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ABSTRACT
Global Navigation Satellite System (GNSS) receivers are vulnerable to intentional radio frequency interferences, posing signif-
icant risks to their performance and reliability. Among these threats, it has been widely argued that modern GNSS-equipped
Android™ smartphones are resilient to non-coherent spoofing attacks. This study challenges such a perception by highlighting
the vulnerability of GNSS-equipped Android™ smartphones to single-antenna, non-coherent spoofing attacks and proposing a
novel, application-level detection technique solely based on raw GNSS observables, i.e., carrier-to-noise-density time series.
The analysis demonstrated the capability of successfully detecting such attacks by observing the cross-correlation among Global
Navigation Satellite System (GNSS) measurements time series. Cross-correlation quantified by Pearson’s correlation coeffi-
cients shows a relevant increment during harmful spoofing attacks. Under these conditions, the proposed methodology allows
to rise a spoofing alarm in about 5 seconds with a false alarm probability of 1.5%. Furthermore, the proposed technique does
not require low-level signal access, making it suitable for implementation at the application layer in a large number of smart
devices with limited knowledge of their low-level system architecture. A validation campaign has been performed by testing 18
different Android™ devices and chipsets, thus demonstrating the applicability of the proposed method independently from the
device under test.

I. INTRODUCTION
With the rapid development of positioning and navigation technology based on the GNSS, mass-market applications have
significantly increased with a demand for more accurate and reliable Positioning, Navigation and Timing (PNT) services. In
May 2016, Google announced the availability of raw GNSS data starting for the devices running Android™ 7. For the first
time, developers could access carrier and code measurements, internal clock information, and eventually, also to the decoded
bit of the navigation messages. Several applications have been developed relying upon raw GNSS measurement availability
as in the context of high-accuracy positioning applications (Lachapelle and Gratton, 2019; Minetto et al., 2022) as well as in
collaborative navigation (Minetto et al., 2021). Besides these applications, since they provide, to a certain extent, an insight into
the processing taking place inside the chipset, raw GNSS measurements can be used to analyze the effects of Radio Frequency
Interference (RFI) affecting the GNSS received signals.
Detection strategies for anthropogenic RFI, such as jamming and spoofing threats, have been extensively discussed in the liter-
ature(Dovis, 2015). However, many of the proposed spoofing detection techniques require the implementation of sophisticated
algorithms requiring to access low-level signal processing stages of the GNSS receiver to be effective against simplistic to
advanced spoofing attacks (Humphreys et al., 2008). Others are suitable only in specific experimental conditions and lack gen-
erality. A classical technique for spoofing detection based on the carrier-to-noise ratio (C/N0) is proposed in (Jafarnia-Jahromi
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et al., 2012), where the measured C/N0 of received GNSS signals is compared to a threshold or expected value. If its measured
C/N0 is significantly lower than the expected value, it could indicate that jamming or spoofing is ongoing, and the signal
should be discarded. A classical technique for detecting spoofing attacks involves comparing the measured carrier-to-noise ratio
C/N0 of received signals to an expected value to identify unspecified RFI. Unexpected increments of the C/N0 can be easily
associated with spoofing threats. A significantly lower measured C/N0 may indicate the presence of RFI, and the signal should
be discarded, as proposed by (Jafarnia-Jahromi et al., 2012).
However, if a counterfeit signal is correctly tracked and unspread, it can show a C/N0 value within a nominal range, even though
jamming or spoofing is performed. Detection of such malicious actions can be difficult in this case, as the C/N0 measurement
may not show any abnormalities. In such cases, other techniques operating at signal level, i.e., over frequency or time domains,
or the use of integrity messages from augmentation systems, have to be considered in conjunction with C/N0 monitoring to
provide a more robust spoofing detection. An early proposal to investigate the cross-correlation between raw GNSS data under
spoofing was proposed by (Broumandan et al., 2012) for kinematic receivers. It leveraged spatial correlation introduced in the
Doppler shift observations by the movement of the receiving antenna. Such a technique seems not applicable to static receivers
and it has been surprisingly neglected in recent research. A recent work by (Spens et al., 2022) proposed an effective strategy to
detect and discriminate jamming and spoofing threats in mass-market devices that is based on Automatic Gain Control (AGC)
and C/N0 observations. The proposed methodology leverages the following assumptions from (Lee et al., 2021; Manfredini
et al., 2018), i.e., i) if AGC value decreases and C/N0 decreases, jamming is likely, ii) if AGC value decreases and C/N0 is
relatively constant, spoofing is more likely than jamming.

