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Hierarchical Divergence-Conforming
Vector Bases for Pyramid Cells

Roberto D. Graglia, Life Fellow, IEEE

Abstract—Divergence-conforming hierarchical vector bases for
the pyramid consist of face- and volume-based functions obtained
by a simple procedure that uses a new paradigm recently
introduced by this author to produce pyramid bases. In order
to define the bases’ order, the procedure starts by mapping
the pyramids into a cube of a new Cartesian space, which
we call the grandparent space, where the basis functions and
their divergences take on polynomial form. Then we get the
face-based functions of zero polynomial order and the volume-
based functions of the first order. Functions of arbitrarily high
order are obtained by multiplying the vector functions of the
lowest order by independent scalar polynomials of higher order.
Our face-based functions conform to those of other differently
shaped elements to allow the use of hybrid meshes, while the
multiplicative construction technique generates right away the
volume-based basis functions. The completeness of the bases is
demonstrated and all the basis functions we obtain are suitably
normalized; their expression involves orthogonal polynomials
which are easy to implement and alleviate the loss of linear
independence

Index Terms — Electromagnetic fields, finite-element methods,
higher order vector elements, pyramidal elements, numerical
analysis.

I. INTRODUCTION

Successful three-dimensional (3D) electromagnetic codes
must be able to model complicated geometries using higher-
order vector basis functions on all four types of geometrical
shapes: tetrahedra, hexahedron (bricks), prisms, and pyramids.
As illustrated in [1], a conceptually simple method for con-
structing vector bases of polynomial order p for tetrahedral,
brick and prismatic cells is to take the product of the zeroth-
order basis vectors of the Nédélec type [2] with a set of
scalar polynomials complete to the p-th order, to obtain a
set of vector functions of the Nédélec type; the base is then
extracted from this set by eliminating any redundancy, that is
all dependent functions. The curl- (divergence-) conforming
bases thus obtained are complete to the p-th order if able
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to represent any vector of polynomial order p, and if the
curl (divergence) of any vector of order (p + 1), yielding a
vector (scalar) of order p, can always be expressed as a linear
combination of the curl (divergence) of such bases. Hence,
when complete, our bases span the mixed-order spaces of
Nédélec [2] (some-times known as reduced gradient spaces
for curl-conforming functions). The complete hierarchical and
interpolatory bases reported in [1] were all constructed using
this multiplicative construction method, and are associated
with a De Rham exact discretized sequence.

Despite this, unfortunately, there is still no generally ac-
cepted method that works equally well on pyramids, that is
on cells with four triangular faces and one quadrilateral face.
On the contrary, the few methods so far introduced in [3]-[11]
to build the pyramidal bases require specialized knowledge
and skills to be understood and have produced higher-order
bases different from each other. Although the literature on
this topic is not consolidated, as already discussed in the
Introduction of [12], the results in [10] nevertheless deserve
particular attention.

The main merit of [10] is to constuct bases in such a
way that they describe finite-dimensional subspaces associated
with a De Rham exact discretized sequence. In particular,
for pyramids, this leads to subdividing the volume-based
divergence- (curl-) conforming functions into different families
of functions, that is those with zero divergence (curl) and
others with non-zero divergence (curl). This obviously cannot
be obtained with a multiplicative construction technique like
ours, and it is of little use if one wants to obtain interpolatory
bases such those in [1]. For our purposes, the main result of
[10] is the number of volume-, face-, and edge-based functions
associated with a pyramid cell (the edge-based are needed only
to build curl-conforming bases); numbers that are identical to
those we find for our bases obtained with the multiplicative
technique.

The relatively small amount of existing literature along
with the complex construction of the pyramid bases becomes
annoying when one is forced to use pyramids to apply an
adaptive technique; pyramids are in fact the natural fillers for
hybrid meshes made up of a mixture of tetrahedra, brick and
prismatic cells [5]. At the same time, there is also a lot of
interest in increasing the order of the elements, whatever their
shape, because

1) models that use higher-order elements use fewer degrees
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of freedom (DoF), i.e., fewer unknowns [1];

2) sophisticated parallel solution strategies can benefit from
the use of higher-order elements [13];

3) mesh refinement occurs more naturally when the mesh
cells are defined by higher order shape functions;

4) h- or p-adaptive techniques provide faster convergence
as the order of the elements increases [14], [15], [16].

Given the growing interest in hybrid models that use differ-
ently shaped cells, and in consideration of all the difficul-
ties encountered so far in building conforming higher-order
pyramids, the new paradigm recently proposed in [12] seems
to be a turning point as it allows to easily produce higher
order pyramidal bases having simple and easily implementable
expressions. Indeed, [12] discusses in depth new hierarchical
curl-conforming bases for the pyramid that complement and
are compatible with the families reported in [1], with contin-
uous tangential components across adjacent cells in the mesh;
that is, the families first presented individually in [17], [18],
[19]. Similarly, the present article uses the same paradigm
as [12] to build hierarchical divergence-conforming bases for
pyramids that complement the families reported in [20] (as
well as in [1]), with continuous normal components across
adjacent cells in the mesh.

