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Abstract—Mobile traffic forecasting plays a key role for op-
timizing the configuration of network cells. Network operators
are very interested in predicting upcoming mobile traffic peaks
in an accurate way, in order to improve quality of service via
efficient resource allocation. However, forecasting potential peaks
is very challenging considering that many peaks occur suddenly
for no apparent reason; hence, it is very difficult to determine
if a peak will occur in near future based on the temporal
dynamics of mobile traffic, potentially leading to inaccurate
predictions. To improve the performance of peak prediction,
we propose a novel deep learning model called Mixture of
Quantiles (MoQ). MoQ employs a mixture of experts model
featuring a manager to fuse the predictions of multiple experts. In
order to overcome the problem of overly smooth predictions on
peaks, the experts are designed to have differentiated forecasting
styles from conservative to aggressive. A cooperation mechanism
is established through a carefully designed training process,
whereby conservative experts are responsible for the forecasting
of the off-peak region, and the employed experts are switched to
the aggressive ones once the potential increasing trend is detected
by manager, which leads to significantly improved peak predic-
tions. Extensive experiments on real-world dataset showcase the
effectiveness of the proposed MoQ model, which outperforms
all the benchmarks and shows its superior performance in peak
forecasting along with excellent interpretability.

Index Terms—mobile traffic forecasting, peak prediction, deep
learning

I. INTRODUCTION

According to Ericsson’s 2021 annual report, the number
of mobile subscriptions will grow from around 8.3 billion
by the end of 2022 to around 8.8 billion by the end of
2026 [1]; the growing traffic makes it difficult for Internet
Service Providers (ISP) to satisfy stringent quality of service
requirements. To maintain the efficiency of mobile networks,
the network configuration has to be updated frequently to
adapt to the latest trend of mobile demand. However, there is
always a delay at observing the latest network key performance
indicators (KPI). If the operator employs delayed observations
to reconfigure the network, there is a risk that the updated
configuration is already outdated and cannot adapt well to the
actual traffic pattern; this problem becomes more critical in
the presence of traffic peaks, which are critically important
towards quality of service.

Even though the prediction of traffic peaks is very impor-
tant, most of the related research focuses on improving the
overall prediction performance instead of the peak forecasting
performance [2]–[4]. This latter requires a forecasting model
that can capture complex temporal dynamics; deep learning
approaches are good candidates as they have proved to be very
effective at learning complex non-linear patterns, and many
deep learning models have been used to predict time series
in recent years [5]. On the other hand, while these models
are indeed powerful, they are unable to trade off between the
average accuracy and the accuracy of peak prediction. Mobile
traffic time series typically exhibit a generally stationary
behavior interrupted by sudden strong peaks. Many time series
forecasting methods are very good at predicting the stationary
parts, but provide inaccurate results in the prediction of peaks.
The reason lies in the fact that forecasting models are often
trained to minimize an average loss on the prediction error.
Since peaks occur rarely, their prediction tends to be neglected
because their effect on the average loss is quite small, whereas
the loss is dominated by errors in the stationary parts of
the mobile traffic time series; this leads to models typically
making conservative predictions most of the time. If the model
predicts the future steps in an aggressive way, this would
improve the prediction of future peaks but also make the
overall performance worse as the aggressive predictions are
always risky. Eventually, there is always a trade-off between
overall loss and peak prediction, which has to be handled
according to application requirements. Generally for ISPs, it is
acceptable that the model makes better peak predictions even
though the errors on the non-peak parts are slightly higher, as
the peaks are the most valuable parts of mobile traffic.

For tackling these challenges, we propose a novel deep
learning model called Mixture of Quantiles (MoQ). MoQ is a
point estimate model based on the Mixture of Experts (MoE)
framework, which supports flexible blending of different fore-
casting styles, where aggressive and conservative forecasting
are adaptively aggregated based on the recent temporal dy-
namics of the time series. Through the cooperation between
experts with diverse characteristics, this model is capable of
making better peak predictions while maintaining excellent



overall performance. Specifically, the main contributions of
our work are summarized as follows:

• We propose a novel model called MoQ, which supports
various forecasting styles, and features a flexible blend-
ing of conservative and aggressive predictions based on
recent observations.

