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Abstract: Building energy modeling plays an important role in analyzing the energy efficiency of
the existing building stock, helping in enhancing it by testing possible retrofit scenarios. This work
presents an urban scale and place-based approach that utilizes energy performance certificates to
develop a statistical energy model. The objective is to describe the energy modeling methodology for
evaluating the energy performance of residential buildings in Milan; in addition, a comprehensive
reference dataset for input data from available open databases in Italy is provided—a critical step in
assessing energy consumption and production at territorial scale. The study employs open-source
software QGIS 3.28.8 to model and calculate various energy-related variables for the prediction of
space heating, domestic hot water consumptions, and potential solar production. By analyzing
demand/supply profiles, the research aims to increase energy self-consumption and self-sufficiency
in the urban context using solar technologies. The presented methodology is validated by comparing
simulation results with measured data, achieving a Mean Absolute Percentage Error (MAPE) of
5.2%, which is acceptable, especially considering city-scale modeling. The analysis sheds light on key
parameters affecting building energy consumption/production, such as type of user, volume, surface-
to-volume ratio, construction period, systems’ efficiency, solar exposition and roof area. Additionally,
this assessment attempts to evaluate the spatial distribution of energy-use and production within
urban environments, contributing to the planning and realization of smart cities.

Keywords: Urban Building Energy Modeling; statistical model; urban scale; residential buildings;
energy performance certificates (EPCs); energy efficiency; renewable energy sources; solar
technologies; space heating; domestic hot water; electrical consumption; QGIS; self-sufficiency;
self-consumption

1. Introduction

The compelling growth of cities and the consequent higher energy consumption in
urban territories underlines the importance of taking actions to mitigate climate changes
associated with high concentration of energy-use and low renewable energy sources in
these critical areas. The significance of cities’ capacity to respond and recover from energy
disturbances and shocks is emphasized by the concept of urban resilience. Urban areas
should be prepared for future challenges and ensure long-term sustainability by adapting
and transforming their systems to overcome interruptions or limitations on the use of
energy [1].

The United Nation (UN) defined 17 Sustainable Development Goals (SDGs), which
encourage actions for a more sustainable future, with clean energy production and lower
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consumption, especially in cities and communities. The UN-Energy plan of action is
committed to reaching a 100% increase in renewables capacity globally, to meet 100%
renewables-based power targets established in 100 countries, and to increase the annual
rate of energy efficiency from 0.8 to 3% in at least 50 countries across the world [2]. The new
energy challenges are availability, accessibility, acceptability and convenience to ensure an
overall global resilience of energy systems with benefits for all. It is important to integrate
these four challenges with planning, preparation, absorption, recovery, and adaptation to
consider the complex links between stakeholders, governance, social and economic factors,
resources, infrastructure, and individual behavior [3]. The widespread actions that lead
to energy sustainability and resilience of urban spaces are: energy efficiency, renewable
energy, and the smart grid. Certainly, these actions can be facilitated by a framework of
governance, policies and incentives that need to be explored for each specific case study
and the modeling proposed in this work helps in this direction.

The building sector accounts for an important quota of energy consumption, making
this sector play an essential role in the application of sustainable urban strategies. Therefore,
for the building sector, it is crucial to understand and optimize the energy consumption
profiles of the different users, variables affecting energy consumption, the available energy
resources and greenhouse gas emissions (GHG). In Europe, residential buildings have the
highest energy consumption, and the most widely used fuel is natural gas, followed by
electricity and renewables, respectively (Figure 1); for residential buildings, space heating
accounts for 63.6% among the other energy services, showing the importance of meeting
energy production and consumption profiles, especially during the heating season. In Italy,
the problem is more complicated by the great dependence on foreign countries, mainly for
both natural gas and electricity. Thus, the seasonal hourly profiles of energy consumption,
and the renewable production and self-sufficiency potential, with their spatial distribution
within a city, are important indicators for modeling the energy–environmental–economic–
social performance of a smart energy system in order to boost the post-carbon transition.
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Energy consumption significantly depends on several variables related to many as-
pects. The more important energy-related variables that affect the energy performance
of buildings are: climate conditions, geometric and typological features of the buildings
(volume, surface-to-volume ratio S/V, period of construction, etc.), urban context typology
(buildings’ density, urban canyons’ height-to-width ratio H/W, etc.), and population’s
socio–economic characteristics (people’s age, number of family members, maintenance
level of buildings, etc.) [5]. For example, the S/V ratio represents how much the building
is non-compact and demonstrates the importance of building form in controlling the heat
flow to/from the outdoor environment; detached houses have higher energy consumption
compared to condominiums since the S/V ratio is higher. In addition, the urban density
and aspect ratio H/W of urban canyons influence the solar exposition, the radiant flux
between buildings and to the sky, and local climate conditions, with consequences for
energy consumption.

McKeen and Fung illustrated significant changes in space heating and cooling con-
sumption for various residential building typologies, cities, aspect ratios, building orien-
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tations, shapes, and construction periods [5]. Generally, older buildings exhibited higher
energy consumption due to poor thermal insulation and low technological system effi-
ciencies. However, between 1961 and 1980, energy usage increased, primarily due to the
use of low-performance construction materials during the post-World War II economic
popular housing boom and because of the higher window-to-wall ratio. Duran et al. an-
alyzed an energy model to enhance modeling precision using open-data sources at an
urban scale [6]. The study’s results emphasize the importance of having detailed data
for a reliable energy performance analysis of buildings at an urban scale. It specifically
highlights the challenges in modeling certain population characteristics, such as presence
and behavior, as these are complex and uncertain variables that can influence building
energy usage. One solution was to use synthetic population data and average values for
people density per floor area at a block of buildings scale. To achieve a higher resolution,
it might be essential to simulate various presence profiles. According to Malhotra et al.,
simulating multiple presence profiles can provide a more comprehensive understanding
of the complex and uncertain variables influencing energy usage in buildings, leading to
more accurate energy modeling at an urban scale [7]. Using building characteristic features
becomes beneficial when processing data for multiple buildings on an urban scale while
employing data-driven modeling [8].

This work aims to present a place-based assessment for the city of Milan to understand
the actual energy performance and the energy efficiency potential of the existing building
stock. The statistical Urban Building Energy Modeling (UBEM) applied for the city of
Milan can help to evaluate the role of buildings in reducing energy consumption and
the share of renewable energy sources (RES) from building to district-urban level. The
choice of a statistical model is due to the possibility of accessing the Energy Performance
Certificates (EPCs) database [9] and to the lack of consumption data at building scale. This
energy modeling makes it possible to evaluate the consumption of the buildings before and
after the energy retrofit interventions and therefore considering the interventions that are
actually carried out taking into account the existing historical, environmental and economic
constraints. The use of the free tool, Quantum Geographic Information System (QGIS),
is fundamental for geo-localizing information, and assessing the spatial distribution of
energy-related variables and consumption data. QGIS consents to exploit all databases
and information with different scales, allowing an accurate place-based modeling for each
building at urban scale.

2. The City of Milan

Milan is one of the most important and populated cities in Italy. According to the
National Institute of Statistics ISTAT [10], in recent years, the population is quite stable with
about 1,350,000 inhabitants. The blocks of residential buildings number about 43,000 (i.e.,
66%) with 700,000 dwellings mainly built in 1919–1960 (51%). Most residential buildings
(70%) have more than five apartments with about two components per family.

Milan has a temperate climate with cold winters and hot humid summers. It is a
typical mega-city with the urban heat island effect. In recent decades, Milan has registered
an average annual air temperature of 14.3 ◦C, 2274 heating degree days at 20 ◦C and
81 cooling degree days at 26 ◦C [11].

Table 1 shows the average monthly air temperature and solar irradiation; it can be
observed that the heating season starts in the second half of October and ends in mid-April;
the cooling season is concentrated in the summer months of June, July and August.

Table 1. Average monthly air temperature and solar irradiation in Milan [11].

1 2 3 4 5 6 7 8 9 10 11 12

Tavg
◦C 4.0 7.1 10.6 13.4 19.4 22.8 24.5 24.3 19.8 14.1 7.5 3.5

I, kWh/m2 42.2 53.4 101.6 133.3 163.6 190.8 200.6 164.5 126.7 68.9 35.8 31.0
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In 2008, Milan decided to join the Covenant of Mayors’ initiative to reduce greenhouse
gas (GHG) emissions and energy consumption, and to increase the share of energy pro-
duced from renewable sources [12]. Referring to the year 2005, the GHG emissions were
5.67 tonCO2/capita (with final energy consumption of 18.97 MWh/capita) and, because of
various energy and climate actions, in 2020 fell to 3.4 tonCO2/capita (i.e., −40%).

Due to the many constraints on the use of renewable energy technologies in a high-
density city, photovoltaic technology is the main used RES in the city of Milan with an
installed power of only 24.6 MW.

Milan is monitoring the use of energy and GHG emissions [13–15] and has joined
international initiatives to reduce them, such C40 Cities Climate network, Urban Agenda
Partnership on Air Quality, the revision of the Sustainable Energy and Climate Action
Plane (within the Covenant of Mayors), Resilient Cities Network, European initiative EIT,
Climate KIC and KIC Mobility initiative [16]. To reach its energy and climate targets, Milan
is one of the Italian cities that participate in the 100-climate neutral and smart cities by 2030
and Reinventing Cities programs. These initiatives are opportunities that cannot be missed
to start processes for a sustainable development of the city, an improvement of the quality
of life and a commitment to achieve the highest level of decarbonization. Furthermore,
in the building code regulations, Milan sets the minimum environmental sustainability
requirements to be achieved, and environmental or economic compensation actions.

3. Materials and Methods

In this work, the description of the urban context is based on a place-based approach
considering all the features that describe both buildings and their surrounding space.
Together with the characteristics of the buildings, the most influential urban variables are
urban building density, dimensions of urban canyons, sky view factor, main orientation of
streets, properties of urban surfaces, and presence of green areas and water.

The novelty of this work is in providing a detailed approach for UBEMs with a
complete set of databases and geodatabases. Table 2 provides the information to calculate
all energy-related variables useful to build energy consumption models at an urban scale;
geo-localize energy production systems and plants; assess the availability of renewable
energy sources (RES) that can be used to supply clean energy in each Italian territory.
Moreover, the QGIS methodology is explained in detail by providing the pre-processing
and modeling steps necessary for a place-based approach. The objective is to describe a
replicable methodology and modeling that can be used for all urban contexts and climate
conditions.
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Table 2. Sources for data collection and pre-processing phases for place-based modeling of energy consumption and actual/future production in Italy.