Unfortunately, depending on the different Android™ versions, AGC values are not granted for outdated devices and, if avail-
able, they are not as reliable as other classes of raw GNSS measurements, as discussed in (Spens et al., 2022). Besides, the
discrimination of anomalous C/N0 values requires the non-trivial definition of a threshold and the identification of a transient
in the observed data. Therefore, the proposed algorithm also combines several controls over different metrics, i.e., it compares
i) GNSS estimated location and estimates from other location providers (e.g., network), ii) checks for the Android™ mock
location flag, and compares GNSS and Android™ system times. An extended literature review on these methods can be found
in (Rustamov et al., 2023)
In this study, we show how statistical characterisation of the C/N0 can indeed reveal that a spoofing attack is being performed,
and to a certain extent also discriminate between counterfait and legitimate signals among the tracked GNSS signals at the
receiver. By assuming Android smartphones as a reference framework, we present a performance assessment of a technique
for the detection of single-antenna spoofing attacks. The proposed solution exploits the spatial and temporal correlation of the
spoofing signals, and it is validated through an extensive, experimental campaign based on the analysis of the correlation of the
raw output data provided by various Android™ smartphones.

The rest of the paper is organized as follows: Section II recalls the fundamentals on GNSS and spoofing signals as well
as their effects on the observed GNSS raw measurements. By targeting C/N0 time series, Section III introduces the method-
ology for a spoofing detection strategy exclusively based on those class of raw GNSS data. A performance assessment is then
presented in Section IV and, eventually, conclusions are drawn in Section V.

II. BACKGROUND
In absence of interference, a real GNSS signal at the receiving antenna can be modelled as the sum of Ns satellites’ signals

xfc(t) =

Ns−1∑
i=1

√
2PR,iDi (t− τi)Ci (t− τi) cos (2π (fc + fd,i(t)) t+△θi) + n(t) (1)

where PR,i is the received signal power of the in-phase and quadrature ensemble, Di(t) is the navigation data bit stream, Ci(t)
is the pseudo-random code sequence, fc is the carrier frequency shifted by the observed Doppler shift fd,i, τi is the propagation
delay, and △θi is the phase offset. Eventually, n(t) is the thermal noise contribution. It is worth remarking that the term
Di(t− τi)Ci(t− τi) can be BPSK, BOC, CBOC or AltBOC modulated. The unique characterisation of the satellite-to-receiver
signal propagation path affects the received power PR,i of each GNSS signal and in turn it may condition the observables
generated by the receiver.

1. Non-coherent spoofing
An ideal spoofing attack would emulate satellites’ signals incldued in (1) while altering their characteristics to fake the state
estimation of a victim receiver. A smooth signal takeover requires a coherent signal transmission by the spoofer that is typically
hard to achieve. Indeed, simplistic spoofing attacks are often referred to as non-coherent, as the code and carrier phase as well
as the time reference in the navigation message are not kept consistent with the legitimate ones.
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Figure 1: Examples of AGC and C/N0 behaviours under effective spoofing attack on Android™ smartphones. Spoofing effectiveness was
declared upon spoofed position was estimated by the device under test.
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where the apex (·)(S) identifies the altered signal properties w.r.t. to (1). In particular a further Doppler shift term, f (S)
d (t), is

introduced by the relative kinematics of the spoofer and victim antennas. Under spoofing threat, both the signals in (1) and (2)
reach the receiver antenna and the overall received signal can be modeled as

xtot(t) = x̄fc(t) + x̄
(S)
fc

(t) + n(t) (3)

where x̄ indicates noiseless, legitimate and spoofing signals derived from (1) and (2) by neglecting the respective noise terms.
The overall received power is naturally increased by the spoofed signals thus typically inducing the feedback of the AGC in
GNSS receivers, as discussed by (Bastide et al., 2003).

