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A B S T R A C T

The design of effective and reliable solutions for Offshore Renewable Energy (ORE) technologies greatly
relies on accurate metocean data. Uncertainties can significantly impact the design process. This paper
presents a thorough evaluation of different bias-correction (BC) techniques applied to re-analysis datasets from
diverse locations along the Spanish coast, presenting a multi-level evaluation procedure including novel, more
appropriate statistical metrics beyond the traditional assessment techniques. First, the quality of raw ERA5
datasets is demonstrated to be rather poor, especially under extreme events, confirming the need for BC. Once
the need is identified, results show that only the most sophisticated distribution-mapping BC techniques present
the capacity to significantly improve the quality of the datasets, with the linearly-spaced Quantile-mapping
(𝑄𝑀) showing the best overall performance for power production conditions (PP), reducing the bias by over
an order of magnitude. In contrast, the Gumble Quantile-Mapping (𝐺𝑄𝑀) outperforms the 𝑄𝑀 in survivability
conditions (Surv). However, when computing overall performance of BC techniques, the predominance of PP
hinders the relevance of Surv. Hence, adapted metrics with a more realistic balance between the PP and Surv
regions are suggested, which show a better suitability of 𝐺𝑄𝑀 providing more accurate estimations of the
average power density and variability.
1. Introduction

A massive expansion of renewable energy sources is vital to transi-
tion from fossil fuels to clean energies and achieving a carbon neutral
energy system worldwide. This transition is one of the key mitigation
actions to fulfil the goals set out in the Paris Agreement [1] and the
latest report from the International Panel for Climate Change (IPCC) [2]
in order to avoid the most dramatic impacts of climate change [3].
Although mature and reliable renewable energy technologies already
exist in the market, such as wind and solar energy, the size and speed
of this transition will most likely require a substantial participation
of other renewable technologies. The International Renewable Energy
Agency (IRENA) estimates an increase of 14 TW on the total renewable
energy installed capacity worldwide by 2050, meaning that current
capacity will need to be multiplied by 5, which clearly illustrates
the magnitude of the challenge [4]. Offshore renewable energy (ORE)
systems are one of the alternatives that can assist the transition. In
fact, The International Energy Agency predicts that about 45% of CO2

∗ Corresponding author at: Fluid Mechanics Department, Mondragon University, Loramendi 4, 20500 Arrasate, Spain.
E-mail address: mpenalba@mondragon.edu (M. Penalba).

emissions savings by 2050 will come from technologies that are still
under development [5]. Offshore wind, for example, is expected to
multiply the current worldwide installed capacity by 30 in the next
30 years [4]. Similarly, wave and tidal energy, although still immature,
are also expected to contribute significantly to the future energy mix,
with estimates showing a potential to cover about 10% of the future
electricity demand [6,7].

Yet, wave energy converters (WECs), tidal energy converters and
even floating offshore wind turbines (FOWTs), still need significant
development in order to become competitive in the energy market. Key
aspects for the development of these technologies include:

i. Optimising the designs of floating structures by reducing ma-
terial use, while conserving their reliability and structural in-
tegrity,

ii. Increasing the energy generation capacity by considering non-
linear hydrodynamics and designing control algorithms,
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iii. Enhancing the durability of key components, such as mooring
lines and power take-off (PTO) systems via new materials and
their design considering better adjusted operation regions, and

iv. Improving accessibility and availability by optimising the O&M
strategies.

Despite their specific characteristics and requirements, the effective
nd reliable design of successful ORE technologies, including all the
spects mentioned above, relies on accurate metocean data. Design
xcellence comes from making confident decisions, which requires
nsight, not only data. The use of incomplete or inaccurate metocean
ata can result in misguided conclusions and, as a consequence, a
oor understanding, incorporating a higher uncertainty to the design
rocess where the uncertainty level is already significant [8]. In fact,
hese uncertainties lead to excessive conservatism in the design of
RE technologies, which, in turn, results in prohibitively large and
xpensive systems unable to compete in the current energy market [9].
s the resource assessment is the first link of the energy conversion
hain of any ORE system, the uncertainty in metocean data affects
he development of any stage in the chain, from the prediction of the
ystem response to the estimation of the final energy generation [10,
1]. Offshore Renewable Energy technologies are commonly designed
ith two particular operational modes, i.e. power production mode
PP) and survivability mode (Surv), dividing the metocean datasets into
wo significantly different regions. The former refers to the metocean
onditions that enable the power production safely, while the latter
efers to the metocean conditions under which the risk of damaging
he ORE system is high and, thus, protecting the ORE device becomes
he priority, interrupting power generation. Therefore, understanding
nd reducing the uncertainty of the metocean data across the whole
perational domain including both regions, is of high relevance.

In addition, spatio-temporal variations (including inter- and intra-
nnual variability) [12], and the potential non-stationarity of the re-
ource [13,14] suggest that long datasets are required for a better
nderstanding of the resource. Accordingly, different international or-
anisations recommend considering relatively long periods of data:
he International Organization for Standardization (ISO) defines the
equired data as a function of the return period to be considered (25%
f the return period of interest), meaning 10 years of data, for ORE
ystems with 20–30 years of lifespan [15]; while the Institute of Marine
ngineering, Science & Technology (IMAREST) [16] suggests a signif-
cantly longer period of 30 years in order to accurately characterise
xtreme events.

The most common sources of metocean data in the ORE sector
re observation buoys and re-analysis datasets. In addition, long-term
indcast data simulated by wind and wave models, such as Weather
esearch and Forecasting model (WRF), Simulating Waves Nearshore
SWAN) are also widely used. The latter are typically used for the
ssessment of relatively small areas, such as specific islands [17] or
egional analyses [18–20], and commonly use re-analysis data as in-
ut [21]. Hence, observations and re-analysis datasets can be con-
idered as the main sources of metocean data. However, such long
eriods of data are still difficult to cover with wave measurement buoys
r other observation systems, and these systems tend to be complex
nd expensive. Furthermore, due to the harsh environment in the
pen ocean, the equipment installed in, or maintaining position for,
easurement buoys often fail, resulting in relatively long periods for
hich no data is available. Therefore, re-analysis datasets and data

rom climate models are often used. These datasets cover very long
ime periods (can go back to 1900 in some cases [22,23]) and provide
etocean data at any point in the world for virtually no cost. However,

he main problem of re-analysis datasets is their limited accuracy under
ertain conditions. It is well-known that they exhibit systematic errors,
articularly in extreme events. The calibration of re-analysis datasets
nables the reduction of the differences (bias) between raw datasets and
bservations. That way, precise long-term metocean data that cannot
e provided by pure observations can be generated for a more accurate
2

ssessment of ORE technologies.
1.1. Introduction to bias correction

Bias correction (BC) techniques enable scaling the values of the raw
data to approach statistical properties of the observed data. These tech-
niques are purely statistical tools and have become a common practice
in climate and meteorological studies in the last two decades [24,25].
Therefore, the use of these techniques does not require any fundamental
insight on the underlying physics of the models or data assimilation
methods [26].

In principle, these techniques can be applied to any variable. Nev-
ertheless, the quality of the corrected, or calibrated, datasets greatly
depends on the quality of the reference dataset considered as the ground
truth, which is usually represented by observations. In this sense, it
should be noted that the objective of the different BC techniques should
not be correcting or modifying the sensitivity of the climate models or
data assimilation techniques. Therefore, BC should only be applied to
the final results obtained from either approach. For further information
about BC in climate and meteorological datasets, the reader is referred
to [25]. Although these techniques can be used for correcting both
re-analysis datasets and simulation results, this paper will focus only
on the former, and, for the sake of clarity, re-analysis datasets will be
referred to as assimilated data.

Among the different BC techniques suggested in the literature, the
simplest approach is the Delta technique, which consists in merely
subtracting from the assimilated data the mean difference between
the assimilated and observed data over the whole period covered by
the dataset. The Delta technique was the first suggested approach, but
more complex and effective techniques have been suggested in different
climate studies, mainly for temperature and precipitation. All these
techniques can be classified into four main groups [24]:

1. The linear-scaling technique [27] enables correcting monthly
mean values based on the difference between the assimilated
and observed data, as in the Delta technique, but incorporates
an additional factor based on the long-term monthly means.

2. The variance-scaling technique corrects both the variance and
the mean in two steps: in the first step, only the mean is
corrected, using the linear-scaling technique; the variance is
corrected in the second step by means of a factor based on the
ratio of the standard deviation (SD).

3. Power transformation techniques use a nonlinear correction
function in the form of an exponential, which enables ad-
justing the variance statistics, as opposed to the linear-scaling
technique.

4. The distribution mapping techniques aim at correcting the dis-
tribution function of the assimilated data to agree with the
observations by means of a transfer function created based on
the differences between the two datasets.

One of the most thorough reviews of different BC techniques is
presented in [24] applied to hydrological studies, where the authors
conclude that all BC techniques improve the quality of the simulated
data, but only the higher-skill techniques, such as power transformation
and distribution mapping, have the sufficient complexity to correct
different statistical properties beyond the mean. In fact, the distribution
mapping techniques have shown to be the most popular BC approaches
in the last decade, regardless of the fields and variables. These tech-
niques have been given different names in the different studies, such
as ‘probability mapping’ [28] ‘histogram equalization’ [29], ‘statistical
downscaling’ [30] or ‘quantile–quantile mapping’ [31].

1.2. Metocean data in the ORE literature

In contrast to the previous subsection, although the use of cli-
mate models and re-analysis datasets is relatively common in the

ORE literature, the use of BC techniques is remarkably scarce. The
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vast majority of the ORE studies use raw simulated or assimilated
datasets regardless of the final application of the metocean data, such as
production assessment [32], classification of the global resource [33],
resource exploitability analysis [34], O&M assessment [35] and iden-
tification of extreme design conditions [8]. A few exceptions employ
BC techniques [36–38] or analogous approaches integrating satellite,
re-analysis and in-situ measurements [39]. However, these studies
consider one approach and apply it without providing any comparative
analysis or demonstration of its suitability against other similar ap-
proaches. To the best knowledge of the authors, the only study partially
related to the ORE sector that presents a thorough benchmarking of
different BC techniques is [40], where the authors exclusively focus on
the significant wave height and use a multi-forcing 8-member global
dynamic ensemble of wave climate projections in a global scale.