Typology Input Data Typology Source License
Energy consumption models and energy-related variables

Built-up
environment/Urban
morphology/Type of users

Regional-Municipal data by
Participatory Mapping” OpenStreetMap

https://download.geofabrik.de/ (accessed on 20 July 2023)
https://download.geofabrik.de/europe/italy.html (accessed on
20 July 2023)
https://osmit-estratti.wmcloud.org/ (accessed on 20 July 2023)
(for Region and Municipality)

Open Data Commons Open
Database License (ODbL)

Public Buildings Treasure Dept Dati immobili al 31/12/2018—MEF Dipartimento del Tesoro CC-BY 4.0

Territorial Geo-topographic
Database (BDTRE) Italian Regions

Piedmont Region: https://www.geoportale.piemonte.it/cms/
bdtre/modalita-di-pubblicazione-e-fruizione (accessed on 20 July
2023); City of Turin: http://geoportale.comune.torino.it/web/
cartografia/cartografia-scarico (accessed on 20 July 2023);
Lombardy Region: https:
//www.geoportale.regione.lombardia.it/download-ricerca
(accessed on 20 July 2023); City of Milan:
https://geoportale.comune.milano.it/sit/open-data/ (accessed
on 20 July 2023)

CC-BY 4.0 International

Digital Terrain/Elevation/Surface
Model (DTM, DEM, DSM) for Italy

SINAnet—DEM (20 m) ISPRA: http://www.sinanet.isprambiente.it/it/sia-ispra/
download-mais/dem20/view (accessed on 20 July 2023)

IODL License
https://www.dati.gov.it/content/
italian-open-data-license-v20
(accessed on 20 July 2023)

TINITALY—DTM
(10 m)

Istituto Nazionale di Geofisica e Vulcanologia (INGV, National
Institute of Geophysics and Volcanology):
https://data.ingv.it/dataset/185#additional-metadata (accessed
on 20 July 2023)

CC BY

DTM 20 m

IGM- Military Geographical Institute:
http://www.pcn.minambiente.it/mattm/catalogo-metadati/
(accessed on 20 July 2023);
http://www.pcn.minambiente.it/mattm/visualizzazione-
metadati/?keyword=digital+terrain+model&rid=local (accessed
on 20 July 2023)
Free GIS data for Italy: https://freegisdata.org/place/106881/
(accessed on 20 July 2023) (information only)

Creative Commons Attribution 4.0
International

DTM 20–40–75 m
ISPRA Higher Institute for Environmental Protection and
Research:
http://dati.isprambiente.it/ (accessed on 20 July 2023)

Licence

DSM 1 m (Italy)
Ministry of Ecological Transition (MITE):
http://www.pcn.minambiente.it/mattm/visualizzazione-
metadati/?keyword=dsm&rid=local (accessed on 20 July 2023)

and open data

https://download.geofabrik.de/
https://download.geofabrik.de/europe/italy.html
https://osmit-estratti.wmcloud.org/
https://www.geoportale.piemonte.it/cms/bdtre/modalita-di-pubblicazione-e-fruizione
https://www.geoportale.piemonte.it/cms/bdtre/modalita-di-pubblicazione-e-fruizione
http://geoportale.comune.torino.it/web/cartografia/cartografia-scarico
http://geoportale.comune.torino.it/web/cartografia/cartografia-scarico
https://www.geoportale.regione.lombardia.it/download-ricerca
https://www.geoportale.regione.lombardia.it/download-ricerca
https://geoportale.comune.milano.it/sit/open-data/
http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/dem20/view
http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/dem20/view
https://www.dati.gov.it/content/italian-open-data-license-v20
https://www.dati.gov.it/content/italian-open-data-license-v20
https://data.ingv.it/dataset/185#additional-metadata
http://www.pcn.minambiente.it/mattm/catalogo-metadati/
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=digital+terrain+model&rid=local
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=digital+terrain+model&rid=local
https://freegisdata.org/place/106881/
http://dati.isprambiente.it/
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=dsm&rid=local
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=dsm&rid=local
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Table 2. Cont.

Typology Input Data Typology Source License
Energy consumption models and energy-related variables

Satellite images (Landsat 8) Raster 30 m × 30 m

https://earthexplorer.usgs.gov/ (accessed on 20 July 2023)
https:
//www.usgs.gov/coastal-changes-and-impacts/gmted2010
(accessed on 20 July 2023)

No restrictions, all GMTED2010 data
products are available

Orthophotos Color orthophoto AGEA 2009–2012

Ministry of Ecological Transition (MITE):
http://www.pcn.minambiente.it/mattm/visualizzazione-
metadati/?keyword=ortofoto&rid=local&paged_e=1 (accessed on
20 July 2023)

Open data

Color and b&w digital Orthophoto Free GIS data for Italy: https://freegisdata.org/place/106881/
(accessed on 20 July 2023) (information only) Open data

Land use/cover

SINAnet—CORINE Land Cover
(Italy)

1990: https://groupware.sinanet.isprambiente.it/uso-copertura-
e-consumo-di-suolo/library/copertura-del-suolo/corine-land-
cover/corine-land-cover-1990 (accessed on 20 July 2023)
2000: https://groupware.sinanet.isprambiente.it/uso-copertura-
e-consumo-di-suolo/library/copertura-del-suolo/corine-land-
cover/corine-land-cover-2000 (accessed on 20 July 2023)
2018: https://groupware.sinanet.isprambiente.it/uso-copertura-
e-consumo-di-suolo/library/copertura-del-suolo/corine-land-
cover/clc2018_shapefile (accessed on 20 July 2023)

IODL License

SINAnet—Land taking
https://groupware.sinanet.isprambiente.it/uso-copertura-e-
consumo-di-suolo/library/consumo-di-suolo (accessed on 20
July 2023)

CC BY SA 3.0 IT

European statistics about
Environment & Energy and SDGs EUROSTAT https://ec.europa.eu/eurostat/data/database (accessed on 20

July 2023) Open Data

Socio-economic
characteristics

Population, housing, industry and
services census section data
Industry and services

National Institute of Statistics
ISTAT—Territory and census data

ISTAT: https://www.istat.it/it/archivio/104317 (accessed on 20
July 2023) “Basi Territoriali e Variabili Censuarie” (new data will
be available at: https://www.istat.it/it/archivio/6789 (accessed
on 20 July 2023))
Census of population and housing and of industry and services
(txt-xls-csv) 2011
http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1
(accessed on 20 July 2023)

Open Data

Climate data
Air temperature, relative humidity,
wind velocity, solar irradiation,
heating degree days (HDD)

Climate data

JRC: https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html
(accessed on 20 July 2023)
Italian Standard UNI 10349-1, -2, -3:2016 (Italian Standardization
Body)

PVGIS © European Communities,
2001–2021

EnergyPlus: https://energyplus.net/weather (accessed on 20 July
2023)

Open data: https:
//energyplus.net/weather/sources
(accessed on 20 July 2023)

https://earthexplorer.usgs.gov/
https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=ortofoto&rid=local&paged_e=1
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=ortofoto&rid=local&paged_e=1
https://freegisdata.org/place/106881/
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/corine-land-cover-1990
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/corine-land-cover-1990
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/corine-land-cover-1990
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/corine-land-cover-2000
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/corine-land-cover-2000
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/corine-land-cover-2000
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/clc2018_shapefile
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/clc2018_shapefile
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/clc2018_shapefile
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/consumo-di-suolo
https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/consumo-di-suolo
https://ec.europa.eu/eurostat/data/database
https://www.istat.it/it/archivio/104317
https://www.istat.it/it/archivio/6789
http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1
https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html
https://energyplus.net/weather
https://energyplus.net/weather/sources
https://energyplus.net/weather/sources
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Table 2. Cont.

Typology Input Data Typology Source License
Energy consumption models and energy-related variables

Energy consumption data

Sustainable Energy and Climate
Action Plan (SEAP-SECAP) Covenant of Mayors—Europe

https://eu-mayors.ec.europa.eu/en/home (accessed on 20 July
2023)
https://www.covenantofmayors.eu/plans-and-actions/action-
plans.html (accessed on 20 July 2023)

Website coordinated by the
Covenant of Mayors Office,
European Commission.

Residential user profile for electricity
(Province and Regional; 2021–2022)

ARERA (Regulatory Authority for
Energy, Networks and Environment)

https://www.arera.it/it/dati/mr/mr_consumiele.htm
(accessed on 20 July 2023) Open Data

Measurements ‘e-distribuzione’ portal
https:
//private.e-distribuzione.it/PortaleClienti/PED_SiteLogin
(accessed on 20 July 2023)

Confidential-private information

Surveys/monitoring of electrical
energy

TERNA (Electricity Transmission
National Grid) Driving Energy

https://www.terna.it/it/sistema-elettrico/transparency-report/
total-load (accessed on 20 July 2023)
(per bidding-zone)

Open Data
Copyright TERNA

Energy costs
(withdrawing costs of electricity and
fuels)

ARERA, Consumer Protection
Centre
and WTRG Economics

ARERA (Regulatory Authority for Energy Networks and The
Environment)
https://www.arera.it/it/dati/gp27new.htm (accessed on 20 July
2023) (natural gas)
https://www.arera.it/it/dati/eep35.htm (accessed on 20 July
2023) (electricity) and
https://www.consumer.bz.it/it/confronto-prezzi-combustibili-
riscaldamento-alto-adige (accessed on 20 July 2023) (fuels for
space heating)
and http://www.wtrg.com/daily/crudeoilprice.html (accessed
on 20 July 2023) (crude oil)

Open Data
Copyright ARERA

Copyright 1999–2022 by James L.
Williams

Thermal plants/systems Registry for thermal
plants/systems—Lombardy Region

https://www.dati.lombardia.it/Energia/Catasto-Unico-
Regionale-Impianti-Termici-Impianti-/d7i4-7rpy (accessed on 20
July 2023)
https://dati.comune.milano.it/dataset/ds598_catasto_unico_
regionale_impianti_termici__impianti_targati_n (accessed on 20
July 2023)

Open Data
CC

Energy Performance Certificates
(EPCs) database of buildings

CENED and CENED+2
Lombardy Region

Piedmont Region

https://dati.comune.milano.it/dataset/ds604_cened_
_certificazione_energetica_degli_edifici_nel_comune_di
(accessed on 20 July 2023)
https://dati.comune.milano.it/dataset/ds623_database_cened2
__certificazione_energetica_degli_edifici_nel (accessed on 20 July
2023)
https://www.geoportale.piemonte.it/geonetwork/srv/ita/
catalog.search#/metadata/r_piemon:
42f87394-4ec6-4764-bdf8-57bc12d4e0f2 (accessed on 20 July 2023)