2. Effects of signal propagation on raw GNSS measurements
Unless satellite-based spoofing actions are considered, legitimate and spoofed GNSS signals are subject to different propagation
paths. Legitimate GNSS signals are mostly conditioned by the free space path loss, ionospheric signal scattering and multipath.
Such impairments rarely affect all the received signals power at the same time. Furthermore, different attenuation and
impairments affecting each signals return heterogeneous behaviours of the raw measurements, i.e., AGC,C/N0 and pseudorange
measurements. On the contrary, the propagation path travelled by spoofed signals in case of single antenna attacks, is common to
all the received signals and reflects the channel properties of spoofer-to-receiver line-of-sight or reflected paths. As anticipated in
Section I, previous works discussing spoofing detection methods for mass-market devices have rarely leveraged such a temporal
and spatial correlation of raw measurements. They have usually analysed short-term observations of single-value metrics or
peculiar transients in their time evolution. In Figure 1, we observe that state-of-the-art approaches reviewed in Section I seems
valuable to classify the spoofing event. Indeed, as shown in 1a on spoofing action the AGC quickly reacted to the additional
received power at the receiver by reducing the gain in two different devices, i.e., a Xiaomi Redmi 8 and a Xiaomi RedMi 8 Pro.
Similarly, in Figure 1b we observe a quick reaction of C/N0 which generally improves for all the signals that are both available
as legitimate and counterfeit, i.e., common. However, some limitations have to be noticed about these observations:

• AGC value drops under spoofing depends on the device, this makes difficult to generalize a threshold for the spoofing
detection

• AGC value is an aggregated metric that may not be able to sense few spoofed signals especially when spoofer acts with
calibrated power levels.

• C/N0 increment may vary depending on the tracked signal and it may fail in case of power-calibrated spoofers.

However, in Figure 1b, we can observe that spoofing introduces a remarkable similarity in the C/N0 time series that appears
poor before the spoofing period. Such a similarity seems not related to the magnitude of the C/N0 and is further verified in the
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Figure 2: comparison of C/N0 time series for different PRNs during the spoofing (upper panels) and non spoofing period (lower subplots),
and associated linear correlation plot (right subplots). Discontinuities in the time series are mapped to null values in the correlation plots.
Observation window of duration Tn = 50 s.

examples of Figure 2. A simple linear regression performed on pairs of C/N0 time series quantify the correlation introduced
by the spoofed signals w.r.t. the correlation between the legitimate ones.

3. Single value observations vs. C/N0 correlation index
Figure 3a shows how the positive or negative variations of C/N0 and AGC value are effectively exploited by (Lee et al.,
2021), (Manfredini et al., 2018), and (Spens et al., 2022). By relying on the observed correlation, Figure 3b shows our
target methodology by highlighting its independence on the C/N0 variations. The idea is to extract a reliable correlation
index constrained in the range [0, 1] to discriminate those signals which are being transmitted through the same physical
channel.Intermediate variations in the range can be exploited to establish a certain level of severity of an occurring attack.
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Figure 3: Pictorial view of current state-of-the-art approach for spoofing detection through raw GNSS measurments observations and the
proposed approach.

III. METHODOLOGY
1. Retrieving correlation coefficients from raw measurements time series
Let us consider the pairwise cross-correlation between two time series Xi and Xj

RXY (t1, t2) = E
[
Xi(t1)X

∗
j (t2)

]
(4)



where E(·) is the mean operator, t1 and t2 identifies two generic time instants, and the (·)∗ indicates the complex conjugate of
the argument. By subtracting the mean to each series, the cross-covariance function is obtained as

CXY (t1, t2) = E[(Xi(t1)− µXi
(t1))

(
Xj(t2)− µXj

(t2)
∗)]. (5)

Assuming Xi and Xj being C/N0 data series observed over short timespans (less than 1 minute) we can reasonably neglect
any long-term trends and assume them as wide-sense stationary processes. In light of this, (5) is changed as

CXY (τ) = E
[
(Xi(t)− µXi

(t))
(
Xj(t+ τ)− µXj

(t+ τ)
)∗] (6)

where τ = t1 − t2 highlights the independece on the choice of the time instants t1 and t2. To remove the scaling factor of the
correlation, we normalize (6) through the Pearson correlation function

ρXi,Xj (τ) =
CXY (τ)

σXiσXj

(7)

The maximum value assumed by (7) corresponds to the Pearson correlation coefficient (Fisher, 1925; Kendall et al., 1948), and
is computed as

