
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

MicroView: Cloud-Native Observability with Temporal Precision / Cornacchia, Alessandro; Benson, Theophilus; Bilal,
Muhammad; Canini, Marco. - ELETTRONICO. - (2023), pp. 7-8. (Intervento presentato al convegno CoNEXT '23: The
19th International Conference on emerging Networking EXperiments and Technologies tenutosi a Paris (France) nel 8
December 2023) [10.1145/3630202.3630233].

Original

MicroView: Cloud-Native Observability with Temporal Precision

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3630202.3630233

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983046 since: 2023-12-21T10:13:54Z

Association for Computing Machinery (ACM)

MicroView: Observability with Temporal Precision
Alessandro Cornacchia

Politecnico di Torino
Theophilus A. Benson
Carniege Mellon University

Muhammad Bilal
Unbabel

Marco Canini
KAUST

ABSTRACT
We present MicroView, a system designed to improve the accu-
racy and timeliness of observability in cloud-native applications,
while minimizing overhead. MicroView stands out from conven-
tional observability tools by incorporating local metrics processing
stages at every node within a lightweight data-plane. We prelimi-
nary demonstrate the benfits for distributed tracing and outline a
set of architectural choices focused on offloading the MicroView
data-plane to IPU accelerators, such as BlueField2 SmartNIC, thus
limiting the interference with running services.

CCS CONCEPTS
• Networks → Data center networks; In-network processing; •
Computer systems organization→ Cloud computing.

1 INTRODUCTION
Microservice observability is a key requirement for troubleshooting
cloud-native applications, as it provides visiblity about their internal
state. Observability tools collect a wealth of monitoring data — i.e.,
metrics, request traces and logs — which is then used to detect and
diagnose failures and identify performance bottlenecks.

Unfortunately, observability can create a significant overhead
on server resources thus creating resource contention and inter-
ference with user services. This overhead is mainly generated by
data-copies and network stack processing [4] to communicate with
the monitor backend. Even worse, it grows with the scale of mon-
itored components and the frequency at which data is collected.
In practice, operators need to resort to relaxed sampling rates for
data collection, which sacrifices the quality of observability itself,
such as accuracy and timeliness. Although scheduling ad-hoc CPU
bonding for the observability processes or vertically scaling the in-
frastructure would mitigate the problem, these solutions are neither
energy-efficient nor cost-efficient.

This work proposes a system to guarantee accuracy and timeli-
ness of observability, while limiting the overhead and interference
with running applications. Our design hinges on the observation
that for metrics, the overhead is dominated by the ingestion costs
rather than generation costs (Table 1). This allows us to — relatively
cheaply — increase the temporal granularity at which new metrics
samples are produced, and to decouple local generation rate from
ingestion rate. In light of these observations, we address the benefits
and challenges of (1) running a metrics processor on each node that
can handle high metrics generation rate, and (2) exploiting such
intelligence to locally extract actionable signals and assist perfor-
mance debugging tasks. We take distributed tracing as a showcase
example and demonstrate that MicroView can improve the cov-
erage of anomalous requests (i.e., whose latency violates SLO) by
approximately 5× compared to head-based sampling. Finally, we

delineate architectural choices to offload the metrics processor to
emerging Infrastructure Processing Units (IPUs) [5] accelerators,
such as BlueField-3 SmartNIC.

2 PROPOSED DESIGN
In this section, we outline our proposed system architecture and
discuss how it can be beneficial for the task of distributed tracing.

2.1 MicroView overview
The proposed system architecture is shown in Figure 1. Our sys-
tem differs from traditional observability architectures [4] in that
it adds metrics processor locally at each node. The data-plane
is where metrics processing takes place. It consists of a bank of
per-microservice classifiers. Each classifier periodically receives a
metric vector relative to the corresponding microservice. It applies
transformations (e.g., accumulation, data whitening, etc.), and looks
for anomalies in the vector. As a classifier, we choose to adopt a
streaming-based sketch algorithm [2], as it operates in single-pass
without requiring storage of past samples, is lightweight to process
high-rate streams and supports continual-learning from new sam-
ples at runtime. At its heart, the sketch learns a low-dimensional
reconstruction basis for the data, and detects anomalies when it
cannot reconstruct an input sample within a certain error tolerance.
The control-plane consists of MicroView agents that orchestrates
the interaction between the metrics sources (e.g., microservices)
and the data-plane. If the data-plane sits on a IPU accelerator, Mi-
croView agents ensures the IPU can access the memory regions
where the metrics variables reside. Additionally, it produces action-
able alerts to observability libraries based on sketch classifications.
The specific action depends on the desired use-case, an example is
provided in the next section.

2.2 Use-case: distributed tracing
Metrics reveal the internal state of applications and containers.
Their unexpected variation potentially indicates an anomalous state,

Metrics observability configuration CPU usage
at monitored nodeGeneration rate [Hz] Ingestion rate [Hz]

1 1 12-13%
1 1/30 3-4%

1/30 1/30 2%

Table 1: CPU consumption of a single Kubernetes node, while moni-
toring metrics for the Online-boutique workload [1]. Ingestion rate
is the frequency at which a Prometheus monitor — on a different
node — queries metrics from the pods. Generation rate refers to the
metrics creation/update frequency within the pods, and is controlled
by changing housekeeping_interval in cAdvisor.

