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Abstract 

It is important, for further applying the q-Gaussian Tsallis functions, to discuss how they can generalize 
asymmetric and pseudo-Voigtian functions. Some remarks about Voigt functions are also stressed, 
regarding the behavior of the wings of Raman spectral components. The use of Voigt and pseudo-Voigt 
functions implies the wings as Lorentzian, but this is not observed for the Raman bands. At the same time, 
the wings are not Gaussians, and for this reason q-Gaussians are fundamental for evidencing wing behavior.  

Keywords:  Tsallis q-Gaussian distribution, Asymmetric q-Gaussian distribution, Voigt distribution, 
pseudo-Voigt distribution  

 

Introduction 

q-Gaussian functions, also known as "Tsallis functions", are probability distributions derived from the 

Tsallis statistics (Tsallis, 1988, 1995, Hanel et al., 2009). The q-Gaussians are based on a generalized 

form of the exponential function (see discussion in Sparavigna, 2022), characterized by a continuous 

parameter q in the range 1 < q < 3.  As given by Umarov et al., 2008, the q-Gaussian function is based 

on function 𝑓(𝑥) = 𝐶𝑒𝑞(−𝛽𝑥
2) , where 𝑒𝑞(. ) is the q-exponential function and 𝐶 a constant.  In the 

exponent, we use 𝛽 = 1 (2𝜎2)⁄  , with variance σ. The q-exponential has expression:  𝑒𝑥𝑝𝑞(𝑢) =

[1 + (1 − 𝑞)𝑢]1 (1−𝑞)⁄  , which possesses a bell-shaped profile. In the case that we have the peak of the 

function at position  𝑥𝑜, the q-Gaussian is given as: 

 

q-Gaussian = 𝐶𝑒𝑥𝑝𝑞(−𝛽(𝑥 − 𝑥𝑜)
2) = 𝐶[1 − (1 − 𝑞)𝛽(𝑥 − 𝑥𝑜)

2]1 (1−𝑞)⁄  

 

For q equal to 2, the q-Gaussian is the Cauchy-Lorentzian distribution (Naudts, 2009). In Moyano et 

al., 2006, the researchers stress that the q-Gaussian “recovers the t-Student distribution with l degrees 

of freedom if q = (3 + l)/(1 + l). For l = 1, hence q = 2, we get the Cauchy-Lorentz distribution” (see 

Appendix A for further discussion). For q close to 1, we have the usual Gaussian form. 

For the q-parameter between 1 and 2, the shape of the q-Gaussian function is intermediate between the 

Gaussian and the Lorentzian profile. Its behavior turns the q-Gaussian into a function suitable for the 

analysis of Raman spectra, because the spectral bands also are characterized by intermediate profiles 

between Lorentzian and Gaussian outlines (Kirillov, 2004). Besides these two functions, which remain 

the most popular for fitting Raman spectra, linear combinations (pseudo-Voigt distributions) or 

convolutions of them (Voigt distributions) are used too (Meier, 2005). The Voigtian convolution 

function turns out into a bell shape with a Gaussian kernel and wings which are asymptotically of the 

Lorentz form (as determined by Cope and Lovett, 1987, the asymptotic solution of Voigtian expansion 

has the leading term 𝑎0 𝜋⁄ 𝑥2). In some literature, the wings are also mentioned as “tails”.  
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Therefore, as told in Townsend, 2008, the “Voigt function looks like Gaussian for small x (i.e., near 

line center), and like Lorentzian for large x (i.e., out in line wings)”. We can also appreciate this fact by 

observing the pseudo-Voigt function, which is generally used for approximating the Voigt function. 

Being the pseudo-Voigt the linear combination of a Gaussian and Lorentzian functions, the wings must 

be necessarily Lorentzian and the kernel Gaussian-like.  