ρXi,Xj
= max

{
ρXi,Xj

(τ)
}
=

cov (Xi, Xj)

σiσj
. (8)

In case the size and values assumed by Xi and Xj are identical, the argument of (8) which maximizes ρXi,Xj is τ = 0.
Pearson correlation coefficients assume values in the range [−1, 1], where ρXi,Xj = ±1 indicates a perfect positive or negative
relationship, respectively, and ρXi,Xj = 0 denotes absence of any linear relationship between the processes. By considering
its absolute value, we can define a metric in a the range [0, 1]. We assume ergodicity of the observed processes so that we
can estimate sample means µXi

and µXj
through the time average of Xi and Xj . By following the steps described so far, the

Pearson correlation coefficient in (8)is approximated over a time span Tn through

ρ̂Tn

a,b =

∑Tn
n=1

(
xi[n]−Xi

) (
xj [n]−Xj

)√∑Tn
n=1

(
xi[n]−Xi

)2√∑Tn
t=1

(
xj [n]−Xj

)2 (9)

where Tn is the window size, x[n], x[n] are the time series samples observed at the n-th instant, and Xi, Xj are the sample
means. Equation (9) is applicable to any pair of time series to highlight pairwise correlation associated to different satellites.
It is worth recalling that a trade-off between estimation accuracy and latency has to be considered for the implementation of
(9). By performing an exhaustive computation of (9), we define a K ×K Pearson matrix that includes correlation information
about any pair of tracked GNSS signals

PTn =


1 ρ̂1,2 ρ̂1,3 . . . ρ̂1,K

ρ̂2,1 1 ρ̂2,3 . . . ρ̂2,K
...

...
...

. . .
...

ρ̂K,1 ρ̂K,2 ρ̂K,3 . . . 1

 (10)

where K is the number of tracked signals for which C/N0 time series are actually available. The correlation information
included in (10) can be used to infer possible spoofing attacks on subset of tracked signals. However, we propose an aggregated
metric to quantify the severity of the attack by gathering all the pairwise information

µ(K)
ρ =

2

K(K − 1)

∑
i,j

ρ̂i,j ∀i > j, i ∈ (1,K) (11)

where i and j defines rows and columns indices, respectively.

2. Spoofing detection: decision logic
We can detected an ongoing spoofing attack based on the binary hypothesis that either the GNSS receiver tracks legitimate
satellite signals, H0, or spoofed signals, H1. Under H0, µρ is typically close to zero, thus denoting a poor cross-correlation
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Figure 4: Pictorial view of the Neyman-Pearson criterion applied to spoofing detection based on the Pearson correlation coefficients of C/N0

time series. PDFs of single Pearson’s correlation coefficients (a) and of aggregated data, i.e. average Pearson correlation coefficient (b).

among the C/N0 time series, and its distribution follows a given PDF, f0(r). On the contrary, underH1, µρ is expected to be as
closer to 1 as many spoofed satellites are tracked by the receiver, with a PDF distributed according to f1(r). As anticipated in
Section II, the magnitude of (11), provide a feedback on the harmfulness of the ongoing attack. We can approximate the PDFs
f0(r) and f1(r) by means of

f(r) ≃ 2n−3(1− ρ2)
n−1
2 (1−R2)

n
2 −2

πΓ(n− 2)
×

∞∑
k=0

[
Γ

(
n− 1 + k

2

)]2
(2Rρ)k

k!

(12)

where r is a variable defined in the range (−1, 1), Γ(·) is the Gamma function, n is the number of Pearson’s correlation samples
in a given observation, and ρ is the known level of correlation, according to (Muirhead, 2009). The skewness of (12) increases
with ρ. However, according to the Central Limit Theorem, (12) can be transformed through the Fisher transformation

z =
1

2
ln
(
1 + r

1− r

)
= tanh−1(r) (13)

such that (12) approaches a normal distribution as the number of Pearson samples, n, increases. The transformed PDF is
characterised by a standard deviation

σz =
1√
n− 3

. (14)

These analytical steps are depicted by the plots of Figure 4. Single correlation coefficient will define the distribution of Figure
4a while averaging n Pearson coefficients will shift the decision problem to the Gaussian-like distributions defined through (13)
and centered at the average correlation coefficient, as in Figure 4b. A decision threshold, γ, can be established by expressing
the probability of a false alarm as