The basis functions presented here avoid spurious modes
and solutions because divergence-conforming. They are con-
structed from orthogonal polynomials by a process similar
to that used to generate the vector bases in [20], and are
shown to alleviate the loss of linear independence. As regards
spurious modes and solutions, we recall in passing that they
are encountered every time the null space of the operator at
issue is badly approximated, for example when using scalar
representations with the common equations describing elec-
tromagnetic fields, specifically the integral equations (electric-
field, magnetic-field and combined-field), the curl-curl form of
the Helmholtz vector equation, and the first-order Maxwell’s
equations. In this regard, we may observe that the literature on
spurious solutions of integral equations is not as extensive as
that in the context of the Finite Element Method (FEM), due
to the ease of implementation of the divergence-conforming
functions normally used for the solution of surface integral
equations, such as the zero-order RWG functions, which have
been around for more than 40 years [21], or the higher order
GWP basis functions, published more than 25 years ago [22].

As said, a brief historical review of research devoted to
the development of basis functions for pyramidal cells can be
found in the Introduction of [12]. Here we just reiterate that, in
our opinion, the main problem that researchers have had so far
in building the bases for the pyramid is to find the simplest and
most direct way to build the volume-based vector functions
that here, as in [12], we get thanks to simple analytical and
geometric considerations. The divergence-conforming face-
based functions are in fact derived from the known expression
of the face-based functions of the remaining elements of
different shape that may have a triangular or quadrilateral face
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Fig. 1. Child pyramids are all obtained by mapping onto the observer’s space
a single parent pyramid through suitable shape functions. The figure shows
a child pyramid on the left and the parent pyramid in the center. Shape and
basis functions take polynomial form in the grandparent space (1, £5) where
the pyramid domain is the unit cube shown on the right.

in common with the pyramid (so to speak, by imposing the
normal continuity at the boundary of the cell).

The remainder of the paper is structured as follows. Section
IT reviews the different spaces and variables introduced to de-
scribe the pyramidal elements. Section III presents the lowest
order base given in [5] and its main properties. Fundamental,
first-order volume-based functions are discussed in Section IV
and higher-order bases are presented in Section V. Numerical
results are provided in Section VI. Readers may find it helpful
to review [5], [12] for a detailed introduction to the notation
and other background information. Preliminar results of this
work were presented in [23].

II. PYRAMID GEOMETRY REPRESENTATIONS

A pyramid is described using five parent variables
{£1,82,83,8€4,&5} and its faces are numbered to match the
indexing of the associated parametric coordinate [5], [12]; that
is, the 7-th face of the pyramid is the zero-coordinate surface
for the normalized coordinate &;. More specifically, with refer-
ence to Fig. 1, the fifth face with parametric equation 5 = 0 is
always quadrilateral, the remaining four triangular faces have
equation &; = 0, for j from 1 to 4. We choose as independent
coordinates &1, & and &5, so that V& - (V& x V&) is
strictly positive, while &3 and &, are dependent coordinates.
The dependency relations in the parent space are [5], [12]

§1+8+8& = 1,
+&+& = 1 (D

In addition to the parent space, it is convenient to define
and work in the grandparent space obtained by introducing
the four scaled coordinates [10], [12]

&
nj = ' )
! 1-6&
V¢ +n;VE
Vi, = % 3)
=&

with j = 1,2, 3,4. The coordinate &5 remains an independent
coordinate of the grandparent space. In this case, for &5 # 1,

the dependency relations (1) become

m+nz=1 ne+m=1 4)
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TABLE I: NODAL SHAPE FUNCTIONS FOR THE PYRAMID, FROM [5]

Interpolation Point First Order Shape Functions

base corner 4) (I =&5)mimit1
tip (D &s
Second Order Shape Functions
base corner “) (T —&s5)mimitr [(2ns — 1)

(2ni+1 —1) (1 = &) — &5)

4(1 = &5)2mig1ni—1 mi (2m; — 1)
16 (1 — &5)mn2nam

base edge midpoint 4)

base middle node (1)

lateral edge midpoint  (4) 4nimi+1€5(1 — &5)
tip @ &5 (265 — 1)

With subscripts counted modulo 4, for i = 1,4

This Table reports the interpolatory first and second order shape functions
of [5, Table I] associated respectively with 5 and 14 interpolation points.
To clarify to the reader how these functions are used let us consider,
with reference to Fig. 1, the five first-order shape functions that map the
grandparent cube onto the pyramid of the observer’s space as follows

(1 —&5) (mm2r12 + n2n3ras
+n3nar34 +namrar) + 575

r(n1,m2,m3,M4,85) =

with the constraints n1 + 73 = 1, n2 + 74 = 1, and with 7;; and 75
denoting the vertices of the pyramid in the observer space. Clearly this
mapping is multilinear in the grandparent space, while each face of the
pyramid is mapped by bilinear functions of the grandparent coordinates.
However, going back to using parent coordinates, the parameterizations
of the pyramid faces simplify as follows

on face 1 = 0,&1 =
on face 2 = 0,82 =
on face n3 = 0,&3 =
on face na = 0,84 =

&ama3 + €a734 + &575
&31r34 + 1741 + 6575
€arg1 4+ &ar12 + E575
§17r12 +&3723 + &575

€182m12 + §283T23+
+€38ar34 + 481711

Above we have a first order mapping because each triangular face
is parameterized linearly by its area coordinates &;11,&;—1,&5, with
€i+1 + & —1 + & = 1, using the three corner nodes of the face as
interpolation points (the interpolation points for the quadrilateral face are
its four corner nodes). Similarly, when mapping with second-order shape
functions, we use 6 interpolation points on each triangular face and 9 on
the quadrilateral base of the pyramid, as is always the case for second-
order parameterizations of triangular and quadrilateral faces.