The re-analysis datasets commonly used for the analysis of ORE sys-
tems are generated by the European Centre for Medium-Range Weather
Forecasts (ECMWF), which provides a set of different datasets [41].
The first atmospheric re-analysis covering the whole 20th century,
from 1900–2010, is ERA20, which includes observations An updated
version, although covering only the latest part of the 20th century, is
the ERA-Interim dataset, which improves the data assimilation method
and the wave model including shallow-water physics. Ulazia et al.
compare both datasets over different areas around the world, e.g. the
Bay of Biscay [22] and the Chilean coast [42], concluding that ERA-
Interim provides significantly better results. However, the most recent
re-analysis dataset by the ECMWF is the ERA5 dataset, i.e. the 5th
eneration ECMWF atmospheric reanalysis of the global climate, which
rovides a higher resolution (0.25◦ and 0.5◦ for the atmosphere and
cean, respectively) and assimilates more observations than any other
revious re-analysis dataset. ERA5 is the most widely used and the
ost accurate dataset, outperforming both ERA20 and ERA-Interim

e-analysis datasets. In fact, some studies use ERA5 as the reference
ataset [43]. Therefore, the present study uses the ERA5 dataset as the
ource of metocean data.

This paper presents a comprehensive benchmarking of four different
C techniques applied to the most relevant metocean variables. The
ombination of the significant wave height (𝐻𝑠), the peak period (𝑇𝑝)
nd the wind speed (𝑈𝑤) enables the assessment of the different crucial
spects used in the design process of ORE systems: power production,
atigue and extreme loading, system degradation, and O&M accessi-
ility. Therefore, in the present study, 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤 are obtained

directly from the ERA5 re-analysis for the different analysed locations.
The four different BC techniques include the Delta technique and three
different distribution mapping techniques, which are assessed by using a
ovel metric suggested in the present paper. This novel metric enables
imultaneously considering PP and Surv conditions when determining
he most appropriate BC technique for the ORE sector. Also, the effec-
iveness of the BC techniques is evaluated in four different locations
round the Iberian Peninsula, for which in-situ observations are also
vailable. All the four locations have different metocean characteristics
n terms of wave and wind resource, which generates the ideal pool for
he evaluation of the different BC techniques.

The remainder of the paper is as follows: Section 2 describes the
C techniques and the systematic multi-level assessment methodology
etrics to identify the most effective BC technique(s); Section 3 defines

he geographical locations and characterises the ORE resource data
pon which the different BC techniques are evaluated, including the
tatistical techniques for that evaluation, Section 4 presents the perfor-
ance of the different BC techniques; and Section 5 draws the most

elevant conclusions.

. Bias correction techniques

In this study, the implementation of the BC techniques targets
orrecting the assimilated metocean data in order to improve the agree-
ent with observations (referred to as Obs in the following), which are

onsidered to be the ground truth. To that end, four BC techniques are
3

pplied to the different datasets.
.1. Delta-change

As mentioned earlier in this paper, the Delta-change technique, first
uggested in [44], is the simplest BC technique. It consists in adjusting
he distribution of the assimilated dataset (𝑦𝑎𝑠) by adding a constant
orrection factor (the Delta factor) calculated using the measured (𝑦𝑜𝑏𝑠)
nd assimilated datasets. More specifically, this constant correction
actor is computed as the subtraction between the average values of the
ssimilated ( ̂𝑦𝑎𝑠) and the measured datasets ( ̂𝑦𝑜𝑏𝑠). Hence, the dataset
orrected via the Delta BC method is given as follows:
𝐵𝐶
𝑖 = 𝑦𝑎𝑠𝑖 + (𝑦̂𝑜𝑏𝑠 − 𝑦̂𝑎𝑠), (1)

here 𝑖 = 1,… , 𝑁 , 𝑁 being the number of points considered from the
atasest. This number can vary depending on the available information
f the measuring buoy at each location and for each analysed variable.
t should be noted that, in the present study, 𝑦 can represent three
ifferent variables, i.e 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤.

.2. Full distribution mapping

The full distribution mapping (FDM) technique is the most elemen-
ary method within the distribution mapping group. In distribution
apping techniques, the correction factor is defined as a statistical rela-

ionship between the assimilated cumulative density function (𝐶𝐷𝐹𝑎𝑠)
nd measured CDFs (𝐶𝐷𝐹𝑜𝑏𝑠). In both cases, and in all the BC tech-
iques presented in this manuscript, the CDF is computed following
he empirical cumulative distribution function. The full distribution
apping uses the whole CDF all at once to identify the statistical re-

ationship between assimilated and observed datasets. In this case, the
tatistical relationship (𝑋𝐹𝐷𝑀 ) is calculated as the difference between
he inverse CDF of the assimilated (𝐶𝐷𝐹−1

𝑎𝑠 ) and observed datasets
𝐶𝐷𝐹−1

𝑜𝑏𝑠):

𝐹𝐷𝑀 = 𝐶𝐷𝐹−1
𝑎𝑠 − 𝐶𝐷𝐹−1

𝑜𝑏𝑠, (2)

This difference between the inverse CDFs is then fitted with an n-
rder polynomial function in order to transform the correction factor
𝐹𝐷𝑀 into time-domain correction factors to be applied to the raw

ssimilated dataset. Hence, the dataset corrected via the FDM technique
s given as,
𝐵𝐶
𝑖 = 𝑦𝑎𝑠𝑖 + 𝑓 (𝑋𝐹𝐷𝑀 , 𝑛), (3)

where 𝑓 denotes the n-order polynomial function and 𝑛 the order of
this polynomial function (𝑛 = 3 in the present study).

The FDM technique usually obtains a better improvement of the
assimilated data than the Delta technique, but both are expected to
provide a poor representation of the extreme conditions due to the pre-
dominance of the milder conditions in the definition of the correction
factors.

2.3. Quantile mapping

The quantile mapping (QM) method, also known as the empirical
quantile mapping, is also classified within the distribution mapping
group and is almost identical to the FDM method. The only difference
is that the correction factor 𝑋𝑄𝑀 is identified at each quantile (𝑞𝑗) of
the CDF, as illustrated in Fig. 1.

Firstly the assimilated and measured datasets need to be distributed
into different quantiles. In this study, 50 linearly-spaced quantiles are
defined between the 1st and the 99th quantiles, both included (𝑞𝑗 =
1,… , 99). Hence, the correction factor for each quantiles is computed
as,

𝑋𝑄𝑀 (𝑞𝑗 ) = 𝐶𝐷𝐹−1
𝑎𝑠 (𝑞𝑗 ) − 𝐶𝐷𝐹−1

𝑜𝑏𝑠(𝑞𝑗 ), (4)

which is incorporated in the BC method as in Eq. (3), except that the
correction factor is applied at each quantile:
𝐵𝐶 𝑎𝑠 𝑄𝑀
𝑦 (𝑞𝑗 ) = 𝑦 (𝑞𝑗 ) + 𝑓 (𝑋 (𝑞𝑗 ), 𝑛). (5)
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Fig. 1. Schematic representation of the QM technique, where 𝑞𝑗 represents each
quantile considered in the calibration process.

This technique is expected to outperform the FDM technique, since
the bias characteristics at different quantiles are considered. How-
ever, similarly to the Delta and FDM techniques, linearly spacing the
quantiles is still expected to lead to underrepresented extreme events.

2.4. Gumbel quantile mapping

The Gumbel quantile mapping (GQM) technique allows for ade-
quately capturing the error in extreme events while preserving the main
information around the most common quantiles. The GQM technique,
also known as the empirical Gumbel quantile mapping, uses the same
quantile mapping technique as in the QM technique but placing the
quantiles following a Gumbel distribution function (GDF), which is a
particular case of the generalised extreme value distribution, defined
as [45],

𝐹 (𝑥;𝜇, 𝛽) = 𝑒−𝑒
−(𝑥−𝜇)∕𝛽

, (6)

where 𝜇 and 𝛽 are, respectively, the location and scale parameters. That
way, the GDF provides a better representation of the upper tail of the
distribution function, since over 50% of the quantiles are commonly
placed above the 99th quantile. Fig. 2 illustrates the differences in the
quantile distribution between the QM and GQM BC techniques.
4

Once the quantiles are identified, the GQM technique is imple-
mented as in Section 2.3, computing the correction term based upon
the inverse CDFs at each quantile, as in Eq. (4), and applying that
correction term to the assimilated data via a polynomial function, as
in Eq. (5). Due to the large number of quantiles placed above the 99th
quantile, the correction of the extreme values, where the higher biases
are usually found, is expected to improve significantly with respect to
the rest of the BC techniques [40].