PF ≃
∫ 1

γ′
f ′
0(z) dz = α (15)

where f ′
0(z) is the transformed PDF according to (13), and α is the design parameter for the decision logic. The threshold γ′ is

computed by fixing the probability of a false alarm, α, as

γ′ = Q−1(α) (16)

where Q(·) is the the Marcum Q-function and γ′ must be reverted to γ by inverting (13). As an example, by fixing a probability
of false alarm of 1.5% through α = 0.015, we obtain γ′ ≃ 2.17. This value corresponds to a threshold γ ≃ 0.5 for the original
PDF (12) of Figure 4b. The value γ ≃ 0.5 is used as a reference for the validation of the technique through the experimental
campaign to assess the spoofing detection with a probability of false alarm of 1.5%.



a) Implementation of the decision logic
The proposed algorithms is described through the pseudocode in Algorithm 1. It is worth recalling that the mean correlation
threshold, γ, can be heuristically determined underH0 andH1 hypothesis. As an alternative, γ can be estimated by an arbitrary
false alarm probability, according to Section III. We then compare the current mean Pearson correlation coefficient µ(K)

ρ

estimated through real-time data over a window of TW s, with the Selected threshold. Eventually we establishH1 (spoofing) or
H0 (non-spoofing) conditions within the observed time window by accepting or rejectingH1 according to the Neyman-Pearson
criterion.

Data: Th = λ, C = C/N0

for i ≤ K do
for j < i do

P(i, j)← pears(C(i, :),C(j, :))
end
µ
(K)
ρ ← 2

K(K−1)

∑
i,j P (i, j)

if µ(K)
ρ ≥ Th then
H1 accepted over Tn

else
H1 rejected over Tn

end
end

Algorithm 1: Spoofing detection algorithm based on the correlation of C/N0 time series

3. Experimental setup
Spoofing tests were executed by means of a low-cost portable spoofer based on a Great Scott Gadgets™ HackRF One™ platform
and a Raspberry™ PI 4B. The HackRF One™ front-end is a low-cost, open-source SDR allowing for a cost-effective RF signal
transmission from binary files (.bin) including Intermediate Frequency (IF) or baseband signal samples.

The front-end can receive and transmit signals from 1MHz to 6GHz with adjustable power and channel bandwidth. The
software used to numerically generate the spoofed Global Positioning System (GPS) signal is GPS-SDR-SIM, an open GPS
L1 C/A signal generator toolbox distributed with a MIT license. The attack was planned to simulate a static position, and all
the visible satellites belonging to the GPS constellations and their signals were transmitted through the SDR equipment. An
optional reference 10MHz Oven Controlled Crystal (Xtal) Oscillator (OCXO) was connected to the front end to discipline the
signal generation. The power supply can be provided through a mass-market, 10000mAh battery pack compliant to the supply
specification of the Raspberry™ PI 4B. The HackRF One™ can be then supplied by the Raspberry PI itself through its USB 3.0
interface. Spoofing attacks were performed through the portable spoofer according to the following steps:

1. Numerical fake signal generation. The fake static location coordinates were chosen and configured to the GPS-SDR-SIM.
The software also requires in input the daily GPS broadcast ephemeris file (i.e., RINEX v2 brdc file). Once the input are
provided, it generates the simulated pseudorange and Doppler shifts for the GPS satellites in view. This simulated range
data was used to produce a binary file with In-phase(I)/Quadrature(Q) samples of the complex baseband GNSS signal,
ready to be reproduced by the SDR front-end (i.e., HackRF One™).

2. A .bin file transmission. The .bin file is read by the HackRF One through the USB interface of the Raspberry™ PI 4B.

3. Digital to analogue conversion. The transmitting module of the front-end (HackRF One™) is in charge to perform the
digital-to-analog conversion by mixing the baseband signal provided at step 2 to the carrier frequency generated through
the Voltage-Controlled Oscillator (VCO) (i.e. GPS L1 C/A), thus, transmitting I/Q modulated GNSS signals in L1 band.

