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The Pyramid Cell and its Associated Scalar and
Vector Bases for FEM and MoM Applications

Roberto D. Graglia
Politecnico di Torino, DET Department, Torino, Italy (roberto.graglia@polito.it)

Abstract—Curl- and divergence-conforming vector bases for
the pyramid have been recently obtained using a multiplicative
constructive technique, that is by multiplying the lowest order
vector functions by polynomial sets complete up to a given
order. So far the technique has been successfully employed to
obtain hierarchical bases of arbitrarily high order, which will
be illustrated at the conference, and is now used to produce
interpolatory vector bases. This presentation briefly summarizes
the theoretical results produced up to now and the difficulties that
still have to be overcome in order to obtain the interpolatory bases
as well. Preliminary results will be presented at the conference.

I. INTRODUCTION

Three-dimensional electromagnetic codes can model com-
plicated geometries using meshes made up of identically
shaped cells, for example using only tetrahedrons or only
bricks (i.e. hexahedrons). However, modern codes and solvers
should be more flexible and use hybrid meshes formed by cells
of different shapes, that is a mixture of tetrahedrons, bricks,
prisms and pyramids. This requires the use and possibly the
development of very effective and ready-to-use meshers (not
always within everyone’s reach). Hybrid meshes can often be
obtained more simply by refining an extremely loose “start-
ing” mesh with cells of different shapes, as it occurs using
h-adaptive techniques. Before doing this, however, one has to
overcome several difficulties encountered both in the definition
of the scalar shape functions that describe curved or distorted
cells, and in the definition of vector basis functions for the
numerical solution of differential and/or integral equations. As
a matter of fact, the literature devoted to the use of pyramidal
cells is relatively recent and far from vast (cf. [1]–[3]), unlike
that concerning the use of tetrahedral, prismatic or brick-
shaped cells, of which everything is known by now (see for
example [4]). Since hierarchical vector bases of high order
for the pyramid have been described very recently in [2], [3],
in what follows we can concentrate only on the problems
related to the development and use of the interpolatory shape
functions and the interpolatory vector basis functions for
pyramids, of which nothing is yet available in the literature.
The presentation of new results on interpolatory functions for
the pyramid is postponed to the oral presentation of this paper
at the conference. The main findings related to the pyramid’s
hierarchical bases will also be presented at the conference.

II. INTERPOLATORY SHAPE FUNCTIONS FOR PYRAMIDS

All cells of identical shape, for example all the tetrahedrons
in a given mesh, are obtained by mapping a single, well-
defined parent cell into the various cells of the observer
domain, which we call the child domain. Thus, all tetrahedrons

derive from the same parent cell, and there is only one
(different) parent cell for all prisms, one for all the bricks,
and also one parent cell for all pyramids. The interested
reader can find in [4] the interpolatory shape functions that
define straight or curved tetrahedral, prismatic and brick cells
of any order, together with higher order vector basis of the
curl- and divergence-conforming kind, both hierarchical and
interpolatory.

In particular, the shape functions that we use for the
aforementioned cells are scalar polynomials of the parent
variables that interpolate a well-defined set of points of the
parent cell [4]. It is by assigning the position in the child
space of the points of this interpolatory grid that the (straight
or distorted) shape of a child cell is determined. Note that
in the vast majority of applications it is usually sufficient to
use low-order shape functions (say of the second or at most
third order) which give less problems because they require
a relatively small number of interpolation points. In fact, for
higher orders, great care must be taken to ensure that the cells
are not warped, that is, with a Jacobian of the transformation
from the parent space to the child space that changes sign
within the cell. In any case, to obtain conforming meshes, the
interpolation points on a face of the pyramid in common with
that of an adjacent cell (perhaps of different shape) must be
the same for both cells, with continuous shape functions on the
common face. That is, the shape functions of the pyramid must
necessarily simplify into polynomials of the parent variables
on the pyramid faces.

Unfortunately, however, the functions for the pyramids are
considerably more complicated because its apex is the com-
mon point of four (triangular) faces and not of three, as instead
it happens for the vertices of the other differently shaped
cells. As discussed in [3], the shape functions of the pyramid
on its bounding faces are, by continuity, polynomials of the
parent variables which however become fractional functions
of the same parent variables within the pyramid. To obtain
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Fig. 1. The shape functions map the parent pyramid on the left to the child
pyramid in the center. In the grandparent space (η, ξ5) the shape functions
and the basis functions take polynomial form, while the pyramid is described
by the cubic cell shown on the right. Figure taken from [2].



polynomial shape functions we need a variables transformation
to work in a new grandparent space, where the pyramid is
mapped by a grandparent cube (see Fig. 1). In the grandparent
space the shape functions assume polynomial form and, with
a few more expedients, the same happens to the vector basis
functions [2], [3]. Although we know that in the grandparent
space the shape functions are interpolatory scalar polynomials
which simplify into polynomials of the parent variables on
the pyramid faces, it is far from simple to derive these shape
functions in general by simple algorithms. Fortunately, as
said, shape functions of higher than third order are almost
never necessary, so we deem it will suffice to show the shape
functions up to third order at the conference.

III. INTERPOLATORY VECTOR BASES FOR PYRAMIDS

As explained in [2], [3], for the pyramid, as for all the
other elements, we now know how to build hierarchical vector
bases of arbitrarily high order; so why should we also bother
building a pyramid’s interpolatory vector bases?

Aside from the fact that this complements the interpolatory
families given in [4], the main motivation for this further effort
is due to the fact that codes using the higher order interpolatory
vector bases of [4] are readily obtained by adding a couple of
subroutines and a few loop statements to the codes using the
lowest order basis functions, i.e. those of zero order. This is
because in [4] we routinely and repeatedly use Silvester’s one-
dimensional interpolatory polynomials to obtain the higher
order vector bases. Of course, for the pyramid things can get
more complicated. However, if it were enough to add a few
routines to a zero-order code to use higher-order pyramids,
we would have obtained in a very simple way a code able
to provide useful results to validate more sophisticated codes
that use higher order hierarchical bases.

The construction technique to build the vector bases is the
same used in [2]–[4], so that we derive the basis functions by
groups, i.e., those based on the edges of the pyramid (this
is a group that exists only for the curl-conforming bases),
those based on the faces of the pyramid (these functions exist
both for the curl- and for the divergence-conforming bases)
and those based on the volume of the pyramid (that we call
bubbles). All groups can be obtained by multiplying the lowest
order vector functions by a polynomial set complete to the
order p, so that the p-th order base is obtained eliminating the
redundancies. This way of proceeding does not create many
problems as long as we are satisfied with deriving the basis
functions based on the face and edges of the pyramid, but we
were unable to apply it to build the volume-based functions
until we got the lowest-order fundamental bubbles reported in
[2], [3].

After having obtained the fundamental bubbles, we have
applied this constructive technique to obtain the interpolatory
vector bases which seemed to us the simplest to obtain, namely
the divergence-conforming ones. As we did for the other types
of cells of different shapes, we have used Silvester polynomials
extensively and, as we intend to show at the conference, it
seems we can show that divergence-conforming interpolatory

bases of arbitrarily high order for the pyramid can be ob-
tained by implementing moderately simple algorithms, thereby
adding few subroutines to a zero-order code.

We are now applying the same constructive technique to ob-
tain the curl-conforming interpolatory bases for the pyramid;
hopefully, at the conference, we will be able to show the main
results for these latter bases too.
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