3. Methodology and case study

The BC techniques introduced in Section 2 are evaluated in order
to identify the most effective techniques for the correction of the raw
ERA5 data. The characteristics of the resource within PP and Surv are
expected to be significantly different and, thus, the measurement of the
effectiveness of BC techniques requires to be adjusted to each mode.
To that end, a systematic multi-level methodology is suggested, which
provides significantly greater insight to understand the implications of
using the different BC techniques. The multi-level assessment consists
on three stages, enabling the elimination of ineffective BC techniques
at each level. First, traditional statistical metrics are used for an overall
evaluation, as shown in Section 3.2.1, which enables the quantification
of the bias for the raw ERA5 signal (𝑦𝐸𝑅𝐴5) and the elimination of
the simplest and most inefficient techniques. However, these overall
metrics mask the effectiveness of the BC techniques for each range of
metocean conditions (e.g. mild, intermediate, harsh conditions). To that
end, as described in Section 3.2.2, metocean conditions are partitioned
into different parts, analysing the effect of BC techniques in each
quantile and also over the full probability density function (PDF). A
third layer is incorporated in order to synthesise the outcomes extracted
from the full distribution analysis, using specific statistical metrics
described in Section 3.2.3, so that the effectiveness of the different
BC techniques can be quantified by means of a single metric. That
way, effective BC techniques are selected as the techniques that show
a good performance through all the three levels. Finally, the impact
of the selected BC techniques on the prediction of the ORE potential
is evaluated, including the mean and the variability of the resource.
The flowchart depicted in Fig. 3 illustrates the systematic multi-level
assessment method that incorporates different statistical metrics and
tools. Red arrows illustrate the BC techniques being eliminated in the
different stages of the process due to their poor performance, while
green lines depict the BC techniques that succeed.
Fig. 2. Comparison of the quantile distribution in the QM and GQM BC techniques.
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Fig. 3. Flowchart of the systematic multi-level assessment method for BC techniques.
3.1. Data pre-processing

All the re-analysis data is obtained from the last-generation ERA5
product provided by the ECMWF, while the observations data is pro-
vided by the Spanish Port Authorities coordination agency Puertos del
Estado, that owns a large amount of measurement buoys along the
Spanish coast. Hence, all the data is openly available for the public.

However, it is important to note that a pre-processing exercise of the
datasets is necessary, as illustrated in Fig. 3, so that re-analysis datasets
and observations become comparable. Since the correction factors for
the different BC techniques are computed based on the difference
between the observation and raw assimilation datasets, it is crucial
that both datasets have the same length and discretisation. However,
data from measurement buoys are commonly irregular and include
temporal gaps due to different issues, such as faults in the measuring
sensors, communication problems, mooring system failures, or energy
shortage [46]. Therefore, the pre-processing of the data consists on two
main actions depending on the characteristics of the missing data:

i. If the gap consists on a single sample, the observation data is
interpolated using the information of the preceding and subse-
quent samples;

ii. If the gap extends along several samples (e.g. more than one
sample), the data corresponding to that gap is neglected.

It should be noted that, in any case, the missing data always
corresponds to less than a 20% of the data, ensuring that the particular
metocean characteristics of the different locations are preserved in the
pre-processed dataset.

3.2. BC assessment techniques

3.2.1. Traditional statistical metrics
The characterisation of the metocean conditions is usually deter-

mined by means of standard statistical metrics [14,22]. In this study
four traditional metrics are employed:
5

(I.) The bias is the difference between the ground truth represented
by 𝑦𝑜𝑏𝑠 and the different versions of 𝑦𝑎𝑠, either raw assimilated
data or corrected data. In order to provide a single metric for
each variable and location analysed in this study, the mean of
the absolute bias is considered as,

𝑏𝑖𝑎𝑠(𝑦𝑜𝑏𝑠, 𝑦𝑎𝑠) = 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑦𝑜𝑏𝑠 − 𝑦𝑎𝑠)). (7)

(II.) The Root Mean Square Deviation (RMSD) also represents the
deviation between the observations and the different versions of
the assimilated datasets (either raw or corrected), but computed
as the square root of the average of squared errors:

𝑅𝑀𝑆𝐷 =

√

√

√

√

√

∑𝑁
𝑖=1

(

̂𝑦𝑜𝑏𝑠𝑖 − 𝑦𝑎𝑠𝑖
)2

𝑁
, (8)

(III.) The standard deviation (𝜎𝑦) measures the variability of the
dataset, which is calculated for each dataset:

𝜎𝑦 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝜇𝑦
)2, (9)

where 𝑦 can be either the measured or assimilated dataset, 𝑁 is
the length of the analysed dataset and 𝜇𝑦 represents the mean of
all the samples.

(IV.) The correlation, given by the Pearson Correlation (PC) coeffi-
cient in this case, indicates the statistical relationship between
two datasets, regardless whether that relationship is causal or
not:

𝑃𝐶 =
𝑐𝑜𝑣(𝑦𝑜𝑏𝑠, 𝑦𝑎𝑠)
𝜎𝑦𝑜𝑏𝑠𝜎𝑦𝑎𝑠

, (10)

where 𝑐𝑜𝑣(𝑦𝑜𝑏𝑠, 𝑦𝑎𝑠) is the covariance between the measured and
assimilated datasets.

In the case of the bias and the RMSD, lower values of the metrics
denote a better suitability of the assimilated datasets (0 being the
perfect agreement). In contrast, PC shows a better agreement as it is
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closer to 1. Finally, the better agreement of the BC technique is shown
by 𝜎𝑦 values that are close to the observation 𝜎𝑦. These four metrics
re commonly used when characterising meteorological and metocean
onditions. The combination of these metrics enables quantifying the
apacity of the BC techniques to correct specific characteristics of the
aw assimilated dataset and, thus, provides the relative skill of the
C techniques. For example, PC coefficient quantifies the similarity

n pattern, RMSD the level of deviation and 𝜎𝑦 the similarity of the
variability.

In addition to the above mentioned metrics, graphical methods are
also considered in this study in order to visually depict the effectiveness
of the different BC techniques. Taylor diagrams illustrate the RMSD, 𝜎𝑦
and PC of each dataset at once, enabling the comparative assessment of
different BC techniques based on these three metrics in a single graph.
Based on these traditional metrics, the first evaluation is carried out,
excluding those BC techniques that show a poor performance.

3.2.2. Full distribution
However, the comparative assessment provided by Taylor diagrams

is based upon average metrics, hindering a more comprehensive anal-
ysis comparing the correction of the BC techniques along different
quantiles. Therefore, a second level of evaluation is defined for the BC
techniques that succeeded the evaluation at the first level, in order to
enable a more thorough assessment. Quantile–quantile (Q–Q) plots are
commonly used in the comparison of BC techniques, which, in this case,
are complemented with PDF comparisons. The latter is used both for
the overall comparison of the BC techniques across the whole space and
a dissected analysis by partitioning the space into statistically relevant
sections. That way, the features of each BC technique, including their
weaknesses, can be analysed. The datasets are divided into 6 partitions:

• 1st quartile: low-energetic conditions, around the cut-in limit for
power production of ORE technologies.

• 2nd quartile: mild conditions, low power production.
• 3rd quartile: medium-energetic conditions, the conditions for

which the ORE technologies are usually designed.
• 75th–90th centiles: medium-high-energetic conditions, highest

metocean conditions for power production.
• 90th–99th centiles: high-energetic conditions, around cut-off con-

ditions for power production of ORE technologies.
• +99th centile: extreme conditions, the harshest conditions for

survivability.

The dissected analysis is illustrated by means of PDFs for each
partition and conditional scatter diagrams.

3.2.3. Specific statistical metrics
In the third level of the assessment approach, the potential im-

provement of the different BC techniques is evaluated by means of two
more specific metrics: The 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒 and the Distribution Added

alue (𝐷𝐴𝑉 ). The 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒 is a simple but practical metric of
he similarity of two PDFs, allowing the comparison along the entire
istribution [47]. Effectively, the 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒 calculates the common
rea between two PDFs, providing the minimum cumulative value:

𝐷𝐹𝑠𝑐𝑜𝑟𝑒 =
𝑀
∑

𝑚=1
𝑚𝑖𝑛(𝑃𝐷𝐹 (𝑦𝑜𝑏𝑠𝑚 ) − 𝑃𝐷𝐹 (𝑦𝑎𝑠𝑚 )), (11)

where 𝑀 is the number of bins used to represent the PDF.
The 𝐷𝐴𝑉 metric allows for a normalised comparison between two

𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒s as follows [48],

𝐷𝐴𝑉 =
𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒𝐵𝐶 − 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒𝑎𝑠

𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒𝑎𝑠
× 100, (12)

where 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒𝐵𝐶 and 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒𝑎𝑠 represent the 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒s
of the corrected and raw assimilated datasets, respectively. The 𝐷𝐴𝑉
is particularly useful for the present study, for it directly represents the
improvement achieved by the implementation of each BC technique.
6

However, the original 𝐷𝐴𝑉 metric suggested in [48] considers the
whole PDF, which, in the present study, prevents discerning the meto-
cean conditions of the PP region from the extreme events of the Surv.
As a consequence, since the extreme events correspond to the ≥ 99𝑡ℎ
uantile of the dataset [40], the original 𝐷𝐴𝑉 hinders the effectiveness
f the BC techniques to represent extreme events. Therefore, an adapted
etric is suggested here, where the relevance of the PP and Surv modes

is balanced via evenly distributed weights:

𝐷𝐴𝑉𝑂𝑅𝐸 =
𝐷𝐴𝑉𝑃𝑃 +𝐷𝐴𝑉𝑆

2
, (13)

where 𝐷𝐴𝑉𝑃𝑃 and 𝐷𝐴𝑉𝑆 are the 𝐷𝐴𝑉 metrics corresponding to the PP
and Surv modes, respectively. As a first suggestion, the same weight is
provided to both modes. In any case, it should be noted that this is
a preliminary assumption for this novel metric. Hence, further inves-
tigation, outside the scope of this work, could suggest that different
weights may be more appropriate, eventually to be tuned according to
the specific requirements of each given study.

Finally, the effectiveness of BC techniques selected through the
process is evaluated when predicting the resource potential. To that
end, the mean wave and wind power density, and the variability of
the resource are assessed, analysing the impact on the ORE resource
prediction.