Consequently, if we use Voigt functions or pseudo-Voigt functions, the wings of the Raman bands will 

be always described by a Lorentzian behavior. It is reasonable to ask ourselves: is this always the 

experimental case? That is, are we always observing Lorentzian wings for the Raman bands? This is a 

fundamental question. A generalization of Voigt and pseudo-Voigt functions obtained by means of q-

Gaussians can help us in describing the leading term of the band wings, that is, to measure the wings, 

besides telling whether it is Lorentzian or not. The q-Gaussians are therefore the solution of the question. 

The same is true for the use of asymmetric q-Gaussians.  

 

Spectroscopy and convolution 

In general, regarding the spectroscopy, let us consider the words by Orazio Svelto, 1970, about the 

homogeneous broadening of the photon emission. In the case that we have a dipole damped oscillator 

model, we can observe the spectral line of the spontaneous emission with a “natural” or “intrinsic” 

broadening. This homogeneous broadening produces a line profile described by a Lorentzian function. 

Orazio Svelto is also mentioning the photon-phonon interaction as generating homogeneous broadening 

and therefore a Lorentzian line shape too. An inhomogeneous broadening (such as those caused by the 

Doppler effect and thermal effect) is giving a Gaussian line shape. However, the most observed case is 

that of an intermediate profile, given by the convolution of the resonance relative probability and the 

broadening function, because natural band can be modified by different mechanisms (Svelto, 1970).  

We have mentioned the natural broadening giving a Lorentzian profile, the thermal broadening 

introducing a Gaussian profile, and the general intermediate profiles as the most common cases. A 

consequence is that the Voigt profile, that is the convolution of Gaussian and Lorentzian functions, is 

used to simulate the intermediate case. “Alternatively, [we can] suppose that the line is scanned by a 

spectrophotometer with a Gaussian sensitivity function” (Tatum, 2022). Then, in this experimental 

framework, we have the convolution of the line with the instrumental function profile. Let us remember 

that “the general expression that takes account of all the instrumentally induced distortion of the true 

band shape can be called the instrument function” (Seshadri and Jones, 1963). It is also known as the 

“instrumental transfer function” (Merlen et al., 2017). 

As told by S.G. Rautian, 1958: “Each monochromatic component 𝜑(𝑥)𝑑𝑥 of the true radiation is 

replaced by the apparatus [instrument] function, as a result of which, at some arbitrary point 𝑥′, there is 

created an illumination (or current) 𝑎(𝑥′ − 𝑥)𝜑(𝑥)𝑑𝑥. Other monochromatic components of the true 

distribution also make a corresponding contribution to the illumination at the point 𝑥′, and as a result 

the observed distribution 𝑓(𝑥′) will be expressed by the following integral”: 

 𝑓(𝑥′) = ∫ 𝑎
+∞

−∞
(𝑥′ − 𝑥)𝜑(𝑥)𝑑𝑥.  

In the integral we have function 𝑎(𝑥) that considers “distortions both in the optical and recording parts 

of the apparatus” (Rautian, 1958). In Rautian, 1958, we can find several different instrumental functions 

that can be convoluted with the true radiation. And the true radiation can be a convolution of different 

broadening mechanisms. The Voigt convolution is based on Lorentzian and Gaussian profiles because 

the analysis starts from a Lorentzian damping model (natural radiation) with a weight which is a 

Gaussian one. Different approaches exist (Kirillov, 2004), so that the true radiation line can be assumed 

different from a Lorentzian function; moreover, the weight function can be different from a pure 

Gaussian function.  
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In Merlen et al., 2017, researchers are telling that “If we do not take into account the instrumental 

transfer function that can be negligible in many cases (...), the total intensity of one phonon mode with 

a wavevector 𝑞0 and a frequency 𝜔(𝑞0), in a perfect crystal, is spread on a symmetric profile which is 

Lorentzian”. Between brackets (…), Merlen and coworkers tell that “If the natural width is comparable 

to the width of the instrumental transfer function, which is generally a Gaussian function, then the 

intensity of the band is a convolution between the natural line shape and the instrumental function. 