• We propose a two-stage training process to address the
difficulty of training MoQ model. Indeed, in MoQ each
expert must behave in a specific way. To this end, we
first pre-train experts with different objective functions to
promote their diversity. In the second stage, penalization
is applied during training to prevent the problem of
imbalanced assignment of experts and encourage the
cooperation among experts.

• Experiments are carried out on real-world mobile network
dataset, and the results prove that MoQ improves traffic
peak prediction significantly. Comparing with baselines,
our model is more sensitive to the occurrence of peaks.
Visualizing the assigned weights of experts, we observe
interpretable cooperation between them, which explains
why the model is very effective at adapting to fast
changing time series.

II. PROBLEM FORMULATION

Quantiles are important for describing the characteristics
of a distribution. For a real-valued random variable Y , de-
note as F (y) its cumulative distribution function. Given a
quantile index τ ∈ (0, 1), the τ -quantile q(τ) is defined as
q(τ) = F−1(τ). For example, the 0.5-quantile q(0.5) is the
median. For many applications, risk and uncertainty have to be
quantified to make optimal decisions. The need of modelling
distribution has led to the use of quantile regression. The
purpose of quantile regression is to predict the conditional τ -
quantile ŷ

(τ)
t+k given the past observations y:t and a predefined

quantile index τ ∈ (0, 1). Comparing to probabilistic forecast-
ing, quantile regression is more robust because it makes no
assumption on the data distribution. In order to predict the
quantile, the model has to be trained to minimize the total
Quantile Loss (also called pinball loss):

QLτ (y, ŷ
(τ)) = τ(y − ŷ(τ))+ + (1− τ)(ŷ(τ) − y)+, (1)

where (·)+ = max(0, ·), and ŷ(τ) is modelled by function
gτ (·) which can be approximated with a deep learning model.

In this work, our goal is to perform time series forecasting
based on historical observations of mobile traffic. Assuming
we want to predict a group of mobile traffic time series, each
time series is represented by a matrix x1:t = [x1, x2, ..., xt] ∈
Rt×f which consists of historical observations of vectors xi

containing f features, where t is the length of time series; a
given set of time series is denoted as X1:t ∈ RN×t×f , where
N is the size of the group. If the objective is to forecast the
future values of these features at the next h steps, the problem
can be formulated as

X̂t+1:t+h = f(X1:t), (2)

Fig. 1: Architecture of Mixture of Quantiles: expert Eq is
trained to minimize a quantile loss having quantile index
equals to q. The orange line represents forecasting and the
blue line represents ground-truth.

where X̂t+1:t+h ∈ RN×h×f is a matrix of predicted features
from time t+1 up to time t+h, and f(·) is a suitable neural
network.

III. METHODOLOGY

A. Mixture-of-Quantiles Architecture

The architecture of MoQ is shown in Figure 1, and it
consists of three components:

• Experts which are trained to forecast with different ag-
gressiveness levels; the outputs of experts are fed into the
manager yielding the final prediction;

• a Penalization used to prevent overusing a specific expert
and to promote the cooperation among experts;

• a Manager aggregating predictions from different experts
to output the final forecast.

The idea behind MoQ is to fuse various prediction styles,
as illustrated in Figure 1. In MoQ, the input is first fed into
the experts pool. By training experts with different objective
functions, these expert will have diverse forecasting styles:
some of them are going to make aggressive predictions while
others will be more conservative. How to use these predictions
to maximum effect is the job of manager, who observes the
recent temporal behavior of the input features and fuses these
predictions based on softmax score; in this way, the model
automatically learns when to be conservative and when to be
aggressive. The details of MoQ are discussed in the following.

