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Abstract

The output signal is examined for the Jacobi neuronal model which is charac-

terized by input-dependent multiplicative noise. The dependence of the noise on

the rate of inhibition turns out to be of primary importance to observe maxima

both in the output firing rate and in the diffusion coefficient of the spike count

and, simultaneously, a minimum in the coefficient of variation (Fano factor).

Moreover, we observe that an increment of the rate of inhibition can increase

the degree of coherence computed from the power spectrum. This means that

inhibition can enhance the coherence and thus the information transmission

between the input and the output in this neuronal model. Finally, we stress

that the firing rate, the coefficient of variation and the diffusion coefficient of

the spike count cannot be used as the only indicator of coherence resonance

without considering the power spectrum.
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1. Introduction

Nonlinear dynamical systems are often strongly influenced by different sources

of noise. The response of these systems to random fluctuations is of great in-

terest because, differently from the typical assumption that noise can hinder or

deteriorate the signal transmission, it has been observed that noise can some-5

times improve the information processing both in theoretical models and in

experiments [1, 2, 3, 4, 5]. Mathematical models in neuroscience are one of the

most prominent examples for which noise is of primary importance or even a

part of the signal itself rather than a source of inefficiency and unpredictability.

In this article, we contribute to the discussion on this topic by studying the10

effects of a multiplicative noise on the performance of a single neuronal model

using an analytical approach.

Typical examples of investigating the effect of noise are numerous studies

on so-called stochastic resonance [6, 7, 8, 9, 10]. Broadly speaking, stochastic

resonance is observed when increasing the level of noise improves the signal15

transmission or detection performance, instead of deteriorating it. The term is

traditionally reserved for studying periodic signals. However, it is also natu-

ral to ask whether the noise optimizes the information transmission via small

aperiodic signals. Then, contrary to the usual setup of stochastic resonance,

no external periodic driving is assumed and the coherence that appears as a20

nonlinear response of the system to the input signal or to a purely noisy excita-

tion is called aperiodic resonance [11] or coherence resonance [12, 13, 14]. What

happens is that for both small and large noise amplitudes, the noise-excited

activity appears to be rather irregular, while for moderate noise relatively co-

herent outputs are observed. Then, the information on the input can be inferred25

from the available observation of the output. In case of an aperiodic input the

word resonance can be misleading, so McDonnell and Ward [1] suggested using

the term stochastic facilitation.

Several specific measures are employed to quantify the above mentioned

effects of the noise. For example, the characteristic correlation time is used in
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[13] for the FitzHugh-Nagumo model. Other examples are the cross-correlation

coefficient,[11], for the integrate-and-fire or Hodgkin-Huxley neuron models or

the mutual information between the input and the output, [15]. However, the

most commonly used measures are evaluated from the power spectrum both for

single neurons [12, 14, 16, 17, 18, 19, 20] and recently for neuronal networks

[21, 22, 23]. The metric we use here as an indicator of the stochastic facilitation

is the degree of coherence, β. It is based on the power spectrum and it is directly

related to the Fisher information. In particular, using Shannon’s formula, the

total amount of information, I, contained in the neuronal output is proportional

to a function of β (for details see [24])

I ∝
∫

log2[1 + β]dω.

The previous examples of stochastic resonance, coherence resonance or stochas-

tic facilitation are mostly based on manipulating the noise component of the30

system. However, neurons and consequently their models are characterized

by the rather intuitive property that the noise amplitude is signal dependent

[3, 25, 26, 27, 28]. The signal is composed of excitation and inhibition and it is

not so intuitive that despite the integrated level of the signal (sum of excitation

and inhibition) is kept constant, due to the manipulation with its components,35

the noise can be attenuated or enhanced. This may lead to seemingly paradox-

ical results and the mechanism is also used here. We analyze the dependence of

the output on the rate of inhibitory inputs, showing that a small contribution

of inhibition can enhance the degree of coherence and thus improve the coding

performance. The employed model is based on the Jacobi diffusion [29] and it40

represents a good compromise between mathematical tractability and biological

accuracy. For the considered model, in [30] it is shown that the dependence of

the parameters on the rate of inhibition is of primary importance to observe

a change in the slope of the response curves. This dependence also affects the

variability of the output as reflected by the coefficient of variation, which often45