Open Data
CC BY

https://eu-mayors.ec.europa.eu/en/home
https://www.covenantofmayors.eu/plans-and-actions/action-plans.html
https://www.covenantofmayors.eu/plans-and-actions/action-plans.html
https://www.arera.it/it/dati/mr/mr_consumiele.htm
https://private.e-distribuzione.it/PortaleClienti/PED_SiteLogin
https://private.e-distribuzione.it/PortaleClienti/PED_SiteLogin
https://www.terna.it/it/sistema-elettrico/transparency-report/total-load
https://www.terna.it/it/sistema-elettrico/transparency-report/total-load
https://www.arera.it/it/dati/gp27new.htm
https://www.arera.it/it/dati/eep35.htm
https://www.consumer.bz.it/it/confronto-prezzi-combustibili-riscaldamento-alto-adige
https://www.consumer.bz.it/it/confronto-prezzi-combustibili-riscaldamento-alto-adige
http://www.wtrg.com/daily/crudeoilprice.html
https://www.dati.lombardia.it/Energia/Catasto-Unico-Regionale-Impianti-Termici-Impianti-/d7i4-7rpy
https://www.dati.lombardia.it/Energia/Catasto-Unico-Regionale-Impianti-Termici-Impianti-/d7i4-7rpy
https://dati.comune.milano.it/dataset/ds598_catasto_unico_regionale_impianti_termici__impianti_targati_n
https://dati.comune.milano.it/dataset/ds598_catasto_unico_regionale_impianti_termici__impianti_targati_n
https://dati.comune.milano.it/dataset/ds604_cened__certificazione_energetica_degli_edifici_nel_comune_di
https://dati.comune.milano.it/dataset/ds604_cened__certificazione_energetica_degli_edifici_nel_comune_di
https://dati.comune.milano.it/dataset/ds623_database_cened2__certificazione_energetica_degli_edifici_nel
https://dati.comune.milano.it/dataset/ds623_database_cened2__certificazione_energetica_degli_edifici_nel
https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:42f87394-4ec6-4764-bdf8-57bc12d4e0f2
https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:42f87394-4ec6-4764-bdf8-57bc12d4e0f2
https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:42f87394-4ec6-4764-bdf8-57bc12d4e0f2
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Table 2. Cont.

Typology Input Data Typology Source License
Energy production models

Energy production data

Surveys/monitoring of electrical
energy

TERNA (Electricity Transmission
National Grid) Driving Energy

https://www.terna.it/it/sistema-elettrico/transparency-report/
actual-generation (accessed on 20 July 2023) (per primary energy
source)

Open Data
Copyright TERNA

Revenue for electricity production in
the national grid (per zone and
month, Prezzo Zonale Orario PO)

Energy Services Management GSE

https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/
regolazione-economica-del-servizio (accessed on 20 July 2023)
https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/
documenti (accessed on 20 July 2023)

Open Data
Copyright GSE

Type of technological system and
power installed

‘Atlaimpianti’ (Energy Services
Management GSE) online portal

https://www.gse.it/dati-e-scenari/atlaimpianti (accessed on 20
July 2023)

Database pursuant to art. 1 L.
22/4/1941 n. 633, as amended by
Leg. Decree 6/5/1999 n. 169

Global Atlas for Renewable Energy IRENA International Renewable Energy Agency IRENA:
https://www.irena.org/globalatlas (accessed on 20 July 2023)

Open Data
Copyright IRENA

Thermal plants/systems Regional Land Registry for thermal
plants/systems—Lombardy Region

https://www.dati.lombardia.it/Energia/Catasto-Unico-
Regionale-Impianti-Termici-Impianti-/d7i4-7rpy (accessed on 20
July 2023)
https://dati.comune.milano.it/dataset/ds598_catasto_unico_
regionale_impianti_termici__impianti_targati_n (accessed on 20
July 2023)

Open Data
CC 0

Energy prices by time and zone of
the electricity produced and fed into
the grid (electricity)

Energy Services Management GSE
S.p.A.

https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/
documenti (accessed on 20 July 2023)
under “Parola Chiave” type “Ritiro Dedicato”—
under “Tipologia” select “Altri Contenuti”

Open Data
CC BY NC SA

Energy potential production models

Built-up
environment/Urban
morphology

Regional-Municipal data by
“Participatory Mapping” OpenStreetMap

https://download.geofabrik.de/ (accessed on 20 July 2023)
https://download.geofabrik.de/europe/italy.html (accessed on
20 July 2023)
https://osmit-estratti.wmcloud.org/ (accessed on 20 July 2023)
(Region and Municipality)

Open Data Commons Open
Database License (ODbL)

Territorial Geo-topographic
Database (BDTRE) Italian Regions (in Italian)

e.g., Piedmont Region: https://www.geoportale.piemonte.it/
cms/bdtre/modalita-di-pubblicazione-e-fruizione (accessed on
20 July 2023)

CC-BY 4.0 International

https://www.terna.it/it/sistema-elettrico/transparency-report/actual-generation
https://www.terna.it/it/sistema-elettrico/transparency-report/actual-generation
https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/regolazione-economica-del-servizio
https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/regolazione-economica-del-servizio
https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/documenti
https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/documenti
https://www.gse.it/dati-e-scenari/atlaimpianti
https://www.irena.org/globalatlas
https://www.dati.lombardia.it/Energia/Catasto-Unico-Regionale-Impianti-Termici-Impianti-/d7i4-7rpy
https://www.dati.lombardia.it/Energia/Catasto-Unico-Regionale-Impianti-Termici-Impianti-/d7i4-7rpy
https://dati.comune.milano.it/dataset/ds598_catasto_unico_regionale_impianti_termici__impianti_targati_n
https://dati.comune.milano.it/dataset/ds598_catasto_unico_regionale_impianti_termici__impianti_targati_n
https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/documenti
https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/documenti
https://download.geofabrik.de/
https://download.geofabrik.de/europe/italy.html
https://osmit-estratti.wmcloud.org/
https://www.geoportale.piemonte.it/cms/bdtre/modalita-di-pubblicazione-e-fruizione
https://www.geoportale.piemonte.it/cms/bdtre/modalita-di-pubblicazione-e-fruizione


Sustainability 2023, 15, 14921 9 of 36

Table 2. Cont.

Typology Input Data Typology Source License
Energy potential production models

Digital Terrain/Surface/Elevation
Model (DEM, DSM, DTM)
Digital Elevation Model

SINAnet—DEM (20 m) (Italy) ISPRA: http://www.sinanet.isprambiente.it/it/sia-ispra/
download-mais/dem20/view (accessed on 20 July 2023)

IODL License
https://www.dati.gov.it/content/
italian-open-data-license-v20
(accessed on 20 July 2023)

DEM 10 m (Italy)
Istituto Nazionale di Geofisica e Vulcanologia (INGV):
https://data.ingv.it/dataset/185#additional-metadata (accessed
on 20 July 2023)

CC_BY

DSM 1 m (Italy)
Ministero della Transizione Ecologica:
http://www.pcn.minambiente.it/mattm/visualizzazione-
metadati/?keyword=dsm&rid=local (accessed on 20 July 2023)

Open data

Renewable energy sources

Solar radiation data

Photovoltaic GIS, JRC https://re.jrc.ec.europa.eu/pvg_tools/it/tools.html (accessed on
20 July 2023)

PVGIS © European Communities,
2001–2021

Italian Solar Atlas ENEA
National Agency for New Technologies, Energy and Sustainable
Economic Development: http://www.solaritaly.enea.it/
(accessed on 20 July 2023)

CC-BY-SA

Linke Turbidity Factor Worldwide SODA: https://www.soda-pro.com/help/general-knowledge/
linke-turbidity-factor (accessed on 20 July 2023)

CAMS License Agreement and
Privacy Statement with License
Agreement for SoDa

COP—Solar Portal for Torino
Metropolitan City

Cities On Power Project:
https://keep.eu/projects/5551/Cities-on-Power-EN/ (accessed
on 20 July 2023)
http://energia.sistemapiemonte.it/ittb-torino (accessed on 20
July 2023)

Open Data

Biomass data

Italian Biomass Atlas ENEA
(2017–2020)

National Agency for New Technologies, Energy and Sustainable
Economic Development
Biomass Atlas:
http://atlantebiomasse.brindisi.enea.it/atlantebiomasse/
(accessed on 20 July 2023)

Copyright 2016 ENEA—Atlante
delle Biomasse

National organization ‘Risi’ (Rices)
http://www.enterisi.it/servizi/Menu/dinamica.aspx?
idSezione=17505&idArea=17548&idCat=17552&ID=17552&
TipoElemento=categoria (accessed on 20 July 2023)

Legal notes

Waste to energy (i.e., waste
production per capita) Waste institute (ISPRA)

ISPRA Higher Institute for Environmental Protection and
Research:
https://www.catasto-rifiuti.isprambiente.it/index.php?pg=
&width=1093&height=615 (accessed on 20 July 2023)

CC-BY

http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/dem20/view
http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/dem20/view
https://www.dati.gov.it/content/italian-open-data-license-v20
https://www.dati.gov.it/content/italian-open-data-license-v20
https://data.ingv.it/dataset/185#additional-metadata
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=dsm&rid=local
http://www.pcn.minambiente.it/mattm/visualizzazione-metadati/?keyword=dsm&rid=local
https://re.jrc.ec.europa.eu/pvg_tools/it/tools.html
http://www.solaritaly.enea.it/
https://www.soda-pro.com/help/general-knowledge/linke-turbidity-factor
https://www.soda-pro.com/help/general-knowledge/linke-turbidity-factor
https://keep.eu/projects/5551/Cities-on-Power-EN/
http://energia.sistemapiemonte.it/ittb-torino
http://atlantebiomasse.brindisi.enea.it/atlantebiomasse/
http://www.enterisi.it/servizi/Menu/dinamica.aspx?idSezione=17505&idArea=17548&idCat=17552&ID=17552&TipoElemento=categoria
http://www.enterisi.it/servizi/Menu/dinamica.aspx?idSezione=17505&idArea=17548&idCat=17552&ID=17552&TipoElemento=categoria
http://www.enterisi.it/servizi/Menu/dinamica.aspx?idSezione=17505&idArea=17548&idCat=17552&ID=17552&TipoElemento=categoria
https://www.catasto-rifiuti.isprambiente.it/index.php?pg=&width=1093&height=615
https://www.catasto-rifiuti.isprambiente.it/index.php?pg=&width=1093&height=615
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Table 2. Cont.

Typology Input Data Typology Source License
Energy potential production models

Wind data

Italian Wind Atlas RSE http://atlanteeolico.rse-web.it/ (accessed on 20 July 2023) Copyright RSE S.p.A.