B. Experts with Various Forecasting Styles

Experts are the key components in MoQ, as their behavior
strongly affects the model performance. In this work, LSTNet



[6] is used as the backbone network of each expert. For the
MoE framework, the experts are expected to learn different
patterns from the same input. If the characteristics of experts
differ a lot, each expert specializes in extracting different
knowledge patterns, which provides benefit when the manager
aggregates these pieces of information. However, the process
raises several issues. The first issue is related to the diversity
of experts, as there is no guarantee that each expert will
learn different things from the same input. If experts act in
a very similar way, there is no benefit in using an MoE
model. Another issue is about expert assignment; indeed, if
we train the MoE model end-to-end from scratch, it is highly
likely that the manager will overuse one specific expert. The
typical reason is that an expert initially shows superiority
because of its weight initialization or the preceding weight
update, leading the manager to assign a higher weight to
that expert; thus, the expert becomes more reputable due
to a more frequent assignment, which eventually results in
imbalanced training. For the MoQ, each expert is expected to
have different forecasting styles, and this is extremely difficult
to achieve if we train experts with the same objective function.
To promote diversity among the experts, a specific quantile
loss is employed to pretrain each expert individually, and the
quantile index is different for the training of each expert. As
depicted in Figure 1, MoQ consists of four experts, and these
experts are pretrained with the default quantile index 0.5, 0.7,
0.8 and 0.9 respectively; it is also feasible to customize the
forecasting behavior by pruning specific experts or changing
the default quantile index. Among the four experts, expert E0.5

is the most conservative one, and the prediction becomes more
aggressive as the quantile index is increased. Based on that,
we can obtain predictors with various forecasting styles in a
reliable way. Once the predictions made by each expert are
available, the outputs are concatenated as:

X̂E
t+1:t+h = [X̂E0.5

t+1:t+h, X̂E0.7
t+1:t+h, X̂

E0.8
t+1:t+h, X̂E0.9

t+1:t+h], (3)

where X̂E
t+1:t+h ∈ Rk×N×h×f . τ is the quantile index, N is

the size of mini-batch, h is the forecasting horizon, f is the
number of features and k is the number of experts. The next
question is how to fuse such predictions in the most effective
fashion.

C. Manager

The manager is a gating function which is responsible for
aggregating the output of individual experts. The aggregation
is performed based on the recent observations of the time
series to capture the local temporal behavior. In this case,
“local” refers to the most recent p observations, where p is
a hyperparameter. In this work, the manager is composed of a
fully connected layer and a softmax activation function. The
fully connected layer extracts the local patterns of time series,
and the manager calculates the softmax score among experts
for each future step, which can be formulated as follows:

H = FCw(X−p:t), (4)

S = Softmax(H), (5)

where FCw is a fully-connected layer parameterized by the
weights/biases w, X−p:t ∈ RN×p×f is the matrix of recent
observation and S ∈ RN×h×k is the expert score. The
dimension of hidden vector H has to be converted from N×hk
to N×h×k before passing it to the activation function. Based
on score S, the final prediction X̂t+1:t+h is made by fusing
the weighted output of experts:

X̂t+1:t+h =
∑
e∈E

SeX̂e
t+1:t+h, (6)

where E is the set of experts, X̂e
t+1:t+h and Se are the

corresponding prediction and score for expert e. To acquire
the ability of using experts cooperatively, manager is trained to
minimize the Mean Absolute Error (MAE) between the fused
prediction and the ground-truth; the details are discussed in
the next section.

D. Two-Stage Training and Penalization

Training is the most important part for MoE model; as
mentioned previously, the difficulties mainly arise from two
problems: (1) how to guarantee the diversity of experts; (2)
how to obtain reasonable and interpretable expert assignment
without overusing a specific expert. To tackle these issues, a
simple single-stage training is insufficient, and in this work
we propose to train MoQ in two different stages in order to
make the training process successful.

