational effort per node. We con-

trasted the simple MPI paradigm to Blin et al.’s method (SNN-PR), which uses a

customized spiking neuron model to accomplish the rank update while leveraging

the conventional SNN communication infrastructure. In comparison to SNN-PR,

the MPI solution supported larger graphs, as well as worker synchronization and

a lower computational cost per core. Finally, we confirmed that the SpinMPI

library, which provides MPI support for SpiNNaker, enables users to easily adapt

any MPI method built for normal computers to the SpiNNaker neuromorphic

platform, creating an interface between any MPI-compliant C program and the

native SpiNNaker communication framework without the need for modification

of the original code.

The SpiNNaker platform’s efficient connectivity architecture, in addition to

being well-suited for SNN applications, shows promise for low-power parallel exe-

cution of tasks in the edge computing domain. On the other hand, as a collection

of massively parallel computation elements immersed in a distributed-memory

environment with linearly scaling intercore communication, said architecture

may be the ideal silicon implementation for the MPI paradigm, to the point where

it may be worth consideration even for the realization of systems on a larger scale.

102 Hardware platforms

6.2 Braille classification on Loihi vs. GPU

With the perspective of implementing classification of time-varying signals on

real-time embedded devices, it was necessary to measure critical performance

indicators relevant to real-world deployment by deploying the networks on several

hardware platforms. The authors examined power utilization, energy consump-

tion, and computing latency in order to gain some insight about deployment

viability in real-world circumstances. The NVIDIA Jetson Xavier NX, a commer-

cially available computing platform with a System-on-Chip (SoC) that integrates

a CPU and GPU, and Intel Loihi, a neuromorphic processor dedicated to accel-

erating SNNs, were the two platforms selected for comparison. This choice was

motivated by platform-related factors, such as high integration and availability, as

well as our ultimate goal of deploying the algorithms in a real-world environment

on robots.

6.2.1 NVIDIA Jetson Xavier NX

The Xavier NX is the most powerful model in the NVIDIA Jetson product line,

a collection of small, embedded computing platforms with a focus on edge AI.

Despite being a general-purpose platform, its architecture and software are sim-

ilar to those of full-fledged ML workstations. Using this off-the-shelf hardware,

the authors compared several standard time-series classifiers and evaluated the

differences between conventional and event-based algorithms. The obtained

inference metrics provide insight into the performance that may be expected

using the same hardware for deployment.

The module’s integrated power monitor was used to measure power usage.

While the CPU/GPU and a SoC power rail are also measured by the power monitor,

due to a lack of public information on what components these rails supply, and

because a productive application requires the complete system, the measurement

of the main power rail was nevertheless considered a suitably representative figure

for comparison.

Standard time-series classifiers, known to work with time-variant datasets,

were executed on this platform: Fully Convolutional Network (FCN) [277], Resid-

ual Neural Network (ResNet) [277, 278], Encoder [279], Time-CNN (TCNN) [280],

6.2 Braille classification on Loihi vs. GPU 103

and Inception [281], available as implementation on GitHub [281, 282]. Given

the time-dependent nature of the dataset, a recurrent neural network was also

selected. The design tested consists of a single-layer Long-Short Term Memory

(LSTM) with 228 hidden nodes, followed by a regular fully-connected layer of

228×27 output neurons that conduct the classification, for a total of 225975 train-

able parameters. The authors used one of these LSTM with frame-based input

and one with event-based input, denoted as eLSTM.

The conventional time-series classifiers were then compared with a Jetson

implementation of the spike-based FFSNN and RSNN described in Section 5.2.2.

For each inference, the following metrics were assessed:

• Inference time (i.e., computational delay) per sample, which is calculated

by dividing the total inference time by the number of samples processed.

• Power utilization across overall inference time as well as per sample (mini-

mum, maximum, and average).

• Energy consumption overall and per sample. The total energy is computed

by multiplying and adding each power measurement over a 50-ms polling in-

terval. We then divide the total energy by the number of samples processed

to get the energy per sample.

Conventional time-series classifiers

Energy consumption may be considered the most important parameter, as it

combines both power consumption and inference time per sample. Average power

utilization provides insight into the power budget required to accomplish specific

inference times. While energy and power consumption are critical requirements

for applications running on battery power, inference time is essential in real-time

tasks.

104 Hardware platforms

Fig. 6.9 Test accuracy and number of trainable parameters of conventional classifiers after
300 epochs of training and average across three runs. eLSTM is an abbreviation for LSTM
with event-based input. [3]

Fig. 6.10 Comparison of inference metrics from common classifiers for frame-based data
in terms of energy consumption and average power utilization as measured on an NVIDIA
Jetson Xavier NX. eLSTM is an abbreviation for LSTM with event-based input. Each bar’s
label indicates the inference time per sample on the relevant network. [3]

Figure 6.9 depicts each network’s test accuracy as well as their total number of

trainable parameters. Figure 6.10 shows the energy consumption, average power

utilization, and inference time of standard classifiers running on the NVIDIA Jet-

son. Some similarities can be seen when comparing these results to the parameter

counts in Figure 6.9. ResNet, Inception, and FCN all showed similar average power

consumption during inference, and also had equivalent accuracy and parameter

6.2 Braille classification on Loihi vs. GPU 105

count: this indicates that their energy use is closely related to the amount of

time they spend on the inference phase. The energy consumption of Inception

and its parameter count surpassed both ResNet and FCN; while the number of

parameters does not necessarily indicate higher computational complexity, an

explanation for this result could be that Inception’s processes are less optimized

or do not use GPU acceleration. The similarities continue with Encoder, where av-

erage power usage and parameter count both increased by an order of magnitude

compared to the previous three networks. Despite that, the difference in energy

consumption is not as significant, especially when compared to Inception. Given

the higher average power utilization, this implementation probably exploited the

GPU more efficiently and hence benefited from higher overall acceleration. This

assumption is supported by the fact that inference time was lower on the Encoder

than on Inception.

The results for the LSTM with frame-based input are the most notable among

these classifiers. Despite being a sequential network, which are usually slower

than traditional classifiers due to its iterative and recurrent nature, it obtained

the shortest inference time and consumed the least energy; however, this came

at the expense of having the second-highest power usage. This, as for the En-

coder, implies that the network could benefit from increased GPU use or general

acceleration of internal activities. For the LSTM with event-based input (eLSTM),

the energy per sample and inference time were proportional to the number of

time steps processed, with a ratio of 5 : 3, which corresponds to the time binning

performed for each encoding threshold (see Section 3.3): similar time_bin_sizes

have been used for ϑ= 1 and ϑ= 10 with 5 ms, resulting in 270 time steps, and for

ϑ= 2 and ϑ= 5 with 3 ms, resulting in 450 time steps. This ratio, however, does

not hold for the frame-based input with 54 time steps. The nature of the data, with

float numbers for frame-based data and integer numbers for event stream, could

explain this discrepancy. Finally, all eLSTMs consumed about the same amount

of power.

When compared to the other networks, the TCNN performed poorly. Despite

having by far the fewest parameters among the presented networks, it had a similar

energy consumption but a long inference time. In general, it appears that this

particular design was not well-suited to addressing the issue at hand.

106 Hardware platforms

Spiking neural networks

Measurements on the NVIDIA Jetson are displayed in Figure 6.11. Results for SNNs

and RSNNs were proportional to time_bin_size and nb_input_copies, as well as

whether the feedforward or recurrent architecture was involved; these are the main

factors determining the number of operations to be computed during inference.

In contrast, the threshold had little to no effect on performance, because the

implementation on general-purpose computers does not take advantage of the

data’s temporal sparsity.

The average power utilization of the feedforward and recurrent designs was

quite close, varying from their respective norms by less than 0.7 % for the former

and less than 0.2 % for the latter. This implies that computational resources

were constantly in use, and that energy consumption is directly proportional to

inference time for any architecture. Thresholds ϑ= 1 and ϑ= 10 required about

the same amount of energy per inference as thresholds ϑ= 2 and ϑ= 5 . As seen

in Table 5.3, the results for both threshold pairs appear to have a correlation with

time_bin_size and nb_input_copies. However, the nb_input_copies for ϑ= 2 and

ϑ = 5, which are 8 and 4 respectively, do not follow this trend. In conclusion,

nb_input_copies doesn’t have a significant effect on energy usage and inference

time in real-world circumstances, but time_bin_size and architecture type are the

primary drivers for computational burden.

A comparison of SNNs and eLSTMs reveals a 20× increase in inference time,

despite the fact that both execute the same number of time steps, reflecting a lack

of algorithmic optimization within the SNN simulations. The energy per sample

is 10× higher, while the average power use is 1.5×.

6.2 Braille classification on Loihi vs. GPU 107

Fig. 6.11 Inference metrics for all spiking neural networks compared in terms of energy
usage and average power consumption on an NVIDIA Jetson Xavier NX. Each bar’s label
indicates the inference time per sample on the relevant network. [3]

When comparing the absolute numbers in Figure 6.11 to the standard clas-

sifiers in Figure 6.10, our FFSNN and RSNN implementations have a clear dis-

advantage in terms of energy consumption and inference time when run on a

GPU accelerated device. The most efficient SNN used approximately ∼ 88% more

energy than the least efficient traditional classifier, and the fastest spiking network

needed 16.8× more time to make a single inference than the slowest traditional

classifier. These figures demonstrate the critical necessity for dedicated neuro-

morphic hardware to fully express the potential of event-based algorithms.

6.2.2 Intel Loihi

Loihi [25] is a completely digital neuromorphic processor from Intel. Each Loihi

chip contains 128 neuron cores, with each neural core capable of running up to

1024 CUBA LIF neurons through Time-division Multiplexing (TDM). The equa-

tions for the current and voltage compartments of the Loihi neuron are shown

below.

Ii (t) = Ii (t −1) · (212 −δI
i) ·2−12 +26

X
j

wi j · s j (t) (6.2)

108 Hardware platforms

and

Ui (t) =Ui (t −1) · (212 −δU
i) ·2−12 + Ii (t), (6.3)

where t is the algorithm’s time step, Ii (t) and Ui (t) are the current and voltage

of neuron i , δI
i and δU

i are the current and voltage decay constants, wi j is the

synaptic weight from neuron j to i , and s j (t) is the spike state (0 or 1) of neuron j .

As long as the capacity of the in-core memories for storing axons and synapses

is not exceeded, a Loihi neuron core may support any connection topology. These

neuron cores are spread in parallel and use local on-chip SRAMs to store net-

work state and configurations; they are totally asynchronous, executing synaptic

accumulation only when an input event occurs, which lets the system take advan-

tage of the spatio-temporal sparsity of event-based sensors and encoding. The

Loihi system’s algorithmic time step is maintained through a distributed hand-

shaking approach known as barrier synchronization. Furthermore, each Loihi

chip contains three synchronous integrated x86 cores that participate in barrier

synchronization. The x86 cores run C code and are used for monitoring and com-

municating with the SNN running on the neuron cores, as well as to handle data

IO between the on-chip asynchronous neuron cores and off-chip devices and,

optionally, to synchronize the algorithmic time steps duration (in physical time)

between the chip and an external sensor.

The original networks were described in PyTorch, a well-known Python library

for the implementation of ML programs. In order to run the networks on Loihi,

the already-trained models must be exported to the HDF5 format, adapting the

neuron parameters and learned synaptic weights to match the Loihi hardware

specs and restrictions: the Loihi decay constants δI and δU were calculated from

the PyTorch time constants τsyn and τmem, and since Loihi only supports up to

8-bit fixed point weights for synaptic weights and neuron thresholds, the weights

from PyTorch training were quantized into 256 states.

After deploying the network on Loihi and executing the inference on the event-

based tactile data, the authors measured the classification accuracy, the energy

consumption and the computation time. The test inference was performed by

presenting the input events of all test samples in a continuous flow, with samples

interspersed with idle windows of 100 time steps during which the neurons’ cur-

6.2 Braille classification on Loihi vs. GPU 109

rents and voltages decayed to zero. The resultant spikes were collected during the

inference process, and the classification score was computed offline.

The voltage regulators and power telemetry on Loihi system boards can be

used to measure the total power usage of the Loihi chip while a network is running.

To estimate energy usage, the power measurements can be paired with timing

information captured by the on-chip x86 cores during model execution. When

a workload is underway, the dedicated Loihi software stack (NxSDK) presents a

high-level user interface to monitor power, energy, and timing: this interface was

used to test the performance of the SNN models on Loihi.

Results

The overall accuracy trend in Loihi for SNNs, shown in Figure 6.12, mirrors the

accuracy trend in software simulations, shown in Figure 5.2B of the previous

chapter. Nonetheless, there is a small reduction in accuracy (e.g., ∼ 1.58% for the

RSNN with encoding threshold ϑ= 1), which is caused by the PyTorch training

approach not accounting for the Loihi hardware constraints, specifically the 8-bit

fixed point weights. The loss varies based on the distribution of PyTorch weights.

The hardware performance of the recurrent and feedforward SNNs was then

compared in terms of latency (i.e., execution time), power, and energy consump-

tion. Before delving into the results, it’s crucial to note that the neural cores

mapping has no effect on accuracy, but does have an effect on hardware effi-

ciency. Loihi provides freedom in how network neurons are mapped into neural

cores, limited only by the number of cores in a chip and the number of input

axons, synapses, neurons, and output axons in a neural core. The goal is to find a

trade-off between parallelism (using more neural cores with fewer neurons per

core) and time-multiplexing (using fewer neural cores with more neurons per

core), in order to balance a neural core’s power, mesh routing power, and algorith-

mic time step duration to achieve an optimal configuration for the application

requirements. This dilemma is not dissimilar to the issues encountered in the

process of mapping and routing the multi-compartmental neuron models on

SpiNNaker in Section 5.3.1. In Loihi’s case, spreading a network over more cores

increased the power and energy consumption without any noticeable benefit for

the computation time. As a result, we used the smallest number of cores feasible

for satisfying all hardware constraints, which is 8 cores for all trained networks.

110 Hardware platforms

Fig. 6.12 Comparison of the FFSNN and RSNN accuracy results on Loihi, with the best
parameters discovered by the two-stage HPO for each encoding threshold. [3]

Figure 6.13 depicts the latency, power, and energy consumption of the de-

ployed SNNs on Loihi. Energy consumption was again chosen as the primary

statistic. For the same thresholds, FFSNNs consume less energy than RSNNs,

owing to the recurrent synaptic connections’ memory and processing overhead.

For varying thresholds, FFSNNs and RSNNs follow a similar trend: networks with

ϑ= 2 and ϑ= 5 consume more energy, because they have smaller bin sizes and

therefore more time bins per sample (450) compared to networks with thresholds

ϑ= 1 and ϑ= 10 (270); as seen in Table 5.3, they also require more input copies.

Networks with ϑ= 2 consume more than networks with ϑ= 5, owing to the fact

that they have more input copies (8 vs. 5). Nonetheless, the FFSNN with ϑ = 1

consumes more than the FFSNN withϑ= 10, while the RSNN withϑ= 1 consumes

less than the RSNN with ϑ= 10. Even though the networks with ϑ= 1 have more

events in the input and fewer events in the hidden layer than the networks with

ϑ= 10, the hidden layer events have a different impact, because every event in

the FFSNN hidden layers is transmitted to the 28 output neurons, whereas every

event in the RSNN hidden layers is transmitted to both the 28 output neurons and

the 450 hidden neurons. As a result, the advantage found in the input layer for the

RSNN with threshold ϑ= 10 vanishes due to the recurrent architecture increasing

the number of synaptic operations. Finally, although the Jetson GPU was largely

affected by the number of bins, as shown in Figure 6.11, Loihi is also affected by

the number of input copies as well as the spatio-temporal sparsity of the network’s

spikes and synaptic operations.

6.2 Braille classification on Loihi vs. GPU 111

Fig. 6.13 A comparison of inference metrics for all trained spiking neural networks mea-
sured on Loihi in terms of energy consumption and average power utilization. Each bar’s
label indicates the inference time per sample on the relevant network. [3]

After comparing the deployed SNNs on Loihi, the RSNN with encoding thresh-

old ϑ= 1 was the best option, taking into account accuracy, power, energy, and

time. For the remainder of this section, we shall refer to it as the RSNN.

Table 6.1 compares the RSNN in Loihi against the RSNN on Jetson, as well

as the LSTM and eLSTM on Jetson. The RSNN on Loihi loses 1.58 % accuracy

as compared to the RSNN on Jetson, owing to the quantization performed after

training. It also underperforms by 17 % when compared to the LSTM on Jetson,

but just by 3 % when compared to the eLSTM. An LSTM architecture with the same

number of parameters as the RSNN was employed and trained for 300 epochs.