3.3. Metocean data

The performance of the different BC techniques may be influenced
by the characteristics of the metocean data used in the analysis. There-
fore, in order to evaluate the robustness of the BC techniques, the
present study uses four different locations around the Iberian peninsula,
as illustrated in Fig. 4(a), where the metocean characteristics are
significantly different. The ERA5 dataset for each location is selected
from the closest gridpoint to the in-situ measurement buoy. The main
characteristics of these four locations obtained from ERA5 are depicted
in Fig. 4(b), represented via non-parametric PDFs of the three main
metocean variables (𝐻𝑠, 𝑇𝑝 and 𝑈𝑤). Each location is described here
below:

a. Gulf of Biscay to the north, a relatively sheltered area in the
North-East Atlantic Ocean, clearly dominated by swell waves
(𝐻̂𝑠 = 1.9 m and 𝑇𝑝 = 9.6 s) and consistent wind speeds (𝑈𝑤 =
5 m∕s) with a relatively low variability.

b. Cape Silleiro to the west, an open area facing the open North-East
Atlantic Ocean, also dominated by even larger swell waves (𝐻̂𝑠 =
2.4 m and 𝑇𝑝 = 9.8 s) and consistent wind speeds (𝑈𝑤 = 6 m∕s)
with a relatively low spread.

c. Gulf of Cadiz to the south, where the Atlantic Ocean connects to
the Mediterranean Sea, resulting in a combination of swells and
wind-seas, the latter being predominant (𝐻̂𝑠 = 1.2 m, 𝑇̂ 𝑠𝑤𝑒𝑙𝑙

𝑝 = 10
s and 𝑇̂𝑤𝑖𝑛𝑑

𝑝 = 5 s approximately). Similarly to the two previous
cases, the wind resource in Gulf of Cadiz is consistent (𝑈𝑤 =
5.3 m∕s) and shows a relatively low variability.

d. Cape of Creus to the east, in the West of the Mediterranean Sea,
clearly dominated by wind-seas (𝐻̂𝑠 = 1.3 m and 𝑇𝑝 = 5.5 s)
and less consistent wind speeds, showing a significant variability
with the tail of the PDF extending up to 20 m/s that result in a
higher mean wind speed (𝑈𝑤 = 6.1 m∕s).

4. Performance evaluation

Following the main goal of the present study, the evaluation of
the different BC techniques is comprehensively assessed for the Gulf of
Biscay ia the multi-level assessment approach presented in Section 3.
Combining all the different locations, metocean variables and BC tech-
niques would result in an unfeasible large number of combinations
for a meaningful and clear presentation in this paper. Therefore, the

results at the other three locations are obtained following the same
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Fig. 4. Definition of the four locations analysed in the present study.
process, but only the final metrics are shown in Appendix of the present
paper for the sake of clarity. However, the reader can access the more
comprehensive results for all the locations in the supplementary data
provided with the paper.

That way, it is ensured that the correction factors are adequately
calculated comparing the data for the exact same instants.

4.1. Bias correction at the Gulf of Biscay

The development of ORE technologies requires the understanding
of the different metocean conditions. Hence, following the systematic
7

multi-level assessment approach, the evaluation of the different BC
techniques is divided into three parts.

4.1.1. Traditional statistical properties
The main statistical metrics defined in Section 3.2.1 provide the

overall information on the characteristics of the resource, which sim-
plifies the preliminary comparison of the different BC techniques.

Table 1 shows all the metrics for the different BC techniques, with
green highlighting showing the best performance. Darker green denotes
the best values, while the lighter green indicates metrics that also
Table 1
Statistical properties of the measured, raw assimilated and the different BC techniques at the Gulf of Biscay for 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤. Best performance BC techniques are highlighted
in shades of green for each metric.

Dataset 𝐻𝑠 [m] 𝑇𝑝 [s] 𝑈𝑤 [m/s]

Bias [m] 𝑅𝑀𝑆𝐷
[m]

𝜎𝑦 [m] 𝑃𝐶 [−] Bias [s] 𝑅𝑀𝑆𝐷 [s] 𝜎𝑦 [m] 𝑃𝐶 [−] Bias [m/s] 𝑅𝑀𝑆𝐷 [m/s] 𝜎𝑦 [m] 𝑃𝐶 [−]

Obs. – – 1.22 1 – – 2.59 1 – – 3.03 1
ERA5 0.38 0.57 0.87 0.96 1.50 2.07 2.91 0.82 1.55 2.06 3.45 0.84
Delta 0.32 0.45 0.87 0.96 1.03 1.70 2.91 0.82 1.39 1.86 3.45 0.84
FDM 0.22 0.32 1.22 0.97 0.91 1.57 2.59 0.82 1.28 1.70 3.03 0.84
QM 0.04 0.11 1.22 0.99 0.10 0.25 2.59 0.99 0.07 0.19 3.03 0.99
GQM 0.12 0.15 1.22 0.99 0.48 0.95 2.59 0.93 0.65 0.95 3.03 0.95
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Fig. 5. Taylor diagrams and bias of the different BC techniques: (a) 𝐻𝑠, (b) 𝑇𝑝 and (c)
𝑈𝑤.

show a good agreement. The first outcome from the table is that the
raw ERA5 dataset provides a poor representation of the real resource,
regardless of the metocean variable, as particularly demonstrated with
the Bias and RMSD metrics. Another clear aspect that can be extracted
from Table 1 is that the Delta method does not provide any significant
improvement, while all the distribution mapping methods demonstrate
to provide better results. Note that the same PC metric is obtained with
8

the three distribution mapping methods, achieving the very same value
as for the observations. Among the distribution mapping methods, it
is clear that the QM method is the most effective for all metocean
variables, the GQM achieving similar performance metrics in the case of
𝐻𝑠, but significantly poorer with 𝑇𝑝 and 𝑈𝑤. The comparison between
the different BC techniques and the superiority of the QM method is
clearly shown in Fig. 5 by means of the Taylor diagrams and the bar
plot representation of the bias.

Furthermore, the results presented in Table 1 and Fig. 5 show that
all BC techniques perform significantly better for 𝐻𝑠 than 𝑇𝑝 or 𝑈𝑤. The
main reason for that is believed to be the lower variability of 𝐻𝑠, as
shown by the 𝜎𝑦 metric, which is twice as high for 𝑇𝑝 and almost three
times higher for 𝑈𝑤. In addition, 𝑇𝑝 is defined as a discrete statistical
parameter estimated from the sea-state spectrum, meaning that small
variations of the spectrum shape can lead to a different bin of the
𝑇𝑝 vector. Since all BC techniques are pure statistical techniques and
the same number of quantiles is used for all the variables, the higher
variability of 𝑇𝑝 and 𝑈𝑤 expands the bounds of the correction space,
reducing the effectiveness of the correction factors that are computed
at each quantile. However, the QM method shows a remarkable perfor-
mance, even with 𝑇𝑝 and 𝑈𝑤, reducing the bias of the raw assimilated
dataset by an order of magnitude. Overall, it can be concluded that the
performance of the Delta and FDM methods is unsatisfactory, although
both improve the quality of the raw dataset, as concluded in [24]; while
the GQM technique looks promising, especially because it is designed to
focus on the extreme values. Therefore, the Delta and FDM techniques
are discarded for the following stages.

4.1.2. Analysis of the full distribution
The analysis via the baseline statistical metrics reduces the set

of potential BC techniques to two: QM and GQM techniques. Both
are assessed through the overall and dissected analysis across the six
partitions.

Overall analysis. The simplest and most consistent full distribution
analysis is the visual comparison of the CDFs, as illustrated in Fig. 6.
Overall, apart from the deviation of the raw ERA5 dataset, QM and
GQM methods seem to have captured the characteristics of the obser-
vation dataset perfectly. Zooming in the upper quantiles (96th–100th),
the agreement between the observation, and the QM and GQM tech-
niques is still remarkable. It is only in the very extreme conditions
(99.995th–100th quantiles) when the QM method seems to diverge
slightly, while the GQM method still overlays the observation dataset,
as expected. Similarly, the CDF results for 𝑇𝑝 and 𝑈𝑤 also show almost
imperceptible differences.

Fig. 6. CDF for 𝐻𝑠: Observations (black), raw ERA5 (blue), QM (red) and GQM (green)
techniques. Blue shaded area zooms in the last 4 percentiles, while the red shaded area
zooms further up to the 99.995 percentile.
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Fig. 7. Q–Q plots of the different BC techniques: (a) 𝐻𝑠, (b) 𝑇𝑝 and (c) 𝑈𝑤.
In order to represent the differences more clearly, a comparative
analysis is carried out in different quantiles, for which Q–Q plots are
commonly used, comparing the corrected datasets to the observations.
In this case, the comparison is carried out for the three metocean vari-
ables 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤, as illustrated in Fig. 7(a), (b) and (c), respectively.
Yet, similar results to those obtained in Fig. 6 are shown in Fig. 7, where
differences between the QM and GQM BC techniques seem negligible.

However, these results seem to contradict the results shown in
Table 1 and Fig. 5, where the QM technique is shown to be the
technique that provides the most accurate data. The main reason for
such a contradiction is that, in Figs. 6 and 7, the performance of the
BC techniques at each quantile is given by a single averaged number,
which hinders the dispersion within each quantile. The only manner
to analyse this dispersion is going beyond the average values and
analysing the probability distributions. Fig. 8(a), (b) and (c) illustrate,
respectively, the overall PDFs for 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤.

The results shown in Fig. 8 are in line with the metrics shown
in Table 1. The outstanding performance of the QM BC technique is
clearly shown, with the vast majority of the bias distribution being
concentrated very close to 0 for the three metocean variables. Likewise
in Table 1, the bias distribution of the GQM method also shows a sig-
nificant improvement with respect to the raw ERA5 dataset, especially
for 𝐻𝑠.

Analysis of the partitions. Nevertheless, the distributions depicted in
Fig. 8 correspond to the whole dataset, where mild metocean conditions
(i.e 𝐻𝑠 ≤ 2 m, 𝑇𝑝 ≤ 12 s and 𝑈𝑤 ≤ 20 m∕s) are largely predominant.
However, due to the characteristics of the PDFs assumed in each BC
technique, the performance of these BC techniques is expected to vary
significantly across the different conditions.