Global Wind Atlas 3.1 https://globalwindatlas.info/en/area/Italy (accessed on 20 July
2023) DTU Wind Energy

Meteorological institute ‘CMWF
Reading

ECMWF European Centre for Medium-Range Weather Forecasts:
https://www.ecmwf.int/en/forecasts (accessed on 20 July 2023)

For researchers licence for
non-commercial use

Sea velocity, temperature, salinity,
wave height, mean wave period and
wave energy

ENEA

National Agency for New Technologies, Energy and Sustainable
Economic Development
https://climaweb.casaccia.enea.it/WW3MED/details.php
(accessed on 20 July 2023)
https://giotto.casaccia.enea.it/forecasts/ (accessed on 20 July
2023)

Property of ENEA (SSPT-MET-CLIM
Lab)

Global Atlas for Renewable Energy International Renewable Energy
Agency IRENA https://www.irena.org/globalatlas (accessed on 20 July 2023) Open Data

Copyright IRENA

Constraints Soil protection repository National Repository of interventions
for Soil Protection (ReNDiS)

http://www.datiopen.it/it/catalogo-opendata/file-shp
(accessed on 20 July 2023)

The Italian portal of Open Data:
property of Sistemi Territoriali S.r.l.
© 2012

Land use and hazards Landslides, floods, avalanches,
seismic, fires, ect

ISPRA Higher Institute for Environmental Protection and
Research:
http://dati.isprambiente.it/ (accessed on 20 July 2023)
Free GIS data for Italy: https://freegisdata.org/place/106881/
(accessed on 20 July 2023) (information only)

Creative Commons Attribution 4.0
International
Open data

Maps showing soil protection Energy Services Management GSE
S.p.A.

https://www.gse.it/documenti_site/Documenti%20GSE/
Studi%20e%20scenari/Regolazione%20regionale%20FER%2031
_12_2020.pdf (accessed on 20 July 2023)

Gestore dei Servizi Energetici—GSE
S.p.A

http://atlanteeolico.rse-web.it/
https://globalwindatlas.info/en/area/Italy
https://www.ecmwf.int/en/forecasts
https://climaweb.casaccia.enea.it/WW3MED/details.php
https://giotto.casaccia.enea.it/forecasts/
https://www.irena.org/globalatlas
http://www.datiopen.it/it/catalogo-opendata/file-shp
http://dati.isprambiente.it/
https://freegisdata.org/place/106881/
https://www.gse.it/documenti_site/Documenti%20GSE/Studi%20e%20scenari/Regolazione%20regionale%20FER%2031_12_2020.pdf
https://www.gse.it/documenti_site/Documenti%20GSE/Studi%20e%20scenari/Regolazione%20regionale%20FER%2031_12_2020.pdf
https://www.gse.it/documenti_site/Documenti%20GSE/Studi%20e%20scenari/Regolazione%20regionale%20FER%2031_12_2020.pdf
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The QGIS place-based approach is well described in some results of the Cities on
Power project [17] and other more recent research [18,19]. In these works, the authors
described the place-based approach to buildings’ energy consumption and production
through renewable energy sources using free databases and an open-source tool (QGIS).
QGIS is not only a tool to visualize, represent and map data but also to overlap, analyze,
manage, create information, and for modeling. Certainly, it is widely used because of
its possibility to spatialize data and results, providing a better comprehension of energy
matters.

Urban Building Energy Modeling can be divided into four phases represented in the
flowchart of Figure 2: pre-modeling, modeling, calibration and representation of the results.
These phases are described in detail in the following sections.
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Section 3.1 describes the pre-modeling, which is one of the most important phases of
Urban Building Energy Modeling with data collection and pre-processing analyses. The
input data are processed and associated with the spatial or territorial unit of the model
(i.e., dwelling, building, neighborhood, district, municipal area) to build a database as
complete as possible. The spatial unit used in this work corresponds to the building,
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and by knowing the physical phenomenon of the heat exchanges between buildings and
the external environment, all the variables that could influence the energy modeling are
calculated and added to the geo-database.

The energy consumption which is used to define the modeling approach (bottom-up
or top-down) is collected from the Energy Performance Certificates (EPCs) database. In
Section 3.1.1, the EPC database of the buildings is described, and this led to the decision to
use the bottom-up approach and statistical modeling (considering the energy performance
index of each dwelling). Since the higher quota of energy consumption in Milan is attributed
to the civil sector and mainly to residential buildings, this model considers residential
buildings, with their main energy-use for space heating (H) and domestic hot water (DHW).
Electricity data (E) for the consumption of inhabitants in 2018 and 2022 were used with the
hourly profile provide by ARERA for the Province of Milan [20,21].

Then, in the modeling phase (Section 3.2), the GIS-based methodology is described in
detail. The geo-database is used to extract further energy-related variables from building
geometry and to create the 3D model of the city of Milan. Then, indicators and variables
related to energy consumption are identified and analyzed in order to assess the actual
scenario with a spatial distribution of the consumption through the urban area. Future
scenarios can be foreseen assuming the adoption of some energy efficiency measures and
greater use of available renewable energy sources.

Finally, Section 3.3 describes in detail the process of using EPCs for the statistical
model, which is the core of this work, finding the variables that affect energy-use and
highlighting the challenges behind gathering the correct information about building size,
period of construction, and inhabitants.

The main field of application of this model will be the identification of the most
effective energy policy for sustainable development of the specific high-density city of
Milan.

3.1. Data Collection

For the evaluation of the energy consumption, production, and possible future pro-
duction in the Italian territory, some examples of input data at a national-local level have
been reported in Table 2. This table is subdivided by databases, tools, and platforms for
energy-consumption variables, technologies, and energy-related data, with information
about energy costs too. These databases/tools can be used to analyze actual and future
energy consumption and production, evaluate the available renewable sources and opti-
mize energy supply and demand in a future post-carbon scenario. Table 2 can allow access,
through a place-based approach, to the availability of renewable energy resources to cover
energy demand at each point of the Italian territory. This table is very important because
most of the information is open-access and therefore already available. Furthermore, the
place-based analysis, which can be performed with this information, also concerns all the
constraints that exist on the territory, making energy modeling more realistic.

The databases used for the statistical energy-use model for each building of the city
of Milan (i.e., with 74,936 blocks of residential buildings) are the following: the municipal
technical map of the city with the description of building characteristics, the map of census
sections-districts and municipal boundaries, the digital terrain model (DTM, every 10 m),
the 2011 ISTAT census database on population and buildings, the Regional Registry for
Thermal Plants and Systems, mainly for space heating and hot water production, and
the Atlaimpianti web-tool for actual renewable energy systems. The Energy Performance
Certificates (EPCs) database at building scale [9] and the Covenant of Mayors’ data at
municipal scale [12] were used to calibrate and validate the energy model for residential
buildings in the city of Milan.

3.1.1. Energy Performance Certificates Database

The Energy Performance Certificates (EPCs) database was used to obtain information
about the energy-use and primary energy consumption, energy classes, and energy effi-
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ciency levels of the buildings [9]. Energy performance certificates (EPCs) of 277,121 were
collected, released from October 2015 till May 2022. These EPCs were georeferenced to
apply the place-based approach and only 251,320 EPCs had a correct and complete address.
Then, EPCs were analyzed and extracted to include only residential buildings according to
the Italian Decree 412/1993: E.1 (1) permanent residences.

This first selection reduced the number of EPCs from 251,320 to 209,969.
The big database of EPCs allows a bottom-up approach from building to urban scale.

For each EPC, the characteristics of the residential building were collected (e.g., geometry,
typology and technological system characteristics) including the period of construction.
Together with building geometry, the period of construction is very important because over
the years the buildings have been constructed with different types of envelopes, levels of
thermal isolation, window-to-wall ratio and systems efficiencies. Some important laws
(and corresponding dates) are useful for assessing the energy efficiency level of buildings in
Italy: Law 373/1976, Law 10/1991, Decree Lgs. 192/2005 and Law 90/2013 as subsequently
amended and supplemented. In Milan, residential buildings were mainly built as follows:
27% before 1945, 25% in 1946–1960, 30% in 1961–1976, and only 13% after 1992 (after the
first Italian laws on energy saving in buildings). In Figure 3, it is possible to observe
the period of construction of the buildings in the central historical districts of the City of
Milan; almost all buildings were built before 1960 (i.e., before Law 373/1976); in Milan, this
percentage is 65%. Older buildings are concentrated in the center and in old settlements
near transport infrastructure and industries; newer buildings are in the peripheral areas
and in new districts.
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Using the ISTAT database, the number and characteristics of inhabitants and families
were collected for each census section; then these data were processed as per volume data
and assigned to each residential building. Figure 4 illustrates the number of families in
residential buildings resulting from the number of families per census section and the
percentage of gross heated volume per building. The majority of buildings in the center
host between 1 to 26 families per building, which suggests that there are few historical
condominiums, or that only a portion of the buildings is residential.
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The ISTAT database was also used to calculate the real heated volume considering the
number of empty apartments and other energy-related characteristics of buildings (e.g.,
maintenance level and property conditions).

Table 3 shows the percentage of EPCs by period of construction and energy class. An
improvement in energy classes for newer buildings can be observed, especially after 1991.
Until 1980, most of the buildings are in class G, then in the 1980s a higher percentage moves
into class F and after 1991 into class D; the more recent buildings are in class A3. Overall,
most of the buildings belong to the most energy-intensive classes F and G with 56% (E,
F, G 75%); considering the percentage of buildings by the period of construction, 52% of
buildings were built before 1960 and 82% before 1976 (before the first Italian Law on energy
savings in buildings), hence they need retrofit interventions. The energy classes, efficiency
level, and consumption, mainly for space heating and domestic hot water, of the EPCs’
database are investigated to define an urban building energy model.

Table 3. Number of EPCs by period of construction and energy classes.

Energy
Classes

Period of Construction

<1930 1930–1945 1946–1960 1961–1976 1977–1992 1993–2006 >2006

A4 39 40 51 36 50 7 3045

A3 91 57 90 38 23 19 3580

A2 117 160 288 192 95 63 3436

A1 178 160 494 444 170 68 2701

B 227 273 552 698 217 277 1638

C 711 897 1600 2098 541 1035 1479

D 2979 3209 5549 6982 1445 2322 1553

E 5537 6275 10,115 12,756 2279 2181 1092

F 7871 9831 16,510 19,949 2676 1375 752

G 8121 10,507 17,346 19,626 2178 560 418

3.2. Pre-Processing and Geographical Database Creation

In the pre-processing phase, the geometrical variables that strongly influence the
energy consumption were calculated, such as the heated gross volume, heat loss surfaces
and the net heated floor area. For the calculation of the surface-to-volume ratio S/V, a
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special procedure in QGIS software was necessary to consider the shared walls between
adjacent buildings and the presence of unheated volumes. In general, space heating
consumption increases with S/V.