The first training stage focuses on the experts pretraining,
where each expert is trained individually with a specific
quantile loss in order to promote diversity. Due to the different
settings of quantile loss, the experts will not end up being very
similar. After pretraining, the weights of experts are frozen and
will not be updated during the second stage, so as to avoid
undesired behavioral changes and to simplify the training of
the manager. The second stage aims to train the manager
in order to develop its ability to select and blend experts.
If we want to improve the prediction of highly dynamic
regions while minimizing the overall loss, selecting proper
experts upon detection of different situations is very important;
however, this is also tricky for the manager to learn. In the
ideal case, the manager should rely more on the conservative
expert for the forecasting of non-dynamic regions, and on the
aggressive experts when the model needs to predict peaks.
However, it is rare to obtain a trained model really working
in this way. In most cases, models tend to overuse the most
conservative expert which is pretrained to predict the median
value. Since peaks are important but relatively rare events in
the dataset, the simplest choice for minimizing the overall loss
is to avoid making aggressive predictions. In this way, the
model loses the ability to capture peaks, which leads to large
errors in the dynamic parts while the overall loss is rather low.
This process is useless in real applications because it cannot
estimate the most significant part of time series, as in the
naive but apt metaphor: you will never make mistakes if you



decide to do nothing. In this case, a penalization mechanism
is needed against the manager’s nature of being conservative.
Specifically, two different penalization methods are introduced
in this paper.

1) Penalization Mask: The first option is to use a mask
during training. This mask acts as a penalization term in
the second training stage, with the objective to penalize
conservative experts and to encourage the manager to assign
higher weights to aggressive experts. The mask is designed as
follows:

M =
[1
k
,
2

k
, , ...,

k

k

]
, (7)

where k is the number of employed experts; the mask is
M = [0.25, 0.5, 0.75, 1.0] when we use 4 experts. Each
penalization coefficient within the mask corresponds to the
expert in the corresponding position of X̂E

t+1:t+h (see eq.
(3)), where the most conservative expert is penalized in the
hardest way while the most aggressive expert is not penalized
at all. Each expert prediction Se has to be multiplied by
the corresponding mask coefficient before being fed into the
manager; this deteriorates the conservative predictions, often
making them too low to be used, and only slightly affects the
aggressive predictions. In this way, predicting the median value
is not the best choice anymore in order to minimize the loss,
and the manager is required to learn a smarter way to fuse the
results of the individual experts. The penalization mask is an
objective-oriented penalization method, and the mask values
can be changed in purpose in order to guide the decision of
manager in the desired way, thereby controlling the behavior
of MoQ.

2) Penalization via addition of Gaussian Noise: The second
approach is to add Gaussian noise to the predictions instead of
masking them. The Gaussian noise is designed to have zero-
mean and expert-dependent variance. For expert Eτ , the vari-
ance of its Gaussian noise is chosen as σ2

τ = α·( 1τ −1), where
α controls the spread of the noise variance among the experts.
The more conservative the expert, the higher the variance of
the Gaussian noise. Comparing to the penalization mask, the
addition of Gaussian noise employs only one parameter and
does not require the design of a penalization mask; this leads,
however, to a somewhat weaker control of the model behavior.

3) Use of penalization during the training process: It
is important to notice that the two introduced penalization
methods are only used during the training phase, whereas
experts are not penalized during the validation and test phase.
The reason why we penalize the predictions is to obtain a
trade-off between quality of peak prediction and overall loss,
as we need to balance the behavior of experts while avoiding
having high overall loss. With the penalization, we therefore
lower the priority of using conservative predictions. Since the
issue of overusing specific experts is addressed, the remaining
problem is how to force manager to extract knowledge from
the recent observations to guide its fusion. Indeed, we want
MoQ to make aggressive predictions only when there could
be an occurrence of a peak in the upcoming steps. If we apply

penalization to expert predictions for all training examples in a
mini-batch, this may lead to higher-than-expected predictions
of non-peak parts considering that the conservative experts
would be penalized all the time. To overcome this problem,
we do not apply the penalization for all training samples, but
only for the samples whose ground-truth is much higher than
the others. Specifically, for each training sample we sum the
values of its ground-truth, and only the samples whose sum is
in the largest 10% will be penalized. The rationale is that the
selected training samples have a higher possibility of having
peaks in next few steps, and the manager is forced to learn how
to extract local temporal dynamics from recent observations
to determine if peak will occur or not. In this training stage,
the model is trained to minimize MAE of final prediction.
With the way of penalizing predictions for selected training
samples, we introduce inductive bias in the training process,
which is intended to inspire the manager to act in our desired
way. Comparing to conventional models (e.g., LSTM), MoQ
requires more time to train, but the general training time is
acceptable as ISPs usually retrain a model every several weeks.