Similarly to Fig. 8, bias distributions for each BC technique and
partition are illustrated in Fig. 9. Here, the analysis is restricted to 𝐻𝑠 in
order to avoid repetitiveness, but the same conclusions can be applied
9

to 𝑇𝑝 and 𝑈𝑤. To some extent, these graphs are the equivalents of the
Q–Q plots shown in Fig. 7, but provide greater insight into the effec-
tiveness of each BC technique. Between low-energetic and medium-high
energetic conditions, which corresponds to the 90% of the data, the
QM method is clearly shown to outperform the GQM method. The
latter exhibits difficulties to adequately correct low-energetic and mild
conditions, which is to be expected given that only 1 quantile is
placed in each of these partitions (see Fig. 2). However, it should be
noted that, since the raw values in these partitioning are low, the bias
is also modest within these partitions. Yet, the effectiveness of the
GQM technique increases substantially as it approaches to the high-
energetic conditions, as is to be expected. In fact, the GQM technique
demonstrates to outperform the QM method, especially in the extreme
partition, where the QM struggles to accurately represent the realistic
conditions.

The conditional scatter diagrams in Fig. 10 show the trends of the
biases with respect to the metocean conditions for each assimilated
dataset, where the colour code illustrates the different partitions. In the
case of the raw ERA5 dataset, the trend is close to linear, with the bias
increasing as 𝐻𝑠 increases. This trend is overturned when implementing
the GQM technique, showing particularly low bias values at high-
energetic and extreme 𝐻𝑠 conditions. In contrast, the QM method
is able to vanish the bias between low- and medium-high-energetic
conditions, but increases drastically at high- and extreme conditions
(i.e. 𝐻𝑠 ≥ 5 m). Note that the conditional scatter diagrams for both
corrected datasets show a sawtooth pattern. The lower bias values of
these sawtooth pattern correspond to the 𝐻𝑠 values where the quantiles
are placed when identifying the correction factor. The bias slightly
increases for 𝐻𝑠 values between the quantiles, which is particularly
evident in the case of the GQM method (7 quantiles are placed for
𝐻𝑠 ≤ 4 m, see Fig. 2, and 7 troughs can be identified in that range).

Similar trends can also be identified for 𝑇𝑝 and 𝑈𝑤, as illustrated
in Fig. 11, which demonstrates the applicability of these methods to
Fig. 8. PDFs of the different BC techniques: (a) 𝐻𝑠, (b) 𝑇𝑝 and (c) 𝑈𝑤.
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Fig. 9. PDF across the different partitions, comparing the bias of the raw assimilation, and the QM and GQM BC techniques.
Fig. 10. Conditional scatter diagrams for each BC technique applied to 𝐻𝑠: (a) ERA5,
(b) QM and (c) GQM.
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Table 2
Evaluation of the BC techniques: Overall assessment for 𝐻𝑠 and 𝑈𝑤.
𝐻𝑠 Overall Extremes Mean

𝑃𝐷𝐹 𝑠𝑐𝑜𝑟𝑒 𝐷𝐴𝑉𝑃𝑃 𝑃𝐷𝐹 𝑠𝑐𝑜𝑟𝑒 𝐷𝐴𝑉𝑆 𝐷𝐴𝑉𝑂𝑅𝐸

ERA5 0.87 – 0.12 – –
QM 0.99 13% 0.8 585% 299%
GQM 0.97 11% 0.95 723% 367%
𝑈𝑤 𝑃𝐷𝐹 𝑠𝑐𝑜𝑟𝑒 𝐷𝐴𝑉 𝑃𝐷𝐹 𝑠𝑐𝑜𝑟𝑒 𝐷𝐴𝑉 𝐷𝐴𝑉𝑂𝑅𝐸
ERA5 0.91 – 0.47 – –
QM 0.99 9% 0.79 69% 38.5%
GQM 0.96 5% 0.95 102% 53.5%

any metocean variable. However, one can observe that the absolute
biases corresponding to 𝑇𝑝 and 𝑈𝑤 are considerably larger compared
to 𝐻𝑠. In any case, both the QM and the GQM techniques demonstrate
their efficacy in substantially reducing the bias, showing that the QM is
particularly adequate for the PP region, while the GQM demonstrates
a better performance in the Surv region. Therefore, both methods are
selected to be evaluated in the third level by means of the specific
metrics.

4.1.3. Specific bias correction metrics
The more specific 𝑃𝐷𝐹−𝑠𝑐𝑜𝑟𝑒 and 𝐷𝐴𝑉 metrics also yield to similar

conclusions. Table 2 shows the improvement of both the 𝑄𝑀 and 𝐺𝑄𝑀
BC techniques, reaching 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒s of 0.99 in the case of the 𝑄𝑀
and above 0.96 for 𝐺𝑄𝑀 . However, the improvement with respect to
the raw ERA5 data is above 10% for 𝐻𝑠 and slightly lower (between 5
and 9%) for 𝑈𝑤.

In contrast, the same metrics computed for extreme conditions
result in a significantly different scenario. First, the raw ERA5 dataset
is again shown to provide a very poor representation of the extremes
(with a 𝑃𝐷𝐹 − 𝑠𝑐𝑜𝑟𝑒 of 0.12 and 0.47 for 𝐻𝑠 and 𝑈𝑤, respectively),
which confirms the results also shown in Figs. 9–11. Secondly, although
both BC techniques show a remarkable improvement of the raw ERA5
dataset, the 𝐺𝑄𝑀 clearly shows to overperform 𝑄𝑀 , achieving an
improvement of over 720% for 𝐻𝑠 and 100% for 𝑈𝑤.

Fig. 12 illustrates the poor performance of the raw ERA5 dataset
in extreme conditions, showing substantially shifted PDFs with respect
to the observations both for 𝐻𝑠 and 𝑈𝑤. Although the 𝑄𝑀 technique
shows an important correction, especially in the case of the 𝑈𝑤, the
𝐺𝑄𝑀 technique almost overlaps the observation PDF, demonstrating
again its suitability for extreme conditions.

Differences between the 𝑄𝑀 and 𝐺𝑄𝑀 BC techniques are clearly
demonstrated by the different sets of results presented in this section.
Connecting with the two operational regions mentioned in Section 1,
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Fig. 11. Conditional bias for each partitioning and BC technique: 𝑇𝑝 (a–c) and 𝑈𝑤 (d–f).
the 𝑄𝑀 technique is shown to be the most appropriate for the studies
focused on the power production regions, while the 𝐺𝑄𝑀 technique
is demonstrated to be more suitable for survivability studies. Since
the number of extreme events is scarce, they appear underrepresented
when considering the whole dataset, leading to an arguably better suit-
ability of the 𝑄𝑀 technique for overall studies. Yet, survivability is a
key aspect on the design of any ORE technology, meaning that extreme
events are highly relevant despite their lower frequency. Therefore,
statistical metrics for the evaluation of the most suitable BC technique
may need to be revised.

The revision suggested in this study is presented in Eq. (13), where
the same relevance is given to the correction of the ORE resource data
for PP and Surv studies. Hence, Table 2 presents the results obtained
with the revised metric, being the 𝐺𝑄𝑀 metric the most suitable, both
for 𝐻𝑠 and 𝑈𝑤.

4.2. Impact on ORE potential analysis

One of the main objectives of analysing the ORE resource is the
assessment of the power density or potential of the different ORE tech-
nologies. In this sense, two main variables are commonly studied: the
wave and wind power density (𝐽𝑤𝑎𝑣𝑒 and 𝐽𝑤𝑖𝑛𝑑 , respectively) and the
Coefficient of Variation (𝐶𝑜𝑉 ), which illustrate the average potential
and variability of the resource in a given location, respectively. The
11
three ORE potential variables are defined as follows:

𝐽𝑤𝑎𝑣𝑒 = 0.49𝛼𝐻2
𝑠 𝑇𝑝, (14)

where 𝛼 = 0.9 is [22],

𝐽𝑤𝑖𝑛𝑑 = 0.5𝜌𝑎𝑖𝑟𝑈3
𝑤, (15)

𝜌𝑎𝑖𝑟 is the air density, and

𝐶𝑜𝑉 =
𝜎(𝐽 )
𝐽

, (16)

𝜎(𝐽 ) and 𝐽 representing the standard deviation and the average power
density, respectively.

Although the different BC techniques are only applied to the main
ORE resource variables, the impact of these techniques on the ORE po-
tential evaluation is crucial. Fig. 13 (left) and (right) illustrate the ORE
potential evaluated by means of different BC techniques for wave and
wind energy, respectively, where two main outcomes can be extracted.
On the one hand, the raw 𝐸𝑅𝐴5 dataset is once more demonstrated to
be inadequate also for resource potential evaluation, misrepresenting
the real wave and wind energy resource by over 30% and 50%, respec-
tively. On the other hand, no substantial difference is observed between
𝑄𝑀 and 𝐺𝑄𝑀 for the estimation of the average potential, but the
𝐺𝑄𝑀 approach seems to be slightly more accurate for the correction
of the resource variability.



Renewable Energy 219 (2023) 119404M. Penalba et al.
Fig. 12. PDF-score and DAV computation for extreme conditions (a) 𝐻𝑠 and (b) 𝑈𝑤.
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In a sense, these results support the idea suggested with the revised
𝐷𝐴𝑉𝑂𝑅𝐸 metric and shown in Table 2, claiming that the relevance of
the extreme events turns out to be hindered by the overall analyses
via traditional statistical metrics. However, it should be noted that this
conclusion is not yet definitive and requires a more thorough study
including the most critical ORE technology design aspects beyond pure
resource datasets, before it can be confirmed.

4.3. Sensitivity of BC techniques’ performance to resource characteristics

Finally, the sensitivity of the performance of these BC techniques is
studied in this section, including the rest of the locations described in
Section 3 and characterised in Fig. 4. It is crucial for a BC technique to
be consistent across different resource conditions, since the resource as-
sessment is commonly carried out across a wide area with significantly
different resource characteristics.

For the sake of clarity, all the results for the additional three
locations are shown in Appendix. Table A.1 presents all the traditional
metrics for the four locations analysed, for which identical patterns are
identified, as highlighted by the green cells. In all the locations the
𝑄𝑀 technique appears to be the most suitable BC technique, with the
𝐺𝑄𝑀 approach showing a very good agreement with the observation
datasets. It is only in the case of the Gulf of Cadiz and 𝐻𝑠 variable,
that the 𝐷𝑒𝑙𝑡𝑎 and 𝐹𝐷𝑀 seem also to perform well. However, the raw
𝐸𝑅𝐴5 dataset at the Gulf of Cadiz shows a relatively low bias and the
variability of the resource (represented by 𝜎𝑦) is also significantly lower
than at the rest of locations.