takes values larger than one and is not always a monotonic function of the rate

of excitation.
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The paper is organized as follows. We summarize the Jacobi neuronal model

and we recall relevant mathematical tools in Section 2. The measures of coher-

ence are listed together with their interpretation and relation with the statisti-50

cal moments of the first-passage time in Section 3. These methods of coherence

quantification are used to obtain the main results in Section 4 and are then

discussed in Section 5.

2. The Jacobi neuronal model

The Jacobi neuronal model, Xt, describes the evolution of the neuronal

membrane depolarization between two consecutive spikes and is defined by the

following stochastic differential equation [30], [31], [32]

dXt =

(
−Xt

τ
+ µ(VE −Xt) + ν(Xt − VI)

)
dt+ σ

√
(VE −Xt)(Xt − VI)dWt,

(1)

where X0 = 0 and τ > 0 is the membrane time constant taking into account

the spontaneous voltage decay toward the resting potential (set equal to zero

here) in the absence of inputs, µ and ν. The two constants VI < 0 < VE are the

inhibitory and excitatory reversal potentials, respectively. Here Wt is a standard

Wiener process and the diffusion coefficient σ > 0 controls the amplitude of

the noise. Eq.(1) is obtained in [33] as a diffusion approximation of a Stein’s

model with reversal potentials. In that model two independent homogeneous

Poisson processes represent the excitatory and inhibitory neuronal inputs, with

intensities λE and λI , respectively. They describe the arrival of excitatory and

inhibitory postsynaptic potentials and are such that the input parameters are

µ = eλE , ν = iλI , (2)

where i and e are constants such that −1 < i < 0 < e < 1. The square of the

noise amplitude, σ2, is assumed to depend linearly on the input rates through

a constant ε > 0 in the following way

σ2 = (λE + λI)ε. (3)
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Relations (2) and (3) connect the mathematically tractable but abstract descrip-

tion (1), to more biophysical based models such as Stein’s model [34, 35, 36]

or conductance-based models [37, 38, 39]. It is obvious from Eqs. (2) and (3)

that with increased input the noise amplitude also increases. In addition, com-

bined with Eq.(1), it implies that the effect of the input is state-dependent,

i.e., changes in the depolarization decrease if Xt approaches VI or VE , and that

the process is confined in the interval (VI , VE). Throughout the paper, the

underlying parameters are chosen to meet the following condition

σ2

2
≤ min

(
µ− VI

τ(VE − VI)
,

VE
τ(VE − VI)

− ν
)
, (4)

that guarantees that both VI and VE are entrance boundaries, i.e., the process55

Xt cannot reach them in finite time.

To simplify the notation for further calculations, it is convenient to rescale

the process Xt to the interval (0, 1). Using the transformation y = x−VI

VE−VI
in

Eq.(1), we obtain

dYt = (−aYt + b)dt+ σ
√
Yt(1− Yt)dWt, Y0 = y0, (5)

with

a =
1

τ
+ µ− ν, b = µ− VI

τ(VE − VI)
, y0 = − VI

VE − VI
. (6)

In accordance with the model, spikes of the neuron under study are generated

when the process Yt crosses a voltage threshold S = S0−VI

VE−VI
, with VI < 0 < S0 <

VE and 0 < y0 < S < 1 for the first time, the so-called first-passage time (FPT).