0
0
0
0

Ty =

on face &5 = 0

and, in the grandparent space, the pyramid is a cubic cell [12].
Then, as shown in Fig. 1, the parent and the grandparent cell
are mapped into the observer space (z,y, z) through the use
of appropriate shape functions [5], [12] which are polynomials
of the grandparent variables. Although the shape functions
are beyond the scope of this paper, in Table I we report
the interpolatory shape functions of [5] outlining the first
order mapping, by way of example. In fact, to simplify the
construction of hybrid “conforming” meshes, we find it more
convenient to use interpolatory shape-functions as done in [1]
for all other cells of different shapes (tetrahedrons, prisms and
bricks), although we would not mind at all immediately using
shape functions like those used in computer graphics (e.g.
NURBS, or similar). This means that the shape functions we
use must be interpolatory polynomials of 3 parent variables

on each triangular face of the mesh, and of 4 parent variables
on each quadrilateral face. In order for this to happen, bearing
in mind that on each face one of the parent variables of the
cell vanishes, the shape functions of the pyramid turn out to
be fractional functions of the parent variables (see [5, Table
I]) while, as shown here in Table I, they are polynomials of
the grandparent variables. When using pyramidal fillers, the
shape functions of Table I are in general sufficient because in
most cases the faces are mapped by interpolatory polynomials
of first or second degree; higher grade mappings are rarely
needed.

III. THE ZEROTH-ORDER BASE AND
THE BUBBLE IT HIDES

The pyramidal base of the lowest possible order is reported
in [5] together with the proof of its completeness. For the
reader’s convenience, Table Il summarizes the expressions and
the main properties of this base, as well as the formulas for
calculating the generally non-constant values of the Jacobian
(J), of the gradient vectors (V¢,), and of the edge vectors
(Lap) of a pyramidal cell. Using the grandparent variables
(see Fig. 1 on the right), the lambda functions of Table II
are derived from the fractional functions provided in [5] by
replacing each parent variable £, with (1 —&5)7,. The lambda
functions of Table II form a polynomial base of order zero in
the grandparent space

1) because in the grandparent space the singularities disap-
pear and the lambdas have a polynomial and no longer
fractional form as in [5];

2) because of the completeness identities reported in the
second row on the right of Table II which prove that
any constant vector of arbitrary direction is a linear
combination of these functions, apart from the 1/J
factor;

3) because they are functions with constant divergence,
apart from the factor 1/7;

4) because they have a non-zero constant normal (CN)
component on the face identified by their subscript, with
a zero normal component on the remaining faces.

To build higher order bases it is also important to emphasize
that the zeroth-order functions

As(r) = P22 15— Bo(r) )

contain a component

(771*81 + 77262 o 65)

Bo(r) =& 57 (6)
whose divergence
V-B(r)—é—i 7
T U&7 27

is singular. Bo(7) is a bubble function, where by bubble
we mean a divergence-conforming function with zero normal
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TABLE II: PYRAMID’S GEOMETRY REPRESENTATION AND LOWEST ORDER DIVERGENCE-CONFORMING BASE

As already reported in [12, Table I], the element Jacobian (7) and the
gradient vectors (V&g)

J =002 xe
£ <02 Ve = 02 05 £ x 0
j b

J J
Vé3 = — (V&L + VEs), Vés = —(Véa + VEs)

Vs =

Ve =

are expressed in terms of the unitary basis vectors £, €2, €5 (generally
different from constant) which are the derivatives of the element position
vector r with respect to the independent coordinates &1, &2 and &s. The
element edges are formed by intersection of pairs of zero-coordinates
surfaces, and the edge vectors

Loy =T VEa X V&

are directed along the cross product of the associated coordinate gra-
dients. The edges are given a two-index label deriving from the two
coordinate indices appearing in this cross product. The unitary basis
vectors determine the following eight edge vectors

Los = —ly5 = £ Loz =£° — ¢!
l3s = —f15 = 02 b3y = 00 —pl — 2
lio= £ Ly = 05 — 02

with £12, €23, €34, £41 oriented towards the tip of the pyramid and
£15, €25, €35, £45 arranged counterclockwise when viewed from the tip
of the pyramid. The mixed edges 15, 25, 35, 45 are in common with a
triangular face and the quadrilateral face; the triangle edges 12, 23, 34,
41 are shared only by triangular faces.

By counting modulo 4 all the subscripts obtained by varying « from 1 to
4, the (five) basis functions are

Ay(r) = n}—”ﬁv,l’s — Bo(r)
As(r) = % (e +nae® — £5)
with
m=iTg (-&)Vn=VE Ve
and where
Bo(r) = ¢ (e +mt? £ & .