However, the RSNN on Loihi achieves hardware efficiency increases of several

orders of magnitude. First, it is 124× more power-efficient and 172× quicker

than the RSNN on Jetson, making it four orders of magnitude (15615×) more

energy-efficient. It is evident that SNNs are unsustainable when implemented

on conventional GPU hardware. It should be noted, however, that the RSNN

on Jetson still respects the real-time limitation given by the sensor, which has a

sampling frequency of 40 Hz (i.e., a maximum algorithmic time step duration of

25 ms). Despite the fact that the average computation time of the RSNN on Jetson

is quite long (295.38 ms), it is still less than the overall duration of each sample

112 Hardware platforms

Table 6.1 RSNN on Loihi and RSNN, eLSTM, and LSTM on Jetson: accuracy, total power,
energy per sample, latency, and energy-delay product summary. [3]

Results summary Comparison with RSNN on Loihi

Network RSNN RSNN eLSTM eLSTM RSNN eLSTM eLSTM

Hardware Loihi Jetson Jetson Jetson Jetson Jetson Jetson

Input Events Events Events Events Events Events Frames

Accuracy (%) 78.32 79.90 82.31 96.92 +1.58 +3.99 +18.60

Total power (mW) 31 3851 7642 5385 124× 247× 174×
Total energy per sample (µJ) 71 1108695 96000 35212 15615× 1.352× 496×
Delay per sample (ms) 2.3 295.3 12.9 6.7 172× 5.6× 2.9×
Energy-delay product (µJ× s) 0.16 327398 1238 236 2046237× 7738× 1475×
The number of trainable parameter (i.e., synaptic weights) are similar between the RSNN (236700), the LSTM (225975),

and the eLSTM (236919). Event-based inputs are encoded with threshold θ = 1. Comparisons with respect to RSNN on

Loihi are evaluated as differences for the accuracy and as ratios for all the other quantities.

(1350 ms). It should be noted that in real-life situations, this delay can rise when

off-chip communication with the robot is added. Second, as compared to the

LSTM on Jetson, the RSNN on Loihi is more than 170× more power-efficient and

has a 2.9× shorter average execution time, resulting in a three-order-of-magnitude

(1475×) improvement in energy efficiency.

Finally, when compared to the conventional eLSTM classifier on the Jetson

GPU with identical event data, the neuromorphic approach using the Loihi chip

and RSNNs is approximately 4 % less accurate but two orders of magnitude

(247×) more power-efficient, reducing total power from 7642 mW to approxi-

mately 31 mW. Furthermore, because the execution time is lowered from 12.9 ms

to 2.3 ms, the neuromorphic pipeline obtains a gain in energy efficiency of 1352×
and a gain in energy-delay product of 7738×. This is consistent with recent re-

sults comparing SNNs on Loihi to standard methods and hardware, where the

highest performing workloads on Loihi use highly recurrent networks (Davies

et al., 2021). In addition, because the RSNN uses the spatio-temporal sparsity

of the event-driven encoding, we should expect an even bigger improvement in

energy efficiency when applying it on Loihi in a real-world environment. As a

result, if the robot does not move its finger, no event is conveyed to the Loihi

chip, significantly reducing the dynamic power, which is approximately 20 mW

out of the total 31 mW. On the contrary, the Jetson GPU would continually process

redundant data from the quiescient sensor. This research demonstrates how to

combine event-driven encoding, neuromorphic hardware, and SNNs to increase

6.3 Chapter summary 113

the overall efficiency of tactile pattern recognition, stressing the importance of a

neuromorphic approach for embedded systems with a constant input stream.

6.3 Chapter summary

Within this chapter, we have taken a close look at the characteristics of two impor-

tant representatives of the neuromorphic hardware class: SpiNNaker and Loihi.

While both of these platforms can be considered part of the first generation of

neuromorphic hardware, there are differences in the design philosophy behind

the two designs. SpiNNaker is a fully programmable digital platform, and it was

designed with on intense focus on flexibility and scalability. In fact, while a single

Spin5 houses 768 processors, the board’s connectivity and routing was designed

for multi-board operation involving up to a million cores. In Section 6.1, we

put the hardware’s flexibility and scalability to the test by executing a massively

parallel non-spiking algorithm designed to measure the board’s performance

in applications using a large communication context with the SpinMPI library.

While the MPI implementation of PageRank scales better than CPU or SNN-based

solutions, we discovered a few bottlenecks affecting SpiNNaker performance on a

large communication context: the size of the cores’ tightly-coupled data memory

(DTCM), RAM access times, and the usage ratio of the MPI buffer size, which is

determined by task placement across different SpiNNaker chips. In summary,

despite the high quality of the board’s communication infrastructure, there are

numerous algorithmic difficulties that affect the scalability of applications on a

large scale. Most of these issues may be mitigated or resolved with the release

of SpiNNaker 2, which is planned to have faster computation and larger storage.

Given the interoperability of the communication architecture between the old

and new platforms, running these MPI tests on SpiNNaker 2 once it is released is

an intriguing avenue for future research.

Loihi is not a fully programmable platform, as its artificial neurons are hard-

coded; while this implementation delivers better computation speeds and power

consumption with respect to SpiNNaker, it requires that the SNN be designed

with the CUBA neuron in mind. In the case of the Braille classification, a few

mathematical transformations were necessary to translate the neuron model from

the PyTorch LIF to the CUBA representation. When compared to other event-

114 Hardware platforms

based classifiers implemented on GPU, an RSNN operating on Loihi provided

comparable results, but underperformed by 17% when compared to the best-

performing non-spiking classifier (LSTM on GPU). This is not an uncommon result

for neuromorphic solutions. However, the focus of this type of technology must

be on giving the best possible accuracy in its spectrum of low-power solutions,

rather than beating the best accuracy available. While the LSTM offers nearly

unparalleled performance for classification of time-varying signals, it also features

a very high number of parameters and is computationally expensive in training

and inference. By contrast, when considering both the inference time and the

power consumption, the RSNN on Loihi offers three-orders-of-magnitude gains

in energy efficiency.

The most important result of this comparison is that, while the development

of bespoke architectural models that fully exploit the possibilities of spiking com-

putation is not yet complete, neuromorphic solutions should not be overlooked

due to the accuracy gap from state-of-the-art ML models; on the contrary, the

advantages in energy consumption they offer can already make the difference

in applications where an approximate solution is acceptable and low power con-

sumption is required.

Chapter 7

Bringing it all together: towards a

complete neuromorphic pipeline

Edge computing is one of the most promising potential applications for neuro-

morphic technology in the near future. Neuromorphic processors’ low power

consumption, high parallelism, and real-time computation capabilities would

provide efficient elaboration of large amounts of data directly on the edge, elim-

inating the need to transfer data to power-hungry cloud servers [283, 18]; the

adoption of biology-inspired Spiking Neural Networks could additionally provide

useful new computing capabilities.

Although neuromorphic hardware has already been accessible for several

years, efficient techniques for edge applications have only recently become avail-

able: there have been proposals for Constraint Satisfaction Problem solving [284]

in addition to real-time data analysis applications like burst event detection via

Neuromorphic Auditory Sensors [285], ECG-based heartbeat identification for

cardiac defect identification [286], analysis and classification of various biometric

signals captured via wearable devices [80], pattern matching [57], hand-gesture

detection [78] and learning [287], robotic controllers [288, 289], concurrent map-

ping and localization [290, 291], adaption of radio-frequency waveforms for noisy

situations [292], and on-edge facial recognition [293].

Despite advances in algorithm study, integrating neuromorphic devices in the

context of edge computing remains challenging; a neuromorphic system by itself

cannot be stationed as an edge device; these kinds of systems have to depend on a

116 Bringing it all together: towards a complete neuromorphic pipeline

separate host that uploads the network setup and input data before computations

can start [273]. This configuration stage is often carried out on a desktop PC or a

cloud server. However, certain commercial solutions, such as NeuroEdge [293],

which incorporates an NM500 neuromorphic processor into a Raspberry Pi, are

beginning to emerge, which may allow developers to avoid the need for addi-

tional configuration. Attempts to integrate von Neumann-based computation

are also visible in the architecture of neuromorphic designs like that of Loihi [25],

featuring microcontroller-class x86 chips at the mesh’s periphery, primarily used

for data format conversion between the standard computing and neuromorphic

encodings. Frameworks for easing the creation and implementation of software

on neuromorphic hardware have likewise started to emerge: NeuroXplorer [294]

is a tool to support simulation and design exploration for SNN use cases, allowing

users to explore performance indicators for an assortment of neural network mod-

els and hardware combinations, whereas the Nengo libraries [288] supplement

popular Keras and Python utilities to facilitate the construction of SNNs, their

compilation on different neuromorphic hardware, and their deployment.

In this chapter, we will see a few examples of partial and complete neuro-

morphic pipelines realized during the author’s research activity. These case

studies exemplify the important issues in interfacing neuromorphic sensors, en-

coders, models, software tools and hardware with each other and with traditional

computing-based frameworks. Section 7.1 illustrates on-chip integration between

a novel neuromorphic hardware platform and a RISC-V coprocessor, including

the development of a simple command and data exchanging interface and a

simulation study of the synthesized system on FPGA. This work was previously

published as a conference paper [6]. Then, we move on to Section 7.2, where

we explore the complete pipeline processes for some neuromorphic classifiers

of IoT time-varying signals. In this section, concepts from chapters 2 through

6 are drawn together to create a unified approach for the implementation and

benchmarking of this type of application. Subsection 7.2.1 presents a general

approach for the design and optimization of a HAR classifier, from the dataset

selection to the implementation of a spiking or non-spiking neural architecture.

Subsection 7.2.2 drills down on this approach, extending the input selection to

multiple dataset types with different characteristics and implementing spike en-

coding, feature extraction, neural network training through Transfer learning, and

model compression. Finally, in Subsection 7.2.3, the workflow further grows to

7.1 Configuring an embedded neuromorphic coprocessor with RISC-V 117

include implementation of the neuromorphic classifiers on traditional (GPU) and

neuromorphic (Loihi) hardware.

7.1 Configuring an embedded neuromorphic copro-

cessor with RISC-V

Neuromorphic hardware platforms generally cannot be deployed as edge devices

on their own, since they require an external host for setup and data input man-

agement. This study [6] describes a chip-level integrated system that performs

on-edge reconfiguration of a neuromorphic architecture. The proposed method

incorporated two open-source platforms: the low-power RISC-V microproces-

sor Rocket Chip and the digital SNN microprocessor ODIN. The resulting design

enables the RISC-V processor to configure a Spiking Neural Network operating

on the coupled neuromorphic device in real time over the standard SPI interface.

Using the Chipyard framework, we combined the two systems into a single SoC

and connected them by building an interface for communication with ODIN’s SPI

and AER input/outputs, then validated the setup by running an RTL simulation

of a synfire chain on ODIN, wherein Rocket Chip would configure the network,

trigger the first spike, and gather the simulation data. These results represent a

proof of concept for endorsing greater integration of neuromorphic systems into

the data flow of edge computing.

ODIN: a Spiking Neural Network coprocessor

ODIN (Online-learning DIgital spiking Neuromorphic processor) [218] can be

considered a representative example of emergent neuromorphic architectures.

This platform, which is freely available as an open source netlist, is a neurosynaptic

core that can support up to 256 neurons with all-to-all synaptic linkages. It has

I/O interfaces that implement the Address Event Representation (AER) protocol

and supports two neuron models: Leaky Integrate & Fire (LIF) and Izhikevich.

The ODIN registers can be configured using the Serial Peripheral Interface

(SPI) unit, which also supports write and read operations on neurons and synapses.

The system is administered by a controller, which also handles AER requests from

outside, and a scheduler, which handles spiking and bursting events from ODIN

118 Bringing it all together: towards a complete neuromorphic pipeline

neurons or other devices via the AER interface; events are processed in accordance

with the First In, First Out policy.

Manually setting up ODIN can be difficult; it is a complicated piece of hard-

ware, and configuration via the standard Serial Peripheral Interface (SPI) protocol

can result in a lengthy and error-prone setup phase. To make this operation sim-

pler, we created a C program that allows to easily set ODIN’s SPI internal registers

and load the neurons’ and synapses’ SRAM contents. The following functions are

available in the current version of the program:

1. Set SPI Configuration Registers. Network parameters can be tuned by writing

appropriate values into the registers: for example, by setting the synapses of

a certain neuron as inhibitory or excitatory.

2. Add Synapse. The presynaptic and postsynaptic neuron numbers are oblig-

atory parameters: these are the neurons that will be connected via the

synapse that will be created. The user can then configure the mapping table

bit and apply a weight to the previously formed synapse.

3. Add Neuron. Allows to fine-tune the settings of the new neuron. After

providing the address of the neuron to be modified, all its LIF-specific

characteristics can be written.

The above functions are utilized on a host computer to generate a binary

configuration file. We direct the reader to [295] for more information on the

system’s implementation.

The RISC-V Instruction Set Architecture

Because it is free and open source, architecture-agnostic, and easily expandable,

RISC-V is one of the most extensively used Instruction Set Architectures (ISA)

in both academic and industry settings. RISC-V is made up of a fundamental

integer ISA that is guaranteed to be stable, as well as a variety of optional modular

extensions. The RISC methodology provides higher performance and reduced

program sizes, while the vast number of integer registers and Program-Counter

relative addressing make complex programs easier to design. Finally, the ISA’s

modularity enables deep integration of domain-specific coprocessors, allowing

for additional specialized instructions within the unused opcode space.

7.1 Configuring an embedded neuromorphic coprocessor with RISC-V 119

There are several free and open source implementations of the RISC-V ISA,

with varying degrees of processing performance, size, and energy efficiency.

Choosing one of these solutions relies on the target technology (such as FPGA or

ASIC) and the required parameter trade-offs; the Rocket core, which we use in this

work, scored well across the board for numerous criteria [296].

7.1.1 ODIN integration with Chipyard

The architecture of this simple system consists of ODIN and Rocket Chip cou-

pled via SPI. The underlying RISC-V system-on-chip is based on Chipyard, a

simple-to-use and open source framework with a great degree of flexibility. The

Chipyard framework [297] is publicly available on GitHub, as are the ODIN files

and documentation [298].

Chipyard supports the integration of external designs written in Verilog, Sys-

temVerilog, or Chisel. The Verilog top-level entity for ODIN can be included in the

design as is; a Chisel-specified ODIN black box component wraps over the core

Verilog model. Each Chisel black box exposes the following items:

• an I/O field, containing all the ODIN top level entity’s input and output

signals (the SPI signals, the AER connection signals, Clock, and Reset);

• the constructor arguments (the number of neurons N , the number of bits

indicating the neuron handle M , and the address that will be associated

with ODIN in the SoC’s memory map);

• a list of all Verilog resources required to build the design.

ODIN is incorporated as a Memory-Mapped I/O (MMIO) peripheral: AER-

specific signals are defined as registers, and their locations are specified in the

SoC memory map as offsets with respect to the ODIN module’s base address. A

TileLink connector is used to communicate with the memory-mapped registers. A

ODINTL class needed to be created to configure ODIN for use with the TileLink

interconnection: this class extends the TLRegisterRouter class in Chipyard, passing

as arguments ODIN’s address in the global memory map, the signals available in

TileLink, and the constructor to connect ODIN to the TileLink bus. Because this is

a memory-mapped peripheral, connecting the ODIN TileLink-specific node to

the MMIO crossbar was sufficient.

120 Bringing it all together: towards a complete neuromorphic pipeline

Finally, we built a WithODIN configuration class to instantiate ODIN with con-

figurable M and N parameters. The DigitalTop class in Chipyard was also changed

to make ODIN accessible to the Chipyard framework. The components are then

placed in a new RocketChip configuration, and the entire design is assembled.

We put the system to the test by running a basic SNN model: the synfire

chain, a feed-forward system composed of few neurons in which all synapses are

excitatory, so that the membrane potential of the postsynaptic neuron increases

whenever any of the presynaptic cells fire. After the first neuron emits a spike, all

succeeding neurons are stimulated and fire, resulting in a series of spikes traveling

synchronously from one neuron to the following. This network’s simple and

regular behavior makes it a good reference point to verify the proposed design.

Figure 7.2 shows an example of a synfire chain with 8 neurons.

Fig. 7.2 Synfire chain network with 8 neurons. This is the setup used to validate the
architecture integrating ODIN and Rocket Chip. © 2021 IEEE.

The correct stimulation and operation of the synfire chain was tested via a

Register Transfer Level (RTL) simulation of the system. To set up the SPIFlash

controller device, initialize ODIN, and gather results through the output AER

interface, we used the custom C program described in Section 7.1.