Similarly, the variability 𝜎𝑦 is shown the lowest in the case of
𝐻𝑠, with 𝑈𝑤 showing the largest. Accordingly, the calibration of the
resource variables via BC techniques is particularly good for 𝐻𝑠. How-
ever, the 𝑄𝑀 is shown to perform remarkably well with all the different
variables and locations.

The performance of the 𝑄𝑀 and the 𝐺𝑄𝑀 techniques for different
partitions is also illustrated in Figs. A.1–A.3 for Cabo Silleiro, Gulf of
Cadiz and Cape of Creus, respectively. The biases obtained from the
different BC techniques in the different locations show identical pat-
terns to those shown in Figs. 10 and 11 for the Gulf of Biscay, including
the sawtooth structure. Hence, it is demonstrated that the sensitivity of
the BC techniques to the resource characteristics of specific locations is
negligible.
Fig. 13. Evaluation of the ORE potential via 𝐽 and 𝐶𝑜𝑉 : (left) wave and (right) offshore wind energy.
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In order to facilitate reproducibility and data reuse, all the datasets,
including observations, raw ERA5 and corrected datasets using the
different BC techniques, are available as research data in the follow-
ing repository: https://github.com/MGEP-Fluidos/BC4ORE/tree/main
/RENEpaperData.

5. Conclusions

Th paper presents a thorough evaluation of different bias correction
(BC) techniques applied to the reduction of uncertainty on long-term
metocean datasets required for the design of any Offshore Renewable
Energy (ORE) technology. To that end, four different BC techniques are
analysed by means of a systematic multi-level assessment method: i.e.
the 𝐷𝑒𝑙𝑡𝑎 approach and three different distribution-mapping techniques
based on the full distribution mapping 𝐹𝐷𝑀 , quantile-mapping 𝑄𝑀
and Gumble quantile-mapping 𝐺𝑄𝑀 . The assessment methodology
includes a set of traditional statistical metrics at the first stage, where
the simplest and ineffective methods are excluded. In the following
stage of the methodology, a full-distribution analysis is carried out,
evaluating the performance of the BC techniques across the whole
space. In the third and last stage, additional metrics specifically adapted
for the ORE sector are employed in order to select the most suitable
BC techniques. This methodology considers the particularity of ORE
technologies, which are designed to efficiently generate energy under
the power production conditions and survive the extreme survivability
conditions.

In addition, the methodology is applied at four locations with signif-
icantly different metocean characteristics around the Iberian Peninsula
in order to verify the consistency of the BC techniques: the Gulf of
Biscay, Cape Silleiro, Gulf of Cadiz and Cape of Creus. The metocean
data for all the locations is retrieved from the ERA5 re-analysis dataset
provided by the European Centre for Medium-Range Weather Forecasts,
considering the main variables that characterise the ORE resource,
i.e. the significant wave height 𝐻𝑠, the peak period 𝑇𝑝 and the wind
speed 𝑈𝑤 are considered. Additionally, in-situ measurements provided
by the Spanish Port Authorities coordination agency Puertos del Estado
are used as the ground truth to determine the correction factors of the
different BC techniques.

Regardless of the location, the raw ERA5 datasets show a relatively
poor agreement with the observations, being particularly poor for the
extreme events appeared under survivability conditions. Therefore, as
a first conclusion, the need for calibration of the raw ERA5 datasets
is confirmed. In this sense, all the BC techniques suggested in this
paper demonstrate to improve the quality of the raw dataset. However,
the improvement of the 𝐷𝑒𝑙𝑡𝑎 and the 𝐹𝐷𝑀 techniques is shown to
be insufficient for a significant uncertainty reduction. Therefore, these
two BC techniques are discarded in the first stage of the methodology,
focusing on the more effective 𝑄𝑀 and 𝐺𝑄𝑀 methods through the
following two stages. The more traditional 𝑄𝑀 technique is demon-
strated to be the most effective technique for the datasets focused on
the power production conditions. In contrast, its performance decreases
considerably beyond the power production region, increasing the bias
substantially when applied to extreme events. The 𝐺𝑄𝑀 technique
largely outperforms the 𝑄𝑀 under extreme condition within the sur-
vivability region. However, the statistical metrics evaluating the overall
performance of the BC techniques are biased by the predominance of
the conditions within the power production region, hindering the great
relevance of the extreme events despite their lower occurrence.

In order to overcome this limitation of the traditional metrics, al-
ternative metrics adapted to better represent the needs of ORE systems
are considered in the third stage. These alternative metrics provide
the same relevance to the calibration of the datasets within the power
production and survivability regions. Hence, it is shown that the 𝐺𝑄𝑀
technique may be more suitable for overall assessments that consider
metocean data from both regions simultaneously. This conclusion is
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also supported by the analysis of the wave and wind energy potential
in the different locations. The 𝐺𝑄𝑀 and 𝑄𝑀 show similar capabilities
for the estimation of the average power density (𝐽 ), but the 𝐺𝑄𝑀 is
shown to better capture the variability, providing a better agreement
for the coefficient of variation (𝐶𝑜𝑉 ) when comparing to observation
datasets. However, although out of the scope of the current study, it
should be noted that the impact of corrected ORE resource variables
should be evaluated on key design parameters, not only pure resource
parameters as 𝐽 and 𝐶𝑜𝑉 .

Accordingly, potential future research lines should incorporate:

i Evaluating different probability density functions
ii Other more complex bias correction techniques that allow the

consideration of wave/wind direction, e.g. the directional ad-
justed Gumbel quantile mapping method,

iii Assessing the impact of bias correction on the ORE technologies’
design process using specific ORE technology design parameters,

iv Assessing the spatial distribution of the impact of bias correction,
identifying the locations where bias correction is crucial.
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Appendix. Bias correction results in additional locations

Statistical properties of the different BC techniques in different
locations are shown in Table A.1, comparing the results obtained at
the Gulf of Biscay with the results computed at Cape Silleiro, Gulf of
Cadiz and Cape of Creus.

In addition, partitioned scatter diagrams for Cape Silleiro, Gulf of
Cadiz and Cape of Creus are illustrated in Figs. A.1–A.3, respectively.
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Table A.1
Statistical properties of the measured, raw assimilated and the different BC techniques for 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤 in all the four analysed locations.

Dataset 𝐻𝑠 [m] 𝑇𝑝 [s] 𝑈𝑤 [m/s]

Bias [m] 𝑅𝑀𝑆𝐷 [m] 𝜎𝑦 [m] 𝑃𝐶 [−] Bias [s] 𝑅𝑀𝑆𝐷 [s] 𝜎𝑦 [m] 𝑃𝐶 [−] Bias [m/s] 𝑅𝑀𝑆𝐷 [m/s] 𝜎𝑦 [m] 𝑃𝐶 [−]

Gulf of Biscay

Obs. – – 1.22 1 – – 2.60 1 – – 3.03 1
ERA5 0.38 0.57 0.87 0.96 1.50 2.07 2.91 0.82 1.55 2.06 3.45 0.84
Delta 0.32 0.45 0.87 0.96 1.04 1.70 2.91 0.82 1.40 1.86 3.45 0.84
FDM 0.22 0.32 1.22 0.97 0.91 1.57 2.59 0.82 1.28 1.70 3.03 0.84
QM 0.04 0.11 1.22 1.00 0.10 0.25 2.59 1.00 0.07 0.19 3.03 0.99
GQM 0.12 0.15 1.22 0.99 0.48 0.95 2.59 0.93 0.65 0.95 3.03 0.95

Cape Silleiro

Obs. – – 1.30 1 – – 2.28 1 – – 3.31 1
ERA5 0.29 0.43 1.04 0.97 1.47 1.90 2.69 0.83 2.59 3.16 4..9 0.89
Delta 0.26 0.43 1.04 0.97 0.96 1.50 2.69 0.83 1.65 2.09 4.39 0.89
FDM 0.21 0.29 1.30 0.97 0.82 1.34 2.27 0.83 1.20 1.56 3.31 0.89
QM 0.04 0.10 1.30 1.00 0.07 0.14 2.28 1.00 0.08 0.16 3.31 1.00
GQM 0.13 0.16 1.30 0.99 0.42 0.79 2.28 0.94 0.65 0.95 3.31 0.96

Gulf of Cadiz

Obs. – – 0.67 1 – – 2.96 1 – – 2.82 1
ERA5 0.17 0.23 0.63 0.94 2.40 3.50 3.40 0.64 2.19 2.85 3.68 0.82
Delta 0.17 0.23 0.63 0.94 2.07 2.72 3.40 0.64 1.61 2.12 3.68 0.82
FDM 0.17 0.23 0.67 0.94 1.86 2.50 2.94 0.64 1.28 1.70 2.82 0.82
QM 0.02 0.12 0.67 1.00 0.09 0.17 2.96 1.00 0.07 0.17 2.82 1.00
GQM 0.09 0.12 0.67 0.98 0.68 0.94 2.96 0.95 0.65 0.93 2.82 0.95

Cape of Creus

Obs. – – 1.02 1 – – 1.42 1 – – 4.40 1
ERA5 0.32 0.43 0.82 0.95 0.81 1.21 1.47 0.71 2.81 3.59 5.05 0.83
Delta 0.26 0.34 0.82 0.95 0.74 1.10 1.47 0.71 2.19 2.82 5.05 0.83
FDM 0.22 0.30 1.02 0.96 0.74 1.09 1.41 0.71 1.93 2.51 4.40 0.84
QM 0.03 0.15 1.02 1.00 0.06 0.13 1.41 1.00 0.11 0.22 4.40 1.00
GQM 0.12 0.15 1.02 0.99 0.32 0.51 1.41 0.94 0.92 1.27 4.40 0.96
Fig. A.1. Conditional bias for each partitioning and BC technique including 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤 for ERA5 (a–c), QM (d–f) and GQM (g–i) at CS.
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Fig. A.2. Conditional bias for each partitioning and BC technique including 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤 for ERA5 (a–c), QM (d–f) and GQM (g–i) at GC.
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Fig. A.3. Conditional bias for each partitioning and BC technique including 𝐻𝑠, 𝑇𝑝 and 𝑈𝑤 for ERA5 (a–c), QM (d–f) and GQM (g–i) at CC.