27 2(1—¢&5)

is a bubble function with vanishing normal component on all the faces of
the pyramid, and singular divergence

ot ) t(g) v
J\1-¢& 2 J\1-¢&s

The base completeness follows from the identities

Az(r)—Ai(r) = 27
As(r) —Az(r) = £2/T
As(r) 4+ As(r) — As(r) eT

On curvilinear pyramids, completeness is with respect to these vectors as
weighting factors. Completeness of the divergence to zeroth order with
respect to 1/J as a weighting factor follows from

VAL (r) =3/2T) V. As(r) =3/T

A; has zero normal component on all faces of the pyramid except on face ¢ where it has a non-zero constant normal (CN) component which matches
with that of the divergence-conforming bases of adjacent elements, possibly of different shape. A; can thus interpolate the vector component normal to
the centroid of face 7 and is readily normalized by ensuring a unit component along the normal at the corresponding interpolation point. The normalized
form of the zeroth order bases is JA;(r)/h;, where h; = 1/ |V&;| is the magnitude of the height vector h; at the centroid of face ¢. Dependencies
among higher order functions arise from linear combinations of the bases which contain one of the following identities as a factor

(1—¢&)mA1L+ (1 —&5)n3As +E&A5/2=0

(1 —&)maAz+ (1 —&5)mAs +E A5/2=0

component on all faces of the pyramid, that is a volume-based
function. Now, by evaluating the divergence of (5) to get

3

=37 ®)

V- Ay (r)

it can be observed that the divergence of B cancels the
singularity of the divergence of the first component to the
right of (5). Notice here that By cannot be represented by
polynomial basis functions, nor can it be a basis function of
a polynomial base due to the singularity in its divergence;
yet, By is a component of as many as four basis functions
of order zero. That said, by considering the expression of
the divergence (7), and trying to increase the order of the
functions, it is reasonable to expect (1 — &5)Bg to be a
polynomial bubble. This is the case only if both (1 — &5)By
and its divergence are polynomials (we establish the order of
this bubble only after this has been verified). In fact we obtain

2(1 —&5)Bo = &As )

465 — 1

V- [2(1 =&)Bo]l = V - [&As5] = j

(10)

Since Aj is of order zero, {5 A5 is a first order function with
the linear (i.e., first order) divergence (10); therefore (9) is a

first-order bubble.

To grow polynomial bases in a hierarchical way from zero
to higher orders, and in particular to define the basis subset of
bubble functions, we must introduce other polynomial bubbles
beyond (9) that we construct, whatever their order, starting

from the fundamental bubbles presented in the next Section.

IV. THE FUNDAMENTAL BUBBLES

Reiterating our intention to form polynomial vector bases
in space (n,&5), we observe that the lowest-order bubble
functions we are interested in finding are those with linear
divergence, since it is clear that there are no bubble functions
with constant divergence other than zero. The lowest-order
bubbles are identified by observing that on the left of the two

equations

(I =&)mAr+ (1= &)msAs+E&A5/2 = 0
(1 —=&)mAs+ (1 —&)mAs + & A5/2 =
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reported at the bottom of Table II, we are adding up de-
pendent functions. We can therefore consider the functions
(1 —&)mAq and (1 — &5)n2Ao as dependent on the three
independent bubbles

(1—=&)nsAs, (1 —E&)maAy, 2(1—E&5)Bo

Using the definition (5) of A, we see that the two functions to
the left of (12) contain the higher order bubbles (1 —&5)n3Bo
and (1 — &5)nsBo which we promptly remove, and this is the
last step that, starting from (12), yields the three fundamental
bubbles of the first order

12)

Ap1 [ nsme’
Apsy | = % 14126 (13)
Aps | & (€ —me" —nat?)
with first-order divergence
Ap: | 1—2m
Vol A | == | 1-2n (14)
Aps | Tl1- 485

The divergences (14) are special cases of the more general
result

A (1+a)=-2+a)m nenbel
Voninhed | Ape | = | 1+B) -2+ 8 | 2 v
A3 | (146) = (4+ )&

(15)
which stems from the fact that the divergence of any linear
combination of terms such as 775 ¢8(1 — &)£% (where the
superscript a in £% is 1, 2, or 5) takes a polynomial form in
the grandparent space (1, &5). (Of course, each term of these
linear combinations can have different values of the exponents
a, 3, and 6.)

Equation (14) proves that Api, Aps, Aps belong to the
same space and are of the same order, ie the first order. This
result would not be so evident if we wrote these functions in
terms of zero-order basis vectors, as follows

A (1 —=&5)nsm (Az — Ay)
Apy | = | (1 =&)mane (As — Ay) (16)
Aps =& A5

V. HIGHER ORDER BASES

Higher-order hierarchical bases are obtained in a direct and
clear way thanks to the new paradigm presented in [12] which
for divergence-conforming sets is stated as follows

1) The vector components and the divergence of the basis
functions are polynomials of the grandparent variables
{m, &}. Unisolvency and base completeness must be
proved in the grandparent space.

2) Each higher order vector function is obtained by mul-
tiplying one vector function of zero order, or a com-
bination of zero order functions (as it happens for the
fundamental bubbles of the previous Section), by a scalar
generating polynomial which, in turn, is the product of

normalized orthogonal polynomials (the same was done
in [1], [20]).

3) The multiplicative polynomials are defined in the grand-
parent cubic cell of Fig. 1 (whose vertices are points of
intersection of only three edges and faces).

4) On the pyramid border, the multiplicative polynomials
that generate the face based functions coincide with
those for the adjacent elements, no matter what shape
they have.