7.1.2 RTL simulation and synthesis

The synfire chain RTL simulation consists of 8 neurons with addresses ranging

from 0 to 7, beginning with a zeroed membrane potential and a threshold voltage

equal to 1. The leakage mechanisms were not used. The simulation’s configura-

tion and execution consists of a few steps: first, ODIN’s SPI input registers are

configured. The synaptic interconnections and neuron parameters are then set up

by using the newly-established SPI connection to write directly to the synapse and

neuron SRAMs. Once all inputs are ready, the host system (in this case, the RISC-V

processor) signals the beginning of the simulation, and begins the communication

of input and output data for the network through ODIN’s AER interface.

7.1 Configuring an embedded neuromorphic coprocessor with RISC-V 121

Fig. 7.3 Synfire chain with 8 neurons: neuron 0 is stimulated by a virtual synapse event
(signals 1-3), then every neuron of the synfire chain fires in sequence (signals 4-7). © 2021
IEEE.

Figure 7.3 depicts the execution of the synfire chain execution as seen by

monitoring the AER interface signals. The ODIN controller is triggered through

the AERIN_REQ (1) port, and AERIN_ADDR (2) indicates the type of AER event

being requested: in this case, a VIRTUAL SYNAPSE EVENT targeting neuron

0, an ODIN event which does not update synapses but simply triggers the start

of the simulation. Once a neuron fires, the event is sent over the AER output

interface, asserting the AEROUT_REQ (4) and AEROUT_CTRL_BUSY (5) signals.

AEROUT_ADDR (6) is filled with the address of the neuron that has just fired and

generated the event. AEROUT_ACK (7) is a software-programmed acknowledge

which informs ODIN that the latest firing event has been correctly received by the

RISC-V CPU. Finally, each neuron fires, and the CPU reads and stores the relevant

address.

The entire architecture was synthesised to FPGA using a Xilinx PYNQ Z2 as a

feasibility study. To minimize area and reduce the number of I/O pins, unused

modules such as the UART connector, Inclusive Cache, auxiliary DRAM, and

TileLink probes were removed; the SPI Flash controller was modified as read-only,

and the standard core was replaced with the smallest RISC-V RocketChip core

available. The results of the synthesis are shown in in Tables 7.1 and 7.2.

The PYNQ Z2 board uses 15.99 % of its LUT slices (14.9 % Logic, 1.09 % Mem-

ory) and 11.07 % of its Block RAMs, with the latter implementing ODIN’s neuron

and synapse states, as well as RocketChip’s data and instruction caches. The top

module has 8 I/O pins: clock (primary clock source), reset (global synchronous

reset), SCK (clock source for the SPIFlash controller and ODIN’s SPI port), CS (the

SPIFlash controller’s Chip Select), and 4 Quad-SPI transmission pins. This is the

bare minimum of pins required for a workable design; because the PYNQ Z2 has

a total of 125 programmable I/O pins, that leaves 117 spare pins for integrating

other peripherals or systems.

122 Bringing it all together: towards a complete neuromorphic pipeline

Table 7.1 ODIN + ROCKETCORE SYNTHESIS - SLICES. [6] © 2021 IEEE.

Site Type Scope Type Used Available Utilization %

Slice LUTs 8506 53200 15.99

Logic 7928 53200 14.90

Memory 578 53200 1.09

Distributed RAM 578

Shift Registers 0

Slice Registers 4317 106400 4.06

Flip-Flop 4317 4.06

Latch 0

F7 Muxes 179 26600 0.67

F8 Muxes 34 13300 0.26

Table 7.2 ODIN + ROCKETCORE SYNTHESIS - RAM. [6] © 2021 IEEE.

Site Type Scope Type Used Available Utilization %

BRAM Tile 15.5 4140 11.07

RAMB36/FIFO 15 140 10.71

RAMB36E1 15

RAMB18 1 280 0.36

RAMB18E1 1

The proposed method for incorporating a RISC-V Computer and a neuro-

morphic coprocessor on a single chip makes use of free and open source assets,

and allows for SNN application customization on the fly. This work represents

a first step toward seamless combination of neuromorphic technologies with

cutting-edge processors, creating fully self-contained systems that can handle

operations appropriate for conventional computers while also enabling compu-

tations which only deep learning algorithms can handle; at the same time, these

systems match the low-power constraints required for deployment in the edge

computing environment. The addition of a RISC-V CPU capable of configuring

the co-embedded neuromorphic device offers users an easier-to-use interface in

addition to a well-known, open source, and adaptable ISA. All in all, the combi-

nation of these two platforms opens up new possibilities for developing IoT and

industrial applications.

7.2 From sensor to neuron: processes for neuromorphic classification of IoT
time-varying signals 123

7.2 From sensor to neuron: processes for neuromor-

phic classification of IoT time-varying signals

Spatiotemporal pattern identification is a fundamental brain capacity that is essen-

tial for many real-world activities. Recent deep learning algorithms have achieved

exceptional accuracy in such tasks, but their execution on traditional embedded

systems is still computationally costly and energy-intensive. For example, tactile

sensing in robotic applications is a task in which instantaneous processing and

energy conservation are essential. In the following, we provide several examples

of complete pipelines for the classification of IoT time-varying signals, discussing

the problems and prospects of event-based coding, neuromorphic technology,

and spike-based computation for spatiotemporal pattern identification at the

edge.

7.2.1 A neuromorphic approach for on-edge HAR applications

Because of their event-based asynchronous processes, spiking neural networks

(SNNs) [42] can be a strong contender for energy-efficient solutions [299] in the

world of on-edge classification of time-variant signals captured by IoT devices.

In order to give a comparative examination of various models and architectures

for such challenges, in Fra et al. [2] we used the Wireless Sensor Data Mining

(WISDM) smartphone and wristwatch activity and biometrics dataset [87, 88] to

evaluate a raw data-only classification strategy. Using Nengo as a basic frame-

work demonstrated the benefits of a neuromorphic paradigm as an alternative to

traditional deep learning solutions, presenting a first evaluation of bio-inspired

models for HAR directly from raw data.

We compared several neural networks, both recurrent and convolutional,

spiking and non-spiking, to study this issue; we also applied neuro-inspired tech-

niques to the HAR challenge via novel solutions such as the LMU, highlighting

the contrasts between typical DNNs and SNNs from two perspectives: classifi-

cation performance, and computational effort and memory consumption. This

comparison among different solutions is carried out at the last stage of the opti-

mization pipeline illustrated in Figure 7.4. Vertical arrows indicate preliminary

steps, specifically dataset selection (a) and optimization experiment design (c)

124 Bringing it all together: towards a complete neuromorphic pipeline

and (d), while horizontal arrows show subsequent phases in the main timeline of

the study: neural network architecture selection (b), hyperparameter optimization

(e), and final implementation of the HAR classifiers (f).

Fig. 7.4 Preliminary processes are shown by the vertical arrows: dataset selection in (a),
hyperparameter search space specification in (c), and optimization experiment config-
uration in (d). The pipeline’s main structure, instead, is represented by the horizontal
arrows: neural network architecture selection in (b), hyperparameter optimization in (e),
and classifier evaluation in (f). [2]

7.2.2 A time-varying signal benchmark for spike encoding tech-

niques

In Forno et al [1], we expanded on the above pipeline in order to benchmark the

effect of different encoding techniques at the input. In addition to the WISDM, we

applied the same pipeline to audio data from the FSD dataset, in order to evaluate

the performance of the entire pipeline with two different types of time-varying

signals.

7.2 From sensor to neuron: processes for neuromorphic classification of IoT
time-varying signals 125

Figure 7.5 depicts the methods undertaken to train the network and classify

the data. Starting with raw data, a filter bank decomposes the time-varying signal

into multiple frequency channels, using a battery of either Butterworth [300] or

gammatone [301, 184, 188] parallel band-pass filters [301] to mimic the ability of

cochlear hair cells in the human ear to deconstruct audio signals. The original

signal is then translated into the spike domain by encoding each individual fre-

quency channel using one of the methods described in Chapter 3. To continue

with the training and classification process, a feature extraction step is needed,

resulting in the sonogram, which is a reprocessing of the encoded spike-domain

signal in the form of an image. We use the Time Binning approach to convert

spike signals into frame-based features by counting events over non-overlapping,

fixed-length time periods to create the sonogram, as described in Anumula et

al. [245].

The goal is to explore the effect of input signal encoding on the training of a

spiking convolutional neural network (sCNN) using transfer learning (see Sec-

tion 4.3.1). For time-varying signals, the use of a convolutional network archi-

tecture is common practice [147, 187, 302] because it avoids the use of recurrent

neural networks, which are more elaborate and computationally intensive [2].

The sonogram is used as input for the transfer learning approach, which allows

us to indirectly train an SNN network using ANN learning techniques. Finally,

the sonogram is converted into the spike domain again to validate the accuracy

performance. Various CNN/SNN setups are tested to get the highest classification

accuracy. The SNN undergoes a model compression stage to minimize its dimen-

sions by gradually eliminating synaptic links between neurons depending on their

weight (see Section 4.4).

We thoroughly tested several combinations of frequency decomposition filter

type, encoding algorithm, feature extraction settings, and network design, using

transfer learning and a spiking CNN. The goal of this effort is to provide neuro-

morphic engineers with useful information on the relative effectiveness of various

encoding strategies. Our experiment demonstrated the relevance of customizing

the encoding method to the input data by using the same pipeline on two distinct

datasets.

126 Bringing it all together: towards a complete neuromorphic pipeline

Fig. 7.5 The proposed encoding benchmark pipeline includes a frequency decomposition
stage via a filter bank, a spike encoding phase, feature extraction by sonogram creation,
transfer learning via a non-spiking network, and model compression. [1]

7.2.3 Braille letter reading benchmark on neuromorphic hard-

ware

For the Braille letter reading task, the authors further extended the pipeline from

the previous two sections with proper implementations on neuromorphic hard-

ware.

Figures 7.6.A-D depict the development path for neuromorphic challenges

in the tactile space that we proposed in Müller-Cleve et al. [3]. The suggested

method was developed and tested on tactile output from capacitive sensors, but it

can be applied to a wide range of time-dependent data, including audio streams,

motion sensor outputs, and temperature or voltage tracking. The Braille reading

task was chosen as a benchmark due to the inherently time-dependent character

of its information content, for which we devised a complete event-based neu-

romorphic classification technique. After collecting an appropriate dataset (see

Section 2.2.1), the authors implemented a widely used and well-known encoding

technique based on sigma-delta modulation (see Section 3.3), and then performed

7.2 From sensor to neuron: processes for neuromorphic classification of IoT
time-varying signals 127

Fig. 7.6 The workflow is broken down into five parts. (A) Data acquisition and encoding. (B)
Information content and reconstruction loss analysis. (C) Various non-spiking classifiers
are used to generate a benchmark for the proposed RSNN. (D) The RSNN is subjected to
hyperparameter tuning. (E) Performance is analyzed, taking into consideration multiple
metrics and hardware solutions. [3]

classification using a neuro-inspired approach employing Feedforward Spiking

Neural Network (FFSNN) and RSNN models (see Section 4.2.2), which were im-

plemented both in software (see Section 5.2.2) and hardware (see Section 6.2).

NVIDIA Jetson (a modular embedded GPU system) and Intel Loihi (a specialized

neuromorphic chip) were the targets of the hardware implementation, entering

a comparison with standard classification algorithms with respect to quality of

classification, average power consumption, energy use, and computation delay

during inference.

Results showed that Braille reading can be carried out in a highly energy-

efficient manner by using event-based data and using Spiking Neural Networks

(SNNs) on specialized neuromorphic hardware. This assertion is supported by

various factors such as the information retention in the encoding, the reliability of

the classifiers, and the amount of power needed on different hardware running

different models.

Initial examination of the frame-based data via a linear classifier [3] demon-

strated that distinguishing information in this type of dataset is stored in both the

spatial and temporal domains: in fact, when no time dimension was provided in

frame- or event-based data, the accuracy of linear classifiers decreased, demon-

128 Bringing it all together: towards a complete neuromorphic pipeline

strating the need for architectures capable of learning spatio-temporal patterns

from the data. Although linear classifiers provide excellent accuracy using all

time bins as predictors, they cannot be used to analyze spatio-temporal patterns

when data is being detected in real-time rather than being already accessible; this

contrasts with the progressive learning techniques and spike-based algorithms

enabled by neuromorphic technology.

Performing a data encoding study illustrated the trade-off between the quan-

tity of information from the initial frame-based data and event stream sparsity.

The original frame-based data is intrinsically redundant because the information

content drops slower than the event compression ratio, as exposed by comparing

the datasets at various threshold levels.

In addition to the effect of the encoding threshold, the investigation revealed

time binning to be a major influencing element. The minimum time_bin_size

represents the smallest boundary within which the temporal evolution of the

event stream can be accurately represented in the sparse vector format used on

a GPU; when ISIs in the data are shorter than the time_bin_size, information

content and time dynamics degrade and information is lost. The implementation

outcomes show that the network likely failed to capture the sparsity in the source

event stream at each layer: although the dataset supplied to the input stage had

a compression ratio greater than 1 in terms of events, the optimized network

demonstrated an increase in the number of events and the overall energy con-

sumption of the architecture. The quantity of time bins has a significant impact

on power consumption, but when comparing thresholds ϑ= 1 with ϑ= 10 and

ϑ= 2 with ϑ= 5 for the RSNN, which have the same time_bin_size of 5 and 3 ms,

respectively, the higher threshold always has a higher power consumption, as

shown in Figure 6.13. This can only be explained by an increase in the number of

spikes broadcast in the network. As a result, encoding strategies that reduce the

number of events in input data can still lead to higher overall energy usage in the

system.

The spiking neuron voltage and current time constants, after being indepen-

dently optimized for each encoding threshold, were all of comparable magnitude:

in fact, they appear to be linked to the underlying temporal fluctuations in the in-

put event stream and not to the encoding threshold or binning time window. The

HPO did not find a global best for any single encoding threshold, highlighting the

7.2 From sensor to neuron: processes for neuromorphic classification of IoT
time-varying signals 129

complicated interplay of the included parameters, which resulted in numerous

locally optimal solutions. The findings of the optimization grid search demon-

strated that any time_bin_size bigger than 2 ms led to a similar trend, with a minor

decline in classification accuracy as time_bin_size increased. The choice of a larger

time_bin_size for future robotic implementation is preferred, given the moderate

drop in accuracy and the improvement in energy and power savings.

The implementation of SNNs on the NVIDIA Jetson indicated that the plat-

form is capable of meeting the requirements of real-time functionality (i.e., any

network’s inference time being less than the duration of one sample). However,

the difference in inference time between non-spiking and spiking networks is

significant. It varies between ∼ 16× (Inception vs. FFSNN with threshold ϑ= 1)

and ∼ 91× (FCN vs. RSNN with threshold ϑ= 2). As a result, energy consumption

increases significantly, ranging from ∼ 2× (Encoder vs. FFSNN with threshold

ϑ= 1) to ∼ 40× (LSTM vs. RSNN with threshold ϑ= 2). These figures demonstrate

the clear disadvantage of the application on standard hardware: an effective de-

ployment would require either a more optimized design that is better accelerated

by GPUs, or dedicated hardware that can make use of spiking domain properties

such as temporal sparsity.

The authors were able to demonstrate the feasibility of doing time series

classification on neuromorphic hardware utilizing only event-based coding and

asynchronous event-driven computation. Using only 450 recurrently intercon-

nected hidden units and utilizing a total of 31 mW on the Intel Loihi neuromorphic

processor, the deployed RSNN could discern from 27 classes of Braille letters at

78.32 % accuracy. Of course, this is still insufficient to report competitive classifica-

tion performance when compared to conventional classifiers or other SNN results

on diverse tasks: the choice of sigma-delta encoding in particular led to excessive

information loss, preventing the network from further improvement. Nevertheless,

compared to an LSTM running on the NVIDIA Jetson embedded GPU, the RSNN

with threshold ϑ = 2 on Loihi yielded a power-efficiency boost of 250×. These

results highlight the challenges of spike-based computing in terms of accuracy

when compared to standard algorithms; at the same time, they demonstrate the

potential of the neuromorphic approach paired with event-based transmission

and asynchronous computation in terms of power/energy efficiency and delay,

particularly for mobile robotics or strongly energy-constrained application fields.

In these scenarios, efficient event-based encoding is a necessary companion to

130 Bringing it all together: towards a complete neuromorphic pipeline

neuromorphic computing for executing the task. Event-based devices can be

considered quiescent when no substantial input change happens, and their power

consumption is exceptionally low during this period. Despite this, thanks to its

asynchronous nature, the system will be able to respond to changes immediately.

7.3 Chapter summary

As the ideal endpoint of this thesis, this chapter has reported a few examples of

partial and complete neuromorphic pipelines.