Depending on the grating used, the instrumental width varies but is in general close to 1 cm−1.” An 

investigation regarding the transfer function is therefore necessary, at least to determine whether its role 

is negligible or not. The transfer function can be relevant when the decomposition (deconvolution) of 

the component bands is the aim of the research. 

For decomposition (deconvolution) of peaks, laser sources and diffraction gratings are playing a 

fundamental role (see the discussion in https://www.edinst.com/blog/spectral-resolution-in-raman-

spectroscopy/ for instance). “As long as the resolution is greater than the linewidth, the user will get all 

the information from the Raman spectrometer regardless of whether a high- or low-resolution system is 

used. … The characterization of polymorphs and crystallinity are two examples of when the user may 

need the highest possible resolution”. 

With its intermediate behavior, the q-Gaussian is suitable to describe convolution mechanisms in 

general. For the spectra previously considered (Sparavigna, 2023), we have shown that q-Gaussians are 

able of fitting the bands in a successful manner. This is the case of graphite, as shown in ChemRxiv1, 

of  anatase in ChemRxiv2,  and also of SERS spectra in ChemRxiv3. But we have also seen that in the 

far-wing region, in the case of Diamond (SSRN), a linear combination of q-Gaussians can provide the 

perfect result. 

Further spectra need to be analyses, especially for the case of isolated peaks, because here our aim is 

that of determining the leading term of the wing behavior, to answer the question posed in the 

Itroduction. 

 

Generalizing pseudo-Voigt and asymmetric functions 

Being the Voigt function the convolution of a Gaussian and a Lorentzian function, we could imagine 

generalizing it by considering the convolution of two q-Gaussians. However, as in the case of the 

Voigtian functions, a numerical approach is necessary to calculate them. Therefore, we prefer to 

approach the q-generalization of the pseudo-Voigtian functions, performed in the following manner: 

 

q-generalized-P-V = 𝐶1[1 − (1 − 𝑞1)𝛽1(𝑥 − 𝑥′𝑜)
2]1 (1−𝑞1)⁄  + 𝐶2[1 − (1 − 𝑞2)𝛽2(𝑥 − 𝑥′′𝑜)

2]1 (1−𝑞2)⁄  

 

This is a linear combination of q-Gaussian functions. We consider the possibility to allow a slight 

difference of the centers of the two q-Gaussians, imagining including a small asymmetry of the Raman 

band. Being the Lorentzian function a q-Gaussian with q=2, and being the Gaussian function 

numerically indistinguishable from the q-Gaussian with q=1.01, the pseudo-Voigt turns out being: 

 

P-V =  𝐶1[1 − (1 − 1.01)𝛽1(𝑥 − 𝑥′𝑜)
2]1 (1−1.01)⁄  +  𝐶2[1 − (1 − 2.0)𝛽2(𝑥 − 𝑥′′𝑜)

2]1 (1−2.0)⁄  

 

We use a q-Gaussian with q=1.01 instead of a Gaussian, because these two functions are numerically 

indistinguishable. 

https://www.edinst.com/blog/spectral-resolution-in-raman-spectroscopy/
https://www.edinst.com/blog/spectral-resolution-in-raman-spectroscopy/
https://chemrxiv.org/engage/chemrxiv/article-details/64b3aa73ae3d1a7b0dcd52fb
https://chemrxiv.org/engage/chemrxiv/article-details/64d26de769bfb8925a975e60
https://chemrxiv.org/engage/chemrxiv/article-details/65092658b6ab98a41cb436e4
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4495547
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Raman bands can be asymmetric and q-Gaussians can be relevant also in this case (ChemRxiv4). In the 

discussion in ChemRxiv4, we proposed the q-BWF functions, but here we consider the asymmetric 

Tsallis q-Gaussians as given in Devi, 2021, that is: 

 

q-Gaussian_LEFT = 𝐶𝑒𝑥𝑝𝑞𝐿(−𝛽𝐿(𝑥 − 𝑥𝑜)
2) = 𝐶[1 − (1 − 𝑞𝐿)𝛽𝐿(𝑥 − 𝑥𝑜)

2]1 (1−𝑞𝐿)⁄ ,  

when 𝑥 − 𝑥𝑜 < 0 

q-Gaussian_RIGHT = 𝐶𝑒𝑥𝑝𝑞𝑅(−𝛽𝑅(𝑥 − 𝑥𝑜)
2) = 𝐶[1 − (1 − 𝑞𝑅)𝛽𝑅(𝑥 − 𝑥𝑜)

2]1 (1−𝑞𝑅)⁄ ,  

when  𝑥 − 𝑥𝑜 > 0 

 

Parameters q and β of the Left and Right parts are different. 