Notice here that we can discuss on the order of the bases
precisely because, or only when, the basis vectors are ex-
pressed in the grandparent space, which is precisely the only
space in which they, together with their divergence, take on
a polynomial expression. The basis vectors are defined using
the orthogonal normalized sets of shifted Jacobi polynomials
listed in Table III. Some of these sets have already been used
elsewhere (for example in [12]) to form curl-conforming bases.
The polynomials we use here are marked with a tilde on their
symbol to avoid any possible confusion with the definitions
given in previous articles.

According to our paradigm, for the face-based polynomial
functions shown in Table IV it will be sufficient to demonstrate
the continuity of the normal component through adjacent cells
that may have different shapes, which we do in the following
two sub-sections V.A and V.B. To this end, we recall that to
ensure conformity, the face-based function straddling two ad-
jacent cells must be oriented so as to have continuous normal
component on the common face. Currently we guarantee that
this happens only afterwards using the procedure explained
in [20, Section III] and in [1] to adjust, if necessary, the
sign of the face-based vector function on one of the two
adjacent cells; the correct sign of the face-based functions can
be embedded a priori in the expression of the functions with
more sophisticated techniques.

A. Functions Based on Triangular Faces

For the pyramid, the divergence-conforming p-order com-
plete set has a total of 2(p 4+ 1)(p + 2) functions based on
triangular faces because each zero-order function A, (for
~v = 1to 4) generates (p+1)(p+2)/2 functions hierarchically
organized as shown in the left column of Table IV. The
multiplicative polynomials

Fy = (1= &) Ai(1y41) C(&5)

of Table IV which generate these functions can be written as
follows

a7

= Qi(&y11,6,-1) O (&5)

where Q;(&y+1,&y—1) is the normalized, shifted scaled Leg-
endre polynomial defined in [12]. Expression (18) clarifies
that, in the end, F), depends only on the variables used to
parameterize face 7, namely the three face variables &, 1,
&y—1, and &, with &5+&,41+E&—1 = 1. The polynomials F},
do not depend at all on the three-dimensional shape of the cell

(18)
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6
TABLE III: NORMALIZED ORTHOGONAL POLYNOMIALS USED TO BUILD DIVERGENCE-CONFORMING BASES
Normalized polynomial Py, (2) Normalization coefficient Weight function
An(2) = No P (22 — 1) No=+V2n+1 !
(2n+5)(n+3)(n+4) 2,2
= 2,2 Ny = 1—2)%z
Bu(z) = Ny PP (22 - 1) b V (n+1)(n+2) (-2
~ _ _ 2m+1
O™ (2) = N P10 (22 — 1) Ne=+/2(m+n+1) (1-2)
_ _ )4
Dn(z) = Ny P9 (22 — 1) Ng=V2n+5 1-2)
20+ 7)(n +5)(n +6) i
~ 4,2 N, = 1—2)%z
En(2) = Ne PAMP (22— 1) ¢ (n+1)(n+2) ( )
As already done for the other polynomials reported in [12, Table III], here too the polynomials Py, (z) in the left column are obtained by rescaling
the shifted Jacobi polynomials P(a )( — 1) of order n, being P, = P,(IOO) the Legendre polynomial. The system of polynomials P,(laﬁ ) (2z2-1)
is orthogonal on the interval [0, 1] with respect to the weight function (1 — 2)® 2%. The normalization coefficients depend on the order n of the
polynomial itself, as well as on the value of the integer m that defines the exponent o of the corresponding weight function, reported in the right
column for clarity. The polynomial systems listed in the left column satisfy the orthogonality relation
1
[ w0 Pu) Pela) 02 = b
0
being J,,¢ the Kronecker delta function. These polynomials have a zero derivative for n = 0, while for n > 0 we have
d -~ P, 2z—1)—(2z2—-1)P,(22 -1 d ~
da An(z) _ (n+ 1) N, n+1( ) ( ) n( ) @ Dn(z) _ (n+ 5) Ny PT(L577;)(22 _ 1)
dz 2z(z — 1) dz
d =~ o d .
SB® = (s NPz B = (DN PV -1
d
= Ci™(2) = (2m+n+2) Ne PEmT2D (22 1)
that rests on face v, be it pyramidal, tetrahedral or triangular , 1s equal to unity
prism-shaped. (The names, or better, the subscripts associated )
with the parent variables {&y41,&,—1,&} may depend on / / Fioi( 2 d1? =
the shape of the cell, but clearly this does not change the 1—¢s
. . 2
s1.1bstan.ce of things). Since F}}, does not depend on the three- / / [ Fz%k(fv +1,8)]7 d&5déypq = (21)
dimensional shape of the cell, we can then recognize that, 0 Jo

paying due attention to the names and order of the subscripts,
the set (17) coincides with the polynomial set F,,,,(&€,) given
in [20, Table IV], except for a sign factor (—1)™, with

(=)™ Frun(&,) CM(&) (19)

. nil —
_FnOm_

Qn(g’y-ﬁ-la g’y—l)

t = {ga;gbagc} = {g’y+17£’yflv£5} (20)