Renewable Energy 219 (2023) 119404M. Penalba et al.
References

[1] UN, Adoption of the paris agreement, 2015, https://www.iea.org/publications/
freepublications/publication/ElectricityInformation2017Overview.pdf.

[2] IPCC, Synthesis Report of the IPCC Sixth Assessment Report (AR6), Tech. Rep.,
Intergovernmental Panel on Climate Change (IPCC), ISBN: 978-92-9169-151-7,
2023, URL https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf.

[3] IPCC, Global Warming of 1.5◦C, Tech. Rep., Intergovernmental Panel on Climate
Change (IPCC), ISBN: 978-92-9169-151-7, 2018.

[4] IRENA, Future of Wind: Deployment, investment, grid integration and socio-
economic aspects (A Global Energy Transformation paper), Tech. Rep.,
International Renewable Energy Agency, Abu Dhabi, ISBN: 978-92-9260-121-
8, 2019, Available in https://www.irena.org/publications/2019/Apr/Global-
energy-transformation-A-roadmap-to-2050-2019Edition.

[5] Stéphanie Bouckaert, A.F. Pales, C. McGlade, U. Remme, B. Wanner, Net Zero by
2050: A Roadmap for the Global Energy Sector, Tech. Rep., International Energy
Agency, Paris, 2021, p. 224, URL https://www.iea.org/reports/net-zero-by-2050.

[6] Ocean Energy Europe, 2030 Ocean Energy Vision, Tech. Rep., 2020, URL
https://www.oceanenergy-europe.eu/wp-content/uploads/2020/10/OEE_2030_
Ocean_Energy_Vision.pdf.

[7] NREL, Marine Energy in the United States : An Overview of Opportunities, Tech.
Rep., (February) 2021, URL https://www.nrel.gov/docs/fy21osti/78773.pdf.

[8] M. Penalba, J.I. Aizpurua, A. Martinez-perurena, On the definition of a risk index
based on long-term metocean data to assist in the design of Marine Renewable
Energy systems, Ocean Eng. 242 (March) (2021) 110080, http://dx.doi.org/10.
1016/j.oceaneng.2021.110080.

[9] A.F. Haselsteiner, E. Mackay, K.-d. Thoben, Reducing conservatism in highest
density environmental contours, Appl. Ocean Res. 117 (November) (2021)
102936, http://dx.doi.org/10.1016/j.apor.2021.102936.

[10] S. Rose, J. Apt, Quantifying sources of uncertainty in reanalysis derived wind
speed, Renew. Energy 94 (2016) 157–165, http://dx.doi.org/10.1016/j.renene.
2016.03.028.

[11] B. Robertson, H. Bailey, D. Clancy, J. Ortiz, B. Buckham, Influence of wave
resource assessment methodology on wave energy production estimates, Renew.
Energy 86 (2016) 1145–1160, http://dx.doi.org/10.1016/j.renene.2015.09.020.

[12] I. Fairley, H.C. Smith, B. Robertson, M. Abusara, I. Masters, Spatio-temporal
variation in wave power and implications for electricity supply, Renew. Energy
114 (2017) 154–165, http://dx.doi.org/10.1016/j.renene.2017.03.075.

[13] B. Reguero, I. Losada, F. Méndez, A recent increase in global wave power as
a consequence of oceanic warming, Nature Commun. 10 (205) (2019) http:
//dx.doi.org/10.1038/s41467-018-08066-0.

[14] Markel Penalba, J.I. Aizpurua, A. Martinez-Perurena, G. Iglesias, A data-driven
long-term metocean data forecasting approach for the design of marine re-
newable energy systems, Renew. Sustain. Energy Rev. 167 (2022) 112751,
http://dx.doi.org/10.1016/j.rser.2022.112751.

[15] ISO, ISO 19901-1:2015 Petroleum and natural gas industries - specific
requirements for offshore structures - Part 1: Metocean design and operating con-
siderations., Tech. Rep., International Organization for Standardizatio, ISO/TC
67/SC 7 Offshore structures, 2015, p. 206.

[16] IMAREST, Metocean procedures guide for offshore renewables, Tech. Rep.,
Institute of Marine Engineering, Science & Technology (Offshore Renewables
Special Interest Group, 2018.

[17] D. Christie, S.P. Neill, P. Arnold, Characterising the wave energy resource
of lanzarote, canary islands, Renew. Energy 206 (2023) 1198–1211, http://
dx.doi.org/10.1016/j.renene.2023.02.126, URL https://www.sciencedirect.com/
science/article/pii/S0960148123002768.

[18] L. Rusu, C. Guedes Soares, Local data assimilation scheme for wave predictions
close to the portuguese ports, J. Oper. Oceanogr. 7 (2) (2014) 45–57.

[19] M.A. Hoque, W. Perrie, S.M. Solomon, Application of SWAN model for storm
generated wave simulation in the Canadian beaufort sea, J. Ocean Eng. Sci. 5
(1) (2020) 19–34.

[20] K. Amarouche, A. Akpınar, M.B. Soran, S. Myslenkov, A.G. Majidi, M. Kankal, V.
Arkhipkin, Spatial calibration of an unstructured SWAN model forced with CFSR
and ERA5 winds for the black and azov seas, Appl. Ocean Res. 117 (2021)
102962.

[21] F. Islek, Y. Yuksel, Inter-comparison of long-term wave power potential in the
black sea based on the SWAN wave model forced with two different wind fields,
Dyn. Atmos. Oceans 93 (2021) 101192.

[22] A. Ulazia, M. Penalba, G. Ibarra-Berastegui, J. Ringwood, J. Saénz, Wave energy
trends over the Bay of Biscay and the consequences for wave energy converters,
Energy 141 (2017) http://dx.doi.org/10.1016/j.energy.2017.09.099.

[23] S. Carreno-Madinabeitia, G. Ibarra-Berastegi, J. Sáenz, A. Ulazia, Long-term
changes in offshore wind power density and wind turbine capacity factor in the
Iberian Peninsula (1900–2010), Energy 226 (2021) http://dx.doi.org/10.1016/j.
energy.2021.120364.

[24] C. Teutschbein, J. Seibert, Bias correction of regional climate model simula-
tions for hydrological climate-change impact studies: Review and evaluation of
different methods, J. Hydrol. 456 (2012) 12–29.

[25] D. Maraun, Bias Correcting Climate Change Simulations - a Critical Review, Curr.
Clim. Chang. Rep. 2 (4) (2016) 211–220, http://dx.doi.org/10.1007/S40641-
016-0050-X.
17
[26] U. Ehret, E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, J. Liebert, HESS opinions
"should we apply bias correction to global and regional climate model data?",
Hydrol. Earth Syst. Sci. 16 (9) (2012) 3391–3404, http://dx.doi.org/10.5194/
hess-16-3391-2012, URL https://hess.copernicus.org/articles/16/3391/2012/.

[27] G. Lenderink, A. Buishand, W. Van Deursen, Estimates of future discharges of
the river rhine using two scenario methodologies: direct versus delta approach,
Hydrol. Earth Syst. Sci. 11 (3) (2007) 1145–1159.

[28] P.J. Block, F.A. Souza Filho, L. Sun, H.-H. Kwon, A streamflow forecasting
framework using multiple climate and hydrological models 1, JAWRA J. Am.
Water Resour. Assoc. 45 (4) (2009) 828–843.

[29] R. Rojas, L. Feyen, A. Dosio, D. Bavera, Improving pan-European hydrological
simulation of extreme events through statistical bias correction of RCM-driven
climate simulations, Hydrol. Earth Syst. Sci. 15 (8) (2011) 2599–2620.

[30] C. Piani, J. Haerter, E. Coppola, Statistical bias correction for daily precipitation
in regional climate models over europe, Theor. Appl. Climatol. 99 (1) (2010)
187–192.

[31] F. Sun, M.L. Roderick, W.H. Lim, G.D. Farquhar, Hydroclimatic projections for
the murray-darling basin based on an ensemble derived from intergovernmental
panel on climate change AR4 climate models, Water Resour. Res. 47 (12) (2011).

[32] I.J.L. Michele Martini, Raúl Guanche, José A. Armesto, C. Vidal, Met-ocean
conditions influence on floating offshore wind farms power production, Wind
Energy 19 (2016) 339—-420, http://dx.doi.org/10.1002/we.

[33] I. Fairley, M. Lewis, B. Robertson, M. Hemer, I. Masters, J. Horrillo-Caraballo,
H. Karunarathna, D.E. Reeve, A classification system for global wave energy
resources based on multivariate clustering, Appl. Energy 262 (October 2019)
(2020) 114515, http://dx.doi.org/10.1016/j.apenergy.2020.114515.

[34] A. Martinez, G. Iglesias, Wave exploitability index and wave resource classifi-
cation Significant height of combined wind waves and swell, Renew. Sustain.
Energy Rev. 134 (March) (2020) 110393, http://dx.doi.org/10.1016/j.rser.2020.
110393.

[35] G. Rinaldi, A. Garcia-Teruel, H. Jeffrey, P.R. Thies, L. Johanning, Incorporating
stochastic O&M models into the techno-economic analysis of floating offshore
wind farms, Appl. Energy 301 (July) (2021) 117420, http://dx.doi.org/10.1016/
j.apenergy.2021.117420.