To answer our question, that is to understand if we have always Lorentzian wings for Raman 

components, our approach is that of considering experimental Raman spectra. 

 

Diamond 

As previously told, in the case of Diamond (as shown in SSRN) a linear combination of q-Gaussians 

can provide a perfect result. Here in the following an example. The spectrum is from RRUFF database 

(Lafuente et al., 2015). Let us start from a single q-Gaussian fit. 

 

 

Fig.1:  Best fit (blue) onto RRUFF ID R050206 Raman spectrum (red). A q-Gaussian is used (the 

value of the q-parameter is given in the figure). On the right, the same fit is shown with the log scale 

for y-axis (semi log scale). Data and q-Gaussian function are given as functions of integers n (equally 

spaced points), for the x-axis which is representing the Raman shift. A convenient scale is used for the 

y-axis (intensity axis). The fitting calculation is obtained by minimizing the sum of the squares of 

deviations (sum on n from 200 to 800 equal to 1.0 x 10−3). 

 

The semi log scale is evidencing that the wings have a behavior different from those of the q-Gaussian 

giving the best fit. So let us propose to fit the band with the generalized form of the pseudo-Voigt 

function. The best fit is given in the following figure. 

https://chemrxiv.org/engage/chemrxiv/article-details/6510296660c37f4f765ceb3e
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4495547


 

5 

 

Fig.2:  Best fit (green) onto RRUFF ID R050206 Raman spectrum (red). Two q-Gaussians are used 

(the value of the q-parameters is given in the figure). On the right, the same fit is shown with the log 

scale for y-axis (semi log scale). The sum of the squares of deviations (sum from n=200 to n=800) is 

equal to 7.1 x 10−4. 

 

We can see from the Fig.2, that we have a slight asymmetry and that far-wing behavior is not Lorentzian. 

The leading term has a power equal to −1.087 .  Let us use one asymmetric q-Gaussian: the result is 

given in the Fig.3. 

 

 

Fig.3: Best fit with an asymmetric q-Gaussian. The q-parameters of Left and Right parts are given in 

the right panel. The lower part of figure on the left is giving the misfit. The misfit band is large 0.005. 

The ratio of this misfit band width and the height of the peak is 3%. The fitting calculation is obtained 

by minimizing the sum of the squares of the deviations (sum from n=200 to n=800 equal to 3.4 x 10−4). 

 

In the lower part of the Figure 3 on the left, we can also appreciate the misfit. The misfit band is large 

0.005, in the arbitrary units of the y-axis used for the plot. The ratio of this misfit band width and the 

height of the peak is 3%. The result is very good indeed, and also in this case which is the “worst case” 

for q-Gaussians among those proposed in SSRN. It is evident that the fit is regarding all the Raman 

band, and not only the center of if or its far wings. 

Let us consider again the Figure 2, where we have a best fit with two q-Gaussians. Here the ratio 

between misfit band width and the height of the peak is of 6%. This means that asymmetry exists and 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4495547
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that the comparison to asymmetric q-Gaussians is relevant. In any case, could we do better with a 

pseudo-Voigt function? The answer is no for sure because the pseudo-Voigt function is a special case 

of the q-Gaussian generalization.  