First, the author demonstrated interoperability between a neuromorphic pro-

cessor and a RISC-V CPU on the same chip, enabling seamless data interchange

and simulation control for edge computing. Then, we examined how three subse-

quent research projects have gradually built a neuromorphic pipeline for classifi-

cation of time-varying signals.

An experiment using raw, low-frequency inertial sensor data from human

activity monitors highlighted the energy/accuracy tradeoff in favor of spiking LMU

networks, indicating that recurrent networks could provide better results for time-

varying data while maintaining the energy advantage of spiking computation.

In a second experiment, we expanded our analysis to middle-frequency au-

dio data, using a variety of preprocessing and encoding techniques. We also

introduced model compression, resulting in favorable classification accuracy and

energy savings.

Our latest effort involved collaboration with international researchers to ac-

celerate the neural model on neuromorphic hardware. While we found a small

gap in accuracy between the RSNN on the Loihi neuromorphic hardware and

the Jetson GPU, the energy efficiency of the Loihi version was 1475× that of the

best-performing network on Jetson.

While the designs proposed in this chapter constitute workable prototypes

for benchmarking the behavior of neuromorphic system designs, they do not yet

exemplify complete end-to-end neuromorphic pipelines ready for deployment

in IoT and industrial applications. Limitations such as the scarce availability of

event-based sensors and lack of resources for native SNN training have informed

the growth of our neuromorphic pipeline, with the necessity of gradual adoption

7.3 Chapter summary 131

of new tools, techniques and models selected via careful benchmarking and

examination of the interaction with the other elements in the process. At the

same time, as seen throughout Section 7.2, this gradual and modular method has

proven stable and reliable, creating a valuable platform to build upon in support

of future work in this area of research.

Chapter 8

Conclusions

The goal of this research was to create a catalog of computational blocks, tools,

and frameworks based on neuromorphic technology, as well as to define advanta-

geous pipelines and methodologies for implementing new algorithms that match

diverse test cases in the industrial sphere. This thesis focused on developing a

working neuromorphic pipeline with special attention to applications involving

the categorization of IoT time-varying data in order to provide relevant didactic

examples of practical use cases for neuromorphic technology. This type of ap-

plication represents an ideal use case for the SNNs at the core of neuromorphic

computing, because this type of deep learning architecture inherently features a

more accurate internal representation of spatio-temporal dynamics compared

to other ML solutions. After identifying the building blocks of the neuromorphic

system, we have examined each in detail and observed their interactions with one

another.

For edge deployment, an embedded neuromorphic application must necessar-

ily interact with its environment via sensors. This purpose can be served by both

typical digital sensors (accelerometer, gyroscope) and novel event-based sensors

(silicon retina, silicon cochlea). The two types of solution offer different tradeoffs

and advantages: event-based sensors represent a promising avenue, and they are

likely to see widespread adoption in the near future for specialized tasks because

of their extreme power efficiency. On the other hand, as of now, digital sensors

are a far more accessible alternative that can be used at a low cost; therefore, it is

likely that anyone trying to create a system exploiting neuromorphic platforms to

be deployed in the very near future will need to interface with this kind of input.

133

Whether using digital or event-based sensing, the neuromorphic designer

must address the issue of spike encoding and its repercussions on downstream

elements, especially as it affects the information content of the obtained signal.

While an event-based sensor generally encapsulates encoding hardware that can-

not be changed a posteriori, input from a digital sensor must be transformed into

a spike train before it can be elaborated by a SNN. As seen in Chapter 3, our thor-

ough investigation of spike-based encoding solutions found a notable correlation

between the efficiency of the coding technique and the frequency of the input

data: therefore, an important requirement for any spike coding technique is that

it produce a sufficiently high spike count to properly stimulate all the cascading

layers of the classification network. Because spike sparsity is a determinant of the

low power attributes of neuromorphic systems, selecting an encoding strategy

requires careful consideration of the tradeoff between information preservation

and energy reduction.

As far as time-varying signals are concerned, rate-based coding does not prop-

erly represent the fine temporal dynamics of an input signal. Temporal coding ex-

ploits the spatio-temporal representation ability of SNNs more effectively, leading

to more accurate results. Within the temporal coding class, deconvolution-based

and temporal contrast techniques deliver the best accuracies, with comparable

performance. However, deconvolution-based methods require more insight into

the frequency characteristics of the input data in order to properly construct the

underlying filters, and are therefore generally harder to design. On the contrary,

temporal contrast techniques are simpler and more effective at algorithmically

capturing the time-varying dynamics of the data with little input from the designer.

As a result, we can say that temporal contrast encoding is a suitable first choice

for most applications handling input data that has an important time-varying

component.

The selection of the operative classifier network for the neuromorphic system

is also of paramount importance. Neuromorphic technology allows for very fine

modeling of the internal dynamics of a network layer, down to the complex be-

havior of a single neuron. While neuronal models can be endlessly customized —

either taking inspiration from biology or creating less realistic computational units

that serve a specific purpose — the most widespread neuron model for practical

applications remains the Leaky Integrate & Fire (LIF), because of its very light

computational load. The use of the LIF model can be extended by integrating

134 Conclusions

populations of Adaptive LIF neurons to enable effective learning in recurrent

SNNs.

Many of the experiments illustrated in this thesis have made use of the spiking

CNN as a classification architecture, because of its ease of implementation and

the possibility of transfer learning using well-known and reliable ANN methods.

However, as supported by the results found in the comparative classification of the

Braille dataset (see Section 5.2.2), the most suitable architecture for time-varying

data in the spiking domain is the recurrent neural network. Networks such as the

LMU and RSNN natively create a memory trace of past events in their recurrently

connected reservoirs, which allow the classifier to correlate time-varying events

on a longer scale. As a result, in future work, the author proposes to integrate

cutting-edge recurrent networks — such as the LSNN, a spiking variant of the

LSTM architecture that enables novel learning techniques — into the classification

pipeline. In addition to pure and simple architectural design, refining techniques

such as automated hyperparameter optimization and model compression remain

as important for neuromorphic engineering as they are in the general ML field.

Research into neuromorphic hardware platforms has continued to flourish in

the past few years. Nowadays, the field is on the verge of a minor revolution, as

the first generation experimental platforms put forward by the research commu-

nity (such as SpiNNaker and BrainScaleS, later followed by Loihi and DYNAP-SE)

prepares to give way to a second generation that builds on the successes of the

previous platforms (presently: SpiNNaker 2, Loihi 2, ReckOn), bringing in techno-

logical innovations that will empower more complex computation. For instance,

while SpiNNaker 2 is expected to provide a 50× increase in computational ability

over its predecessor, mostly due to a higher number of CPUs, a higher clock rate,

and the integration of hardware accelerators for synaptic operations, the intercon-

nection infrastructure will be based on the efficient multicast router that sat at the

core of SpiNNaker’s exceptional software scalability. This routing infrastructure

has been carefully examined as part of the scope of this dissertation, demon-

strating the scalability of the SpiNNaker architecture for communication-heavy

jobs while identifying the primary constraints limiting context growth. Several

of these bottlenecks, such as computation time, DTCM size, and SDRAM access

time, should improve with the newer and faster technologies promised by the

latest hardware iteration. On the other hand, as seen in Section 5.3.1, the com-

munication efficiency of the neuromorphic platform also heavily depends on

135

decisions taken on the software side, namely in the placement and routing algo-

rithms. As a result, the size and complexity of the new neuromorphic platforms

must necessarily grow in tandem with a greater focus on placement and routing

issues, encouraging the development of efficient algorithms that account for the

relative physical location of data and computing elements, as well as the quirks

of the lower hardware and software layers. This study further validates the utility

of digital and fully programmable systems like SpiNNaker, which enable contin-

ual evolution by allowing users to create new neural models and middleware

algorithms even late in the hardware’s lifecycle.

Finally, Chapter 7 reported a few examples of partial and complete neuro-

morphic pipelines. On a hardware synthesis and system software level, we have

demonstrated the interoperability of a neuromorphic processor with a RISC-V

CPU located on the same chip, allowing for seamless data interchange and simula-

tion control for edge computing. On a more macroscopic level, we have gradually

built a neuromorphic pipeline for classification of time-varying signals. A first ex-

periment (Section 7.2.1) used raw, low-frequency inertial sensor data from human

activity monitors to benchmark the behavior of several neural network-based

classifiers. This study highlighted an energy/accuracy tradeoff in favor of spiking

LMU networks, giving credit to the idea that recurrent networks could enable

better results for time-varying data while maintaining the energy advantage con-

nected to spiking computation. In a second work (Section 7.2.2), we incorporated

a variety of preprocessing and encoding techniques and expanded our analysis to

middle-frequency audio data, allowing us to compare the effects of different data

elaboration methods. We also added a model compression step which brought

favorable results in terms of classification accuracy and energy savings. In our

largest effort, thanks to the collaboration of a group of international researchers,

we were able to extend the pipeline to include acceleration of the neural model

on neuromorphic hardware, finding a small gap in accuracy when comparing

the results of the same RSNN on the Loihi neuromorphic hardware and on the

Jetson GPU, overshadowed by a three-order-of-magnitude (1475×) improvement

in energy efficiency when compared to the best-performing network on Jetson.

Despite our efforts, some gaps remain in the construction of an end-to-end

neuromorphic pipeline for time-varying signals. Due to limited availability of

event-based sensors, we have mostly worked with digital sensors and software-

based converters to spike encoding. For a truly embedded end-to-end neuromor-

136 Conclusions

phic system to be deployed on the edge, the computational effort of this encoding

step must be taken into account if real time operation is to be guaranteed. Also, in

all these pipelines, we primarily relied on transfer learning as a training method.

While this method is simple and effective enough for small networks with a fixed

task, the potential of SNNs for active adaptability and online learning after de-

ployment remains largely unexplored in this work. However, this unique ability

may be one of the decisive aspects for the adoption of this type of technology in

the industrial field. Finally, again due to limited reach and availability, we were

only able to use first-hand the SpiNNaker hardware platform, thanks to the Po-

litecnico di Torino’s involvement in the Human Brain Project, while Loihi results

were provided by external collaborators. While these platforms remain more than

suitable for experimentation, a convincing proof of concept should use a more

miniaturized and energy efficient platform, such as ReckOn or the Kapoho Bay

incarnation of Loihi. In light of the above, future work will concentrate on complet-

ing a totally neuromorphic pipeline for real-time speech recognition. Leveraging

the Neuromorphic Auditory Sensor will allow to sidestep any encoding issues,

and the target architecture will shift towards recurrent SNNs, finally focusing on a

hardware implementation on the most suitable neuromorphic platform.

This research illustrates a few examples of the many tools now available in

neuromorphic engineering, and the difficulties and opportunities in the compli-

cated interplay of the necessary elements constituting a neuromorphic pipeline.

For many years, despite booming interest in the development of neuromorphic

hardware, the accessibility to these machines has lagged behind, due to the lack

of standard and powerful APIs that would ensure the interoperability of the many

hardware and software tools being researched as well as a unified front-end that

would allow developers to try and combine different solutions. However, first with

the introduction of the Neural Engineering Framework (NEF) and Nengo, then

with the increased industry involvement on the part of Intel with the creation

of Loihi and the Intel Neuromorphic Research Community, collaborative efforts

among many entities have brought to light many new tools allowing to explore

novel neural architectures and applications with increased modularity. As a result,

this dissertation represents a first step toward effortless integration of neuromor-

phic devices into fully embedded applications, able to independently interact

with their surroundings and provide sophisticated inference while respecting very

137

strict power constraints; the use cases offered here offer a foundation for future

research to build upon and expand the possibilities of neuromorphic engineering.

Acknowledgements

Part of the research leading to these results has received funding from:

• the European Union Horizon 2020 Programme (H2020/2014-20), grant

number 785907 (HBP-SGA2);

• the ECSEL Joint Undertaking (EU H2020) under the Arrowhead Tools

research project, with Grant Agreement No. 826452;

• the Ebrains-Italy project, CUP B51E22000150006;

• the Fluently project with Grant Agreement No. 101058680.

References

[1] Evelina Forno, Vittorio Fra, Riccardo Pignari, Enrico Macii, and Gianvito
Urgese. Spike encoding techniques for iot time-varying signals bench-
marked on a neuromorphic classification task. Frontiers in Neuroscience,
16, 2022.

[2] Vittorio Fra, Evelina Forno, Riccardo Pignari, Terrence C Stewart, Enrico
Macii, and Gianvito Urgese. Human activity recognition: suitability of
a neuromorphic approach for on-edge aiot applications. Neuromorphic
Computing and Engineering, 2(1):014006, 2022.

[3] Simon F. Müller-Cleve, Vittorio Fra, Lyes Khacef, Alejandro Pequeño-Zurro,
Daniel Klepatsch, Evelina Forno, Diego G. Ivanovich, Shavika Rastogi, Gian-
vito Urgese, Friedemann Zenke, and Chiara Bartolozzi. Braille letter reading:
A benchmark for spatio-temporal pattern recognition on neuromorphic
hardware. Frontiers in Neuroscience, 16, 2022.

[4] Gianvito Urgese, Francesco Barchi, Enrico Macii, and Andrea Acquaviva. Op-
timizing network traffic for spiking neural network simulations on densely
interconnected many-core neuromorphic platforms. IEEE Transactions on
Emerging Topics in Computing, 6(3):317–329, 2016. © 2016 IEEE.

[5] Evelina Forno, Alessandro Salvato, Enrico Macii, and Gianvito Urgese. Pager-
ank implemented with the mpi paradigm running on a many-core neu-
romorphic platform. Journal of Low Power Electronics and Applications,
11(2):25, 2021.

[6] Evelina Forno, Andrea Spitale, Enrico Macii, and Gianvito Urgese. Con-
figuring an embedded neuromorphic coprocessor using a risc-v chip for
enabling edge computing applications. In 2021 IEEE 14th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC),
pages 328–332. IEEE, 2021. © 2021 IEEE.

[7] Fredrik Dahlqvist, Mark Patel, Alexander Rajko, and Jonathan Shulman.
Growing opportunities in the internet of things. McKinsey & Company,
pages 1–6, 2019.

[8] Sérgio Branco, André G Ferreira, and Jorge Cabral. Machine learning in
resource-scarce embedded systems, fpgas, and end-devices: A survey. Elec-
tronics, 8(11):1289, 2019.

140 References

[9] AS Rajesh, MS Prabhuswamy, and Srinivasan Krishnasamy. Smart man-
ufacturing through machine learning: A review, perspective, and future
directions to the machining industry. Journal of Engineering, 2022, 2022.

[10] Zeki Murat Çınar, Abubakar Abdussalam Nuhu, Qasim Zeeshan, Orhan
Korhan, Mohammed Asmael, and Babak Safaei. Machine learning in pre-
dictive maintenance towards sustainable smart manufacturing in industry
4.0. Sustainability, 12(19):8211, 2020.

[11] Salima Omar, Asri Ngadi, and Hamid H Jebur. Machine learning techniques
for anomaly detection: an overview. International Journal of Computer
Applications, 79(2), 2013.

[12] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Mon-
tavon, Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-
Robert Müller. A unifying review of deep and shallow anomaly detection.
Proceedings of the IEEE, 109(5):756–795, 2021.

[13] Kamal Kant Verma, Brij Mohan Singh, and Amit Dixit. A review of supervised
and unsupervised machine learning techniques for suspicious behavior
recognition in intelligent surveillance system. International Journal of
Information Technology, pages 1–14, 2019.

[14] Christophe Loyez, Kevin Carpentier, Ilias Sourikopoulos, and François Dan-
neville. Subthreshold neuromorphic devices for spiking neural networks
applied to embedded ai. In 2021 19th IEEE International New Circuits and
Systems Conference (NEWCAS), pages 1–4. IEEE, 2021.

[15] TDK. Tdk qeexo – qeexo – enabling the new era of machine learning at the
edge. https://qeexo.tdk.com/, 2023.

[16] Microsoft Corporation. The embedded learning library - embedded learning
library (ell). https://microsoft.github.io/ELL/, 2018.

[17] Jing Zhang and Dacheng Tao. Empowering Things With Intelligence: A Sur-
vey of the Progress, Challenges, and Opportunities in Artificial Intelligence
of Things. IEEE Internet of Things Journal, 8(10):7789–7817, May 2021.

[18] Nikola K Kasabov and Nikola K Kasabov. From von neumann machines
to neuromorphic platforms. Time-Space, Spiking Neural Networks and
Brain-Inspired Artificial Intelligence, pages 661–677, 2019.

[19] Dennis V Christensen, Regina Dittmann, Bernabe Linares-Barranco, Abu
Sebastian, Manuel Le Gallo, Andrea Redaelli, Stefan Slesazeck, Thomas
Mikolajick, Sabina Spiga, Stephan Menzel, et al. 2022 roadmap on neu-
romorphic computing and engineering. Neuromorphic Computing and
Engineering, 2(2):022501, 2022.