After a spike, the process is reset to the starting point y0 and the evolution

starts anew. This reset condition introduces a nonlinearity in the dynamics and

guarantees that the interspike intervals (ISIs) form a renewal process. In this

case, the ISIs are independent and identically distributed as the FPT, denoted

here by T and defined as

T := inf{t ≥ 0 : Yt ≥ S|0 < y0 < S < 1} = inf{t ≥ 0 : Xt ≥ S0|VI < 0 < S0 < VE},

with probability density function g(t). The Laplace transform of T , i.e., g∗(ξ) :=

E[e−ξT ] =
∫∞

0
e−ξtg(t)dt, ξ > 0, is used to calculate the moments of T and the
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power spectral density, and is given by [31]

g∗(ξ) =
2F1 (k(ξ), θ(ξ); γ; y0)

2F1 (k(ξ), θ(ξ), γ;S)
, (7)

where

k(ξ) =
2ξ

θσ2
, θ(ξ) =

2a− σ2 −
√

(σ2 − 2a)2 − 8ξσ2

2σ2
, γ =

2b

σ2
,

and 2F1 denotes the Gaussian hypergeometric function. Note that, since S0 <

VE , only the condition σ2 ≤ 2µ − 2VI/(τ(VE − VI)) for VI to be entrance

boundary is needed.

3. Methods for coherence quantification60

Common quantities used in the studies on neuronal firing activity are the

firing rate and the variability of the ISIs. The firing rate, f , is usually defined

as the inverse of the mean FPT, i.e f = 1/E(T ) [40]. The variability is often

characterized by the coefficient of variation of T , CV, that is the ratio between

the standard deviation and the mean of T , i.e., CV =
√

Var(T )/E(T ). The

quantity (CV)2 is equal to the Fano factor [41, 42, 43] (also called index of

dispersion) for a renewal process. The presence of coherence resonance is often

investigated by only looking at the behavior of the CV [13, 44, 45], without

relying on other coefficients. In addition to these quantities, we recall the defi-

nition of the (effective) diffusion coefficient of the spike count, Deff, [41]. For a

renewal process, it can be expressed by the moments of T , namely [2, 19]

Deff =
1

2

Var(T )

E(T )3
=

1

2
(CV)2f. (8)

It determines how fast the variance of T grows with respect to the cube of the

mean of T .

One of the methods to detect the presence of coherence is the analysis of the

power spectral density given by

S(ω) =
1− |ρ(ω)|2

|1− ρ(ω)|2
f, (9)
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where ρ(ω) is the Fourier transform of the ISI density function, g(t). The

spectrum at vanishing and infinite frequency is related to the above quantities

as follows, [18]

lim
ω→0

S(ω) = 2Deff = (CV)2f, lim
ω→∞

S(ω) = f. (10)

The neuron may possess a noise-induced eigenfrequency, which appears as a

peak in the spectrum, meaning that there is a preferred frequency. We denote

by S(ωmax) the value of the peak in the power spectrum, by 2h the height of the

peak over f , i.e., 2h := S(ωmax)− f and by Sh the value at the half height h of

the peak over f , i.e., Sh := f + h = S(ωmax)− h = [S(ωmax) + f ]/2, see Fig.1.

The size of the peak can be quantified by the degree of coherence, β, which is

the ratio of peak height to the relative width with respect to the position of the

maximum ωmax of the power spectrum [17]. Here we choose the width at one

half of the peak height over f , i.e., Sh, as in [18] (see Fig.1). So we use the

following version of the degree of coherence

β =
S(ωmax)− f
ω2 − ω1

ωmax, (11)

where

ω1 = min
ωmin≤ω≤ωmax

{S(ω) ≥ Sh} , ω2 = max
ω≥ωmax

{S(ω) ≥ Sh} .

The spectrum at vanishing frequencies is either below or above f depending on

whether the CV is smaller or larger than one, respectively, cf. Eq.(10). As a65

consequence, S(ω) can be bigger than S(ωmax) for ω ≈ 0 if CV > 1. By setting

ωmin to 0 when CV < 1 or to the frequency at which a local minimum S(ωmin) <

f is observed when CV > 1, we guarantee that S(ωmax) is the global maximum

of the power spectrum in [ωmin,∞), avoiding possible numerical maximization

problems. An illustration of all quantities of interest entering in (11) is given70

in Fig. 1. The degree of coherence (11) often goes under the name of signal-to-

noise ratio (SNR)[12], or coherent SNR [14], that measures how well a spectral

peak is expressed with respect to the value of the background noise [2].
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Figure 1: Illustration of the quantities defined in Eq.(11). The firing rate f is the high-