IV. EXPERIMENTS

A. Dataset

We conduct experiments on a real-world mobile network
dataset to evaluate the performance of the proposed model.
The dataset is an industrial dataset provided by Telecom Italia
S.p.A which is the largest Italian telecommunications services
provider. Mobile traffic data is collected from LTE network of
a metropolitan city in Italy, covering 100 cells. This dataset
consists of 32300 time series, each time series is recorded
during 14 consecutive days, and the traffic profile of each cell
is aggregated over 15-minute intervals; our target is to predict
the mobile traffic for the next hour. Notice that all time series
of the dataset have been normalized with the standard score
normalization, and the normalized time series is calculated by
first subtracting the mean value of raw time series and then
dividing by the standard deviation.

B. Benchmarks and Performance Metrics

Two versions of MoQ are implemented: the MoQ penalized
by mask (MoQ) and the MoQ penalized by the Gaussian noise
whose variance is controlled by α (MoQ†

α). We compare the
performance of our model against a set of baseline approaches,
including: MLP [7], LSTM [8], GRU [9], LSTNet [6], TCN
[10], MQ-RNN [11] and Transformer [12]. The baseline
models cover the most popular approaches in the time series
forecasting field. The hyperparameters of these models have
been tuned through grid search based on the performance
evaluated on validation set. Once the best configurations have
been determined, the models have been retrained on the two
datasets employed in this paper, by merging train set and
validation set, and eventually evaluated on the test set.

To evaluate the performance, four metrics are used. Initially,
we quantify the overall performance of the models in terms
of MAE and Mean Squared Error (MSE). Since MAE and
MSE do not properly capture the ability of a model to predict



TABLE I: Performance comparison of different models for overall mobile traffic forecasting and peak classification.

Metrics MLP LSTM GRU LSTNet TCN MQ-RNN Transformer MoQ MoQ†
2 MoQ†

4

MAE 0.304 0.295 0.292 0.288 0.395 0.299 0.325 0.312 0.302 0.319
MSE 0.289 0.296 0.290 0.283 0.448 0.305 0.326 0.337 0.295 0.322

Accuracy 68.3% 68.1% 67.9% 66.7% 59.5% 64.7% 67.1% 75.9% 74.3% 76.4%
Sensitivity 37.7% 37.1% 36.6% 34.1% 19.5% 30.1% 35.0% 54.5% 50.6% 55.7%

Fig. 2: Peak predictions of mobile traffic, the gray line represents the ground-truth and the orange line represents the forecasting.
The penalization mask of MoQ is employed. (a) cell A; (b) cell B.

peaks in the time series, which is instead very important in
our target application, we also employ classification metrics to
evaluate the ability of model at predicting peaks. Specifically,
for the mobile traffic the peak part is defined as the elements
of a tensor whose value is higher than a threshold Q defined
as a given quantile of this feature. In this setting, a mobile
traffic predictor that forecasts mobile traffic four time-steps
ahead is employed for binary peak classification, in that if the
predicted mobile traffic has value greater than or equal to the
predefined threshold, a peak is detected. In our experiments,
the quantile index is defined as 0.95. Based on this, each
ground-truth element is either positive (peak) or negative (non-
peak), and a model is assessed on the basis of its ability to
correctly classify peaks in terms of the sensitivity metric, also
known as recall, i.e. the number of correctly identified peaks
among the retrieved peaks. Although sensitivity is the most
important metric for the target application, we also need to
verify that a model does not overestimate a target frequently by
generating a lot of false alarms, so the classification accuracy
is also used to quantify the general performance of predictive
classification.