[20] Hassan N Khan, David A Hounshell, and Erica RH Fuchs. Science and
research policy at the end of moore’s law. Nature Electronics, 1(1):14–21,
2018.

https://qeexo.tdk.com/
https://microsoft.github.io/ELL/

References 141

[21] Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Bird-
well, Mark E Dean, Garrett S Rose, and James S Plank. A survey of neu-
romorphic computing and neural networks in hardware. arXiv preprint
arXiv:1705.06963, 2017.

[22] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. In-
ternational journal of neural systems, 19(04):295–308, 2009.

[23] Aaron R Young, Mark E Dean, James S Plank, and Garrett S Rose. A review
of spiking neuromorphic hardware communication systems. IEEE Access,
7:135606–135620, 2019.

[24] Steve B Furber, David R Lester, Luis A Plana, Jim D Garside, Eustace Painkras,
Steve Temple, and Andrew D Brown. Overview of the spinnaker system
architecture. IEEE transactions on computers, 62(12):2454–2467, 2012.

[25] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil
Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[26] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable
multicore architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (dynaps). IEEE transactions on
biomedical circuits and systems, 12(1):106–122, 2017.

[27] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Tim-
othée Masquelier, and Anthony Maida. Deep learning in spiking neural
networks. Neural networks, 111:47–63, 2019.

[28] Oliver Rhodes, Petruţ A Bogdan, Christian Brenninkmeijer, Simon Davidson,
Donal Fellows, Andrew Gait, David R Lester, Mantas Mikaitis, Luis A Plana,
Andrew GD Rowley, et al. spynnaker: a software package for running pynn
simulations on spinnaker. Frontiers in neuroscience, 12:816, 2018.

[29] James C Knight, Anton Komissarov, and Thomas Nowotny. Pygenn: a python
library for gpu-enhanced neural networks. Frontiers in Neuroinformatics,
15:659005, 2021.

[30] Gianvito Urgese, Francesco Barchi, and Enrico Macii. Top-down profiling
of application specific many-core neuromorphic platforms. In 2015 IEEE
9th International Symposium on Embedded Multicore/Many-core Systems-
on-Chip, pages 127–134. IEEE, 2015.

[31] Chit-Kwan Lin, Andreas Wild, Gautham N Chinya, Tsung-Han Lin, Mike
Davies, and Hong Wang. Mapping spiking neural networks onto a manycore
neuromorphic architecture. ACM SIGPLAN Notices, 53(4):78–89, 2018.

142 References

[32] Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell,
Prasanna Date, and Bill Kay. Opportunities for neuromorphic computing
algorithms and applications. Nature Computational Science, 2(1):10–19,
2022.

[33] Lahiru Laminda Abeysekara and Hamid Abdi. Short paper: neuromorphic
chip embedded electronic systems to expand artificial intelligence. In
2019 Second International Conference on Artificial Intelligence for Industries
(AI4I), pages 119–121. IEEE, 2019.

[34] Lászlo Bako. Real-time clustering of datasets with hardware embedded
neuromorphic neural networks. In 2009 International Workshop on High
Performance Computational Systems Biology, pages 13–22. IEEE, 2009.

[35] Yongseok Lee and Moonju Park. Power consumption and accuracy in detect-
ing pedestrian images on neuromorphic hardware accelerated embedded
systems. In 2019 Tenth International Green and Sustainable Computing
Conference (IGSC), pages 1–4. IEEE, 2019.

[36] Minseon Kang, Yongseok Lee, and Moonju Park. Energy efficiency of ma-
chine learning in embedded systems using neuromorphic hardware. Elec-
tronics, 9(7):1069, 2020.

[37] Tiffany Hwu, Jacob Isbell, Nicolas Oros, and Jeffrey Krichmar. A self-driving
robot using deep convolutional neural networks on neuromorphic hard-
ware. In 2017 international joint conference on neural networks (IJCNN),
pages 635–641. IEEE, 2017.

[38] Luca Leonardo Bologna, Jérémie Pinoteau, Jesús Garrido, and Angelo Arleo.
Active tactile sensing in a neurorobotic braille-reading system. In 2012 4th
IEEE RAS & EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob), pages 1925–1930, 2012.

[39] Ken E Friedl, Aaron R Voelker, Angelika Peer, and Chris Eliasmith. Human-
inspired neurorobotic system for classifying surface textures by touch. IEEE
Robotics and Automation Letters, 1(1):516–523, 2016.

[40] Riccardo Massa, Alberto Marchisio, Maurizio Martina, and Muhammad
Shafique. An efficient spiking neural network for recognizing gestures with
a dvs camera on the loihi neuromorphic processor. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2020.

[41] Chiara Bartolozzi, Francesco Rea, Charles Clercq, Daniel B Fasnacht, Gi-
acomo Indiveri, Michael Hofstätter, and Giorgio Metta. Embedded neu-
romorphic vision for humanoid robots. In CVPR 2011 workshops, pages
129–135. IEEE, 2011.

[42] Wolfgang Maass. Networks of spiking neurons: the third generation of
neural network models. Neural networks, 10(9):1659–1671, 1997.

References 143

[43] Sander M. Bohte. The evidence for neural information processing with
precise spike-times: A survey. Natural Computing, 3(2):195–206, 2004.

[44] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking Neural Networks.
International Journal of Neural Systems, 19(04):295–308, August 2009.

[45] Wolfgang Maass. To Spike or Not to Spike: That Is the Question. Proceedings
of the IEEE, 103(12):2219–2224, December 2015.

[46] Conrad D. James, James B. Aimone, Nadine E. Miner, Craig M. Vineyard,
Fredrick H. Rothganger, Kristofor D. Carlson, Samuel A. Mulder, Timo-
thy J. Draelos, Aleksandra Faust, Matthew J. Marinella, John H. Naegle,
and Steven J. Plimpton. A historical survey of algorithms and hardware ar-
chitectures for neural-inspired and neuromorphic computing applications.
Biologically Inspired Cognitive Architectures, 19:49–64, January 2017.

[47] Adarsha Balaji, Federico Corradi, Anup Das, Sandeep Pande, Siebren Schaaf-
sma, and Francky Catthoor. Power-Accuracy Trade-Offs for Heartbeat Clas-
sification on Neural Networks Hardware. Journal of Low Power Electronics,
14(4):508–519, December 2018.

[48] Wenzhe Guo, Mohammed E Fouda, Ahmed M Eltawil, and Khaled Nabil
Salama. Neural coding in spiking neural networks: A comparative study for
robust neuromorphic systems. Frontiers in Neuroscience, 15:638474, 2021.

[49] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-
based machine intelligence with neuromorphic computing. Nature,
575(7784):607–617, November 2019.

[50] Bipin Rajendran, Abu Sebastian, Michael Schmuker, Narayan Srinivasa,
and Evangelos Eleftheriou. Low-power neuromorphic hardware for signal
processing applications: A review of architectural and system-level design
approaches. IEEE Signal Processing Magazine, 36(6):97–110, 2019.

[51] Peter Blouw, Xuan Choo, Eric Hunsberger, and Chris Eliasmith. Benchmark-
ing keyword spotting efficiency on neuromorphic hardware. In Proceedings
of the 7th annual neuro-inspired computational elements workshop, pages
1–8, 2019.

[52] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
A Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R Risbud. Ad-
vancing neuromorphic computing with loihi: A survey of results and out-
look. Proceedings of the IEEE, 109(5):911–934, 2021.

[53] Yexin Yan, Terrence C Stewart, Xuan Choo, Bernhard Vogginger, Johannes
Partzsch, Sebastian Höppner, Florian Kelber, Chris Eliasmith, Steve Furber,
and Christian Mayr. Comparing Loihi with a SpiNNaker 2 prototype on
low-latency keyword spotting and adaptive robotic control. Neuromorphic
Computing and Engineering, 1(1):014002, September 2021.

144 References

[54] Kyle Buettner and Alan D. George. Heartbeat Classification with Spiking
Neural Networks on the Loihi Neuromorphic Processor. In 2021 IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), pages 138–143. IEEE, July
2021.

[55] Mostafa Rahimi Azghadi, Corey Lammie, Jason K. Eshraghian, Melika Pay-
vand, Elisa Donati, Bernabe Linares-Barranco, and Giacomo Indiveri. Hard-
ware Implementation of Deep Network Accelerators Towards Healthcare
and Biomedical Applications. IEEE Transactions on Biomedical Circuits and
Systems, 14(6):1138–1159, December 2020.

[56] Peter Blouw and Chris Eliasmith. Event-driven signal processing with neu-
romorphic computing systems. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8534–
8538. IEEE, 2020.

[57] Gianvito Urgese, Francesco Barchi, Emanuele Parisi, Evelina Forno, Andrea
Acquaviva, and Enrico Macii. Benchmarking a many-core neuromorphic
platform with an mpi-based dna sequence matching algorithm. Electronics,
8(11):1342, 2019.

[58] Seoyeon Kim, Jisu Park, Jaehyeok Jeong, Young-Sun Yun, Seongbae Eun,
and Jinman Jung. Survey of IoT platforms supporting artificial intelligence.
In Proceedings of the Conference on Research in Adaptive and Convergent
Systems, pages 65–66, New York, NY, USA, September 2019. ACM.

[59] Hongyu An, Dong Sam Ha, and Yang Cindy Yi. Powering next-generation
industry 4.0 by a self-learning and low-power neuromorphic system. In Pro-
ceedings of the 7th ACM International Conference on Nanoscale Computing
and Communication, pages 1–6, New York, NY, USA, September 2020. ACM.

[60] Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhaohui Cai, and Guoqing
Tu. A Survey of Recent Advances in Edge-Computing-Powered Artificial
Intelligence of Things. IEEE Internet of Things Journal, 8(18):13849–13875,
September 2021.

[61] Jan Stuijt, Manolis Sifalakis, Amirreza Yousefzadeh, and Federico Corradi.
µbrain: An event-driven and fully synthesizable architecture for spiking
neural networks. Frontiers in neuroscience, page 538, 2021.

[62] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and
Xinyu Yang. A survey on the edge computing for the internet of things. IEEE
access, 6:6900–6919, 2017.

[63] Jie Lin, Wei Yu, and Xinyu Yang. Towards multistep electricity prices in
smart grid electricity markets. IEEE Transactions on Parallel and Distributed
Systems, 27(1):286–302, 2015.

References 145

[64] Qingyu Yang, Dou An, Rui Min, Wei Yu, Xinyu Yang, and Wei Zhao. On opti-
mal pmu placement-based defense against data integrity attacks in smart
grid. IEEE Transactions on Information Forensics and Security, 12(7):1735–
1750, 2017.

[65] Neeraj Kumar, Sherali Zeadally, and Joel JPC Rodrigues. Vehicular delay-
tolerant networks for smart grid data management using mobile edge com-
puting. IEEE Communications Magazine, 54(10):60–66, 2016.

[66] Guobin Xu, Wei Yu, David Griffith, Nada Golmie, and Paul Moulema. Toward
integrating distributed energy resources and storage devices in smart grid.
IEEE internet of things journal, 4(1):192–204, 2016.

[67] Han Li, Hicham Johra, Flavia de Andrade Pereira, Tianzhen Hong,
Jérôme Le Dréau, Anthony Maturo, Mingjun Wei, Yapan Liu, Ali Saberi-
Derakhtenjani, Zoltan Nagy, et al. Data-driven key performance indicators
and datasets for building energy flexibility: A review and perspectives. Ap-
plied Energy, 343:121217, 2023.

[68] Jie Lin, Wei Yu, Xinyu Yang, Qingyu Yang, Xinwen Fu, and Wei Zhao. A real-
time en-route route guidance decision scheme for transportation-based cy-
berphysical systems. IEEE Transactions on Vehicular Technology, 66(3):2551–
2566, 2016.

[69] Ilias Kalamaras, Alexandros Zamichos, Athanasios Salamanis, Anastasios
Drosou, Dionysios D Kehagias, Georgios Margaritis, Stavros Papadopou-
los, and Dimitrios Tzovaras. An interactive visual analytics platform for
smart intelligent transportation systems management. IEEE Transactions
on Intelligent Transportation Systems, 19(2):487–496, 2017.

[70] Hsin-Te Wu and Gwo-Jiun Horng. Establishing an intelligent transporta-
tion system with a network security mechanism in an internet of vehicle
environment. Ieee Access, 5:19239–19247, 2017.

[71] Kristian Micko, Peter Papcun, and Iveta Zolotova. Review of iot sensor
systems used for monitoring the road infrastructure. Sensors, 23(9):4469,
2023.

[72] Shivam Mishra, Ghada A Khouqeer, B Aamna, Abdullah Alodhayb, S Jafar Ali
Ibrahim, Manish Hooda, and Gaurav Jayaswal. A review: Recent advance-
ments in sensor technology for non-invasive neonatal health monitoring.
Biosensors and Bioelectronics: X, page 100332, 2023.

[73] Kristina Zovko, Ljiljana Šerić, Toni Perković, Hrvoje Belani, and Petar Šolić.
Iot and health monitoring wearable devices as enabling technologies for
sustainable enhancement of life quality in smart environments. Journal of
Cleaner Production, page 137506, 2023.

146 References

[74] Alfredo J Perez, Farhan Siddiqui, Sherali Zeadally, and Derek Lane. A re-
view of iot systems to enable independence for the elderly and disabled
individuals. Internet of Things, page 100653, 2022.

[75] Sina Dami and Mahtab Yahaghizadeh. Predicting cardiovascular events
with deep learning approach in the context of the internet of things. Neural
Computing and Applications, 33:7979–7996, 2021.

[76] Nicole A Capela, Edward D Lemaire, and Natalie Baddour. Feature selec-
tion for wearable smartphone-based human activity recognition with able
bodied, elderly, and stroke patients. PloS one, 10(4):e0124414, 2015.

[77] Hoda Allahbakhshi, Lindsey Conrow, Babak Naimi, and Robert Weibel. Us-
ing accelerometer and gps data for real-life physical activity type detection.
Sensors, 20(3):588, 2020.

[78] Enea Ceolini, Charlotte Frenkel, Sumit Bam Shrestha, Gemma Taverni,
Lyes Khacef, Melika Payvand, and Elisa Donati. Hand-gesture recognition
based on emg and event-based camera sensor fusion: A benchmark in
neuromorphic computing. Frontiers in Neuroscience, page 637, 2020.

[79] Evelina Forno, Simone Moio, Michael Schenatti, Enrico Macii, and Gianvito
Urgese. Techniques for improving localization applications running on
low-cost iot devices. In 2020 AEIT International Conference of Electrical
and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), pages 1–6.
IEEE, 2020.

[80] Erika Covi, Elisa Donati, Xiangpeng Liang, David Kappel, Hadi Heidari,
Melika Payvand, and Wei Wang. Adaptive extreme edge computing for
wearable devices. Frontiers in Neuroscience, 15:611300, 2021.

[81] Md Abdullah Al Hafiz Khan, David Welsh, and Nirmalya Roy. Firearm
detection using wrist worn tri-axis accelerometer signals. In 2018 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pages 221–226. IEEE, 2018.

[82] Gil Boudet, Pierre Chausse, David Thivel, Sylvie Rousset, Martial Mermillod,
Julien S Baker, Lenise M Parreira, Yolande Esquirol, Martine Duclos, and
Frédéric Dutheil. How to measure sedentary behavior at work? Frontiers in
Public Health, 7:167, 2019.

[83] Sandeep Kumar, Monika Nehra, Sakina Khurana, Neeraj Dilbaghi, Vanish
Kumar, Ajeet Kaushik, and Ki-Hyun Kim. Aspects of point-of-care diagnos-
tics for personalized health wellness. International journal of nanomedicine,
16:383, 2021.

[84] Guo Jia, Guiyi Zhang, Xin Yuan, Xiaosong Gu, Heshan Liu, Zhijun Fan, and
Lingguo Bu. A synthetical development approach for rehabilitation assis-
tive smart product–service systems: A case study. Advanced Engineering
Informatics, 48:101310, 2021.

References 147

[85] Liam Dawson and Alex Akinbi. Challenges and opportunities for wearable
iot forensics: Tomtom spark 3 as a case study. Forensic Science International:
Reports, 3:100198, 2021.

[86] Zohar Jackson, César Souza, Jason Flaks, Yuxin Pan, Hereman Nicolas, and
Adhish Thite. Jakobovski/free-spoken-digit-dataset: v1. 0.8, 2018.

[87] Gary M Weiss. Wisdm smartphone and smartwatch activity and biomet-
rics dataset. UCI Machine Learning Repository: WISDM Smartphone and
Smartwatch Activity and Biometrics Dataset Data Set, 7:133190–133202,
2019.