This occurs despite the fact that the F,,,(&,) in [20, Table
IV] have been obtained with an ad hoc technique, i.e. by
orthogonalizing a polynomial set formed by the product of
Legendre’s polynomials. The sign of F), in Table IV (and
of E,,, in (19)) is irrelevant because the continuity of the
normal component of the vector basis function that straddles
two adjacent cells having the triangular face in common is
fixed a posteriori simply by adjusting the sign of this function
in one of the two adjacent cells. In fact the polynomials F};,
are normalized as in [20] so that the integral of the square of
F,. on the triangular parent face &, = 0, i.e., on the simplex

1 1
/0 / (1= &) [F (a1, &) dés dnyin = 1

B. Functions Based on the Quadrilateral Face

The divergence-conforming p-order complete set has a total
of (p+ 1)? functions based on the quadrilateral face &5 = 0
hierarchically organized as shown in the right column of Table
IV. The zero-order function Aj that generates the higher order
functions

Ao = FloAs (22)
V- A”0 \7}7”0 (23)

contains the factor (1 —&5), and this in any case would cancel
the singularity in £5 = 1 of the gradient of the multiplicative
functions of Table IV

Fi5jO = Zi(m) Zj(m)

of global order ¢ + j, with 0 < 2,5 < p. Even better, in this
case we get

(24)

As - VF =0 25)
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TABLE IV: THE DIVERGENCE-CONFORMING, FACE-BASED FUNCTIONS SUBSET OF ORDER p STRUCTURED IN HIERARCHICAL FORM

Functions Based on the Triangular Faces £y = 0
For v =1, 2, 3, and 4,
each A, generates (p + 1)(p + 2)/2 functions

Al =F)

i0k = 70k A"/

1 ~
V-A), = 37 [3 F .+ Ai(ny41) Gik(gf))}

obtained for ¢,k = 0,1,...
organized as follows

,p with (¢ + k) = p, and hierarchically

o for p = 0 the set is made up of Agoo;
o for p > 1, one has to increment the set of order (p—1) with (p+1)
polynomials A}, obtained for

Functions Based on the Quadrilateral Face £&5 = 0

A5 generates (p + 1)? functions
AS F5 A
ij0 = Fij04x5

EF.5

5
V- A; 750

ij0 — J
obtained for 2,57 = 0,1, ..., p, and hierarchically organized as follows

e for p = 0 the set is made up of ASOO;

o forp > 1, one has to increment the set of order (p—1) with (2p+1)

polynomials A?jo obtained for

j=0top;
i =0top—1.

=1i1=p,
=>Jj=p

i=p—k, k=0top.

With  Fjj = (1= €)' Ai(41) CF (6),

_ _e 4 i 5 _
Gir(6s) =& g [(1-6)' O (65)] =

=20+k+1)¢& {fi(l _ 55)1'711;,152#1,0)(2

€ — 1)+ (1— &) (2i +k+ 2P0 (26 - 1)}

Ffo = Ai(m) A;(m2), As -V} =0,

On the face &5 = 0, the polynomials (24) simplify into
Fi5j’0‘55=o = V2i+11/2j+1P(& —&) Pi(&2—8&) (26)

and are therefore identical to the multiplicative polynomials
used in [20] to define the functions based on quadrilateral
faces, which demonstrates the continuity of the normal com-
ponent on the face in common to the adjacent cell, be it a
brick, a prism, or another pyramid.

C. Volume-Based Functions

In addition to the face-based functions of the previous
subsections V.A and V.B, the divergence-conforming p-order
complete set has a total of 3p(p + 1)? independent bubble
functions hierarchically organized as shown in Table V. The
number 3(p — 1)p 2 of volume-based functions in [10] coin-
cides with the number of our bubbles by replacing p with
(p+1).

Ultimately, for a given order p, our pyramid and brick
bases have the same number of independent bubbles, i.e., the
same number of internal degrees of freedom (DoF). More
precisely, for both the pyramid and the brick, the number of
curl-conforming bubbles is 3p?(p+ 1) [12] while, as said, the
divergence-conforming families have 3p(p + 1)? bubbles.

D. Bases’ Completeness

Completeness to order p in the divergence can be proved
starting from (15). However, in this regard, it is much easier to
observe that completeness is a direct consequence of the fact
that the pyramid is mapped into a brick (i.e. the grandparent
cube), and of the fact that the number of bubbles of a brick
of order p is identical to what we obtained for the pyramid of
the same order.

Likewise, completeness of the p-order vector base follows
from the fact that the basis functions set contains all the face-
based functions up to the p-order which can be defined on
the bounding faces of the pyramid, plus all the volume-based
functions up to the p-order which can be defined on a brick.

E. The First Order Base as an Example

The equality of the number of bubbles for the pyramid
with that of the brick is not surprising when we consider
that we have obtained these bases by working on a unitary
cube. The space (parent or grandparent) in which this cube is
located does not really matter. To clarify this, let us consider
for a moment the bubble functions of the first-order base
shown in Table VI, and in particular the divergence of these
(here we do this for convenience, because the divergence is
a scalar quantity, but the reasoning can be repeated for the
vector components of the basis functions). The divergence
of each bubble in Table VI is proportional to one of the
scalar functions reported at the bottom of the same Table
VI, and any linear, bilinear or trilinear function is certainly a
linear combination of these scalar functions. As for divergence,
the zero-order face-based functions and the linear bubbles of
Table VI form a complete first-order set. To get the first-order
complete vector set, we simply add to it the first-order face-
based functions subset.