For what is regarding the fitting procedure, for comparing q-Gaussians and pseudo-Voigtians it must 

be the same. For comparison with a Voigt function, we must consider a further intrinsic difficulty, 

besides that related to the fitting procedure. When we use a Voigt function, we necessarily need a 

numerical approximation of the convolution and consequently we can obtain different results by 

changing this approximation. In literature, it is generally told that Voigt functions are used for fitting, 

but no details are provided about the calculation of them. 

Let us continue investigating other spectra. 

 

Barite, Celestine and Anglesite 

Barite or baryte is a mineral consisting of barium sulfate (BaSO4). “The baryte group consists of barite, 

celestine (strontium sulfate), anglesite (lead sulfate), and anhydrite (calcium sulfate). Baryte and 

celestine form a solid solution (Ba,Sr)SO4” (Wikipedia mentioning Hanor, 2000). 

Let us consider spectrum https://rruff.info/Barite/R040036 . 

 

 

 

Fig.4: The plot shows the 

spectrum RRUFF ID R040036 

near the main peak at 991 cm−1 in 

semi log scale. To fit the peak, we 

consider a narrow interval of 

Raman shift to avoid the need of a 

further component.  

 

 

Fig.5:  Best fit (blue) onto RRUFF ID R040036 Raman spectrum (red). A q-Gaussian is used (the 

value of the q-parameter is given in the figure). The misfit is proposed in the lower part of the plot 

(the misfit band is large 0.01). On the right, the same fit is shown with the log scale for y-axis (semi 

https://en.wikipedia.org/wiki/Baryte
https://rruff.info/Barite/R040036
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log scale). Data and q-Gaussian function are given as functions of integers n (equally spaced points), 

for the x-axis which is representing the Raman shift. A convenient scale is used for the y-axis 

(intensity axis). The fitting calculation is obtained by minimizing the sum of the squares of the 

deviations (sum from n=200 to n=450 equal to 1.2 x 10−3). 

 

 

Fig.6:  Best fit (green) onto RRUFF ID R040036 Raman spectrum (red). Two q-Gaussians to 

generalize the pseudo-Voigt functions are used (the values of the q-parameters are given in the 

figure).  The fitting calculation is obtained by minimizing the sum of the squares of the deviations 

(sum from n=200 to n=450 equal to 6.9 x 10−4). The misfit band is 0.01 large.  

 

It is also relevant to consider an asymmetric q-Gaussian fit. 

 

 

Fig.7: Best fit (blue) onto RRUFF ID R040036 Raman spectrum (red). An asymmetric q-Gaussian is 

used (the values of the q-parameters, left and right, are given in the figure).  The fitting calculation is 

obtained by minimizing the sum of the squares of deviations (sum from n=200 to n=450 equal to 5.5 x 

10−4). The misfit band is 0.01 large.  

 

For barite R040036, it is the asymmetric q-Gaussian to provide the smaller the sum of the squares of 

deviations. 
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In the caption of Fig.4 it told that to avoid the need of a further component we use a narrow interval of 

the Raman shift. For the case of the asymmetric q-Gaussian, let us consider all the range given in the 

Fig.4, the result of the fit is given in the following: the fit does not change in the value of q-parameters.  

 

 

Fig.8: Best fit (blue) onto RRUFF ID R040036 Raman spectrum (red). An asymmetric q-Gaussian is 

used.  The fitting calculation is obtained by minimizing the sum of the squares of the deviations (sum 

from n=1 to n=780 equal to 8.6 x 10−4). The misfit band is 0.01 large.  

 

 

Let us pass to Celestine, https://rruff.info/celestine/display=default/R040007 .  

 

 

Fig.9:  RRUFF ID R040007 Raman spectrum (0° depolarized) in the upper part and a detail of it in 

the lower part, both in semi log scale.  

https://rruff.info/celestine/display=default/R040007
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Fig.10:  Upper part: best fit (blue) onto RRUFF ID R040007 Raman spectrum (red), when a q-

Gaussian is used. In the lower part the best fit is in green, and two q-Gaussians are used. The 

minimized sums of the squares of the deviations are equal to 8.0 x 10−4 and 5.7 x 10−4, respectively 

(sums from 100 to 510). 