[88] Gary M. Weiss, Kenichi Yoneda, and Thaier Hayajneh. Smartphone and
Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access,
7:133190–133202, 2019.

[89] Raffaele Gravina, Parastoo Alinia, Hassan Ghasemzadeh, and Giancarlo
Fortino. Multi-sensor fusion in body sensor networks: State-of-the-art and
research challenges. Information Fusion, 35:68–80, 2017.

[90] Yun-Soung Kim, Musa Mahmood, Yongkuk Lee, Nam Kyun Kim, Shinjae
Kwon, Robert Herbert, Donghyun Kim, Hee Cheol Cho, and Woon-Hong Yeo.
All-in-one, wireless, stretchable hybrid electronics for smart, connected,
and ambulatory physiological monitoring. Advanced Science, 6(17):1900939,
2019.

[91] Jean-Francois Daneault, Gloria Vergara-Diaz, Federico Parisi, Chen Admati,
Christina Alfonso, Matilde Bertoli, Edoardo Bonizzoni, Gabriela Ferreira
Carvalho, Gianluca Costante, Eric Eduardo Fabara, et al. Accelerometer
data collected with a minimum set of wearable sensors from subjects with
parkinson’s disease. Scientific Data, 8(1):48, 2021.

[92] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity recogni-
tion using cell phone accelerometers. ACM SIGKDD Explorations Newsletter,
12(2):74–82, March 2011.

[93] Federico Cruciani, Chen Sun, Shuai Zhang, Chris Nugent, Chunping Li,
Shaoxu Song, Cheng Cheng, Ian Cleland, and Paul Mccullagh. A public
domain dataset for human activity recognition in free-living conditions. In
2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 166–171. IEEE, 2019.

[94] Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide
Anguita. Transition-aware human activity recognition using smartphones.
Neurocomputing, 171:754–767, 2016.

148 References

[95] Oresti Banos, Rafael Garcia, Juan A Holgado-Terriza, Miguel Damas, Hector
Pomares, Ignacio Rojas, Alejandro Saez, and Claudia Villalonga. mhealth-
droid: a novel framework for agile development of mobile health applica-
tions. In Ambient Assisted Living and Daily Activities: 6th International
Work-Conference, IWAAL 2014, Belfast, UK, December 2-5, 2014. Proceedings
6, pages 91–98. Springer, 2014.

[96] Oresti Banos, Claudia Villalonga, Rafael Garcia, Alejandro Saez, Miguel
Damas, Juan A Holgado-Terriza, Sungyong Lee, Hector Pomares, and Igna-
cio Rojas. Design, implementation and validation of a novel open frame-
work for agile development of mobile health applications. Biomedical
engineering online, 14(2):1–20, 2015.

[97] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian
Förster, Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois
Ferscha, et al. Collecting complex activity datasets in highly rich networked
sensor environments. In 2010 Seventh international conference on net-
worked sensing systems (INSS), pages 233–240. IEEE, 2010.

[98] Ricardo Chavarriaga, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi
Digumarti, Gerhard Tröster, José del R Millán, and Daniel Roggen. The
opportunity challenge: A benchmark database for on-body sensor-based
activity recognition. Pattern Recognition Letters, 34(15):2033–2042, 2013.

[99] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset
for activity monitoring. In 2012 16th international symposium on wearable
computers, pages 108–109. IEEE, 2012.

[100] Attila Reiss and Didier Stricker. Creating and benchmarking a new dataset
for physical activity monitoring. In Proceedings of the 5th International
Conference on PErvasive Technologies Related to Assistive Environments,
pages 1–8, 2012.

[101] Wallace Ugulino, Débora Cardador, Katia Vega, Eduardo Velloso, Ruy Mi-
lidiú, and Hugo Fuks. Wearable computing: Accelerometers’ data classifica-
tion of body postures and movements. In Advances in Artificial Intelligence-
SBIA 2012: 21th Brazilian Symposium on Artificial Intelligence, Curitiba,
Brazil, October 20-25, 2012. Proceedings, pages 52–61. Springer, 2012.

[102] Mi Zhang and Alexander A Sawchuk. Usc-had: A daily activity dataset for
ubiquitous activity recognition using wearable sensors. In Proceedings of
the 2012 ACM conference on ubiquitous computing, pages 1036–1043, 2012.

[103] Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. Utd-mhad: A multi-
modal dataset for human action recognition utilizing a depth camera and
a wearable inertial sensor. In 2015 IEEE International conference on image
processing (ICIP), pages 168–172. IEEE, 2015.

References 149

[104] Barbara Bruno, Fulvio Mastrogiovanni, and Antonio Sgorbissa. A public
domain dataset for adl recognition using wrist-placed accelerometers. In
the 23rd IEEE International Symposium on Robot and Human Interactive
Communication, pages 738–743. IEEE, 2014.

[105] Sakorn Mekruksavanich and Anuchit Jitpattanakul. Deep convolutional
neural network with rnns for complex activity recognition using wrist-worn
wearable sensor data. Electronics, 10(14):1685, 2021.

[106] Konstantinos Peppas, Apostolos C Tsolakis, Stelios Krinidis, and Dimitrios
Tzovaras. Real-time physical activity recognition on smart mobile devices
using convolutional neural networks. Applied Sciences, 10(23):8482, 2020.

[107] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm
recurrent neural networks for multimodal wearable activity recognition.
Sensors, 16(1):115, 2016.

[108] Shaohua Wan, Lianyong Qi, Xiaolong Xu, Chao Tong, and Zonghua Gu. Deep
learning models for real-time human activity recognition with smartphones.
Mobile Networks and Applications, 25:743–755, 2020.

[109] Kun Xia, Jianguang Huang, and Hanyu Wang. Lstm-cnn architecture for
human activity recognition. IEEE Access, 8:56855–56866, 2020.

[110] Isibor Kennedy Ihianle, Augustine O Nwajana, Solomon Henry Ebenuwa,
Richard I Otuka, Kayode Owa, and Mobolaji O Orisatoki. A deep learning
approach for human activities recognition from multimodal sensing devices.
IEEE Access, 8:179028–179038, 2020.

[111] Sakorn Mekruksavanich and Anuchit Jitpattanakul. Smartwatch-based hu-
man activity recognition using hybrid lstm network. In 2020 IEEE SENSORS,
pages 1–4. IEEE, 2020.

[112] Sakorn Mekruksavanich, Anuchit Jitpattanakul, Phichai Youplao, and
Preecha Yupapin. Enhanced hand-oriented activity recognition based on
smartwatch sensor data using lstms. Symmetry, 12(9):1570, 2020.

[113] Bolu Oluwalade, Sunil Neela, Judy Wawira, Tobiloba Adejumo, and Sap-
tarshi Purkayastha. Human activity recognition using deep learning
models on smartphones and smartwatches sensor data. arXiv preprint
arXiv:2103.03836, 2021.

[114] Ankita Bose and BK Tripathy. Deep learning for audio signal classification.
In Deep learning research and applications. Walter de Gruyter GmbH & Co
KG, 2020.

[115] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.
Librispeech: an asr corpus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech and signal processing
(ICASSP), pages 5206–5210. IEEE, 2015.

150 References

[116] Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE,
78(10):1629–1636, 1990.

[117] Shih-Chii Liu, Andre van Schaik, Bradley A Minch, and Tobi Delbruck. Asyn-
chronous binaural spatial audition sensor with 2×64×4 channel output.
IEEE transactions on biomedical circuits and systems, 8(4):453–464, 2013.

[118] Sören Becker, Marcel Ackermann, Sebastian Lapuschkin, Klaus-Robert
Müller, and Wojciech Samek. Interpreting and explaining deep neural
networks for classification of audio signals. CoRR, abs/1807.03418, 2018.

[119] Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209, 2018.

[120] Lyes Khacef, Laurent Rodriguez, and Benoit Miramond. Written and spoken
digits database for multimodal learning, 2019.

[121] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friede-
mann Zenke. The heidelberg spiking data sets for the systematic evaluation
of spiking neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 33(7):2744–2757, 2020.

[122] Amirhossein Rostami, Bernhard Vogginger, Yexin Yan, and Christian G Mayr.
E-prop on spinnaker 2: Exploring online learning in spiking rnns on neuro-
morphic hardware. Frontiers in Neuroscience, 16, 2022.

[123] Dylan G Peterson, Thoshara Nawarathne, and Henry Leung. Modulating
stdp with back-propagated error signals to train snns for audio classification.
IEEE Transactions on Emerging Topics in Computational Intelligence, 2022.

[124] Lingli Cheng, Lili Gao, Xumeng Zhang, Zuheng Wu, Jiaxue Zhu, Zhaoan
Yu, Yue Yang, Yanting Ding, Chao Li, Fangduo Zhu, et al. A bioinspired
configurable cochlea based on memristors. Frontiers in Neuroscience, 16,
2022.

[125] Sam Lilak, Walt Woods, Kelsey Scharnhorst, Christopher Dunham, Christof
Teuscher, Adam Z Stieg, and James K Gimzewski. Spoken digit classifica-
tion by in-materio reservoir computing with neuromorphic atomic switch
networks. Frontiers in Nanotechnology, 3:675792, 2021.

[126] Dylan George Peterson. A biologically inspired supervised learning rule for
audio classification with spiking neural networks. Master’s thesis, Schulich
School of Engineering, 2021.

[127] Shih-Chii Liu, Bodo Rueckauer, Enea Ceolini, Adrian Huber, and Tobi Del-
bruck. Event-driven sensing for efficient perception: Vision and audition
algorithms. IEEE Signal Processing Magazine, 36(6):29–37, 2019.

[128] Chiara Bartolozzi, Lorenzo Natale, Francesco Nori, and Giorgio Metta.
Robots with a sense of touch. Nature materials, 15(9):921–925, 2016.

References 151

[129] Chiara Bartolozzi, Paolo Motto Ros, Francesco Diotalevi, Nawid Jamali,
Lorenzo Natale, Marco Crepaldi, and Danilo Demarchi. Event-driven encod-
ing of off-the-shelf tactile sensors for compression and latency optimisation
for robotic skin. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 166–173. IEEE, 2017.

[130] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128×128 120 dB
15µs latency asynchronous temporal contrast vision sensor. IEEE journal
of solid-state circuits, 43(2):566–576, 2008.

[131] Jorg Conradt, Raphael Berner, Matthew Cook, and Tobi Delbruck. An em-
bedded aer dynamic vision sensor for low-latency pole balancing. In 2009
IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops, pages 780–785. IEEE, 2009.

[132] Vincent Chan, Shih-Chii Liu, and Andr van Schaik. Aer ear: A matched
silicon cochlea pair with address event representation interface. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 54(1):48–59, 2007.

[133] R Gary Leonard and George Doddington. Tidigits ldc93s10. Web Download.
Philadelphia: Linguistic Data Consortium, 1993. https://catalog.ldc.upenn.
edu/LDC93S10.

[134] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry,
Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Gar-
reau, Marcela Mendoza, et al. A low power, fully event-based gesture recog-
nition system. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7243–7252, 2017.

[135] Udaya Bhaskar Rongala, Alberto Mazzoni, and Calogero Maria Oddo. Neu-
romorphic artificial touch for categorization of naturalistic textures. IEEE
transactions on neural networks and learning systems, 28(4):819–829, 2015.

[136] Hian Hian See, Brian Lim, Si Li, Haicheng Yao, Wen Cheng, Harold Soh, and
Benjamin CK Tee. St-mnist–the spiking tactile mnist neuromorphic dataset.
arXiv preprint arXiv:2005.04319, 2020.

[137] Jérémie Pinoteau, Luca Leonardo Bologna, Jesús Alberto Garrido, and An-
gelo Arleo. A closed-loop neurorobotic system for investigating braille-
reading finger kinematics. In International Conference on Human Haptic
Sensing and Touch Enabled Computer Applications, pages 407–418. Springer,
2012.

[138] Force dimension - haptic devices. https://www.forcedimension.com/
products, 2022.

[139] Nawid Jamali, Marco Maggiali, Francesco Giovannini, Giorgio Metta, and
Lorenzo Natale. A new design of a fingertip for the icub hand. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2705–2710. IEEE, 2015.

https://catalog.ldc.upenn.edu/LDC93S10
https://catalog.ldc.upenn.edu/LDC93S10
https://www.forcedimension.com/products
https://www.forcedimension.com/products

152 References

[140] Anthony F Jahn and Joseph Santos-Sacchi. Physiology of the ear. Ear and
Hearing, 11(3):243, 1990.

[141] Richard F Lyon and Carver Mead. An analog electronic cochlea. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 36(7):1119–1134,
1988.

[142] Angel Jiménez-Fernández, Elena Cerezuela-Escudero, Lourdes Miró-
Amarante, Manuel Jesus Domínguez-Morales, Francisco de Asís Gómez-
Rodríguez, Alejandro Linares-Barranco, and Gabriel Jiménez-Moreno. A
binaural neuromorphic auditory sensor for fpga: a spike signal process-
ing approach. IEEE transactions on neural networks and learning systems,
28(4):804–818, 2016.

[143] Manuel Domínguez-Morales, Angel Jimenez-Fernandez, Elena Cerezuela-
Escudero, Rafael Paz-Vicente, Alejandro Linares-Barranco, and Gabriel
Jimenez. On the designing of spikes band-pass filters for fpga. In Artificial
Neural Networks and Machine Learning–ICANN 2011: 21st International
Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011,
Proceedings, Part II 21, pages 389–396. Springer, 2011.

[144] Daniel Gutierrez-Galan, Juan Pedro Domínguez-Morales, Angel Jimenez-
Fernandez, Alejandro Linares-Barranco, and Gabriel Jimenez-Moreno.
Opennas: Open source neuromorphic auditory sensor hdl code genera-
tor for fpga implementations. Neurocomputing, 436:35–38, 2021.

[145] Juan P Domínguez-Morales, Angel F Jimenez-Fernandez, Manuel J
Domínguez-Morales, and Gabriel Jimenez-Moreno. Deep neural networks
for the recognition and classification of heart murmurs using neuromor-
phic auditory sensors. IEEE transactions on biomedical circuits and systems,
12(1):24–34, 2017.

[146] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Pla-
men Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-
Kang Peng, and H Eugene Stanley. Physiobank, physiotoolkit, and physionet:
components of a new research resource for complex physiologic signals.
circulation, 101(23):e215–e220, 2000.

[147] Juan P Domínguez-Morales, Qian Liu, Robert James, Daniel Gutierrez-
Galan, Angel Jimenez-Fernandez, Simon Davidson, and Steve Furber. Deep
spiking neural network model for time-variant signals classification: a real-
time speech recognition approach. In 2018 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[148] Misha A Mahowald. Silicon retina with adaptive photoreceptors. In Visual
information processing: from neurons to chips, volume 1473, pages 52–58.
SPIE, 1991.

References 153

[149] Fuyou Liao, Feichi Zhou, and Yang Chai. Neuromorphic vision sensors: Prin-
ciple, progress and perspectives. Journal of Semiconductors, 42(1):013105,
2021.

[150] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. A 128×128
1.5% contrast sensitivity 0.9% fpn 3µs latency 4 mw asynchronous frame-
free dynamic vision sensor using transimpedance preamplifiers. IEEE Jour-
nal of Solid-State Circuits, 48(3):827–838, 2013.

[151] Yuhuang Hu, Hongjie Liu, Michael Pfeiffer, and Tobi Delbruck. Dvs bench-
mark datasets for object tracking, action recognition, and object recognition.
Frontiers in neuroscience, 10:405, 2016.

[152] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-
dvs: an event-stream dataset for object classification. Frontiers in neuro-
science, 11:309, 2017.

[153] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. Poker-dvs and
mnist-dvs. their history, how they were made, and other details. Frontiers
in neuroscience, 9:481, 2015.

[154] Shu Miao, Guang Chen, Xiangyu Ning, Yang Zi, Kejia Ren, Zhenshan Bing,
and Alois Knoll. Neuromorphic vision datasets for pedestrian detection,
action recognition, and fall detection. Frontiers in neurorobotics, 13:38,
2019.

[155] Antonio Rios-Navarro, Enrique Piñero-Fuentes, Salvador Canas-Moreno,
Aqib Javed, Jin Harkin, and Alejandro Linares-Barranco. Lipsfus: A neu-
romorphic dataset for audio-visual sensory fusion of lip reading. arXiv
preprint arXiv:2304.01080, 2023.

[156] Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. A survey of en-
coding techniques for signal processing in spiking neural networks. Neural
Processing Letters, 53(6):4693–4710, 2021.

[157] Joseph M Brader, Walter Senn, and Stefano Fusi. Learning real-world stimuli
in a neural network with spike-driven synaptic dynamics. Neural computa-
tion, 19(11):2881–2912, 2007.

[158] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu,
and Michael Pfeiffer. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In 2015 International joint confer-
ence on neural networks (IJCNN), pages 1–8. ieee, 2015.