Alessandro Cornacchia, Theophilus A. Benson, Muhammad Bilal, and Marco Canini

host

Tracing

Metrics exporter

Observability libs

…MicroView
agent

IPU

metrics processing

M
ic

ro
V

ie
w

ag
en

t

Microservices

Memory
region

data-plane control-plane

A
P

Is

APIs

DMA DMA

Figure 1: MicroView architecture. Unlike traditional observability
architectures, we propose to add local metrics processing stages at
each node.

which could negatively impact ongoing user requests. Timely ana-
lyzing metrics during runtime can anticipate anomalous executions
and trigger distributed tracing. To achieve its goal, the MicroView
agent combines outputs from different classifiers. If at least one clas-
sifier detects an anomalous state, the agent triggers the distributed
tracer. At this point, the tracer samples all incoming requests until
the next classification cycle. In this regard, MicroView substantially
differs from traditional workflows, where traces and metrics are
collected independently and correlated offline. Notably, MicroView
is complementary to state-of-the-art Hindsights’ retroactive sam-
pling [6], as it can serve as a trigger to it.

3 PRELIMINARY EVALUATION
Experimental setup. We implemented an offline prototype in
Python. It post-processes datasets of metrics and traces, collected
from running a widely used benchmark application [1]. We ran ex-
periments on a 4-node Kubernetes (v1.25.5) cluster, each equipped
with 8 Intel Xeon E3-1230v6 CPUs at 3.50GHz, 32 GB of RAM and
running Ubuntu 22.04. We deployed Istio service mesh on the clus-
ter, and used Locust load generation. We instrumented for observ-
ability with Jaeger tracer and a Prometheus instance that collects
service-level and container-level metrics every second. This interval
is significantly lower than current production system practices [6].
Service-level metrics include Istio metrics and application metrics
whenever available (e.g., Redis), while container-level metrics are
cAdvisor resource usage counters (CPU, memory, disk I/O, etc.). We
fit the sketch classifiers with an initial training phase. During this
phase we also tune hyperparameter for each sketch (i.e., microser-
vice) separately. First, we use a healthy metrics dataset from which
initialize the sketches to learn “normal” behavior [2]. We obtain the
dataset when the application runs in underload conditions and with
over-provisioned vCPU and memory limits. Second, we inject faults
in the service and produce a second dataset, that we use to select
hyperparameters that gives best F1-score. We use ChaosMesh for
fault injection, and we simulate stress scenarios on the containers,
such as CPU and memory.
Can MicroView help tracing? We then use these pre-trained
sketches to guide trace sampling (as per Sec.2.1). We randomly
select a service every 30 seconds and inject on it a short failures of 5
seconds. We compare against head-based sampling in terms of cov-
erage, i.e., percentage of collected anomalous traces, and overhead,

memory CPU
0

50

100

Co
ve

ra
ge

 [%
]

memory CPU
0

50

100

Ov
er

he
ad

 [%
]

head-1% head-20% w/ microview

Figure 2: Performance-overhead trade-off of sketch-assisted dis-
tributed tracing for different anomalies.

measured as percentage of false positives. For us a trace is anoma-
lous when exhibits tail latency or contains error codes. Figure 2
shows that tracing + MicroView achieves nearly total coverage,
5x better than sampling 20% of the request. This is because head
sampling relies on luck to capture faulty traces, while MicroView is
guided by metric signals. Its overhead is around 25% and generated
by false alarms of the data-plane. We set the target of reducing it
with metric selection [3] techniques.

4 RESEARCH AGENDA
We delineate several challenges we must address towards realizing
our vision.
Host-IPU communication. The data-plane, that we plan to im-
plement on a IPU accelerator, needs to access metrics that sit on the
host OS [5]. A natural choice is to use DMA technology and bypass
the host CPU. In this space, we identified two competing alterna-
tives: RDMA and NVIDIA DOCA libraries. Their comparison is part
of the future agenda. Complementary to it, the next step on the
host-side is the definition and evaluation of the interfaces beween
MicroView and microservices, for metrics creation and update.
Alternative use-cases. Different metrics have different nature.
Some fluctuates on short time scales (e.g., CPU, power), other stays
constant and change only in response to human reconfigurations.
MicroView can work as a filter for metric ingestion, dynamically
deciding which metrics are worth to ingest, which can save storage
costs for the tenant and bandwidth for the provider.

REFERENCES
[1] 2023. Online-boutique. https://github.com/GoogleCloudPlatform/microservices-

demo
[2] Hao Huang and Shiva Prasad Kasiviswanathan. 2015. Streaming anomaly detec-

tion using randomized matrix sketching. VLDB Endowment 9, 3 (2015), 192–203.
[3] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia, Ruichuan

Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve: Actionable
insights from monitored metrics in distributed systems. In ACM/IFIP/USENIX
Middleware.

[4] Zhe Wang, Teng Ma, Linghe Kong, Zhenzao Wen, Jingxuan Li, Zhuo Song, Yang
Lu, Guihai Chen, and Wei Cao. 2022. Zero Overhead Monitoring for Cloud-native
Infrastructure using RDMA. In USENIX ATC.

[5] XingdaWei, Rongxin Cheng, Yuhan Yang, Rong Chen, andHaibo Chen. 2023. Char-
acterizing Off-path SmartNIC for Accelerating Distributed Systems. In USENIX
OSDI.

[6] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan Mace.
2023. The Benefit of Hindsight: Tracing Edge-Cases in Distributed Systems. In
USENIX NSDI.

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

	Abstract
	1 introduction
	2 Proposed design
	2.1 MicroView overview
	2.2 Use-case: distributed tracing

	3 Preliminary evaluation
	4 Research agenda
	References