Afterwards, according to the surface-to-volume ratio and the number of floors, dif-
ferent categories of buildings were identified: detached, terrace (maximum three floors),
row, and tower buildings. In Figure 5, the gross volume of residential buildings is rep-
resented. This is one of the main energy-related variables for space heating and it was
used to calculate the net volume, and the net heated volume and area. The calculation of
the net heated area is very important because is used to calculate both the dimension of
the building and its energy performance index. This map shows the volume of merged
blocks of buildings, so it is notable to have a quite high-volume range in the legend. For
more precise modeling, the building shapefile should be more detailed, representing single
polygons for each building (for Milan these data are not available).
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In Figure 6, the typology of residential buildings is represented and classified. The
type of building was determined as a function of the surface-to-volume ratio (S/V) that
represents the non-compactness of buildings. Considering buildings with equal volume
V, the higher is S (the heat loss surface area), the higher will be the energy consumption
for space heating. It can be observed that there are mainly towers or row houses; only in
districts 2, 7, 8 and 9 is the percentage of detached houses about 22%, 20%, 16%, and 23%,
respectively. Districts 8 and 9, on the North-East side of the city, are the most populated.
For this work, given the large amount of data, the city of Milan has been divided into
nine districts to manage and represent the spatial distribution of buildings and energy
consumption.
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Figure 6. Building typologies for the 9 districts of the city of Milan.

The 3D model of the city is represented in Figure 7 with the altitude of the built
environment in meters a.s.l. To describe the 3D built environment of the city of Milan, a
Digital Surface Model (DSM) was created. Generally, this analysis starts from a Lidar flight
which allows the building of an accurate 3D model of the city. In the absence of a Lidar
flight, the orography of the territory with the Digital Terrain Model (DTM) was merged
with the 3D model of the buildings, considering the area and height of the buildings. It is
important to mention that the DSM created for this work is not as accurate as a real DSM,
because it does not consider the exact shape of buildings, therefore presenting all buildings
as flat roofed.
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3.3. Statistical Modeling of Buildings’ Energy Consumption

The goal of the statistical energy modeling was to evaluate the energy performance
index (EP) of residential buildings for the city of Milan from the EPCs’ database. In
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particular, the specific energy demand for space heating (EPH) and the overall primary
energy index (EPgl,nren) of the buildings were considered.

The statistical assessment can be synthesized in the steps below:

(1) data collection from EPCs’ database, technical maps and ISTAT data;
(2) pre-processing phase to calculate and add other variables that could influence the

energy consumption;
(3) the database of EPCs was subdivided into two datasets of non-retrofitted and retrofitted

buildings considering the motivation of the release of the EPCs;
(4) evaluation of the more energy-related variables with Pearson’s correlation;
(5) definition of subsets of consumption data considering the more energy-related vari-

ables; for each subset, the frequency distribution of consumption data was verified
with the Kolmogorov–Smirnov and/or Chi-squared tests;

(6) identification and exclusion of outliers from EPCs’ database together with the null
data;

(7) formulation of the multilinear regression for the evaluation of the energy performance
of non-retrofitted and retrofitted buildings;

(8) multicollinearity and residual analysis;
(9) definitive multilinear regression models.

Figure 8 represents the elaboration steps applied to the available EPCs, which are part
of the preprocessing phase of the presented energy modeling. The initial step is to classify
the buildings according to some energy-related characteristics considering their geometric
attributes, which in turn will be used to define additional parameters (e.g., S/V ratio is
used to define building typology). The ISTAT database is also used to classify the buildings
according to their period of construction. The energy performance of the buildings can
be calculated based on the seven classes of period of construction and the S/V ratio. The
motivation for releasing EPCs is to categorize the data based on the new, retrofitted, sale,
and lease of the buildings. Then, statistical analysis was applied to calculate the linear
regression for energy performance and S/V using EPCs data.
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From the early stages of the analysis, the EPCs’ database was divided to train and
then test the model with a respective percentage of data equal to 80% and 20%.

Using the EPCs’ database, the energy consumption of the non-retrofitted building
stock and the retrofitted one was calculated considering standard climate conditions and
the average use of residential buildings according to the Energy Performance Certification
Standards. Comparing the resulting models, applied to the city of Milan, the percentage
of energy savings that can be achieved is evaluated by taking into account all the actual
energy, environmental, economic and social constraints.

One important limit of energy modeling at urban scale is the availability of data for all
the buildings in Milan, which are:

• from the technical map of the city of Milan: the building use, footprint area, height
or number of floors, gross volume, net heated surface, surface-to-volume ratio S/V,
period of construction;

• from the National Institute of Statistics ISTAT for population and buildings: the
number of inhabitants and families, age, nationality, working level, buildings’ property,
level of maintenance, occupation profile, period of construction class.

Description of Alternative Machine Learning Models

There are several machine learning (ML) models that can be applied in the energy sec-
tor in order to analyze, monitor and manage energy consumption, each of them depending
on the typical task that they need to accomplish.

In the supervised domain, where typical problems are energy consumption prediction,
fault detection and load forecasting, the main algorithms are based on Random Forest,
an ensemble learning technique made of simple decision trees; on Gradient Boosting, an
evolution of ensemble techniques made of weak learners trying to reduce the distance
between obtained output and ground truth; on Support Vector Machines, an attempt to find
the best boundary that separates the data into different classes, by maximizing the margin,
which is the distance between the boundary and the closest data points from each class; or
on Neural Networks, a family of machine learning algorithms that are particularly well-
suited to problems that involve high-dimensional, complex data. When in a supervised
setting, data are sequential as in time series forecasting, Recurrent Neural Networks, e.g.,
Long Short-Term Memory cells, usually take place. A typical example of a supervised task
is a regression model, which can be trained on a dataset of historical energy usage data from
a building to learn the relationship between different factors (such as weather conditions,
occupancy levels, and building features) and the building’s energy consumption. The
trained model can then be used to make predictions about the building’s future energy
usage based on new data inputs.

In the unsupervised domain, where the task is to identify patterns in energy con-
sumption data and detect anomalies, or facilitate data fusion and integration, the tech-
niques are based on, for example: k-means clustering, used to group similar data points
together into clusters; self-organizing maps, used to map high-dimensional data onto
a lower-dimensional grid of neurons; and auto-encoders, that map the input data to a
lower-dimensional, bottleneck feature representation.

In the reinforcement learning domain, where an agent must learn how to act in a
sequential environment to maximize some reward, optimization problems usually arise
and ML algorithms are based on Monte Carlo or temporal difference techniques, a mathe-
matical framework for decision-making problems where the future is uncertain, that tries
to identify the optimal policy that allows the agent to choose the best action to perform in
the environment. For example, the scheduling of renewable energy generation, such as
wind or solar power, can be adjusted through these algorithms to maximize the amount of
energy generated while minimizing the cost.

In Figure 9, typical tasks in the energy sectors tackled by machine learning approaches
are shown, and a review is discussed in a recent paper [22]; however, it is worth noting that
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the field is rapidly evolving, and new techniques may emerge as better options for specific
problems.
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Learning.

Predicting energy consumption at the urban/territorial scale with data-driven models
typically involves collecting data on a variety of factors that can impact a city’s energy
usage, such as the age and size of buildings, the type of heating and cooling systems
used, the weather, and the population density. This data is then processed using machine
learning algorithms to train a model that can make predictions about a city’s future energy
consumption or about other cities, based on data collected from an analogous distribution.
This model can be used to help city planners and policymakers make decisions about how
to reduce energy usage and improve energy efficiency in the city or in a territory.

4. Results and Discussion
4.1. Energy Performance Certificates (EPC) Analysis

To simulate the energy performance (EPgl,nren) of the existing building stock, and
therefore compare the energy efficiency level before and after retrofit measures, the data
for the residential buildings of Milan have been processed to obtain all energy-related
characteristics. To evaluate the energy efficiency level of the buildings, it was necessary
to identify the typological and geometric characteristics that influence their energy-use.
Buildings were classified into seven classes by the period of construction: before 1930, 1930–
1945, 1946–1960, 1961–1976, 1977–1992, 1993–2006, and after 2006. To simplify the analysis,
the buildings built before 1945 were grouped, as the characteristics of these buildings are
similar, with no thermal insulation, brick walls and slabs, low glazing ratio, and low energy
efficiency systems; they constitute over 64% of all buildings in Italy, as per ISTAT’s report
in 2001 [10].

Table 4 illustrates the energy classes of residential buildings, global energy perfor-
mance (EPgl,nren) and motivation for release. Buildings without data on EPgl,nren and with
“empty” or “other” motivations for release were neglected; then the dataset of EPCs is
reduced from 209,969 to 189,756. It has been assumed that the non-retrofitted buildings
are those identified by the energy performance certificate as for sale or lease. Retrofitted
buildings are only 8.8% and new buildings are 4.8%. Comparing these data, it can be
observed that after retrofit interventions the energy performance of buildings is improved
from class G to class F; it must be remembered that these interventions are the actual ones,
and the most frequent is the replacement of windows, with a fairly low improvement in
energy performance. A total of 65% of new buildings are in class A. Because of the low
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number of retrofitted interventions, especially for recent periods of construction, these two
datasets (retrofitted and new buildings) have been merged in the “retrofitted” database.

Table 4. Energy performance certificates (EPCs) of residential buildings by motivation of release.

Motivation of EPC Release

Energy Class and
Average EPgl,nren

New
Buildings Retrofitted Buildings Sale and Lease of

Buildings

A4 28 kWh/m2/y 2414 395 309

A3 48 kWh/m2/y 2673 626 281

A2 68 kWh/m2/y 2274 1003 584

A1 79 kWh/m2/y 1291 1421 1093

B 99 kWh/m2/y 132 1057 2037

C 118 kWh/m2/y 39 1520 5882

D 139 kWh/m2/y 44 2638 18,686

E 158 kWh/m2/y 55 2777 33,268

F 189 kWh/m2/y 84 3294 49,617

G 277 kWh/m2/y 99 2054 52,109

Figure 10 represents the energy classes of residential buildings before (a) and after (b)
retrofit interventions. Before retrofit measures, the prevailing classes are F and G, while after
retrofitting, this becomes D, E and F. A total of 25% of buildings after retrofit interventions
belong to classes A, B and C, and only 7% before retrofitting interventions.
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For cross-validation, the EPCs’ database was divided into two datasets: 80% as training
set and 20% as testing set. This data splitting is necessary to ensure the evaluation of the
energy model’s performance, using 80% of the data, allowing it to learn and capture
patterns from this larger portion. Once the model is built and trained, it can be tested using
the remaining 20% of the data, which served as the validation step.