4. RF signal transmission. After baseband signal samples are generated, HackRF One™) transmits .bin file through an
antenna of the SDR platform at L1 frequencies. Specifically, the transmission command is used to spread the samples
using HackRF One™), at 1575.42MHz, repeatedly.

a) Devices under test
A variety of Android™ smartphones with multi-frequency GNSS chipsets were chosen to test the effect of the simplistic spoofing
attack performed through the portable spoofer described above. The list of devices under test is reported in Table 1. These
devices are all equipped with Google Android™ Operating System (OS) and the GNSS Logger Android application provided by
Google™ was installed for the procurement of GNSS raw measurements. Additionally, the devices’ Position, Velocity, Timing
(PVT) solutions were logged through the Android™ National Marine Electronics Association (NMEA) Tools application, which



provides the GNSS standalone position of the smartphone in standard NMEA format.

b) Test methdology
Experiments on smartphones were carried out in a dedicated test campaign. Each test foresaw about 500 s data collections for
two complementary scenarios, in controlled environmental conditions. The scenarios included i) devices waking on nominal
GNSS signals and then being subject to spoofing after 150 s and ii) devices waking on under spoofing attack switched off after
350 s The range of the spoofer was kept at about 3m, and, in order to prevent any RFI disturbances beyond the range of the
experimental setupcontrolled environment, a 30 dB attenuator was applied at the coaxial cable to reduce transmitting signal
power levels and limit the spoofer coverage. The actual locations of the smartphones, i.e., the test site, were at N 45°3’52.4711“
E 7°39’42.7179“, 2022-06-14 at 14:50 UTC +00:00 while the portable spoofer broadcast spoofing signals over GPS L1 band
with a fake location at N 45°09’28.5” E 7°34’47.9”, 2022-06-14 at 14:00 UTC +00:00 which was approximately 12 km away
from the test location. Based on the results of the previous test campaigns (Rustamov et al., 2020b,a), we modified the test
settings to achieve the most vulnerable conditions under which an Android™ smartphone could be spoofed by a simplistic attack.
To this aim, the test has been executed in both normal and pilot/airplane modes. Normal operational modes in smartphone
foresees wireless data connectivity that allows smartphones to download updated GNSS ephemeris. Such a data can be used
for cross-checking the time-consistency of the received navigation message in rudimentary anti-spoofing techniques. However,
in (Rustamov et al., 2023) it has been shown that no relevant differences have been observed by operating the devices under test
in the two modes. For a conservative and more realistic approach, all the results presented in this article have been obtained in
normal operational modes.

Table 1: Android™ devices under test and embedded GNSS chipsets with supported frequency bands.

Model System on chip (SOC) GPS Bands

Samsung A30 Qualcomm Exynos 7904 Octa L1
Samsung A32 Qualcomm Snapdragon 720G L1
Samsung S6 Qualcomm Exynos 7420 Octa L1
Samsung A20 Qualcomm Exynos 7884 Octa L1
Samsung Note 8 Qualcomm Snapdragon 835 L1
Samsung Note 20 Qualcomm Exynos 990 L1
Samsung A21s Qualcomm Snapdragon 720G L1
Samsung Note 22 Qualcomm Snapdragon 8 L1
Samsung A72 Qualcomm Snapdragon 720G L1
Xiaomi Redmi 6 Mediatek MT6762 Helio P22 L1
Xiaomi Redmi 6 Pro Qualcomm Snapdragon 636 L1
Xiaomi Redmi 8 Qualcomm Snapdragon 845 L1+L5
Xiaomi Redmi 8 Pro Qualcomm Snapdragon 845 L1+L5
Xiaomi Note 9 MediaTek Helio G85 L1+L5
Xiaomi Note 11 Qualcomm Snapdragon 680 4G L1+L5
Xiaomi 12x Qualcomm Snapdragon 870 L1+L5
Huawei Y9 Octacore HiSilicon Kirin 710 L1
Honor X8 Qualcomm Snapdragon 680 L1