frequency limit of the power spectrum, cf. Eq.(10), which has its highest peak in ωmax. The

height of the peak over f is 2h, i.e., 2h = S(ωmax)− f , while Sh denotes the value at the half

of the height of the peak over f , i.e., Sh = f + h = S(ωmax)− h. When CV > 1, ωmin is the

frequency at which a local minimum S(ωmin) < f is observed (left panel). When CV < 1, we

set ωmin to zero (right panel). This guarantees that the peak S(ωmax) is the global maximum

of the spectrum in [ωmin,∞).

4. Results

We analyze the above quantitative measures of neuronal firing for the Jacobi75

model (1) in dependence on the rate of the inhibitory input, λI . Due to the

interrelationship among the parameters in Eqs.(1)-(3), some counterintuitive

effects are observed. The firing rate, f , the coefficient of variation, CV, and the

diffusion coefficient, Deff, are shown in Fig.2 as a function of λI , for different

values of the excitatory rate, λE . The firing rate is not always decreasing for80

increasing inhibition. For small values of λE it can increase with λI as a result

of the form of the noise (cf. Eq.(2); a detailed discussion is given in Ref.[30]).

We note that the CVs show minima for two of the curves for λI smaller than 0.5

ms−1. They attain values above 1 for λI larger than 0.5 ms−1. The behavior
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of Deff is similar to that of f because, for the selected parameters, CV ≈ 1 (cf.85

Eq.(8)). For values of λI and λE close to zero, Deff is almost zero because the

neuron is practically silent.

The Deff achieves a maximum for small values of the excitatory rate (λE ≤ 0.15

ms−1) but with λI strong enough to produce spikes. For stronger inhibitory

inputs the diffusion coefficient decreases, meaning that the CV is relatively90

stable with respect to the firing rate.
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Figure 2: The firing rate, the coefficient of variation of the interspike intervals and the diffusion

coefficient of the spike count for the Jacobi neuronal model (1) as a function of the inhibitory

rate, λI , for different values of the excitatory inputs rate, λE (in the legends). The values of

the other parameters are chosen as in Ref.[31] : S0 = 10 mV, x0 = 0 mV, VI = −10 mV,

VE = 100 mV, e = 0.02, i = −0.2, τ = 5.8 ms and ε = 0.0145.

Evaluating the Laplace transform in Eq.(7) with imaginary argument ξ =

2πiω, from Eq.(9) we get the following formula for the power spectrum

S(ω) =
1

E(T )

|2F1(k(2πif), θ(2πif); γ;S)|2 − |2F1(k(2πif), θ(2πif); γ; y0)|2

|2F1(k(2πif), θ(2πif); γ;S)− 2F1(k(2πif), θ(2πif); γ; y0)|2
.

(12)

Eq.(12) is implemented numerically in the computing environment R [46]. We

show the shifted power spectra, S(ω)− f , to emphasize the height of the peaks

in Fig.3. We again choose ε = 0.0145, τ = 5.8 ms as in [31], and additionally

ε = 0.025, τ = 3 ms, values also in the physiological range and satisfying Eq.(4).95

The power spectrum shows sharp peaks as a sign of coherence. In both cases,

for increasing values of λI (from left to right in the figures), the peaks become

higher (thus S(ωmax)− f increases) and more peaked (thus ω2 − ω1 decreases)

up to a certain value of the inhibitory rate, and then they start to reduce their
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amplitudes, suggesting the presence of a maximum in the degree of coherence100

β.
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Figure 3: Rescaled power spectra of the Jacobi neuronal model from Eq.(9) for increasing

values of λI (from left to right), ε = 0.0145, λE = 0.15 ms−1, τ = 5.8 ms (left); ε = 0.025,

λE = 0.34 ms−1, τ = 3 ms (right). The other parameters are the same as in Fig.2. Peaks

in correspondence of certain frequencies are clearly visible. The peaks become higher for

increasing values of λI up to λI ≈ 0.33 ms−1 (and thus the degree of coherence β increases) and

after that, their height decreases and their width increases (and thus β decreases), suggesting

the presence of a maximum in β.