The analysis of the collected EPCs, which are registered from October 2015 until May
2020, gives an important insight into the effectiveness of retrofit interventions in global
energy saving. The number of apartments renewed is 17,738 for the whole registered period
with an average heated surface area of 388,665 m2/year.

Figure 11a illustrates the sum of heated surfaces for the different years and (b) the
cumulative energy savings after retrofit interventions; energy savings are almost constant.
This last analysis uses the retrofitted surfaces and the difference between the average values
of energy performance indexes before and after retrofit interventions (see Figure 10).
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N. of dwellings 189,756 189,756 163,866 25,890 
Average EP 98.64 187.86 199.52 114.05 
Median EP 83.80 167.70 88.73 90.42 

The main energy-related variables with the strongest Pearson’s correlations to energy 
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4.2. GIS-Based Energy Modeling and Sensitivity Analysis

In order to enhance the model’s representation of Milan’s energy performance, the
global, non-retrofitted and retrofitted datasets were selected for conducting of sensitivity
analyses. The main information used comes from: EPC database, ISTAT database with the
characteristics of population and buildings, the technical map of Milan, and income data
by district in 2020.

The Pearson’s correlation was applied to two energy performances indexes (EP): the
space–heating energy performance need (EPH,nd) and the global primary energy perfor-
mance, not considering the use of renewable sources (EPgl,nren); the average and median
values of EPs are indicated in Table 5. Comparing the values of EP, with the retrofitted
buildings there are potential energy savings of 43–39%.

Table 5. Average and median values for energy performance indexes (energy need for space heating
EPH,nd and primary energy EPgl,nren) for residential buildings in Milan.

Energy
Performance

EP (kWh/m2/y)

EPH,nd
Total

EPgl,nren
Total

EPgl,nren
Non-Retrofitted

EPgl,nren
Retrofitted

N. of dwellings 189,756 189,756 163,866 25,890

Average EP 98.64 187.86 199.52 114.05

Median EP 83.80 167.70 88.73 90.42

The main energy-related variables with the strongest Pearson’s correlations to energy
performance are presented in Table 6. The higher Pearson’s correlation with energy perfor-
mance, the more the energy-related variables: period of construction, S/V ratio and the
year of systems’ installation. Potential energy performance after retrofit interventions and
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the CO2 emissions, which are directly influenced and therefore not independent of the EPs,
were not considered in the modeling; also, the year of the systems’ installation was not
taken into consideration because this information is not available at an urban scale.

Table 6. Pearson’s correlation for variables with EP indexes.

Pearson’s Correlation EPgl,nren EPH,nd

Period of construction −42.3% −41.6%

S/V ratio (m2/m3) 38.6% 46.9%

CO2 emissions 78.4% 63.9%

Potential energy performance 1 45.5% 44.8%

Potential energy performance 2 79.1% 72.5%

Year of installation of space heating system 1 −31.6% −26.5%

Year of installation of domestic hot water system 2 −27.0% −25.6%

Foreigners’ persons residing in Italy over 54 years old 6.2% 5.9%

Resident illiterate population 4.5% 4.4%

Resident families with 1 member 5.1% 2.5%

Population aged 15 and over housewives 5.5% 2.6%

From the dataset of non-retrofitted buildings, the average potential energy perfor-
mance is about 110 kWh/m2/y with a payback time of 5–15 years depending on the type
of intervention; this is probably due to multiple urban constrains in this high-density urban
environment.

It can be observed that there is a negative correlation between energy performance
and period of construction because, for newer buildings the energy performance index
EP decreases. The same applies for the year of systems’ installation: newer installation
means higher efficiency of the systems and therefore a lower energy performance index
EP. There is a positive correlation with the surface-to-volume ratio S/V because higher
S/V means lower compactness and therefore higher heat loss surfaces of buildings, with a
higher energy performance index EP. In this work, period of construction and S/V ratio of
buildings are used for modeling their EP at an urban scale because the year of installation
of the systems is unknown for all buildings in Milan. As is possible to observe, the socio–
economic data were lowly correlated to energy performance and neglected for this analysis
(only the main energy-related examples are reported).

4.3. Statistical Energy Consumption Model

The choice of statistical modeling in this work is due to its powerful role in assessing
big databases with a simple methodology and extracting meaningful insights and patterns
from large amounts of data. These models offer the advantage of systematically analyzing
information, identifying trends, and making informed predictions. It is also possible to
define easily homogenous classes of buildings based on their characteristics by utilizing
various classification techniques and frequency distribution; these techniques were used to
group buildings with similar attributes into distinct categories but also to identify outliers.

This statistical energy modeling with a place-based approach can extract valuable data
from different sources in order to analyze the current energy consumption model with
more input data and then define future energy savings and production scenarios.

Using the QGIS software, the results of the models for energy consumption and solar
thermal and electrical energy production are presented in the sections below for residential
buildings. The annual energy performance for space heating H and DHW before and
after retrofit interventions was computed and compared with the amount of energy that
can be produced through solar technologies for the city of Milan. Similarly, the electricity
demand was compared with the electricity produced by photovoltaic modules. All solar
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technologies are roof-integrated to reduce the visual impact of solar panels, but it is very
important to boost this resource, especially in high-density cities where almost no other
RES is available.

Considering the period of construction and the surface-to-volume ratio S/V (the main
energy-related variables), the EPCs were grouped considering only these two variables.
Then, the normal distribution of the EPgl,nren was calculated for each homogeneous group
and verified by the Kolmogorov–Smirnov and/or Chi-squared tests. This phase allows the
checking of outliers or null values of S/V, period of construction and, using the normal
distribution, of EPgl,nren, obtaining a database of 121,967 EPCs.

Table 7 shows the number of buildings per homogeneous group without outliers that
were used for the statistical modeling. For the period of construction, the ISTAT classes
were used because this range is available for the city of Milan and will make the model
more applicable. It is possible to observe that, for recent periods of construction, the low
number of buildings can affect the result, especially for retrofitted buildings.

Table 7. Number of buildings analysed by classes of S/V and period of construction for residential
non-retrofitted and retrofitted buildings (in brackets).

Period of
Construction

Classes of S/V (m2/m3) Number of
Buildings<0.2 0.2–0.5 0.51–0.8 0.81–1.1 >1.1

<1930 & 1930–1945 2140
(80)

14,133
(738)

5941
(437)

924
(45)

193
(8)

23,332
(1308)

1946–1960 489
(23)

11,419
(210)

13,462
(141)

2003
(19)

355
(2)

27,727
(395)

1961–1970 1261
(23)

19,588
(283)

6645
(147)

741
(21)

73
(6)

28,309
(480)

1971–1980 686
(11)

11,293
(178)

3884
(91)

428
(11)

43
(3)

16,333
(294)

1981–1990 397
(4)

3648
(200)

1539
(111)

178
(0)

22
(0)

5784
(315)

1991–2000 &
2001–2005

152
(0)

2504
(8)

1271
(10)

188
(0)

12
(1)

4127
(19)

>2006 193
(37)

7430
(692)

4174
(400)

514
(57)

46
(1)

12,357
(1187)

Based on this classification, for each homogeneous group of buildings, the average
energy performance index EPgl,nren was computed. This average EPgl,nren was used in the
linear regression model depending on the S/V, for each period of construction.

The building density influencing the solar gains, the radiant fluxes to the surrounding
objects and the sky and local climate conditions were also taken into account. This allows a
more detailed place-based approach. In Figure 12, QGIS software was used to evaluate the
density of buildings, based on census sections, and categorized it into three classes: low,
medium, and high, considering respectively 60%, 30%, and 10% of areas.
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Figure 13 represents the resulting linear regression of the energy performance index 
EPgl,nren by the period of construction and S/V, before (a) and after (b) retrofit interventions. 
These linear regressions take into consideration Milan’s climate conditions, type of build-
ing stock, energy services (which are mainly space heating H 100% and domestic hot wa-
ter DHW 99.8%; only 37.7% have cooling systems) and the main retrofit interventions 
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Figure 12. Buildings’ density (m3/m2) in census sections in the city of Milan.

Figure 13 represents the resulting linear regression of the energy performance index
EPgl,nren by the period of construction and S/V, before (a) and after (b) retrofit interventions.
These linear regressions take into consideration Milan’s climate conditions, type of building
stock, energy services (which are mainly space heating H 100% and domestic hot water
DHW 99.8%; only 37.7% have cooling systems) and the main retrofit interventions made in
Milan due to technical, historical, environmental, and socio–economic constraints (only 8.8%
for the total EPC). Higher S/V ratio values result in higher primary energy consumption,
and the EPgl,nren after retrofit intervention decreased by about 40%, showing the importance
of enhancing the efficiency of the existing building stock.
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Figure 13. (a) Energy performance EPgl,nren of residential buildings in Milan before retrofit interven-
tions. (b) Energy performance EPgl,ren of residential buildings in Milan after retrofit interventions.

To obtain the energy consumption, the EPgl,nren values were multiplied by the net
heated floor area of each building and then divided by the primary energy coefficient of
the fuel (mainly natural gas 83.1%, electricity 6.4% and district heating 7.6%).

Figure 14 illustrates how the energy performance (EP) is influenced by the density in
the city of Milan, explaining local climate conditions in urban canyons, solar exposition
and radiative heat flow to the nearby buildings and the sky. Each point shows the average
EP by type of building density and period of construction; the missing points are not
significant due to a too low number of buildings. As it is possible to observe, building
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density and energy performance are inversely correlated (at census section scale); in general,
low building density means 5–12% higher consumption considering, respectively, medium-
and high-density contexts.
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Figure 14. Energy performance EPgl,nren of buildings based on building density categories by period
of construction in Milan before retrofit interventions.

Therefore, in this model, the energy performance depends on the surface-to-volume
ratio S/V and the period of construction but is corrected by the building density.