IV. RESULTS AND DISCUSSION
1. Correlation Matrix and Average Pearson Coefficients
We discuss hereafter the Pearson correlation matrices under both legitimate and spoofing signals of three representative datasets
for three different devices. As it can be observed, in the Samsung A30 dataset Figure 5b, one of the highest correlations
corresponding to the pair PRN 1 and PRN 3 (ρ̂1,3 = 0.99). Similarly, PRN 1 and PRN 3 were highly correlated for the
Samsung A30, Samsung S6 and Xiaomi 8 dataset, as shown in Figure 5d (ρ̂1,3 = 0.98), Figure 5f (ρ̂1,3 = 0.99) and Figure
5h (ρ̂1,3 = 0.97). In both the datasets, the C/N0 time series increases the value of the Pearson coefficient of δµ̄ρ = 92.94%,
δµ̄ρ = 95.75%, δµ̄ρ = 79.31% and δµ̄ρ = 89.31% during the spoofing time period, with respect to the non-spoofed one
where lower or negative correlation coefficients, ρ̂1,3 = −0.76, ρ̂1,3 = 0.18, ρ̂1,3 = −0.30 and ρ̂1,3 = −0.30 are observed in
both Figure 5a, Figure 5c, Figure 5e and Figure 5g populations. A summary of the experimental campaign is given in Figure
6 for different devices under test. It can be seen that the Pearson correlation increment varies depending on the dataset but the
spoofing alarm is always correctly raised by realying on a threshold γ = 0.5. The complete analysis of all the datasets confirms
how a significant increment on the correlation between the time series can be observed for all the pairs of the PRNs, and thus the
mean of the Pearson coefficient defined in (11) is a suitable metric for the detection of a single-antenna spoofing attack based
exclusively on the observation of raw GNSS measurements.
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Figure 5: Sample heatmaps showing Pearson correlation coefficients between available PRNs according to (10). Results were computed over
an observation window of duration Tn = 50 s during the spoofing (a,c,e,g) and non spoofing periods (b,d,f,h) for the Scenario 1.
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Figure 6: Mean Pearson correlation coefficients and average correlation increment evaluated under Tn = 50 s for each dataset under non-
spoofed and spoofed conditions.

2. Observation window length and detection latency
The results presented in a Subsection II.2 were obtained using a predetermined observation window length of Tn = 50 s.
However, it is natural to explore the relationship between the window length and the reliability of the threshold in detecting
possible spoofing attacks. To determine the minimum latency required for such detection, we evaluated the average Pearson
correlation coefficients, denoted as µ(K)

ρ , for different window lengths ranging from 5 s to 400 s.
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Figure 7: Mean Pearson correlation coefficients computed for all the devices under test by varying the duration of the observation time
window in 5-400 s.

Figure 7 depicting the behavior of µ(K)
ρ and the estimated threshold, γ, was generated by varying the observation window

lengths for all devices under test. In the range of 5 s to 50 s, the coefficients were reported with a step size of 5 s. It can
be observed that the observation windows can be adjusted, either shortened or extended, without significantly affecting the
performance of the proposed method. Shorter windows reduce decision logic latency and data buffering requirements but may
result in unreliable output coefficients, as exemplified by the case of the Samsung A32 in a particular scenario. Conversely,
increasing the window length introduces a longer latency and increases vulnerability to environmental variability within the
observation period. Considering these findings, a window length of Tn = 50 s was selected as a valuable and safe trade-off



between latency and reliable correlation coefficients for this study.

V. CONCLUSIONS
In this study, it was observed that while smartphones are generally considered resilient to spoofing attacks, properly designed
malicious actions can still pose a threat to these devices. We focused on single-antenna spoofing attacks and their impact
on the raw GNSS measurements reported by GNSS receivers. The study demonstrated that single-antenna spoofing attacks
induce a distinct correlation pattern in the raw GNSS measurements, specifically targeting the C/N0 parameter. Leveraging
this correlation, the researchers developed a method to detect simplistic spoofing attacks and formalized the estimation of a
correlation index. This correlation index serves as an indicator of the occurrence of a single-antenna spoofing attack against
a GNSS receiver. To assess the practicality of their approach, the study provided a theoretical background on the analysis of
Pearson correlation coefficients and their applicability to spoofing detection on mass-market Android™ devices. The researchers
suggested an observation window ranging from Tn = 5−50 s to estimate pairwise correlation indices. This window size aimed
to achieve a false alarm probability of 1.5 %. Overally, this research highlights the importance of considering the potential
vulnerabilities of smartphones to spoofing attacks, even though they are generally considered resilient. By identifying and
leveraging the correlation induced by single-antenna spoofing attacks, the study provides a method to detect spoofing attacks
and offers insights into their impact on GNSS receiver measurements. These findings contribute to the ongoing efforts to
enhance the security and resilience of smartphones against spoofing attacks.
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