FE. Number of Degrees of Freedom
The number of degrees of freedom for divergence-
conforming bases of order p on a pyramid may be determined
as follows:
« one component X((p + 1)(p + 2)/2) DOF’s x four
triangular faces plus one component x(p + 1)2 DOF’s
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TABLE V: THE DIVERGENCE-CONFORMING, VOLUME-BASED FUNCTIONS SUBSET OF ORDER p STRUCTURED IN HIERARCHICAL FORM

We define the volume-based functions in terms of the following first-order bubbles with first-order divergence

B1 __
Aijk -
B2 __
Aijk =
B3 __
Aijk -
1
B1
VoAGL=7
1
B2
VoAGi=<
B3
VAP =

obtained for 7,5 =0,1,...,pand k =1,...

e for p = 0 there are no bubble functions;

Api 1_ n3m e Api 1| 1—=2m
Apy | = % nan2L> , V.| Ap2 | = 7 1—2m2
ABS 55 (£5 — 771[1 — n2£2) ABS 1- 455

There are 3p(p + 1)? independent bubble functions of polynomial order (i + j + k)

Ai(n2)D;(&5)Br—1(m)Ap1
Ai(m)D;(&5)Br—1(n2)Ap2
Ai(m)A;(n2) Ex—1(&5)Aps

Ai(m2) D (&) [(1 o) B () + (1 — m)m(%ék_um)}
~ _ _ d -~
A;(n)Dj(&s) {(1 —212)Bi_1(n2) + (1 — 7]2)7727ka1(772):|

1~ ~ ~ d ~
in(m)Aj (n2) [(1 —4&5)E_1(&5) + (1 — &)és @Ekfl(fd]
,p, and hierarchically organized as follows

o for p =1 the set contains 12 functions obtained by setting {ijk} = {001}, {101}, {011}, {111},
o for p > 2, one has to increment the set of order (p — 1) with 3p(3p + 1) polynomials with indices i, j, and k obtained for

dn2

i =p, j=0top, k=1ltop—1;
i=0top—1, j=np, k=1top—1;
i =0 to p, j=0top, k=np.
x one quadrilateral face = (p+1)(3p+5) face degrees 103 \
of freedom.
« three components xp(p+1)2 DOF’s = 3p(p+1)? interior <
degrees of freedom. g
for a grand total of degrees of freedom per pyramid equal to %102 i
DoF# = (p +1)(5 + 6p + 3p?) @n %
Once again, by replacing p with (p—1), the grand total of DoF 5 |
equals 3 p>+2p and agrees with the number of DoF previously .2 10"k o brick
determined in [10]. The number of DoF of the pyramid is 5 @pyramid
always lower than that of the brick, while it remains higher % prism
than that of the triangular prism for p > 1 (see Fig. 2). Recall 0 ‘ ‘ ‘ ‘ Atetrahedron
that pyramid and brick have the same number of interior DoF B 0 1 2 3 4 5

[1].

VI. NUMERICAL RESULTS

Divergence conforming bases are usually employed in the
numerical solution of integral equations via the Method of
Moments (MoM). The main problem encountered in the use
of hierarchical bases, not only the divergence-conforming but
also the curl-conforming ones, is that the linear independence
of the basis functions and the conditioning of the finite
problems to be solved get worse as the order of the base
increases [1]. In other words, the Condition Number (CN) of
the system matrices obtained with the MoM tends to worsen as
the order of the hierarchical base in use increases, although we
have “injected”, so to speak, some orthogonality into the set of
the basis-functions precisely to guarantee a good control on the

Basis order p

Fig. 2. Total number of degrees of freedom (DoF) for divergence-conforming
vector bases of order p on single, differently shaped canonical cells.

deterioration of the CN of the system matrices (by the way, this
is more easily achieved using the Galerkin testing technique).
In this regard, note that the advantages of using orthogonal
bases are less evident in the solution of integral equations
than those commonly found while numerically solving partial
differential equations with orthogonal, curl-conforming bases.
This happens because the discretization of integral equations
involves singular integrals which gives rise to fully populated
matrices, while the discretization of differential problems
leads to sparse matrices and, above all, does not require the
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TABLE VI: THE FIRST ORDER VOLUME-BASED FUNCTIONS SUBSET

The base of order p = 1 has twelve bubble functions
B
A0011
A
A

B1
Alll

AB = AB2 —

which in terms of the two array functions

5
7
M(n,65) = V210 yFE@E -1
(665 — 1)

V3(2n — 1)(665 — 1)
can be written in compact form as follows
ABY = Ay M(n2,&5),

VAP = (1—2m) M(n2,&5),

@2m —1) = (m —n3),

(2m = 1)(2n2 — 1) = (m —n3)(n2 — Na),
(2m2 — 1)(1 — 4&5) = (m2 — ma)(1 — 4&5),
(2n2 — 1)(1 — 6&5) = (n2 — na)(1 — 6&5),

AB2 = Apy M(n1,&s5),

V- AP? = (1-2m2) M(n1,&5),
The divergence of each bubble is proportional to one of the following scalar functions

(2n2 = 1) = (m2 — na),

(2m —1)(2n2 — 1)(1 = 6&5) = (m — n3)(n2 — na)(1 — 6&5),
(2m —1)(2n2 —1)(1 —4&5) = (m1 —n3)(n2 — a) (1 — 45)

AgG A
A?()Zl ABS _ AIBO?)I
AGH . A
AT AT
1
V3(2m — 1)
N(m,m2) = V105
V3(2m2 — 1)

3(2m —1)(2n2 — 1)

AB3 = ApsN(n1,m2);
V- AB3 = (1 - 4&)N(ni,n2)

(1 —48) = (1 —4¢s5),

(2m — 1)(1 —4&5) = (m —n3)(1 — 4&s),
(2m —1)(1 —6&5) = (m —n3)(1 — 6¢5),

computation of integrals with singular kernels. (All this does
not happen by chance, since the polynomials used in the
construction of the hierarchical bases are precisely orthogonal
with respect to non-singular weight functions.)