Figure 15 indicates the process of calculating the energy performance for residential
buildings using QGIS. After adding the vector layer of the Technical Map of the city of
Milan to QGIS, first it is important to select only the residential buildings and calculate the
footprint area, perimeter, volume and number of floors of each building. It is important to
consider only heated buildings. Buildings with a footprint area lower than 50 m2 and a
height lower that 3.3 m were excluded. All characteristics of the buildings can be checked in
the attribute table of the buildings’ shape file. The calculation of new variables (geometrical,
but not only) can be obtained by creating a new column using the “field calculator”.
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For high-density cities, a quite complicated step in this analysis is the calculation of the
surface-to-volume ratio S/V (point 6 in 13). Indeed, the common surfaces between adjacent
buildings should be subtracted by the heat loss surface S and the unheated volumes, inside
the buildings, should be subtracted by the gross volume V. To identify the common surfaces
a geo-package was created from the building shapefile using the DB manager and a query
was written (see Appendix A) to measure the border length (L_COND) between each
adjacent building. The second step is to create a narrow buffer to the perimeter of each
building, which will help in finding the lower/common height of the intersecting buildings;
with the field calculator, it is possible to identify the lower buildings by the positive or
negative sign of the height difference HDIFF between the adjacent buildings. Knowing
the height of the two buildings, the lowest will be selected and multiplied by L_COND
(obtained in the first step from the virtual layer) to calculate the common area between
two buildings. Then, the unheated gross volumes inside the buildings can be evaluated
by typical coefficients for each type of building to correct the real volume Vreal. After this
automatic calculation of S/Vreal, it is possible to acquire many related geometric variables
(e.g., useful heated surface, window surface, vertical wall surfaces, etc.) that are helpful
inputs for possible retrofit scenarios.

Energy consumption data can be computed from the modeling application knowing
the energy performance index EPgl,nren. This place-based approach using QGIS allows
evaluation of EPgl,nren and consequently energy consumption (mainly for space heating
and domestic hot water) for each building in a city using the field calculator tool.

As mentioned before, only the space heating and domestic hot water services were
considered in the primary energy performance index EPgl,nren because they are the more
frequent; moreover, natural gas fuel was assumed for the same reason:

EPgl,nren = EPH,nren + EPDHW,nren = (ECH,nren + ECDHW,nren). fp,nren/m2 (1)

where:

- EPnren is the primary energy performance index in kWh/m2/year considering non-
renewable sources for space heating (H) and domestic hot water (DHW);

- EC is the energy consumption (or delivered energy) in kWh/year;
- fp,nren is the conversion factor of delivered energy into primary energy (for natural

gas, this is 1.05);
- m2 is the net heated area of a building.

Then, the Energy Consumption for DHW ECDHW,nren of each building was calculated
considering a volume of 50 L/person/day, a temperature gradient of 30 ◦C (with an average
water temperature from the aqueduct of 15 ◦C) and an average system efficiency of 0.8.
Knowing the energy consumption for domestic hot water (i.e., about 796 kWh/inh/year),
the energy consumption for space heating was evaluated.

This place-based methodology has been used to define the energy model and apply it
to all the buildings in the city of Milan knowing the number of inhabitants per building.
The QGIS tool enables us to enhance the accuracy of the model with an iterative procedure
to reduce its errors; this calibration procedure modified input data manually. This phase
could be improved by automatizing it through decision tree algorithms with Machine
Learning (ML).

The model was calibrated and then validated by comparing the application of the
statistical model (in Figures 13 and 14) with the global primary energy from the EPCs’
database and the energy consumption for space heating and domestic hot water in all of
the city of Milan during 2017: 12,200 GWh [23].

In Figure 16, the annual consumption for space heating is represented. The consump-
tion was calculated from the model represented in Figures 13 and 14 supposing that natural
gas is supplied. With this model, energy consumption depends on the shape of the building
(with the surface-to-volume S/V), the period of construction and the building density.
The empty spaces in the central district 1 in Milan indicate that no residential buildings
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are present. The calculation of space heating considered only the net heated areas inside
each residential building, excluding unheated spaces, like empty apartments, stairwells,
hallways, and entrance halls.
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4.4. Evaluation of Solar Irradiation and Energy Production with Roof-Integrated Technologies

Solar energy is among the most widely used renewable sources in the clean energy
transition of cities. The wide availability of roof areas and the simplicity of installation, the
reduced visual impact and the low price determine a widespread use of solar technologies,
especially (but not only) in Italy and southern Europe (but not only). Except in historically
and environmentally constrained areas, the visibility of solar technology is indeed positive,
indicating the city’s commitment to clean energy and technological progress. The use of
solar technology is a first step in promoting responsible consumption and clean production
of energy in cities. Consumption can be calculated through the instantaneous quantity
of energy produced that meets the energy-use in order to require a lower quantity of
fossil fuels [23]. This evaluation can consider the single user, with self-consumption,
a condominium with multiple users or a district and, furthermore, a community, with
collective self-consumption.

In this section, the evaluation of solar resources and the potential of clean energy
production is presented to evaluate energy self-consumption for residential users in each
month using roof-integrated solar technologies. For solar analysis, no historical constraints
were considered.

Figure 17 explains in detail the QGIS place-based assessment with the building as
territorial unit. As already mentioned, a raster image of the DTM with 10 m precision
and the area and height of the buildings was used to describe the 3D urban environment
(Figure 17, points 1 to 6). The DSM serves to show the evaluation of slope and aspect of
each surface of the urban environment, a crucial step for solar analyses.
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For the evaluation of solar irradiation, the characteristics of sun and sky should also
be defined. They can be explained mainly by two monthly variables: diffuse-to-global
irradiation (D/G) and Linke Turbidity Factor (TL) or transmissivity (Figure 17, point 9).
Table 8 shows the monthly values for both variables for Milan in wintertime, with higher
values of D/G and lower Linke Turbidity Factors, and vice versa in summertime. These
data were respectively taken from the website of PVGIS (Last update: 01/03/2022) and
Meteonorm 8.1.4 software. A constant albedo of 0.20 was used according to the average
value for urban environments.

Table 8. Monthly data of diffuse-to-global radiation (D/G) and Linke turbidity factor (TL).

1 2 3 4 5 6 7 8 9 10 11 12

D/G 0.54 0.51 0.46 0.44 0.43 0.40 0.35 0.38 0.42 0.52 0.59 0.59

TL 2.74 2.98 3.5 3.91 3.85 3.9 3.67 3.54 3.45 3.4 3.02 2.72

Then, the daily solar irradiation was calculated with the tool “r.sun.insoltime” for
all points every 10 m in the city, especially on the roofs of the buildings. The results of
these analyses are raster images, which were processed to have numerical values for solar
irradiation.

Solar irradiation could also be an important variable for energy modeling [24] but
in this statistical analysis this variable was explained locally by the building density as
a surrogate variable. In this work, solar irradiation was used to evaluate solar energy
production using either photovoltaic panels (PV) or solar thermal collectors (STC). In this
way, in the city of Milan, solar energy can be used to supply DHW, space heating H, and
electrical appliances E, reducing consumption especially during the summer season when
there is a diurnal and seasonal positive correlation (cooling period). The aim of this analysis
was to optimize self-consumption and self-sufficiency, considering for each building the
solar exposition, the available area of the roof and the demand profile of the residential
users.

Two solar technologies were used to produce energy:

• Flat solar thermal collector STC with optical efficiency of 77.5% and heat loss coeffi-
cients k1 = 4.35 and k2 = 0.01.

• Photovoltaic PV panel in monocrystalline silicon with an efficiency of 23%.

In this work, the thermal energy consumption for domestic hot water, evaluated in
the previous section, was compared with the solar energy produced by thermal collectors
TC; likewise, the electricity consumption was compared with solar energy produced by
photovoltaic panel PV. All technologies are roof-integrated.

Figure 18 shows the general methodology for assessing the energy produced by roof-
integrated solar technologies. Generally, the quantity of energy produced depends on both
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area and solar exposition of the panels, but the user demand should be considered too:
the energy production should meet the actual and future energy demand. The optimal
orientation can be defined by choosing the surface that receives the highest solar irradiation
excluding obstacles, but this is not an efficient method for increasing the self-consumption
level, because the demand profile changes according to the type of user. For example, for
residential users, the peak of electricity demand occurs in the afternoon, which makes
it more efficient to analyze different orientations that can fulfill the highest possible self-
consumption rather than selecting only the orientation with the highest solar irradiation.
Thus, solar production hourly analysis should follow a multi-approach considering the
end-user demand profile together with the solar irradiation [24,25].
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Figure 18. Methodology for assessing energy production with roof-integrated solar production.

Similarly to the previous section, the level of accuracy of the input data is very
important but some initial evaluations can be made on typical days of the year: winter,
summer and mid-season.

The solar irradiance on top of each residential building was calculated for each month
in kWh/m2. Regarding thermal energy production, a standard flat solar collector has been
considered with an average efficiency that changes between 12% in November and 67%
in July. In Figure 19, the energy consumption for domestic hot water is represented and it
was evaluated knowing the number of inhabitants in each residential building assuming a
consumption of 50 L/day/inh and hot water at 45 ◦C. The blue area in the center of district
1 is the area with offices and commercial buildings without residential users and the DHW
load.
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Figure 20 represents the use of roof-integrated flat collectors on 5% of the available
building roof area. In Milan, the high presence of big condominiums limits the roof area
per inhabitant and thus the possibility to meet the energy demand for hot water, especially
in wintertime. This sizing of the solar panel area (i.e., 5%) was chosen to avoid extra
production of thermal energy in summertime which could be wasted.
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Figure 20. Annual energy production with roof-integrated Solar Thermal Collectors in district 1.

Figure 21 illustrates the total amount of electricity generated by photovoltaic panels
using 30% of the available roof area, respectively. In this case, this sizing of the photovoltaic
area was chosen on the basis of a purely economic–environmental evaluation because the
extra production can be sold to the national electrical grid or exchanged between users. As
already mentioned, solar irradiation has a positive diurnal and seasonal correlation with
space cooling that requires electricity, therefore its over-production in summertime could
be used also for space cooling (not included in this analysis).
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Figure 21. Annual energy production with roof-integrated photovoltaic panels in district 1.

Table 9 shows the annual energy consumption for space heating, domestic hot water,
electricity and the energy production with solar technologies by district. It is possible to
observe that the annual energy production by STC is about 73% of the energy consumption;
only in the central district 1, with a lower presence of inhabitants, is production about 1.8
times higher than consumption. In this case, the hot water can be used by non-residential
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users. The energy-use for electricity was calculated based on the population and families
of each district, using the hourly profile of electricity consumption per family for the city of
Milan: 1500–1800 kWh/inh/year [20,21]. Using the thermal energy consumption in 2017 of
12,200 GWh [23], the mean absolute percentage error (MAPE) with energy consumption for
space heating and domestic hot water is 5.2%, which is in the average error range reported
in the literature considering urban scale analysis (between 5 and 20%) [26]. It should be
also noted that the measured data are related to the specific year of 2017 with its climate
condition, while the simulated data using the EPCs’ database consider average 20-year
climate conditions.

Table 9. Annual energy-use for space heating and DHW, and solar energy production for the different
districts in Milan.