Increasing the excitatory rate increases generally the coherence of the spike

train [2]. The same happens for the Jacobi model (figure not shown). The

results are typically the opposite for increasing inhibitory inputs, for which the

corresponding neuronal output exhibits a decreased coherence. The degree of105

coherence of the Jacobi neuronal model as a function of λI is shown in Fig.4.

Here, for relatively small values of the excitatory rate (λE = 0.15 ms−1 or λE =

0.34 ms−1), the inhibition increases the degree of coherence. We observe its

maximum in the classical bell-shape of the SNR, typical of stochastic resonance.

Finally we notice that enhanced coherence is achieved for values of the pa-110

rameters for which the Deff shows a maximum, see for instance Fig.2 (right

panel) and Fig.4 (left panel). The same effect is observed for ε = 0.025 (figure

not shown).
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Figure 4: Degree of coherence as a function of λI for ε = 0.0145, λE = 0.15 ms−1, τ = 5.8

ms (left); ε = 0.025, λE = 0.34 ms−1, τ = 3 ms (right). The other parameters are the same

as in Fig.2. For λI > 0.5 ms−1 we observe the classical result: the coherence decreases for

increasing inhibition. For λI < 0.5 ms−1 and for relatively small values of the rate of arrival

of excitatory inputs, the inhibition can increase the degree of coherence (even if the increment

is small in terms of absolute values). We see that the coherence can be maximized by an

optimum value of the inhibitory input rate (in this particular case around 0.5 ms−1). The

lines are not straight due to small numerical errors in the evaluation of the power spectrum.

We choose small λE because we want weak signals and the input b depends linearly on λE

(see Eq.(6)).

5. Discussion

At low noise intensities and not sufficient excitation to evoke a spike, the115

membrane depolarization evolves mainly around the resting potential, with an

occasional threshold crossing. Conversely, at large noise regimes, the membrane

voltage fluctuations are dominated by the noise, the firings are frequent and

highly irregular. Coherence resonance refers to the phenomenon that occurs

at intermediate intensities of the noise and for which the firings become more120

regular than at low and high noise intensity scenarios [9, 13, 16, 17]. In the case

of the Jacobi neuronal model, the square of the amplitude of the noise depends

linearly on the input rates [30, 31, 32], so the approach presented in this paper

is in the style of coherence resonance, but conceptually different. Instead of

increasing the noise in presence of a weak signal, we increase the inhibitory rate,125
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λI , affecting simultaneously the noise and the input µ(VE −Xt) + ν(Xt − VI),

cf. Eqs.(1)-(3), or, equivalently, looking at Eq.(5), we are manipulating also the

coefficient that plays the role of the time constant through ν.

In the presence of low excitation, the power spectrum of the Jacobi neuronal

model is almost flat and it suggests that the firing activity is approximately130

Poissonian. However, we observe that an increment of the inhibitory rate can

enhance the degree of coherence. Even if the effect is small in absolute value

(the quantity S(ω)− f is much smaller than f), as far as we know, it has never

been observed before. Another property of the Jacobi model discussed here

concerns the diffusion coefficient, Deff. It is a commonly accepted fact that135

the occurrence of a minimum in the diffusion coefficient vs noise intensity is a

strong manifestation of coherence resonance [2, 18, 19]. In the case of the Jacobi

neuronal model, enhanced coherence is observed for values of the parameters

corresponding to a maximum in the diffusion coefficient vs inhibitory rate. This

suggests that, as pointed out for the CV [2, 47], the presence of coherence140

resonance cannot be determined by only looking at Deff.

These counter-intuitive results are consequences of the presence of reversal

potentials in the model equation and we speculate that the same phenomena

can be observed in other models with multiplicative noise, like the Feller or the

inhomogeneous geometric Brownian motion [48]. The extension of these findings145

to the entire class of models with multiplicative noise will be the subject of future

work.
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