[159] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and
Dharmendra S Modha. Backpropagation for energy-efficient neuromorphic
computing. Advances in neural information processing systems, 28, 2015.

154 References

[160] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and
Shih-Chii Liu. Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification. Frontiers in neuroscience,
11:682, 2017.

[161] Shih-Chii Liu, André Van Schaik, Bradley A Minch, and Tobi Delbruck. Event-
based 64-channel binaural silicon cochlea with q enhancement mecha-
nisms. In 2010 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 2027–2030. IEEE, 2010.

[162] Zhenshan Bing, Claus Meschede, Florian Röhrbein, Kai Huang, and Alois C
Knoll. A survey of robotics control based on learning-inspired spiking neural
networks. Frontiers in neurorobotics, 12:35, 2018.

[163] Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep
neural networks with weighted spikes. Neurocomputing, 311:373–386, 2018.

[164] Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neu-
ral networks using sparse temporal coding. In 2018 IEEE international
symposium on circuits and systems (ISCAS), pages 1–5. IEEE, 2018.

[165] Lei Zhang, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. Tdsnn:
From deep neural networks to deep spike neural networks with temporal-
coding. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 1319–1326, 2019.

[166] Hung Tat Chen, Kwan Ting Ng, Amine Bermak, Man Kay Law, and Do-
minique Martinez. Spike latency coding in biologically inspired microelec-
tronic nose. IEEE transactions on biomedical circuits and systems, 5(2):160–
168, 2011.

[167] Tobi Delbrück, Bernabe Linares-Barranco, Eugenio Culurciello, and
Christoph Posch. Activity-driven, event-based vision sensors. In Proceed-
ings of 2010 IEEE International Symposium on Circuits and Systems, pages
2426–2429. IEEE, 2010.

[168] Daqi Liu and Shigang Yue. Fast unsupervised learning for visual pattern
recognition using spike timing dependent plasticity. Neurocomputing,
249:212–224, 2017.

[169] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and
Timothée Masquelier. Stdp-based spiking deep convolutional neural net-
works for object recognition. Neural Networks, 99:56–67, 2018.

[170] Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and
efficient information transmission with burst spikes in deep spiking neural
networks. In Proceedings of the 56th Annual Design Automation Conference
2019, pages 1–6, 2019.

References 155

[171] Alexander Sboev, Alexey Serenko, Roman Rybka, and Danila Vlasov. Solving
a classification task by spiking neural network with stdp based on rate and
temporal input encoding. Mathematical Methods in the Applied Sciences,
43(13):7802–7814, 2020.

[172] Stéphane Loiselle, Jean Rouat, Daniel Pressnitzer, and Simon Thorpe. Ex-
ploration of rank order coding with spiking neural networks for speech
recognition. In Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., volume 4, pages 2076–2080. IEEE, 2005.

[173] Benjamin Schrauwen, Michiel D’Haene, David Verstraeten, and Jan
Van Campenhout. Compact hardware liquid state machines on fpga for
real-time speech recognition. Neural networks, 21(2-3):511–523, 2008.

[174] Simei Gomes Wysoski, Lubica Benuskova, and Nikola Kasabov. Text-
independent speaker authentication with spiking neural networks. In
Artificial Neural Networks–ICANN 2007: 17th International Conference,
Porto, Portugal, September 9-13, 2007, Proceedings, Part II 17, pages 758–767.
Springer, 2007.

[175] Vishal Sharma and Dipti Srinivasan. A spiking neural network based on
temporal encoding for electricity price time series forecasting in deregulated
markets. In The 2010 international joint conference on neural networks
(IJCNN), pages 1–8. IEEE, 2010.

[176] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsuper-
vised real-time anomaly detection for streaming data. Neurocomputing,
262:134–147, 2017.

[177] Qiuwen Chen and Qinru Qiu. Real-time anomaly detection for streaming
data using burst code on a neurosynaptic processor. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017, pages 205–207. IEEE,
2017.

[178] Donald D Greenwood. Critical bandwidth and the frequency coordinates
of the basilar membrane. The Journal of the Acoustical Society of America,
33(10):1344–1356, 1961.

[179] Jorge E Hachmeister. An abbreviated history of the ear: from renaissance to
present. The Yale journal of biology and medicine, 76(2):81, 2003.

[180] Florian Gomez and Ruedi Stoop. Mammalian pitch sensation shaped by
the cochlear fluid. Nature Physics, 10(7):530–536, 2014.

[181] Andrew J Oxenham. How we hear: The perception and neural coding of
sound. Annual review of psychology, 69:27–50, 2018.

[182] Daniel Schurzig, Markus Pietsch, Peter Erfurt, Max E Timm, Thomas Lenarz,
and Andrej Kral. A cochlear scaling model for accurate anatomy evalua-
tion and frequency allocation in cochlear implantation. Hearing Research,
403:108166, 2021.

156 References

[183] PLM Johannesma. The pre-response stimulus ensemble of neurons in the
cochlear nucleus. In Symposium on Hearing Theory, 1972. IPO, 1972.

[184] Andreas G Katsiamis, Emmanuel M Drakakis, and Richard F Lyon. Practical
gammatone-like filters for auditory processing. EURASIP Journal on Audio,
Speech, and Music Processing, 2007:1–15, 2007.

[185] Yushi Zhang and Waleed H Abdulla. Gammatone auditory filterbank and
independent component analysis for speaker identification. In Ninth inter-
national conference on spoken language processing, 2006.

[186] James T George and Elizabeth Elias. A 16-band reconfigurable hearing aid
using variable bandwidth filters. Global Journals of Research in Engineering,
14(F1):1–7, 2014.

[187] Roneel V Sharan, Shlomo Berkovsky, and Sidong Liu. Voice command
recognition using biologically inspired time-frequency representation and
convolutional neural networks. In 2020 42nd Annual International Confer-
ence of the IEEE Engineering in Medicine & Biology Society (EMBC), pages
998–1001. IEEE, 2020.

[188] Nik Dennler, Germain Haessig, Matteo Cartiglia, and Giacomo Indiveri.
Online detection of vibration anomalies using balanced spiking neural
networks. In 2021 IEEE 3rd International Conference on Artificial Intelligence
Circuits and Systems (AICAS), pages 1–4. IEEE, 2021.

[189] Sony group portal - ai initiatives - event-based vision sensor (evs). https:
//www.sony.com/en/SonyInfo/sony_ai/technology/evs.html.

[190] Greg Blackman. Prophesee releases industrial-grade neuromorphic sensor:
Greg blackman speaks to prophesee’s luca verre about high-speed imaging
with event-based cameras. Imaging and Machine Vision Europe, 95(95):14–
15, 2019.

[191] Chris Eliasmith and Charles H Anderson. Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press, 2003.

[192] Qian Liu, Garibaldi Pineda-García, Evangelos Stromatias, Teresa Serrano-
Gotarredona, and Steve B Furber. Benchmarking spike-based visual recog-
nition: a dataset and evaluation. Frontiers in neuroscience, 10:496, 2016.

[193] Julien Dupeyroux, Stein Stroobants, and Guido CHE De Croon. A toolbox for
neuromorphic perception in robotics. In 2022 8th International Conference
on Event-Based Control, Communication, and Signal Processing (EBCCSP),
pages 1–7. IEEE, 2022.

[194] Elisa Donati, Melika Payvand, Nicoletta Risi, Renate Krause, and Giacomo
Indiveri. Discrimination of emg signals using a neuromorphic implementa-
tion of a spiking neural network. IEEE transactions on biomedical circuits
and systems, 13(5):795–803, 2019.

https://www.sony.com/en/SonyInfo/sony_ai/technology/evs.html
https://www.sony.com/en/SonyInfo/sony_ai/technology/evs.html

References 157

[195] Chang Gao, Stefan Braun, Ilya Kiselev, Jithendar Anumula, Tobi Delbruck,
and Shih-Chii Liu. Real-time speech recognition for iot purpose using
a delta recurrent neural network accelerator. In 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2019.

[196] Tobi Delbruck and Patrick Lichtsteiner. Fast sensory motor control based
on event-based hybrid neuromorphic-procedural system. In 2007 IEEE
international symposium on circuits and systems, pages 845–848. IEEE, 2007.

[197] Nikola Kasabov, Nathan Matthew Scott, Enmei Tu, Stefan Marks, Neelava
Sengupta, Elisa Capecci, Muhaini Othman, Maryam Gholami Doborjeh,
Norhanifah Murli, Reggio Hartono, et al. Evolving spatio-temporal data
machines based on the neucube neuromorphic framework: Design method-
ology and selected applications. Neural Networks, 78:1–14, 2016.

[198] Jacob Wiren and Harold L Stubbs. Electronic binary selection system for
phoneme classification. The Journal of the Acoustical Society of America,
28(6):1082–1091, 1956.

[199] Benjamin Kedem. Spectral analysis and discrimination by zero-crossings.
Proceedings of the IEEE, 74(11):1477–1493, 1986.

[200] Michael Hough, Hugo De Garis, Michael Korkin, Felix Gers, and Nor-
berto Eiji Nawa. Spiker: Analog waveform to digital spiketrain conversion
in atr’s artificial brain (cam-brain) project. In International conference on
robotics and artificial life, volume 92. Citeseer, 1999.

[201] Benjamin Schrauwen and Jan Van Campenhout. Bsa, a fast and accurate
spike train encoding scheme. In Proceedings of the International Joint
Conference on Neural Networks, 2003., volume 4, pages 2825–2830. IEEE,
2003.

[202] Balint Petro, Nikola Kasabov, and Rita M Kiss. Selection and optimization
of temporal spike encoding methods for spiking neural networks. IEEE
transactions on neural networks and learning systems, 31(2):358–370, 2019.

[203] John J Hopfield. Pattern recognition computation using action potential
timing for stimulus representation. Nature, 376(6535):33–36, 1995.

[204] Simon Thorpe and Jacques Gautrais. Rank order coding. Computational
Neuroscience: Trends in Research, 1998, pages 113–118, 1998.

[205] Roland S Johansson and Ingvars Birznieks. First spikes in ensembles of
human tactile afferents code complex spatial fingertip events. Nature neu-
roscience, 7(2):170–177, 2004.

[206] Marcelo A Montemurro, Malte J Rasch, Yusuke Murayama, Nikos K Logo-
thetis, and Stefano Panzeri. Phase-of-firing coding of natural visual stimuli
in primary visual cortex. Current biology, 18(5):375–380, 2008.

158 References

[207] Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn:
deep spiking neural networks with time-to-first-spike coding. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[208] John E Lisman. Bursts as a unit of neural information: making unreliable
synapses reliable. Trends in neurosciences, 20(1):38–43, 1997.

[209] Eugene M Izhikevich, Niraj S Desai, Elisabeth C Walcott, and Frank C Hop-
pensteadt. Bursts as a unit of neural information: selective communication
via resonance. Trends in neurosciences, 26(3):161–167, 2003.

[210] Claude E Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948.

[211] Rodrigo Quian Quiroga and Stefano Panzeri. Extracting information from
neuronal populations: information theory and decoding approaches. Na-
ture Reviews Neuroscience, 10(3):173–185, 2009.

[212] Patrik O Hoyer. Non-negative matrix factorization with sparseness con-
straints. Journal of machine learning research, 5(9), 2004.

[213] José M de la Rosa. Sigma-delta modulators: Tutorial overview, design guide,
and state-of-the-art survey. IEEE Transactions on Circuits and Systems I:
Regular Papers, 58(1):1–21, 2010.

[214] Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking
neural networks and their applications: A review. Brain Sciences, 12(7):863,
2022.

[215] Wulfram Gerstner. A framework for spiking neuron models: The spike
response model. In Handbook of biological physics, volume 4, pages 469–
516. Elsevier, 2001.

[216] Nicholas J Pritchard, Andreas Wicenec, Mohammed Bennamoun, and
Richard Dodson. A bibliometric review of neuromorphic computing and
spiking neural networks. arXiv preprint arXiv:2304.06897, 2023.

[217] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions
on neural networks, 14(6):1569–1572, 2003.

[218] Charlotte Frenkel, Martin Lefebvre, Jean-Didier Legat, and David Bol. A
0.086-mm2 12.7-pj/sop 64k-synapse 256-neuron online-learning digital
spiking neuromorphic processor in 28-nm cmos. IEEE transactions on
biomedical circuits and systems, 13(1):145–158, 2018.

[219] Nitin Rathi, Indranil Chakraborty, Adarsh Kosta, Abhronil Sengupta, Aayush
Ankit, Priyadarshini Panda, and Kaushik Roy. Exploring neuromorphic
computing based on spiking neural networks: Algorithms to hardware.
ACM Computing Surveys, 55(12):1–49, 2023.

References 159

[220] Louis Lapicque. Recherches quantitatives sur l’excitation electrique des
nerfs traitee comme une polarization. Journal de physiologie et de pathologie
générale, 9:620–635, 1907.

[221] Doron Tal and Eric L Schwartz. Computing with the leaky integrate-and-fire
neuron: logarithmic computation and multiplication. Neural computation,
9(2):305–318, 1997.

[222] Jason K Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu.
Training spiking neural networks using lessons from deep learning. arXiv
preprint arXiv:2109.12894, 2021.

[223] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein,
and Wolfgang Maass. Long short-term memory and learning-to-learn in
networks of spiking neurons. Advances in neural information processing
systems, 31, 2018.

[224] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan
Salaj, Robert Legenstein, and Wolfgang Maass. A solution to the learning
dilemma for recurrent networks of spiking neurons. Nature communica-
tions, 11(1):3625, 2020.

[225] Intel Corporation. Dynamics, neurons, and spikes - lava documenta-
tion. https://lava-nc.org/lava-lib-dl/slayer/notebooks/neuron_dynamics/
dynamics.html#2.1-Adaptive-Leaky-Integrator-and-Fire-Neuron, 2021.

[226] Robert Urbanczik and Walter Senn. Learning by the dendritic prediction of
somatic spiking. Neuron, 81(3):521–528, 2014.

[227] Luca Peres and Oliver Rhodes. Parallelization of neural processing on neu-
romorphic hardware. Frontiers in Neuroscience, 16, 2022.

[228] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifi-
cation with deep convolutional neural networks. Communications of the
ACM, 60(6):84–90, 2017.

[229] Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient
time-domain classification with adaptive spiking recurrent neural networks.
Nature Machine Intelligence, 3(10):905–913, 2021.

[230] Friedemann Zenke and Tim P Vogels. The remarkable robustness of sur-
rogate gradient learning for instilling complex function in spiking neural
networks. Neural computation, 33(4):899–925, 2021.

[231] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient
learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Processing Magazine,
36(6):51–63, 2019.

https://lava-nc.org/lava-lib-dl/slayer/notebooks/neuron_dynamics/dynamics.html#2.1-Adaptive-Leaky-Integrator-and-Fire-Neuron
https://lava-nc.org/lava-lib-dl/slayer/notebooks/neuron_dynamics/dynamics.html#2.1-Adaptive-Leaky-Integrator-and-Fire-Neuron

160 References

[232] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in PyTorch. In Autodiff Workshop, 2017.

[233] Howard Eichenbaum. Time cells in the hippocampus: a new dimension for
mapping memories. Nature Reviews Neuroscience, 15(11):732–744, 2014.

[234] Aaron R Voelker and Chris Eliasmith. Improving spiking dynamical net-
works: Accurate delays, higher-order synapses, and time cells. Neural
computation, 30(3):569–609, 2018.

[235] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units:
Continuous-time representation in recurrent neural networks. Advances in
neural information processing systems, 32, 2019.

[236] Aaron R Voelker and Chris Eliasmith. Programming neuromorphics using
the neural engineering framework. Handbook of Neuroengineering, pages
1–43, 2020.

[237] Peter Blouw, Gurshaant Malik, Benjamin Morcos, Aaron R Voelker, and
Chris Eliasmith. Hardware aware training for efficient keyword spotting on
general purpose and specialized hardware. arXiv preprint arXiv:2009.04465,
2020.

[238] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking
neural networks using backpropagation. Frontiers in neuroscience, 10:508,
2016.

[239] Donald Olding Hebb. The organization of behavior: A neuropsychological
theory. Psychology press, 2005.

[240] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian
learning through spike-timing-dependent synaptic plasticity. Nature neu-
roscience, 3(9):919–926, 2000.

[241] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassign-
ment in time. Advances in neural information processing systems, 31, 2018.

[242] Charlotte Frenkel and Giacomo Indiveri. Reckon: A 28nm sub-mm2 task-
agnostic spiking recurrent neural network processor enabling on-chip learn-
ing over second-long timescales. In 2022 IEEE International Solid-State
Circuits Conference (ISSCC), volume 65, pages 1–3. IEEE, 2022.