 

 

Fig.11a:  Best fit (green) onto RRUFF ID R040007 Raman spectrum (red), when a Gaussian (q=1.01) 

and a Lorentzian (q=2.0) are used. The minimized sum of the squares of the deviations is equal 6.5 x 

10−4 (sums from 100 to 510). 
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In the Figure 11a the pseudo-Voigt fitting of the Celestine spectrum is given. The sum of the squares of 

the deviations is larger than that of the fit with two q-Gaussians given in the Figure 10. Let us note that 

the far-wing behavior is different.  

 

 

Fig.11b:  Best fit (green) onto RRUFF ID R040007 Raman spectrum (red), with q=1.001 on the left 

and q=1.02 on the right. The minimized sum of the squares of the deviations is equal to 6.5 x 10−4 on 

the left and 6.45 x 10−4 on the right. 

 

The choice of q=1.01 for the q-Gaussian as representative of a Gaussian function could be questionable. 

Therefore, we add the Fig.11b, which is showing the fit with q=1.001 and q=1.02. The minimized sum 

of the squares of deviations is the same for q=1.01 and q=1.001. 

Let us pass to Anglesite, https://rruff.info/Anglesite/R050408 .  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12: RRUFF ID R050408 Raman 

spectrum (0° depolarized) in the upper part 

and a detail of it in the lower part, both in 

semi log scale. 

 

https://rruff.info/Anglesite/R050408
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Here in the following figure, an asymmetric q-Gaussian is used for fitting the main peak. 

 

 

Fig.13: Best fit (blue) onto Anglesite Raman spectrum (red). An asymmetric q-Gaussian is used.  The 

fitting calculation is obtained by minimizing the sum of the squares of the deviations (sum from n501 

to n=300 equal to 2.9 x 10−5). The misfit band is 0.005 large.  

 

 

Calcite 

Let us pass to consider Calcite from RRUFF database, https://rruff.info/Calcite/R040170. 

 

 

 

Fig.14:  Best fit (blue) onto RRUFF ID R040170 Raman spectrum (red), when a q-Gaussian is used. 

In the lower part of the figure on the left, the misfit is given. The minimized sum of the squares of the 

deviations is equal to 3.5 x 10−4 (sums from 260 to 450). 

 

https://rruff.info/Calcite/R040170
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Fig.15:  Best fit (green) onto RRUFF ID R040170 Raman spectrum (red), when two q-Gaussians are 

used. In the lower part of the figure on the left, the misfit is given. The minimized sum of the squares 

of the deviations is equal to 6.2 x 10−5 (sum from 260 to 450). 

 

 

The band is asymmetric and, to improve the fit with the generalized pseudo-Voigtian made by two q-

Gaussians, we need to use different centers of components (see Fig.15). In the following figure, the 

asymmetric q-Gaussian is involved (the center is the same as in the Fig.14). 

 

 

 

Fig.16:  Best fit (blue) onto RRUFF ID R040170 Raman spectrum (red), when an asymmetric q-

Gaussian is used. In the lower part of the figure on the left, the misfit is given. The minimized sum of 

the squares of the deviations is equal to 1.2 x 10−4 (sum from 260 to 450). 
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Manganite 

From RRUFF archive let us consider https://rruff.info/Manganite/R060827 (unoriented, 532 nm). 

 

 

Fig.17:  Best fit (blue) onto RRUFF ID R060827 Raman spectrum (red), when a q-Gaussian is used. 

In the lower part of the figure on the left, the misfit is given. The minimized sum of the squares of the 

deviations is equal to 1.0 x 10−4 (sums from 1 to 630). 

 

 

 

Fig.18:  Best fit (blue) onto RRUFF ID R060827 Raman spectrum (red), when an asymmetric q-

Gaussian is used. In the lower part of the figure on the left, the misfit is given. The minimized sum of 

the squares of the deviations is equal to 6.1 x 10−5 (sum from 1 to 630). 