C. Results

We evaluate the performance of these models on test set, and
the results are reported in Table I. We observe that RNN-based
models obtain better performance compared to the others.
LSTNet has the lowest MAE and MSE and it is the best model
if we only consider the overall loss. The performance of TCN
is the worst among the baselines, its overall performance and

peak prediction are both unsatisfactory. Comparing with the
selected baselines, the proposed MoQ models obtain much
higher sensitivity. If we compare the performance between the
mask version MoQ (MoQ) and the Gaussian noise versions
(MoQ†

α), the difference between them is quite small, and both
of them provide a significant improvement of peak predictions.
Among these MoQ models, MoQ†

4 has the highest sensitivity
whose value is 18% higher than the highest sensitivity of
baselines (37.7%), which means this model is more capable of
predicting potential peaks in upcoming steps; MoQ†

4 also has
the highest classification accuracy, that means the proposed
model is able to perform forecasting based the recent trend
instead of overestimating the targets all the time. The price
to be paid for very good sensitivity is that its MAE and
MSE are slightly higher than those of LSTNet, though still to
close to those achieved by the best methods. Comparing MoQ†

4
and MoQ†

2, we observe that the MAE and MSE are reduced
by decreasing the value of α while obtaining slightly lower
sensitivity and classification accuracy; by modifying the value
of α, it is possible to make a trade-off between peak prediction
and overall performance. To better understand the behavior
of different architectures, we select several models and vi-
sualize their forecasting. Figure 2 illustrates peak predictions
performed by different models, where Figure 2(a) and Figure
2(b) refer to the mobile traffic collected from two different
cells of mobile network. In Figure 2(a), GRU makes very poor
forecasting of the peak. Transformer and LSTNet can make
better predictions comparing to GRU, but the predictions are
still significantly underestimated. The proposed MoQ model



Fig. 3: Visualization of the cooperation between experts: the expert scores used to fuse the predictions are visualized for two
different cells, the gray line represents the ground-truth and the orange line represents the forecasting.

can better estimate peaks in the time series, and the predicted
peak is very close to the ground-truth. In Figure 2(b), none of
benchmarks is capable of capturing the usage pattern related
to the peak on the left; this leads to the risk of overload if the
predictions are used to adaptively configure mobile networks,
which could eventually lead to a cell shutdown. Benefiting
from the aggressive prediction of MoQ, the risk of overload is
decreased since we can predict peaks in a more reliable way.

Besides the advantage of making better peak prediction, our
model also has good interpretability. As mentioned in previous
sections, MoQ relies on the cooperation mechanism of experts,
where the prediction benefits from switching among predictors
with various forecasting styles. To study the contribution
of each expert, in Figure 3 we visualize the predictions
and the corresponding softmax scores of the four different
experts: expert E0.5, expert E0.7, expert E0.8 and expert E0.9.
Among these experts, expert E0.5 and expert E0.7 are the
experts which make relatively conservative predictions. In
Figure 3(a) we observe that conservative experts dominate
the final prediction for the non-peak part of time series, and
the prediction style turns to be aggressive once our model
detects strong temporal dynamics from recent observations.
If we focus on the strong oscillating area of this sequence,
frequent switching between expert E0.5 and expert E0.8 can
be seen. This cooperation mechanism is more obvious in the
series depicted in Figure 3(b), where expert E0.5 is responsible
for the forecasting of MoQ for most of the time, except
upon the occurrence of several peaks. In this case, our model
shows great interpretability, and the analysis of the behavior
of experts can be used to fine tune the architecture and adapt
it to different application fields.

V. CONCLUSION

In this work we have proposed MoQ, a novel MoE-style
model for mobile traffic forecasting. The model is designed
to address the problem of peak prediction in mobile traffic
prediction. Through an ad-hoc training procedure, MoQ yields
experts with various forecasting styles, where some experts

make conservative predictions while the others make aggres-
sive predictions, and a manager fuses the available predictions.
The results show that the proposed model outperforms all
baselines for the prediction of peaks; the results are also
interpretable in terms of the individual contribution of each
expert and their cooperation pattern.
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