[243] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolu-
tional neural networks for energy-efficient object recognition. International
Journal of Computer Vision, 113:54–66, 2015.

[244] Jyotibdha Acharya, Aakash Patil, Xiaoya Li, Yi Chen, Shih-Chii Liu, and
Arindam Basu. A comparison of low-complexity real-time feature extraction
for neuromorphic speech recognition. Frontiers in neuroscience, 12:160,
2018.

References 161

[245] Jithendar Anumula, Daniel Neil, Tobi Delbruck, and Shih-Chii Liu. Fea-
ture representations for neuromorphic audio spike streams. Frontiers in
neuroscience, 12:23, 2018.

[246] Enea Ceolini, Jithendar Anumula, Stefan Braun, and Shih-Chii Liu. Event-
driven pipeline for low-latency low-compute keyword spotting and speaker
verification system. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7953–7957. IEEE,
2019.

[247] Ahana Gangopadhyay and Shantanu Chakrabartty. A sparsity-driven
backpropagation-less learning framework using populations of spiking
growth transform neurons. Frontiers in neuroscience, 15:715451, 2021.

[248] James Paul Turner, James C Knight, Ajay Subramanian, and Thomas
Nowotny. mlgenn: accelerating snn inference using gpu-enabled neural
networks. Neuromorphic Computing and Engineering, 2(2):024002, 2022.

[249] Andrew P Davison, Daniel Brüderle, Jochen M Eppler, Jens Kremkow, Eilif
Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. Pynn: a common
interface for neuronal network simulators. Frontiers in neuroinformatics,
page 11, 2009.

[250] Germany Electronic Vision(s) Group at the Kirchhoff-Institute for Physics,
Heidelberg University. Pynn for brainscales-2. https://github.com/
electronicvisions/pynn-brainscales, 2020.

[251] SpiNNaker University of Manchester. spynnaker - pynn simulations on spin-
naker hardware. https://github.com/SpiNNakerManchester/sPyNNaker,
2021.

[252] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C
Stewart, Daniel Rasmussen, Xuan Choo, Aaron Russell Voelker, and Chris
Eliasmith. Nengo: a python tool for building large-scale functional brain
models. Frontiers in neuroinformatics, 7:48, 2014.

[253] Daniel Rasmussen. Nengodl: Combining deep learning and neuromorphic
modelling methods. Neuroinformatics, 17(4):611–628, 2019.

[254] Jozsef Suto. The effect of hyperparameter search on artificial neural network
in human activity recognition. Open Computer Science, 11(1):411–422, 2021.

[255] Microsoft. Neural Network Intelligence. https://github.com/microsoft/nni,
1 2021.

[256] Evelina Forno, Andrea Acquaviva, Yuki Kobayashi, Enrico Macii, and Gi-
anvito Urgese. A parallel hardware architecture for quantum annealing
algorithm acceleration. In 2018 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), pages 31–36. IEEE, 2018.

https://github.com/electronicvisions/pynn-brainscales
https://github.com/electronicvisions/pynn-brainscales
https://github.com/SpiNNakerManchester/sPyNNaker
https://github.com/microsoft/nni

162 References

[257] Francesco Barchi, Gianvito Urgese, Andrea Acquaviva, and Enrico Macii.
Directed graph placement for snn simulation into a multi-core gals archi-
tecture. In 2018 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), pages 19–24. IEEE, 2018.

[258] Francesco Barchi, Gianvito Urgese, Enrico Macii, and Andrea Acquaviva.
Mapping spiking neural networks on multi-core neuromorphic platforms:
Problem formulation and performance analysis. In VLSI-SoC: Design and
Engineering of Electronics Systems Based on New Computing Paradigms:
26th IFIP WG 10.5/IEEE International Conference on Very Large Scale In-
tegration, VLSI-SoC 2018, Verona, Italy, October 8–10, 2018, Revised and
Extended Selected Papers 26, pages 167–186. Springer, 2019.

[259] Javier Navaridas, Mikel Luján, Luis A Plana, Steve Temple, and Steve B
Furber. Spinnaker: Enhanced multicast routing. Parallel Computing, 45:49–
66, 2015.

[260] Giacomo Indiveri. Neuromorphic engineering. Springer Handbook of Com-
putational Intelligence, pages 715–725, 2015.

[261] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka
Nakamura, et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197):668–673, 2014.

[262] Charlotte Frenkel, Jean-Didier Legat, and David Bol. Morphic: A 65-nm
738k-synapse/mm2 quad-core binary-weight digital neuromorphic pro-
cessor with stochastic spike-driven online learning. IEEE transactions on
biomedical circuits and systems, 13(5):999–1010, 2019.

[263] Jia-Qin Yang, Ruopeng Wang, Yi Ren, Jing-Yu Mao, Zhan-Peng Wang,
Ye Zhou, and Su-Ting Han. Neuromorphic engineering: From bio-
logical to spike-based hardware nervous systems. Advanced Materials,
32(52):2003610, 2020.

[264] Youhui Zhang, Peng Qu, and Weimin Zheng. Towards" general pur-
pose" brain-inspired computing system. Tsinghua Science and Technology,
26(5):664–673, 2021.

[265] Johannes Schemmel, Andreas Grübl, Stephan Hartmann, Alexander
Kononov, Christian Mayr, Karlheinz Meier, Sebastian Millner, Johannes
Partzsch, Stefan Schiefer, Stefan Scholze, et al. Live demonstration: A
scaled-down version of the brainscales wafer-scale neuromorphic system.
In 2012 IEEE international symposium on circuits and systems (ISCAS), pages
702–702. IEEE, 2012.

[266] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The
spinnaker project. Proceedings of the IEEE, 102(5):652–665, 2014.

References 163

[267] Louis Blin, Ahsan Javed Awan, and Thomas Heinis. Using neuromorphic
hardware for the scalable execution of massively parallel, communication-
intensive algorithms. In 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion), pages 89–94. IEEE,
2018.

[268] Indar Sugiarto, Gengting Liu, Simon Davidson, Luis A Plana, and Steve B
Furber. High performance computing on spinnaker neuromorphic plat-
form: A case study for energy efficient image processing. In 2016 IEEE 35th
International Performance Computing and Communications Conference
(IPCCC), pages 1–8. IEEE, 2016.

[269] Xin Jin, Steve B Furber, and John V Woods. Efficient modelling of spiking
neural networks on a scalable chip multiprocessor. In 2008 IEEE Inter-
national Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 2812–2819. IEEE, 2008.

[270] Andrew D Brown, Steve B Furber, Jeffrey S Reeve, Jim D Garside, Kier J
Dugan, Luis A Plana, and Steve Temple. Spinnaker—programming model.
IEEE Transactions on Computers, 64(6):1769–1782, 2014.

[271] Francesco Barchi, Gianvito Urgese, Enrico Macii, and Andrea Acquaviva. An
efficient mpi implementation for multi-coreneuromorphic platforms. In
2017 New Generation of CAS (NGCAS), pages 273–276. IEEE, 2017.

[272] Andrew GD Rowley, Christian Brenninkmeijer, Simon Davidson, Donal
Fellows, Andrew Gait, David R Lester, Luis A Plana, Oliver Rhodes, Alan B
Stokes, and Steve B Furber. Spinntools: the execution engine for the spin-
naker platform. Frontiers in neuroscience, 13:231, 2019.

[273] Francesco Barchi, Gianvito Urgese, Alessandro Siino, Santa Di Cataldo,
Enrico Macii, and Andrea Acquaviva. Flexible on-line reconfiguration of
multi-core neuromorphic platforms. IEEE Transactions on Emerging Topics
in Computing, 9(2):915–927, 2019.

[274] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[275] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems, 30(1-7):107–117,
1998.

[276] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135–146, 2010.

164 References

[277] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification
from scratch with deep neural networks: A strong baseline. In 2017 Interna-
tional joint conference on neural networks (IJCNN), pages 1578–1585. IEEE,
2017.

[278] Yue Geng and Xinyu Luo. Cost-sensitive convolution based neural networks
for imbalanced time-series classification. arXiv preprint arXiv:1801.04396,
2018.

[279] Joan Serrà, Santiago Pascual, and Alexandros Karatzoglou. Towards a uni-
versal neural network encoder for time series. In CCIA, pages 120–129,
2018.

[280] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya
Wu. Convolutional neural networks for time series classification. Journal of
Systems Engineering and Electronics, 28(1):162–169, 2017.

[281] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pel-
letier, Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane
Idoumghar, Pierre-Alain Muller, and François Petitjean. Inceptiontime:
Finding alexnet for time series classification. Data Mining and Knowledge
Discovery, 34(6):1936–1962, 2020.

[282] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Deep learning for time series clas-
sification: a review. Data mining and knowledge discovery, 33(4):917–963,
2019.

[283] Arnab Neelim Mazumder, Morteza Hosseini, Tinoosh Mohsenin, et al. 2021
roadmap on neuromorphic computing and engineering. UMBC Student
Collection, 2021.

[284] Chris Yakopcic, Nayim Rahman, Tanvir Atahary, Tarek M Taha, and Scott
Douglass. Solving constraint satisfaction problems using the loihi spiking
neuromorphic processor. In 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1079–1084. IEEE, 2020.

[285] Juan P Domínguez-Morales, Stefano Buccelli, Daniel Gutierrez-Galan, Ilaria
Colombi, Angel Jimenez-Fernandez, and Michela Chiappalone. Real-time
detection of bursts in neuronal cultures using a neuromorphic auditory
sensor and spiking neural networks. Neurocomputing, 449:422–434, 2021.

[286] Federico Corradi, Sandeep Pande, Jan Stuijt, Ning Qiao, Siebren Schaafsma,
Giacomo Indiveri, and Francky Catthoor. Ecg-based heartbeat classification
in neuromorphic hardware. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2019.

[287] Kenneth Stewart, Garrick Orchard, Sumit Bam Shrestha, and Emre Neftci.
On-chip few-shot learning with surrogate gradient descent on a neuromor-
phic processor. In 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), pages 223–227. IEEE, 2020.

References 165

[288] Travis DeWolf, Pawel Jaworski, and Chris Eliasmith. Nengo and low-power
ai hardware for robust, embedded neurorobotics. Frontiers in Neurorobotics,
14:568359, 2020.

[289] Rasmus Karnøe Stagsted, Antonio Vitale, Alpha Renner, Leon Bonde Larsen,
Anders Lyhne Christensen, and Yulia Sandamirskaya. Event-based pid
controller fully realized in neuromorphic hardware: A one dof study. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 10939–10944. IEEE, 2020.

[290] Raphaela Kreiser, Gabriel Waibel, Nuria Armengol, Alpha Renner, and Yulia
Sandamirskaya. Error estimation and correction in a spiking neural network
for map formation in neuromorphic hardware. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 6134–6140. IEEE,
2020.

[291] Guangzhi Tang, Arpit Shah, and Konstantinos P Michmizos. Spiking neural
network on neuromorphic hardware for energy-efficient unidimensional
slam. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4176–4181. IEEE, 2019.

[292] Patrick Farr, Aaron M Jones, Trevor Bihl, Jayson Boubin, and Ashley De-
Mange. Waveform design implemented on neuromorphic hardware. In
2020 IEEE International Radar Conference (RADAR), pages 934–939. IEEE,
2020.

[293] Cosmas Ifeanyi Nwakanma, Jae-Woo Kim, Jae-Min Lee, and Dong-Seong
Kim. Edge ai prospect using the neuroedge computing system: Introducing
a novel neuromorphic technology. ICT Express, 7(2):152–157, 2021.

[294] Adarsha Balaji, Shihao Song, Twisha Titirsha, Anup Das, Jeffrey Krichmar,
Nikil Dutt, James Shackleford, Nagarajan Kandasamy, and Francky Catthoor.
Neuroxplorer 1.0: An extensible framework for architectural exploration
with spiking neural networks. In International Conference on Neuromorphic
Systems 2021, pages 1–9, 2021.

[295] Andrea Spitale. Interfacing a neuromorphic coprocessor with a risc-v archi-
tecture. Master’s thesis, Politecnico di Torino, 2021.

[296] Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald
Michalik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen
Berekovic. A comparative survey of open-source application-class risc-v
processor implementations. In Proceedings of the 18th ACM International
Conference on Computing Frontiers, pages 12–20, 2021.

[297] UC Berkeley Architecture Research. Chipyard framework. https://github.
com/ucb-bar/chipyard, 2021.

[298] Charlotte Frenkel. Odin spiking neural network (snn) processor. https:
//github.com/ChFrenkel/ODIN, 2019.

https://github.com/ucb-bar/chipyard
https://github.com/ucb-bar/chipyard
https://github.com/ChFrenkel/ODIN
https://github.com/ChFrenkel/ODIN

166 References

[299] Joshua Arul Kumar Ranjan, Titus Sigamani, and Janet Barnabas. A novel
and efficient classifier using spiking neural network. The Journal of Super-
computing, 76(9):6545–6560, September 2020.

[300] Christoph Kayser, Marcelo A Montemurro, Nikos K Logothetis, and Stefano
Panzeri. Spike-phase coding boosts and stabilizes information carried by
spatial and temporal spike patterns. Neuron, 61(4):597–608, 2009.

[301] Eliathamby Ambikairajah, Julien Epps, and Lee Lin. Wideband speech and
audio coding using gammatone filter banks. In 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat.
No. 01CH37221), volume 2, pages 773–776. IEEE, 2001.

[302] Nafiul Rashid, Berken Utku Demirel, and Mohammad Abdullah Al Faruque.
Ahar: Adaptive cnn for energy-efficient human activity recognition in low-
power edge devices. IEEE Internet of Things Journal, 2022.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The building blocks of a neuromorphic pipeline

	2 Event-driven and standard sensors
	2.1 Digital sensors and datasets
	2.1.1 Inertial sensors for human activity recognition
	2.1.2 Audio sensors for speech recognition

	2.2 Neuromorphic sensors
	2.2.1 Event-based tactile sensing
	2.2.2 A silicon cochlea: the Neuromorphic Auditory Sensor (NAS)
	2.2.3 A silicon retina: the Dynamic Vision Sensor (DVS)
	2.2.4 Neuromorphic sensor fusion: the LIPSFUS dataset

	2.3 Chapter summary

	3 Input encoding and pre-processing
	3.1 Preprocessing
	3.1.1 Frequency decomposition
	3.1.2 Feature extraction

	3.2 Encoding techniques
	3.2.1 Rate coding
	3.2.2 Temporal coding
	3.2.3 Comparing different classes of encoding algorithms

	3.3 Additional analysis: Event-based encoding of tactile sensor data
	3.4 Chapter summary

	4 Neural models
	4.1 Neuron models
	4.1.1 Leaky Integrate and Fire (LIF)
	4.1.2 Multi-compartmental neurons

	4.2 Spiking Neural Network architectures
	4.2.1 ANN-to-SNN conversion: a spiking CNN
	4.2.2 Feed-forward and recurrent SNNs
	4.2.3 A comparison of convolutional and recurrent SNNs for Human Activity Recognition

	4.3 Learning methods
	4.3.1 Transfer learning

	4.4 Optimizing the architecture: model compression
	4.5 Chapter summary

	5 Software frameworks
	5.1 SNN specification software
	5.1.1 PyNN
	5.1.2 Nengo
	5.1.3 EONS

	5.2 SNN optimization
	5.2.1 Case study 1: HPO for HAR
	5.2.2 Case study 2: HPO for Braille reading

	5.3 System software: the SpiNNaker example
	5.3.1 Placement and routing exploration on SpiNNaker

	5.4 Chapter summary

	6 Hardware platforms
	6.1 Exploring the SpiNNaker communication infrastructure with MPI
	6.1.1 The SpiNNaker hardware
	6.1.2 SpinMPI
	6.1.3 PageRank
	6.1.4 Implementation of PageRank with MPI
	6.1.5 Comparison of SNN-PR and MPI-PR implementations
	6.1.6 SpinMPI Performance Analysis on PageRank
	6.1.7 Conclusions

	6.2 Braille classification on Loihi vs. GPU
	6.2.1 NVIDIA Jetson Xavier NX
	6.2.2 Intel Loihi

	6.3 Chapter summary

	7 Bringing it all together: towards a complete neuromorphic pipeline
	7.1 Configuring an embedded neuromorphic coprocessor with RISC-V
	7.1.1 ODIN integration with Chipyard
	7.1.2 RTL simulation and synthesis

	7.2 From sensor to neuron: processes for neuromorphic classification of IoT time-varying signals
	7.2.1 A neuromorphic approach for on-edge HAR applications
	7.2.2 A time-varying signal benchmark for spike encoding techniques
	7.2.3 Braille letter reading benchmark on neuromorphic hardware

	7.3 Chapter summary

	8 Conclusions
	References