 

https://rruff.info/Manganite/R060827
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Asymmetry is evident, so the use of a q-generalized pseudo-Voigtian function is not considered. 

 

Phlogopite 

https://rruff.info/Phlogopite/R040144 

 

 

 

Fig.19:  Best fit (blue) onto RRUFF ID R040144 Raman spectrum (red), when a q-Gaussian is used. 

In the lower part of the figure on the left, the misfit is given. The minimized sum of the squares of the 

deviations is equal to 8.1 x 10−5 (sums from 1 to 800). 

 

 

 

Fig.20:  Best fit (blue) onto RRUFF ID R040144 Raman spectrum (red), when an asymmetric q-

Gaussian is used. In the lower part of the figure on the left, the misfit is given. The minimized sum of 

the squares of the deviations is equal to 4.2 x 10−5 (sum from 1 to 800). 

 

https://rruff.info/Phlogopite/R040144
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Spherocobaltite 

https://rruff.info/spherocobaltite/display=default/R060497  

 

 

Fig.21:  Best fit (blue) onto RRUFF ID R040144 Raman spectrum (red), when an asymmetric q-

Gaussian is used. In the lower part of the figure on the left, the misfit is given. The minimized sum of 

the squares of the deviations is equal to 9.6 x 10−6 (sum from 1 to 500). 

 

 

Just in one of the proposed cases, Fig.15, we needed Lorentzian wings. And this is a case which is 

clearly asymmetric. In all the other plots, the asymptotic behavior is described by a q parameter lower 

than 2. The asymptotic Lorentzian term  𝑎 𝑥2⁄  is replaced by 𝑎 [(𝑞 − 1)𝑥2]⁄
1 (𝑞−1)⁄

 . The conclusion is 

that we need the q-Gaussians for fitting Raman bands. 

 

 

Appendix A 

As previously told, Moyano et al., 2006, are indicating that the q-Gaussian “recovers the t-Student 

distribution with l degrees of freedom if q = (3 + l)/(1 + l). For l = 1, hence q = 2, we get the Cauchy-

Lorentz distribution”. Let us evaluate q as a function of the degrees of freedom (integer values) (see the 

Fig.A1). Using integers for the degree-of-freedom, the q-parameter has discrete values. This fact tells 

us that the q-Gaussian is not the t-Student function.  If we imagine building a fitting approach of spectra 

based on integers, we have not the possibility of using the q-Gaussian with q- parameter between 2 and 

5/3, for instance. And in all the fitting experiments on Raman data that we did, the use of a real q 

parameter is fundamental. Moreover, from the point of view of the numerical approach, the use of a 

parameter in the range from 1 to 2, or even from 1 to 3, is clearly convenient. If we would like to use 

the t-Student parametrization, the range is from 1 to infinity, besides being the parameter considered as 

real and not as an integer. 

https://rruff.info/spherocobaltite/display=default/R060497
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In Wikipedia: t-Student = 𝐶 [1 +
1

𝜈2
(𝑥 − 𝑥𝑜)

2]
−(𝜈+1) 2⁄

 

Then 𝜈 =
3−𝑞

𝑞−1
, and here we can see that q must be less than 3. If q=1.8, for instance, then 𝜈 = 1.5 .  

The t-Student and the q-Gaussian functions are considered to form two different families by Nielsen 

and Okanura, 2022. “The Cauchy [Lorentzian] distributions belong to two larger families of 

distributions: Namely, the t-Student distributions (for ν=1 degrees of freedom) and the q-normal 

distributions [Naudts] (for q=2). … In information theory, the Cauchy distributions have been used to 

model and analyze severe non-Gaussian noise with infinite variance … modeling so-called Cauchy 

channels” (Nielsen & Okamura, 2022, and references therein). “Cauchy distributions are t-Student 

distributions with one degree of freedom and thus have heavier tails than Gaussian distributions which 

make them attractive for analyzing a variety of stochastic phenomena in source/channel coding and 

quantization” (Nielsen & Okamura mentioning Farvardin & Modestino).  

 

Fig. A1 
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