The volume-based functions proposed here are orthogonal
for integrals on the volume of the pyramid, while the face-
based function subsets are orthogonal only for integrals on the
corresponding supporting face. However, as we did in [20],
it is possible to make the face-based functions orthogonal
also on the volume of the pyramid simply by adding to
each of these a suitable linear combination of the volume-
based functions. This has not been done in the present paper
because it is not worth the trouble for the intended MoM
applications, as just said. Instead, it remains of fundamental
importance that the basis functions are not only independent,
but also properly normalized; this is the main reason why we
have used orthogonal polynomials to construct our divergence-
conforming hierarchical bases.

For brevity and to avoid any loss of generality, we do
not consider any integral equation; we rather establish that
the degree of independence between the hierarchical basis
functions of the pyramid is substantially similar to that of the
basis functions for non-pyramidal cells by computing, as done
in [12], the CN of the Gram matrices obtained using bases of
different order on single straight cells, although admitting that
to better assess the linear independence of the basis functions
we should consider and study a large number of meshes,
including hybrid ones that use curved cells. However, the

10 ) p§‘7ramid

fxprism
Atetrahedron
Fo brick

—_
(=]
o

Condition Number
=
[\S]

—_
(=)
T

0
i 0 1 2 3 4 5

Basis order p

Fig. 3. The individual element Gram-matrix condition numbers grow expo-
nentially with the order of the hierarchical base in use. The figure shows results
obtained by considering differently shaped rectilinear cells whose edges have
the same unitary length. The CNs for the other differently shaped equilateral
elements of the same order are reported in [1, Chap. 5, Table 5.23].

advantage of doing as we do here is that the coefficients of
the matrices we study are given by simple, non-singular 3D
integrals on the child cell.

Fig. 3 reports results for the individual element Gram-matrix
condition numbers for hierarchical vector bases of different
order obtained by considering rectilinear cells with equal
edges and of unitary length. (Note that the CNs shown in
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Condition Number
=

10!k 4
@ AR=1 equilateral’
AAR=V5 ~ 2.24
ODAR=V13 ~ 3.61 |
10° ‘ ‘

0 1 2 3 4 5
Basis order p

Fig. 4. Individual element Gram-matrix condition numbers for the rectilinear
pyramids shown in Fig. 5, with Aspect Ratio AR=1 (equilateral), AR= /5,
V13.

and AR=

Fig. 5. The figure shows pyramids of different Aspect Ratio (AR) already
studied in [12]: AR = 1 (equilateral) on the left, AR = V/5 in the center, and
AR = /13 on the right. The Jacobian 7 of the transformation from parent-to-
child space is constant for an equilateral pyramid, while for distorted pyramids
it can vary within the cell. For example, we have J = K for the pyramid
shown on the left, while 7 = K (14 n1 + n2) for the pyramid shown in the
center, and J = K (1 + 2m1 + 2n2) for the pyramid shown on the right.

Fig. 3 do not depend on the cells edge-length in the child
space since the unitary basis vectors and the Jacobian of the
transformation from parent to child space are constant for the
cells considered in Fig. 3.)

Fig. 4 compares the individual element mass-matrix condi-
tion numbers of the equilateral pyramid of Fig. 3 with those
for pyramids obtained by moving one vertex of the base
of the equilateral pyramid along its diagonal, doubling and
tripling the length of this diagonal as depicted in Fig. 5. These
pyramids have equal height and equal length for one of the
diagonals of their base, but flat quadrilateral base of different
shape. The ratio between the longest and the shortest side of
each cell, commonly known as Aspect Ratio (AR), is given in
the captions of Fig. 4 and 5. Note that unlike the equilateral
pyramid, the distorted pyramids considered in Fig. 4 do not
have a constant Jacobian. In view of the results of Fig. 4, we
recommend using cells with AR near unity and less than 3
when using bases of order higher than the first.

In the end we find that for the pyramid the CN growth rate
of the Gram matrix is not substantially worse than that of the
hierarchical bases for other differently shaped cells (bricks,

10

triangular prisms and tetrahedra).

VII. CONCLUSIONS

This paper presents a general very simple procedure to
obtain higher order hierarchical divergence-conforming vector
basis functions for pyramidal elements. The functions can be
consistently used to deal with curvilinear elements and ensure
the continuity of the normal vector component across adjacent
elements of equal order but different shape. Properties of the
vector basis functions are discussed in detail. The reported nu-
merical results show that the degree of independence between
the hierarchical basis functions of the pyramid is similar to
that of the basis functions for the other non-pyramidal cells.
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