[36] M. Penalba, A. Ulazia, G. Ibarra-Berastegui, J. Ringwood, J. Sáenz, Wave
energy resource variation off the west coast of Ireland and its impact on
realistic wave energy converters’ power absorption, Appl. Energy 224 (2018)
205–219, http://dx.doi.org/10.1016/j.apenergy.2018.04.121, URL https://www.
sciencedirect.com/science/article/pii/S0306261918306895.

[37] M. Badger, T. Ahsbahs, P. Maule, I. Karagali, Inter-calibration of SAR data series
for offshore wind resource assessment, Remote Sens. Environ. 232 (June) (2019)
111316, http://dx.doi.org/10.1016/j.rse.2019.111316.

[38] C.E. Hiles, B. Robertson, B.J. Buckham, Extreme wave statistical methods and
implications for coastal analyses, Estuar. Coast. Shelf Sci. 223 (April) (2019)
50–60, http://dx.doi.org/10.1016/j.ecss.2019.04.010.

[39] M.M. Nezhad, M. Neshat, A. Heydari, A. Razmjoo, G. Piras, D.A. Garcia, A
new methodology for offshore wind speed assessment integrating Sentinel-1,
ERA-Interim and in-situ measurement, Renew. Energy 172 (2021) 1301–1313,
http://dx.doi.org/10.1016/j.renene.2021.03.026.

[40] G. Lemos, M. Menendez, A. Semedo, P. Camus, M. Hemer, M. Dobrynin, P.M.
Miranda, On the need of bias correction methods for wave climate projections,
Glob. Planet. Change 186 (December 2019) (2020) 103109, http://dx.doi.org/
10.1016/j.gloplacha.2019.103109.

[41] ECMWF, Browse reanalysis datasets, 2023, URL https://www.ecmwf.int/en/
forecasts/datasets/browse-reanalysis-datasets, Last accessed: 29/08/2023.

[42] A. Ulazia, M. Penalba, A. Rabanal, G. Ibarra-Berastegi, J. Ringwood, J. Sáenz,
Historical Evolution of the Wave Resource and Energy Production off the Chilean
Coast over the 20th Century, Energies 11 (9) (2018) 2289, http://dx.doi.org/10.
3390/en11092289, URL http://www.mdpi.com/1996-1073/11/9/2289.

[43] S. Carreno-Madinabeitia, G. Ibarra-Berastegi, J. Sáenz, A. Ulazia, Long-term
changes in offshore wind power density and wind turbine capacity factor
in the iberian peninsula (1900–2010), Energy 226 (2021) 120364, http://
dx.doi.org/10.1016/j.energy.2021.120364, URL https://www.sciencedirect.com/
science/article/pii/S0360544221006137.

[44] L.E. Hay, R.L. Wilby, G.H. Leavesley2, A Comparison of Delta Change and
Downscaled Gcm Scenarios for Three Mounfainous Basins in the United States’,
Tech. Rep., 36, (2) 2000, URL http://climate.usu.edu/Free/.

[45] E. Gumbel, Les valeurs extrêmes des distributions statistiques, Ann. l’Inst. Henri
Poinc. 5 (1935) 115–158.

[46] G. Cervelli, L. Parrinello, C. Moscoloni, G. Giorgi, Comparison of the ERA5 wave
forecasting dataset against buoy record., Instrum. Mesures Métrol. 21 (3) (2022).

[47] S.E. Perkins, A.J. Pitman, N.J. Holbrook, J. McAneney, Evaluation of the AR4
climate models’ simulated daily maximum temperature, minimum temperature,
and precipitation over Australia using probability density functions, J. Clim. 20
(17) (2007) 4356–4376, http://dx.doi.org/10.1175/JCLI4253.1.

[48] P.M. Soares, R.M. Cardoso, A simple method to assess the added value using
high-resolution climate distributions: Application to the EURO-CORDEX daily
precipitation, Int. J. Climatol. 38 (3) (2018) 1484–1498, http://dx.doi.org/10.
1002/joc.5261.

https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf
https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf
https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf
https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb3
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb3
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb3
https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition
https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition
https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition
https://www.iea.org/reports/net-zero-by-2050
https://www.oceanenergy-europe.eu/wp-content/uploads/2020/10/OEE_2030_Ocean_Energy_Vision.pdf
https://www.oceanenergy-europe.eu/wp-content/uploads/2020/10/OEE_2030_Ocean_Energy_Vision.pdf
https://www.oceanenergy-europe.eu/wp-content/uploads/2020/10/OEE_2030_Ocean_Energy_Vision.pdf
https://www.nrel.gov/docs/fy21osti/78773.pdf
http://dx.doi.org/10.1016/j.oceaneng.2021.110080
http://dx.doi.org/10.1016/j.oceaneng.2021.110080
http://dx.doi.org/10.1016/j.oceaneng.2021.110080
http://dx.doi.org/10.1016/j.apor.2021.102936
http://dx.doi.org/10.1016/j.renene.2016.03.028
http://dx.doi.org/10.1016/j.renene.2016.03.028
http://dx.doi.org/10.1016/j.renene.2016.03.028
http://dx.doi.org/10.1016/j.renene.2015.09.020
http://dx.doi.org/10.1016/j.renene.2017.03.075
http://dx.doi.org/10.1038/s41467-018-08066-0
http://dx.doi.org/10.1038/s41467-018-08066-0
http://dx.doi.org/10.1038/s41467-018-08066-0
http://dx.doi.org/10.1016/j.rser.2022.112751
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb15
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb15
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb15
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb15
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb15
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb15
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb15
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb16
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb16
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb16
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb16
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb16
http://dx.doi.org/10.1016/j.renene.2023.02.126
http://dx.doi.org/10.1016/j.renene.2023.02.126
http://dx.doi.org/10.1016/j.renene.2023.02.126
https://www.sciencedirect.com/science/article/pii/S0960148123002768
https://www.sciencedirect.com/science/article/pii/S0960148123002768
https://www.sciencedirect.com/science/article/pii/S0960148123002768
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb18
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb18
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb18
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb19
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb19
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb19
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb19
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb19
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb20
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb20
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb20
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb20
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb20
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb20
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb20
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb21
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb21
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb21
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb21
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb21
http://dx.doi.org/10.1016/j.energy.2017.09.099
http://dx.doi.org/10.1016/j.energy.2021.120364
http://dx.doi.org/10.1016/j.energy.2021.120364
http://dx.doi.org/10.1016/j.energy.2021.120364
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb24
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb24
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb24
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb24
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb24
http://dx.doi.org/10.1007/S40641-016-0050-X
http://dx.doi.org/10.1007/S40641-016-0050-X
http://dx.doi.org/10.1007/S40641-016-0050-X
http://dx.doi.org/10.5194/hess-16-3391-2012
http://dx.doi.org/10.5194/hess-16-3391-2012
http://dx.doi.org/10.5194/hess-16-3391-2012
https://hess.copernicus.org/articles/16/3391/2012/
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb27
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb27
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb27
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb27
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb27
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb28
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb28
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb28
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb28
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb28
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb29
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb29
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb29
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb29
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb29
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb30
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb30
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb30
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb30
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb30
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb31
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb31
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb31
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb31
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb31
http://dx.doi.org/10.1002/we
http://dx.doi.org/10.1016/j.apenergy.2020.114515
http://dx.doi.org/10.1016/j.rser.2020.110393
http://dx.doi.org/10.1016/j.rser.2020.110393
http://dx.doi.org/10.1016/j.rser.2020.110393
http://dx.doi.org/10.1016/j.apenergy.2021.117420
http://dx.doi.org/10.1016/j.apenergy.2021.117420
http://dx.doi.org/10.1016/j.apenergy.2021.117420
http://dx.doi.org/10.1016/j.apenergy.2018.04.121
https://www.sciencedirect.com/science/article/pii/S0306261918306895
https://www.sciencedirect.com/science/article/pii/S0306261918306895
https://www.sciencedirect.com/science/article/pii/S0306261918306895
http://dx.doi.org/10.1016/j.rse.2019.111316
http://dx.doi.org/10.1016/j.ecss.2019.04.010
http://dx.doi.org/10.1016/j.renene.2021.03.026
http://dx.doi.org/10.1016/j.gloplacha.2019.103109
http://dx.doi.org/10.1016/j.gloplacha.2019.103109
http://dx.doi.org/10.1016/j.gloplacha.2019.103109
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
http://dx.doi.org/10.3390/en11092289
http://dx.doi.org/10.3390/en11092289
http://dx.doi.org/10.3390/en11092289
http://www.mdpi.com/1996-1073/11/9/2289
http://dx.doi.org/10.1016/j.energy.2021.120364
http://dx.doi.org/10.1016/j.energy.2021.120364
http://dx.doi.org/10.1016/j.energy.2021.120364
https://www.sciencedirect.com/science/article/pii/S0360544221006137
https://www.sciencedirect.com/science/article/pii/S0360544221006137
https://www.sciencedirect.com/science/article/pii/S0360544221006137
http://climate.usu.edu/Free/
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb45
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb45
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb45
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb46
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb46
http://refhub.elsevier.com/S0960-1481(23)01319-8/sb46
http://dx.doi.org/10.1175/JCLI4253.1
http://dx.doi.org/10.1002/joc.5261
http://dx.doi.org/10.1002/joc.5261
http://dx.doi.org/10.1002/joc.5261

	Bias correction techniques for uncertainty reduction of long-term metocean data for ocean renewable energy systems
	Introduction
	Introduction to bias correction
	Metocean data in the ORE literature

	Bias correction techniques
	Delta-change
	Full distribution mapping
	Quantile mapping
	Gumbel quantile mapping

	Methodology and case study
	Data pre-processing
	BC assessment techniques
	Traditional statistical metrics
	Full distribution
	Specific statistical metrics

	Metocean data

	Performance evaluation
	Bias correction at the Gulf of Biscay
	Traditional statistical properties
	Analysis of the full distribution
	Specific bias correction metrics

	Impact on ORE potential analysis
	Sensitivity of BC techniques' performance to resource characteristics 

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix. Bias correction results in additional locations
	References