District No.
Energy-Use for
Space Heating

(kWht)

Energy-Use for
Domestic Hot
Water (kWht)

Energy-Use for
Electricity

(kWhe)

Energy
Production

with PV
(kWhe)

Energy
Production
with STC

(kWht)

Main
Period of

Construction

1 966,262,459 70,622,702 159,492,639 134,778,376 124,714,482 Before 1919

2 1,320,954,361 105,323,577 237,860,272 92,261,859 85,416,638 1919–1945

3 1,297,445,750 103,449,166 233,627,147 94,075,251 87,083,751 1919–1945

4 1,352,919,902 113,009,059 255,216,982.6 87,760,731 81,229,151 1946–1960

5 1,066,383,008 89,074,704 201,164,202.8 69,278,538 64,136,604 1946–1960

6 1,288,344,047 107,615,054 243,035,290 69,681,565 64,524,164 1946–1960

7 1,495,087,787 124,884,306 282,035,761 93,955,781 86,975,366 1946–1960

8 1,594,529,076 133,190,612 300,794,525 101,970,262 94,403,965 1946–1960

9 1,472,543,840 129,151,277 291,672,186 101,399,317 93,906,003 1961–1970

For environmental and cost–benefit analyses the evaluation of the self-sufficiency SS
and self-consumption SC is mandatory. The self-consumer is defined by the European
Directive 2018/2001/EU as a user that generates renewable energy for its own consumption
without any commercial activity. The ratio between the self-consumption and the total
consumption is the self-sufficiency index (SSI) and the ratio between the self-consumption
and the total production is the self-consumption index (SCI). The first SSI is important
from an environmental and social point of view, whereas the SCI considers the technical
and economic investments and benefits. Optimization could be reached with high SSI and
high SCI but with solar technologies due to the intrinsic nature of the sun (both daily and
seasonal behavior); the SSI is annually lower than 50%.

The sizing of solar technologies is represented in Figure 22. For the supply/demand
optimization, it was necessary to divide the simulations for the big city of Milan by districts,
to be able to carry out the analyses with a standard personal computer. Figure 22 compares
the monthly data of district 2 for energy produced by roof-integrated STC and PV and
the consumption for DHW and electricity. In fact, the use of STC has a negative seasonal
correlation with space heating loads, so it is more appropriate to use it for domestic hot
water production that is quite constant during the year. The monthly consumptions for
DHW vary mainly by the number of days in each month and for electricity by the use of
space heating (auxiliary elements), space cooling and lighting systems. The variation in
solar irradiation and efficiency of STC determines a higher self-sufficiency during summer
and a lower one during winter (especially in November). Therefore, for DHW, the annual
self-sufficiency index SSI, using 5% of roof area, is 67%, ranging from 8 to 100% during the
various months.
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Figure 22. Monthly energy consumption and production with solar thermal collectors for district 2
(STC, 5% roof area) and photovoltaic modules (PV, 30% of roof area).

The same analysis has been carried out with roof-integrated photovoltaic PV modules
using 30% of available roofs (in Figure 22). The relative monthly production of electricity is
reported and compared with electrical consumption. The annual self-sufficiency index for
PV panels is equal to 30%, ranging monthly from 11 to 48% in the different months.

It is important to analyze the self-consumption level before implementing the STC or
PV power systems by assessing the relation between consumption and production to satisfy
both higher self-consumption and self-sufficiency levels. It is very important to select a
good technology with high efficiency considering climate conditions: air temperature and
solar irradiation. This analysis considers instantaneously (e.g., hourly) consumption and
production for a specific user.

Utilizing solar technologies can reduce the dependence of residential buildings on
conventional systems that commonly rely on fossil fuels. Solar technologies can improve
self-sufficiency, supplying energy even during power outages or natural disasters, thus
enhancing the buildings’ resilience and sustainability.

Figure 23 analyses the self-sufficiency SSI and self-consumption SCI indexes for STC
occupying the 5% of the roof area of residential buildings; it shows that this area is sufficient
to completely cover the needs of DHW for the inhabitants from April to September. Inte-
grating renewable energy sources not only reduces carbon emissions but also empowers
communities to rely less on energy dependence from abroad, thus reducing countries’ vul-
nerability to energy price fluctuations and geopolitical uncertainties. It fosters a distributed
energy production system that can better withstand unforeseen challenges, making it a
crucial step towards a greener and more resilient future.
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The monthly PV production and consumption are represented in Figure 24. Consump-
tion is fully covered by production from May till July and almost for August, thanks to high
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solar irradiation during these months, leading to a high SSI. However, from November till
February, the demand is barely covered, with less than 50% of the energy consumption met
by PV production alone, resulting in a lower SSI.
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Regarding PV generation, the size of the systems depends on cost–benefit analysis,
considering also the incentives for PV production and installation costs. In this case, over-
production can be economically advantageous but, in this work, the main focus is on
achieving self-sufficiency at building or community scale.

To ensure a sustainable and efficient energy supply, it is crucial to implement storage
systems to optimize the use of solar technologies throughout the days, aligning it with the
demand profile while also increasing the self-consumption index. While satisfying demand,
it is equally important not to have over-production, as excessive generation would lead to
a decreased self-consumption index. The exchange of energy production between users
can lead to more use of the over-production with a higher collective self-consumption
and higher self-sufficiency, which is the case for energy communities. Also, by integrating
energy storage, excess energy produced during peak hours can be efficiently stored and
utilized during hours of lower solar irradiation. The increased focus on self-consumption
or collective self-consumption allows for a higher proportion of the locally generated solar
energy to be consumed on-site, reducing dependency on external energy sources.

The presented place-based approach considers building energy modeling within
an urban context accounting for the effects of the characteristics of each building and
urban parameter. This modeling has high potential for estimating energy consumption,
production, and related emissions in urban areas, and it can be easily integrated into a
platform.

Figure 25 illustrates an example of a platform with integrated urban energy modeling
for analyzing the impacts of changing energy-related variables. By controlling buildings
and urban attributes (as shown in the middle graph of Figure 25), it becomes possible to
obtain valuable insights (right graph), enabling urban planners, architects, and policymak-
ers to make informed decisions when designing future sustainable cities and new energy
policies. Starting from a scenario, Figure 25 in black, the results of a future scenario, in grey,
can be compared.

With this powerful platform, city planners can foresee and assess the spatial distri-
bution of energy demands, production capacity, and related emissions of various urban
development scenarios. Furthermore, the ability to consider diverse urban parameters
allows the model to account for the dynamic nature of cities and their evolving energy
needs over time. As a result, this approach not only facilitates accurate estimations but
also supports the development of resilient cities that are well prepared to meet energy
challenges and mitigate environmental impacts.
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5. Conclusions

Building energy modeling is becoming an essential tool for analyzing the energy
consumption at city scale to achieve more sustainable urban environments. The place-
based methodology presented in this work allows the application of UBEMs in various
urban contexts and climate conditions. It provides in detail the modeling steps, starting
from input data acquisition using open-source databases (Table 2), followed by data pre-
processing and modeling using the open-source software QGIS (Figure 15). This statistical
modeling completely relies on free geo-databases, and it is important to highlight this step;
more available and accurate urban data results in improving the precision of UBEM.

The analysis focused on the residential sector in the city of Milan and on its main forms
of energy consumption, which are space heating, domestic hot water, and electricity. The
GIS-based approach gives an important insight into the benefits of analyzing and retrofitting
the existing building stock for achieving energy efficient cities. The EPC database (from 2016
to 2022) was used to analyze the energy performance of buildings before and after retrofit
measures, and to measure their effect on enhancing territories considering all technical,
economical, and environmental constraints. The results illustrated in Figure 10 show that
25% of the buildings achieved energy class A, B, or C after the retrofit interventions, while
only 7% of them were in these classes before retrofit interventions.

This work describes in detail all the steps for calculating energy-related variables,
consumption and production from solar source using QGIS (Figure 17). The produced
amount of energy from solar technologies (STC and PV) was analyzed, considering the
real 3D urban environment, to evaluate the potential share of energy consumption in the
city of Milan. With a standard PV system, the annual SSI can reach 29.1% and 32.1% and
the SCI 75.8% and 62.8%, considering the use of 30% and 40% of roof area, respectively.
These results show the importance of sizing solar systems properly from an environmental
and economic point of view, using both indexes simultaneously, because increasing the
solar system area results in higher SSI but lower SCI due to over-production. The solar
production analysis highlights the importance of the place-based approach in evaluating
the availability of roof areas in urban contexts for energy generation, self-consumption and
collective self-consumption with other nearby users.

The statistical energy consumption model was calibrated by comparing the data
obtained by the statistical modeling with the energy consumption data reported in the EPC
database for the city of Milan. The accuracy of the model is acceptable considering a MAPE
of 5.2%, and the error average in the literature, which is 5–20% [26].

The resulting maps help in understanding the energy-related variables clearly, due to
the possibility of GIS-based modeling in overlapping the maps for further analysis. For
example, the consumption of DHW illustrated in Figure 19 is correlated with the number
of families (Figure 4) and the consumption for space heating with the gross volume of
residential buildings (Figure 5). For further applications, the presented methodology can
be useful to analyze more correlations with newly available input data, e.g., income data.

With the increase in data accessibility, the USEM is believed to achieve higher accuracy
levels since the most challenging step is data collection and pre-processing.
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Finally, the methodology of this work can help in achieving climate neutral cities by
optimizing the spatial distribution of energy demand and supply, boosting energy policy
as the increase of retrofit interventions and more use of available renewable energy sources,
like the solar source. A further application is the evaluation of the impact of local actions at
an urban scale.
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Appendix A

The used query to calculate the common surfaces between adjacent buildings:
SELECT
a.*,
b.id || ‘, len:’ || round(st_length(st_intersection(a.geom, b.geom)), 4) AS “neighbor_info”
FROM
“building layer” AS a, “building layer” AS b
WHERE
st_intersects(a.geom, b.geom)
AND a.id <> b.id
ORDER BY
a.id ASC

where;

o round(st_length(st_intersection(a.geom, b.geom)), 4): calculates the length of the intersec-
tion between the two geometries (a and b), with a decimal number.

o AS “neighbor_info”: renames the result of the series as “neighbor_info” and assigns it
to a new column in the result set.

o “building layer”: this should be replaced with the actual name of the building layer. It
is the table for using the query, and we use the aliases a and b to reference it twice for
the self-join operation.

o AS a, AS b: These are table aliases. AS is used to give a table a temporary name (a and
b in this case) so that it can be used as a reference to the same table multiple times in
the query.

o st_intersects(a.geom, b.geom): checks if the geometries of a and b intersect.
o a.id <> b.id: ensures that the same polygon is not compared with itself by checking

that the id of a is not equal to the id of b. This prevents self-comparisons.
o a.id ASC: Sorts the result set by the id column of table a in ascending order.
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